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Abstract. We introduce a new candidate post-quantum digital signa-
ture scheme from the regular syndrome decoding (RSD) assumption, an
established variant of the syndrome decoding assumption which asserts
that it is hard to find w-regular solutions to systems of linear equa-
tions over Fa (a vector is regular if it is a concatenation of w unit vec-
tors). Our signature is obtained by introducing and compiling a new
5-round zero-knowledge proof system constructed using the MPC-in-the-
head paradigm. At the heart of our result is an efficient MPC protocol in
the preprocessing model that checks correctness of a regular syndrome
decoding instance by using a share ring-conversion mechanism.

The analysis of our construction is non-trivial and forms a core technical
contribution of our work. It requires careful combinatorial analysis and
combines several new ideas, such as analyzing soundness in a relaxed
setting where a cheating prover is allowed to use any witness sufficiently
close to a regular vector. We complement our analysis with an in-depth
overview of existing attacks against RSD.

Our signatures are competitive with the best-known code-based signa-
tures, ranging from 12.52 KB (fast setting, with signing time of the order
of a few milliseconds on a single core of a standard laptop) to about 9
KB (short setting, with estimated signing time of the order of 15 ms).

1 Introduction

In this work, we introduce a new zero-knowledge proof for proving knowledge of a
solution to the regular syndrome decoding problem, using the MPC-in-the-head
paradigm. Compiling our zero-knowledge proof into a signature scheme using the
Fiat-Shamir paradigm yields a new scheme with plausible post-quantum security
and highly competitive performances compared to the state of the art.

Zero-knowledge, signatures, and syndrome decoding. Zero-knowledge
proofs of knowledge allow a prover to convince a verifier of his knowledge of
a witness for a NP statement without revealing anything beyond this. Zero-
knowledge proofs enjoy countless applications in cryptography. In particular,
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the Fiat-Shamir transform [23] allows to convert any public-coin zero-knowledge
proof system into a signature scheme; this transformation is one of the leading
approaches to the construction of efficient signature schemes.

The syndrome decoding problem asks, given a matrix H € and a
target vector y € F%, to find a vector 2 € FX of Hamming weight w such that
H - x = y. The average-case hardness of the syndrome decoding problem (for
random matrices H and appropriate parameters (K, k,w)) is one of the leading
candidate post-quantum cryptographic assumptions. The first zero-knowledge
proof of knowledge for the syndrome decoding problem was introduced in the
seminal work of Stern [35] three decades ago. Unfortunately, Stern’s proof has a
large soundness error: a cheating prover can convince a verifier with probability
2/3 without knowing a correct solution x. To achieve a low soundness error,
e.g. 27128 the protocol must therefore be repeated 7 times, with 7 such that
(2/3)" < 27128 This adds a significant communication overhead, resulting in a
large signature size after compilation with Fiat-Shamir.

kX K
FZ

Code-based signatures. Digital signatures form the backbone of authenti-
cation on the Internet. However, essentially all deployed constructions will be
rendered insecure in the presence of a quantum computer [34]. This motivates
the search for alternative constructions of digital signature schemes, that rely on
assumptions conjectured to withstand quantum computers. The recent call of
the NIS’IE| for standardizing post-quantum primitives has boosted the research
for efficient post-quantum signatures, particularly code-based signatures.

Among the many candidate code-based signature schemes, the Fiat-Shamir
approach, used in the seminal work of Stern, has received careful scrutiny |89\
201[21}125]. Indeed, while some alternative approaches such as Wave |18] and Du-
randal [2] manage to reach smaller signature sizes (under somewhat more exotic
but plausible assumptions), they typically require the signer to know a trapdoor
associated with the code matrix, leading to huge public keys (since the public
key must include the full matrix H). In contrast, Fiat-Shamir signatures require
no such trapdoor, and the random matrix H can be heuristically compressed
to a short seed using a pseudorandom generator, yielding comparatively tiny
public keys (in addition to relying on more traditional assumptions). This comes
at the expense of slightly larger signature sizes. Nevertheless, the standard ef-
ficiency measure (size of the signature + size of the public key) strongly favors
the Fiat-Shamir line of work.

The MPC in the head paradigm. Several recent works on Fiat-Shamir
code-based digital signatures use the MPC in the head paradigm, introduced in
the seminal work of [27] (MPC stands for multiparty computation). At a high
level, this paradigm lets the prover run an MPC protocol in his head, where the
(virtual) parties are given shares of the witness, and the target function verifies
that the witness is correct. Then, the prover commits to the views of all parties,
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and the verifier asks to see a random subset of the views, checks that they are
consistent, and that the output indeed corresponds to the witness being correct.
Soundness stems from the fact that a cheating prover (not knowing a valid wit-
ness) cannot produce consistent views for all parties, and zero-knowledge follows
from the security of the MPC protocol against a honest-but-curious adversary
(which gets to see the views of a subset of corrupted parties).

The MPC in the head paradigm reduces the construction of efficient zero-
knowledge proofs to the search for suitable MPC protocols with low commu-
nication overhead. In recent years, it has led to some of the most competitive
candidate post-quantum signature schemes |[5,/29], and was used in particular
in the most efficient Fiat-Shamir code-based signature scheme (and the most
efficient code-based signature scheme overall, under the signature + public key
size metric) known to date [21].

1.1 Owur Contribution

In this work, we introduce a new zero-knowledge proof system for a variant of the
syndrome decoding problem, using the MPC in the head paradigm. The variant
of the syndrome decoding problem which we consider is the reqular syndrome
decoding (RSD) problem. Given a matrix H € F&*¥ and a syndrome y € F§, the
RSD problem with parameters (k, K, w) asks to find a weight-w regular solution
v € FX to H -2 = y, where regular means that x is a concatenation of w
unit vectors (i.e., x is divided in w equal-length blocks, and has a single 1 per
block). The regular syndrome decoding problem is a well-established variant of
syndrome decoding: it was introduced in 2003 in |3] as the assumption underlying
the FSB candidate to the NIST hash function competition, and was subsequently
analyzed in [7,/24,(30], among others. It has also been used and analyzed in many
recent works on secure computation, such as |[L0H14}16,26432}36,37].

Brief overview of our approach. While we use the MPC in the head paradigm,
as in previous works [91/20,21,{25], our choice of the underlying MPC protocol de-
parts significantly from all previous work. Our starting point is the observation
that checking H - x = y and checking the structure of x can each be done using
linear operations, over Fy for the former, and over Z for the latter. In standard
MPC protocol, linear operations over a ring R are usually “for free”, provided
that the values are shared over R. Therefore, the only component that requires
communication is a share conversion mechanism, to transform shares over Fo
into shares over a larger integer ring. We introduce a share conversion protocol
which exhibit very good performances. However, our protocol works in the pre-
processing model, where the parties are initially given correlated random string
by a trusted dealer. The use of preprocessing in the MPC in the head paradigm
has appeared in previous works [25,[29], and handling the preprocessing phase
usually incurs a significant communication overhead (due to the need to check
that it was correctly emulated by the prover).

Nevertheless, a core technical contribution of our work is a method, tailored
to our setting, to handle the preprocessing phase for free (i.e. without incurring
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any communication overhead). At a high level, we achieve this by letting the
verifier randomly shuffle the preprocessing strings, instead of verifying them.
A careful and non-trivial combinatorial analysis shows that a cheating prover
has very low probability of providing an accepting proof for any choice of the
initial (pre-permutation) preprocessing strings, over the choice of the verifier
permutation. Furthermore, we observe that the cheating probability becomes
much lower if we focus on cheating provers using a witness which is far from a
regular witness (in the sense that it has multiple non-weight-1 blocks). For an
appropriate setting of the parameters, the hardness of finding solutions close to
regular witnesses becomes equivalent to the standard regular syndrome decoding
assumption (where the solution must be strictly regular), hence this relaxation
of the soundness still yields a signature scheme (after compilation with Fiat-
Shamir) whose security reduces to the standard RSD assumption.

To complement our analysis, we also provide an analysis of the RSD as-
sumption. We analyze the relation of RSD to the standard syndrome decoding
assumption depending on the parameter regime, and reviewed existing attacks
on RSD from the literature, fine-tuning and improving the attacks on several
occasions. Eventually, we develop a new “adversary-optimistic” attack against
RSD, showing how a linear-time solution to the approximate birthday problem
would yield faster algorithms for RSD (in our parameter choices, we assumed
that such an algorithm exists for the sake of choosing conservative parameters).
We provide a more in-depth overview in the technical overview (Section .

Performances. While analyzing our approach is relatively involved, the proto-
col structure is extremely simple. The computation of our zero-knowledge proof
is mostly dominated by simple XORs, calls to a length-doubling PRG (which
can be instantiated very efficiently from AES over platforms with hardware sup-
port for AES) and calls to a hash function. This is in contrast with previous
works, which always involved much more complex operations, such as FFTs [21]
or compositions of random permutations [9,/20]. While we do not yet have an
optimized implementation of our new signature scheme (we plan to get such
an implementation in a future work), we carefully estimated the runtime of all
operations using standard benchmarks, making conservative choices when the
exact cost was unclear (we explain our calculations in details in Section . Our
conservative choices likely overestimate the real runtime of these operations.
Of course, the runtimes extrapolated this way ignore other costs such as the
cost of copying and allocating memory. Nevertheless, in Banquet, another can-
didate post-quantum signature scheme using the MPC-in-the-head paradigm,
the memory costs were estimated to account for 25% of the total runtime. We
therefore expect our extrapolated number to be relatively close to real runtimes
with a proper implementation. Our numbers indicate that our signature scheme
is highly competitive with the state of the art, even if our extrapolated runtimes
are off by more than a factor two, which we view as a strong indication that an
optimized implementation will achieve competitive runtimes.
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For communication, we provide eight sets of parameters. The first four param-
eters use RSD parameters which guarantee a security reduction to the standard
RSD assumption, and we view them as our main candidate parameters. They
correspond respectively to a fast signature (rsd-f), two medium signatures (rsd-
ml1 and rsd-m2) achieving a reasonable speed /size tradeoff, and a short signature
(rsd-s). The last four parameters (arsd-f, arsd-ml, arsd-m2, and arsd-s) use a
more aggressive setting of the RSD parameters, where security reduce instead
to a more exotic assumption, namely, the security of RSD when the adversary
is allowed to find an almost regular solution (with some fixed number of “faulty
blocks” allowed). Since this variant has not yet been thoroughly analyzed, we
view these parameters mainly as a motivation for future cryptanalysis of variants
of RSD with almost-regular solutions.

We represent in Table [I] the results of our estimations and compare them
to the state-of-the-art in code-based signature schemes. Compared to the best-
known code-based signature scheme of [21], our conservative scheme (under stan-
dard RSD) achieves significantly smaller signature sizes than their scheme based
on syndrome decoding over Fy (12.52 KB for our fast variant versus 17 KB for
Var2f, and 9.69 to 8.55 KB for our shorter variants versus 11.8 KB for Var2s).
In terms of runtime, our estimates are significantly faster than their reported
runtimes (except rsd-s, which is on par with Var2s), hence our runtimes should
remain competitive with a proper implementation, even if memory costs turn
out to be higher than expected. Their most efficient scheme (variants Var3f and
Var3s) relies on the conjectured hardness of syndrome decoding assumption over
Fa56, which has been much less investigated. Yet, our conservative RSD-based
schemes remain competitive even with their most efficient scheme: we get slightly
larger signatures (12.42 KB versus 11.5 KB, and 9.13 KB versus 8.26 KB), and
comparable runtimes. Since the RSD assumption over Fo has been more inves-
tigated, we view our signature scheme as a competitive and viable alternative.

2 Preliminaries

Given an integer n € N, we denote by [n] the set {1,---,n}. We use bold lower-
case for vectors, and uppercase for matrices. Given a vector v € F™ and a permu-
tation 7 : [n] — [n], we write 7(v) to denote the vector (vx(1),Vr(2), ", Vn(n))-
Given u,v € {0,1}", we write u® v for the bitwise-XOR, of u and v, and u®© v
for the bitwise-AND (also called Schur product, or Hadamard product) of u and
v, and HW(u) for the Hamming weight of u (i.e. its number of nonzero entries).
Given a set S, we write s <, S to indicate that s is sampled uniformly from S.
Given a probabilistic Turing machine A4 and an input z, we write y <, A(zx)
to indicate that y is sampled by running 4 on x with a uniform random tape,
or y + A(z;r) when we want to make the random coins explicit. We assume
familiarity with some basic cryptographic notions, such as commitment schemes,
collision-resistant hash functions, and the random oracle model.

Given a vector u € Z4 and an integer T, we write (U, ,un) - [u]r
to indicate that the vectors u; (called the i-th additive share of u) are sampled
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Table 1. Comparison of our signature scheme with other code-based signature
schemes from the literature, for 128 bits of security. All timings are in millisecond.
Reported timings are those extracted in from the original publications, using a 3.5
Ghz Intel Xeon E3-1240 v5 for Wave, a 2.8 Ghz Intel Core i5-7440HQ for Durandal,
and a 3.8 GHz Intel Core i7 for . Our timings are estimated runtimes with the
methodology given in Section

Scheme |sgn| |pk| tsgn Assumption
Wave 2.07 KB 3.2 MB 300 large-weight SD over Fs,
(U,U 4 V)-codes indist.

Durandal - T 3.97 KB 14.9 KB 4 Rank SD over Fam
Durandal - II 4.90 KB 18.2 KB 5 Rank SD over Fam
LESS-FM -1 9.77 KB 15.2 KB - Linear Code Equivalence
LESS-FM - 11 206 KB 5.25 KB - Perm. Code Equivalence
LESS-FM - III 11.57 KB 10.39 KB - Perm. Code Equivalence
[25] - 256 24.0 KB 0.11 KB - SD over Fasg
\\ - 256 19.8 KB 0.12 KB - SD over Fig24
[20] (fast) 22.6 KB 0.09 KB 13 SD over [y
\\ (short) 16.0 KB 0.09 KB 62 SD over s
9] Sig1 23.7 KB 0.1 KB - SD over Fy
9] Sig2 20.6 KB 0.2 KB - (QC)SD over F,

15.6 KB 0.09 KB - SD over F»

10.9 KB 0.09 KB - SD over Fo

17.0 KB 0.09 KB 13 SD over Fo
11.8 KB 0.09 KB 64 SD over Fo
11.5 KB 0.14 KB 6 SD over F256
8.26 KB 0.14 KB 30 SD over Fasg

Our scheme - rsd-f 12.52 KB 0.09 KB 2.8 RSD over Fy
Our scheme - rsd-ml 9.69 KB 0.09 KB 17 RSD over Fs
Our scheme - rsd-m2 9.13 KB 0.09 KB 31" RSD over F»
Our scheme - rsd-s 8.55 KB 0.09 KB 65" RSD over F;
Our scheme - arsd-f 11.25 KB 0.09 KB 2.4 f-almost-RSD over Fa
Our scheme - arsd-m1l 8.76 KB 0.09 KB 15 f-almost-RSD over Fq
Our scheme - arsd-m2 8.28 KB 0.09 KB 28 f-almost-RSD over Fq
Our scheme - arsd-s 7.77 KB 0.09 KB 57 f-almost-RSD over Fa

* Runtimes obtained using conservative upper bounds on the cycle counts of all op-
erations as described in Section and assuming that the signature is ran on one
core of a 3.8GHz CPU. We stress that these parameters ignore costs such as copy-
ing or allocating memory, and should be seen only as a first-order approximation
of the real runtimes.
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uniformly at random over ZET conditioned on Zl u; = u. We sometime abuse
this notation and write [u]r to denote the tuple (uy,---,un). For a vector
v € {0,1}*, we write [v]z with T > 2 using the natural embedding of {0,1}
into Zr.

2.1 Syndrome Decoding Problems

Given a weight parameter w, the syndrome decoding problem asks to find a
solution of Hamming weight w (under the promise that it exists) to a random
system of linear equations over Fy. Formally, let SX denote the set of all vectors
of Hamming weight w over FX. Then:

Definition 1 (Syndrome Decoding Problem). Let K, k, w be three integers,
with K > k > w. The syndrome decoding problem with parameters (K, k,w) is
defined as follows:

FA*E and & «, SK. Set y «+ H - x.

w

— (Problem generation) Sample H <,
Output (H,y)
— (Goal) Given (H,y), find x € SE such that H -z =y.

A pair (H,y) is called an instance of the syndrome decoding problem. In
this work, we also consider variants of the syndrome decoding problem, with
different restrictions on the solution vector z. In our context, it is useful to
rephrase the constraint on x as a linear equation over N: the solution vector x
must satisfy the constraint (z, 1) = w, where 1 is the all-1 vector, and the inner
product is computed over the integers (note that this view is of course specific
to syndrome decoding over Fy). Other standard variants of syndrome decoding
from the literature can also be viewed as instances of a more general notion of
syndrome decoding under N-linear constraints, which we introduce below:

Definition 2 (Syndrome Decoding under N-Linear Constraints). Let
K, k,w,c be four integers, with K > k > w and k > c. Let L € N*K pe a
matriz and v € N° be a vector; we call (L,v) the N-linear constraint. We say
that (L, V) is a feasible constraint if it is possible to sample a uniformly random
element from the set {x € {0,1}¥ : L.z =v} in time poly(K).

The syndrome decoding problem with parameters (K,k,w) and feasible N-
linear constraint (L,v) is defined as follows:

— (Problem generation) Sample a matriz H <, {0,1}**% and a vector x +,

{x €{0,1}¥ : L.x=v}. Sety < H-xmod 2. Output (H,y).
— (Goal) Given (H,y), find x € {0,1}¥ such that
e H-x=ymod?2 (the Fo-linear constraint), and
e L.z =v over N (the N-linear constraint).
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Examples. Setting ¢ = 1, L = (1,---,1), and v = w corresponds to the
constraint “z has Hamming weight w”, and is the standard syndrome decoding
problem. A common variant in the literature [3}7,[L0H14}16,24L26}30.32L|36}37]
is the regular syndrome decoding problem, where z is instead required to be a
concatenation of w unit vectors, each of length K/w. We recover this variant
by setting ¢ = w, v = (1,---,1)T, and defining L as the matrix with rows
L;,=(0---0,1---1,0---0), where the band of ones is from (i — 1) - K/w + 1 to
i+ K/w. Eventually, the d-split syndrome decoding problem from [22|, where the
vector z is divided into d blocks of weight w/d, is also easily seen to fit in this
framework.

2.2 Honest-Verifier Zero-Knowledge Arguments of Knowledge

Given a two-party interactive protocols between PPT algorithms A with input
a and B with input b where only B gets an output, we introduce two random
variables: (A(a), B(b)) denotes the output of the protocol, and VIEW(A(a), B(b))
denotes the transcript of the protocol.

Definition. A honest-verifier zero-knowledge argument of knowledge with sound-
ness error ¢ for a NP language £ = {z € {0,1}* : Jw,(z,w) € Rz A |w| =
poly(|z|)} with relation R, is a two-party interactive protocol between a prover
P and a verifier V which satisfies the following properties:

— Perfect Completeness: for every (z,w) € R., the verifier always accept
the interaction with a honest prover: Pr[(P(z,w),V(z)) = 1] = 1.

— e-Soundness: [6] for every PPT algorithm P such that Pr[(P(z),V(z)) =
1] = &€ > ¢, there exists an extractor algorithm &£ which, given rewindable
black-box access to P, outputs a valid witness w’ for  in time poly(\, (€ —
£)~1) with probability at least 1/2.

— Honest-Verifier Zero-Knowledge (HVZK): an argument of knowledge
is (computationally, statistically, perfectly) HVZK if there exists a PPT sim-
ulator Sim such that for every (z,w) € Rz, Sim(z) = VIEW(P(z,w), V(z)),
where = denotes computational, statistical, or perfect indistinguishability
between the distributions.

Gap-HVZK. A gap honest-verifier zero-knowledge argument of knowledge [15]
with gap L', where £ D L is an NP language with relation R ./, is defined
as a honest-verifier zero-knowledge argument of knowledge, with the following
relaxation of e-soundness: the extractor £ is only guaranteed to output a witness
w’ such that (z,w’) € L'. Concretely, in our setting, the witness is a valid
solution to the syndrome decoding problem, and the language £’ contains all
strings which are sufficiently close (in a well-defined sense) to a valid solution.
This is similar in spirit to the notion of soundness slack often used in the context
of lattice-based zero-knowledge proof, where the honest witness is a vector with
small entries, and the extracted vector can have significantly larger entries.



Short Signatures from RSD in the Head 9

2.3 The MPC-in-the-Head Paradigm

The MPC-in-the-head paradigm was introduced in the seminal work of [27]. Tt
provides a compiler which, given an n-party secure computation protocol for
computing a function f’ in the honest-but-curious model, produces a honest-
verifier zero-knowledge argument of knowledge of « such that f(z) = y, for some
public value y, where f’ is a function related to f. In our context, the focus is
on zero-knowledge for syndrome decoding problems, for which, for example, a
typical choice of f would include a hardcoded description of the matrix H and
from a vector x, f would output f(z) = (H -z, HW(z)).

At a high level (and specializing to MPC in the head with all-but-one additive
secret sharing — the original compiler is more general), the compiler proceeds
by letting the prover additively share the witness z into (x1,---,z,) among
n virtual parties (Py,---,P,), run in his head an MPC protocol for securely
computing f'(z1,---,2,) = f(3_, z;) (where the sum is over some appropriate
ring), and commit to the views of all parties. Then, the verifier queries a random
size-(n — 1) subset of all views, which the prover opens. The verifier checks that
these views are consistent and that the output is correct — for example, equal
to (y,w) (when proving knowledge of = such that H -z = y and HW(z) = w).
She accepts if all checks succeeded. Soundness follows from the fact that the
MPC protocol is correct, hence if the prover does not know a valid x, one of the
views must be inconsistent with the output being correct (the soundness error
is therefore 1/n). Honest-verifier zero-knowledge follows from the fact that the
MPC protocol is secure against passive corruption of n — 1 parties (and the fact
that n — 1 shares of z leak no information about x).

3 Technical Overview

In this section, we provide a detailed overview of our zero-knowledge proof, and
highlight the technical challenges in constructing an analyzing the proof.

3.1 Our Template Zero-Knowledge Proof

We start with the construction of a zero-knowledge proof of knowledge of a
solution to an instance of the syndrome decoding problem, using the MPC-in-
the-head paradigm. More generally, our protocol handles naturally any syndrome
decoding under N-linear constraints problem for some N-linear constraint (L, v),
see Definition [2] To this end, we construct an n-party protocol II where the
parties have shares of a solution 2 € {0, 1} to the syndrome decoding problem,
and securely output H -z mod 2 and L -z over N. Given the output of the MPC
protocol, the verifier checks (1) that the execution (in the prover’s head) was
carried out honestly (by checking a random subset of n — 1 views of the parties)
and (2) that the two outputs are equal to y and v respectively.

The high level intuition of our approach is the following: in MPC proto-
cols, it is typically the case that linear operations are extremely cheap (or even
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considered as “free”), because they can be computed directly over secret values
shared using a linear secret sharing scheme (such as additive sharing, or Shamir
sharing), without communicating. In turn, we observe that several variants of
the syndrome decoding problem reduce to finding a solution = that satisfy two
types of linear constraints: one linear constraint over Fy (typically, checking that
H -z = y given a syndrome decoding instance (H,y)) and one linear constraint
over N (e.g. checking that (z,1) = w, i.e. that the Hamming weight of = is w).
Now, an appropriate choice of linear secret sharing scheme can make any one
of these two constraints for free in II: if z is additively shared over Fs, then
verifying H - x = y is for free, while if x is additively shared over a large enough
integer ring R = Zr (such that no overflow occurs when computing L - x over N
for any = € {0,1}%), then verifying L - z = v is for free.

Share conversion. By the above observation, the only missing ingredient to
construct II is a share conversion mechanism: a protocol where the parties start
with Fa-shares [z]2 of z, and securely convert them to R-shares [z]r of z. Our
next observation is that for any integer ring Z, this can be done easily using
appropriate preprocessing material. Consider the case of a single bit a € {0,1};
the parties initially have Fo-shares [a]2 of a. Suppose now that the parties receive
the ([b]2, [b]r) for a random b € {0,1} from a trusted dealer. The parties can
locally compute [a @ b]2 and open the bit ¢ = a b by broadcasting their shares.
Now, since a = c® b =c+ b — 2b over N, only two cases may arise:

Case 1: ¢=1. Then a =1 —b and so [a]r = [1 — b]r.
Case 2: ¢=0. Then ¢ = b and so [a]r = [b]r

Therefore, the parties can compute [a]r as ¢- [1 — b]r + (1 — ¢) - [b] 7. This
extends directly to an integral solution vector x. Hence, in the protocol I, prior
to the execution, a trusted dealer samples a random vector r <, {0,1}% and
distribute ([r]z, [r]r) to the parties, where T is such that no overflow can occur
when computing L-2 mod T (in order to simulate N-linear operations). A similar
technique was used previously, in a different context, in [19}33].

The MPC protocol. Building on this observation, we introduce an MPC
protocol in the preprocessing model, where the trusted dealer picks a random
bitstring r, and distributes ([r]z2, [r]r) to the parties. On input additive shares
of the witness = over Fy, the parties can open z = r + z. Using the above
observation, all parties can reconstruct shares [z]r. Then, any linear equation
on x over either Fy or Z; can be verified by opening an appropriate linear
combination of the Fa-shares or of the Zp shares (this last step does not add
any communication when compiling the protocol into a zero-knowledge proof).

Handling the preprocessing material. At a high level, there are two stan-
dard approaches to handle preprocessing material using MPC-in-the-head. The
first approach was introduced in [29]. It uses a natural cut-and-choose strategy:
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the prover plays the role of the trusted dealer, and executes many instances of
the preprocessing, committing to all of them. Afterwards, the verifier asks for
openings of a subset of all preprocessings, and checks that all opened strings
have been honestly constructed. Eventually, the MPC-in-the-head compiler is
applied to the protocol, using the unopened committed instances of the pre-
processing phases. This approach is very generic, but induces a large overhead,
both computationally and communication-wise. The second approach is tailored
to specific types of preprocessing material, such as Beaver triples. It is inspired
by the classical sacrificing technique which allows to check the correctness of a
batch of Beaver triples, while sacrificing only a few triples. It was used in works
such as Banquet [5], or more recently in [21].

Unfortunately, the first approach induces a large overhead, and the second
one is tailored to specific types of preprocessing material. In our context, the
structure of the preprocessing material makes it unsuitable. Fortunately, we show
that, in our setting, the preprocessing material can be handled essentially for
free.

Our technique works as follows: we let the prover compute (and commit to)
the preprocessing material ([r]s, [r]7) himself, but require that the coordinates
of r are shuffled using a uniformly random permutation (chosen by the verifier)
before being used in the protocol. Crucially, as we show in our analysis, the
verifier never needs to check that the preprocessing phase was correctly executed
(which would induce some overhead): instead, we demonstrate that a malicious
prover (who does not know a valid witness) cannot find any (possibly incorrect)
preprocessing material that allows him to pass the verification with the randomly
shuffled material with high probability.

Fundamentally, the intuition is the following: it is easy for the malicious
prover to know values z,z’ such that H -z =y mod 2 and L-z’ = v mod T. To
pass the verification test in the protocol, a malicious prover must therefore fine-
tune malicious preprocessing strings (s, t) such that the value z® (1 —t) + (1 —
z) ® t, computed from z = s ® x for some x such that H - x = y mod 2, is equal
to a value 2’ such that L -2’ = v mod T (recall that in the honest protocol, the
prover should use s = t = r). But doing so requires a careful choice of the entries
(8;,t;): intuitively, the prover needs s; = t; whenever z; = z}, and s, = 1 — t;
otherwise. However, when the coordinates of (s,t) are randomly shuffled, this
is not the case with high probability. While the high-level intuition is clear, we
note that formalizing it requires particularly delicate combinatorial arguments.

Full description of the MPC protocol. Let (H,y) be an instance of the
N-linear syndrome decoding problem with parameters (K, k,w) and feasible N-
linear constraint (L,v). Let z € {0,1}¥ denote a solution for this instance.
We construct an n-party protocol II in the preprocessing model, where the
parties inputs are additive shares of  over 5. The protocol IT securely computes
H -z mod 2 and L -z in the honest-but-curious setting, with corruption of up to
n — 1 parties. Let par < (K, k,w,c, H, L). The protocol Iy, is represented on

Figure
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Parameters: The protocol II operates with n parties, denoted (Pi,---,Py).
(K,k,w,c) are four integers with K > k > w and k > ¢. H € {0,1}**¥ and
L € N*¥ are public matrices. Let par « (K, k,w,c, H,L), and let T <« ||L - 1|,.
We view (x1,-:-,Xn) as forming additive shares [z]2 over Fs of a vector z €
{0, 1},

Inputs: Each party P; has input x; € {0,1}¥.

Preprocessing: The trusted dealer samples r <, {0,1}*. He computes [r]z =
(1, ,8n) + Sharex(r) and [r]r = (t1, - ,tn) < Sharer(r), viewing bits as
elements of the integer ring Zr in the natural way. It distributes (s;, t;) to each
party P;.

Online Phase: The protocol proceeds in broadcast rounds.

— The parties compute [y’]s = H - [x]2 and [z]2 = [r]2 + [z]2. All parties open
y’ and z.

— The parties compute [v']|r < L-(z® [1 —r]r + (1 —2z) © [r]r), viewing z as
a vector over Zr in the natural way.

— All parties open Vv’.

Output. The parties output (y’,v’).

Fig. 1. Protocol IT,, for securely computing H -  mod 2 and L - z in the honest-but-
curious up to n — 1 corruptions.

A template zero-knowledge proof. Building upon the above, we describe
on Figure 2] a template zero-knowledge proof. Looking ahead, our final zero-
knowledge proof does (1) instantiate this template for a carefully chosen flavor
of syndrome decoding with N-linear constraints, and (2) introduce many opti-
mizations to the proof, building both upon existing optimizations from previous
works, and new optimizations tailored to our setting.

3.2 Concrete Instantiation for Regular Syndrome Decoding

With the template construction in mind, we can now discuss our concrete choice
of syndrome decoding problem with N-linear constraints. Our target is the reg-
ular syndrome decoding problem, where the linear constraint states that the
witness x should be a concatenation of w unit vectors (see Section . The
rationale behind this choice stems from the communication complexity of the
template zero-knowledge proof from Figure [2| Intuitively, the communication is
dominated by the cost of transmitting the vectors over the ring Zr (i.e. the
t; vectors): sending each such vector requires K - logT bits. Looking ahead,
even with proper optimizations, the zero-knowledge proof cannot be competi-
tive with state-of-the-art constructions communication-wise whenever the value
of T'=||L-1||; is large.

Typically, for the standard syndrome decoding problem, we have T = K,
hence the communication involves a K - log K term, and the overhead is too
large (when choosing concrete parameters, K is typically in the thousands, hence
Klog K is of the order of a few kilobytes, which becomes a few dozen kilobytes
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Parameters. (K, k,w,c) are four integers with KX > k > w and k > c.
H € {0,1}**% and L € N°*¥ are public matrices. y € {0,1}* and v € {0,1}€ are
public vectors. Let par < (K, k,w,c,H, L), and let T' < ||v||,. Let Commit be a
non-interactive commitment scheme.

Inputs. The prover and the verifier have common input par and (y,v), which
jointly form an instance of the N-linear syndrome decoding problem. The prover
additionally holds a witness x € {0,1}* which is a solution of the instance:
H-z=ymod2and L-z=v(=vmodT).

Witness Sharing. The prover samples (X1, -+ ,Xn) < Sharez(z). Each share x;
is the input of the virtual party P;.

Round 1. The prover runs the trusted dealer of Il and obtains
((s15-++ ,sn), (t1,-++ ,tn)) = ([r]2,[r]r). He computes and sends ¢; <
Commit(x;,s;,t;) for i = 1 to n to the verifier.

Round 2. The verifier picks a uniformly random permutation 7 <, Sk and sends
it to the prover.

Round 3. The prover runs the online phase of Il where the parties
(P1,-++, P,) have inputs (x1,---,X»), using the shuffled preprocessing material
([w(x)]2, [w(x)]r). For each party P;, let msg, = (yi,z:,v;) denote the list of all
messages sent by P; during the execution. The prover sends (msgy,--- ,msg,) to
the verifier.

Round 4. The verifier chooses a challenge d € [n] and sends it to the prover.
Round 5 The prover opens all commitments c; for j # d to the verifier.
Verification. The verifier checks:

— that all commitments were opened correctly;
— that the output of ITs with transcript (msgy,--- ,msg, ) is equal to (y,Vv);
— that the messages msg, sent by P; are consistent with (x;,s;,t;).

The verifier accepts if and only if all checks succeed.

Fig. 2. Template 5-round zero-knowledge proof for N-linear syndrome decoding using
MPC-in-the-head with the protocol ITpar

after parallel repetitions). On the other hand, regular syndrome decoding ap-
pears to minimize this cost: the value of T is only K/w. Hence, by choosing the
weight appropriately, we can reduce the value of T.

The regular syndrome decoding problem is also far from new: it was intro-
duced in [3] as the assumption underlying the security of a candidate for the
SHA-3 competition, and was subsequently studied in numerous works, includ-
ing [71[241|30], and more recently in |26]. The hardness of the regular syndrome
decoding problem is also the core assumption underlying many recent works in
secure computation with silent preprocessing, see e.g. [10H14}16}/32,36,[37] and
references therein. It is therefore a well-established assumption.

In the following, we focus on the regular syndrome decoding problem as our
primary instantiation of the template. Looking ahead, we seek to minimize the
value of T = K/w. Concretely, as we show in Section a standard chinese
remainder theorem trick allows to work over the ring Zr , instead of Zr, as long
as ged(T/2,2) = 1 (i.e. T/2 is odd; intuitively, this is because the “mod 2 part”
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of the equation L -2 = v mod T can be obtained at no cost from the Fy-sharing
of z, hence it only remains to get L-x mod T/2 and use the CRT to reconstruct
L -z mod T). The smallest possible value of T'/2 satisfying the above constraint
is T/2 = 3, implying T = K/w = 6. We therefore set w = K/6, which is the
smallest value of w that sets the bitsize of the vectors t; to its minimal value of
K -log(T/2) = K -log 3.

3.3 Combinatorial Analysis

Our discussion so far hinged upon the assumption that when the preprocessing
material is randomly shuffled by the verifier, a cheating prover has very low
success probability. A core technical contribution of our work is to provide a
bound on this success probability. We define (informally) a combinatorial bound
to be a quantity p that bounds the probability of a cheating prover to find
preprocessing material that causes the verifier to accept the interaction.

Definition 3 (Combinatorial bound — informal). A real p € (0,1) is a
combinatorial bound for the template zero-knowledge proof if for every incorrect
witness x, and every pair (s,t), the probability, over the random choice of a
permutation w, that x satisfies the following equations:

—2=z01—-7(t)+(1—2z)on(t) withz=7(s) &z
— H-z2=ymod2, L-x=vmod2, and L-x' =v mod T/2

is upper-bounded by p.

Note that the last two equations stem from the use of the ged trick, where
the “mod 2 part” of the equation L -z = v mod T is verified directly on the
original shares of x modulo 2, and the remaining equation is checked modulo
T /2 (assuming that ged(2,7/2) = 1). Proving a tight combinatorial bound turns
out to be a highly non-trivial task. In this section, we overview the key technical
challenges one faces, and outline our solution.

A balls-and-bins analysis. A key difficulty in the analysis is that we must
handle arbitrary choices of the strings (s,t) chosen by the prover, but also ar-
bitrary (invalid) witnesses z. In our concrete instantiation, we use the regular
syndrome decoding problem, and always enforce T' = K /w = 6 (this is the choice
which maximizes efficiency). Therefore, we focus on this setting in our analysis.
In this case, the setting becomes: assume that we are given an incorrect wit-
ness x, which is a concatenation of w length-T blocks z',--- ,z®. The equation
L -z = v mod 2 translates to the condition that each block 27 has odd Hamming
weight; since T' = 6, we have HW(27) € {1,3,5} for j =1 to w.

Let us now fix a position ¢ < K. The pair (sx(;), tr(;)) € F2 x F3 “transforms”
x; into o as follows: 2} = (2; @ Sx(s)) - (1 —2tr(;)) +tr(s). In fact, the six elements
of Fy x F3 fall in three categories, depending on their effect on z;:

— (Identity) @} = x;. This happens whenever s,y = t(.
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— (Flip) } = 1 ® x;. This happens whenever ¢,y € {0,1} A s7(;) # tr(;)-
— (Constant 2) z; = 2. This happens whenever t.;) = 2.

Therefore, the prover choice of (s,t) boils down to choosing a sequence of
(copy, flip, const2) operators, which are randomly shuffled, and then applied to
each bit of the witness x. We formulate the experiment as a balls-into-bins ex-
periment: the witness x is seen as a sequence of K bins, where the i-th bin is
labeled by z;. The prover chooses K balls, where each ball represents an op-
erator (we call type-A, type-B, and type-C the copy, flip, and const2 operators
respectively). Then, the balls are randomly thrown into the bins (with exactly
one ball per bin), and the label of each bin is changed according to the operator
of the ball it receives. The prover wins if, in the end, the sum of the labels in
each block of bins is 1 modulo 3 (corresponding to checking that each block of
2’ has Hamming weight equal to 1 modulo 3).

Our analysis distinguishes two situations, depending on the balls chosen by

the prover: either at least 60% of the balls are of the same type (we say that this
type dominates the balls — the choice of the threshold is somewhat arbitrary),
or the types are well-spread (no type appears more than 60% of the time).
Intuitively, these cases correspond to two different ’failure modes’:
- Dominant Scenario. Here, the prover’s best choice is to pick x ’very close’
to a valid witness (say, with a single incorrect block), and to set almost all balls
to be type-A balls (type-A is what a honest prover would pick). Then, a few
type-B balls are inserted, and the prover hopes that the permutation puts the
type-B balls exactly within the incorrect blocks of = (hence correcting them).
Alternatively, the prover could also pick = to be close to an ’anti-valid’ witness
(i.e. a valid witness with all its bits flipped) and set almost all balls to be type-B
balls, to the same effect. In any case, bounding this scenario is done by bounding
the probability that the incorrect blocks of x receive balls of the dominant types.
- Well-Spread Scenario. In the well-spread scenario, each bin receive a ball
taken randomly from the initial set of balls. Since it is well-spread, this implies
that the label of each bin is mapped to an element of {0, 1,2}, with a well-spread
probability mass on each of the options. For the prover to win, sufficiently many
of the labels must be correctly set (so that all blocks have labels summing to
1 mod 3). If the random variables for each label were independent, a Chernoff
bound would show that this happens with very low probability. While the labels
are not independent from each other, a little bit of work allows to reduce the
problem to bounding a hypergeometric distribution, for which strong Chernoff-
style bounds exist (see the full version).

To bound the dominant scenario, we use a (slightly involved) counting argu-
ment, enumerating the total number of winning configurations for the prover,
for each choice of (1) the number of incorrect blocks in = (denoted ¢), and (2)
the number of balls of the dominant type (denoted 6), and divide it by the to-
tal number of configurations. For each choice of (¢,8), this provides an explicit
(albeit complex) formula for the bound. We conjecture that the best choice of
£,0 istoset £ =1 and § = K — 1 (i.e., using a witness with a single incorrect
block). Though we do not have a proof of this statement, we can still compute
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a bound explicitly by minimizing the formula over all possible choices of ¢ and
0. When picking concrete parameters, we use a Python script to compute the
bound explicitly, given in the full version (we note that the output of the script
confirmed the conjecture for all parameters we tried).

In contrast, in the well-spread scenario, our analysis bounds p using a Chernoff-
style bound for hypergeometric distribution, which provides directly an explicitly
and simple formula for computing p in this case. Due to the exponential decay
of the bound, we observe that the well-spread scenario is in fact never advanta-
geous for a malicious prover: the best strategy is always to set (s,t) so as to be
in the dominant scenario.

Allowing almost-regular witnesses. A careful reader might have noticed
an apparent issue in our previous analysis: assume that a cheating prover uses
an antiregular witness x (i.e., a vector such that @ 1 is regular), and only
type-B balls (i.e. the pairs (s;,t;) are such that s; = 1 —¢;). Then it passes
the verifier checks exacty as an honest prover would: the antiregular vector x
still has blocks of odds Hamming weight, and for any choice of m, x’ is now
equal to 1 @ x: that is, a regular vector. Concretely, this means that our zero-
knowledge proof is not a proof of knowledge of a regular solution, but rather a
proof of knowledge of either a regular or an antiregular solution. Nevertheless,
when building a signature scheme, this is not an issue: it simply implies that
unforgeability relies instead on the hardness of finding a regular or antiregular
solution to an RSD instance. But it is a folklore observation that this variant of
RSD does in fact reduce to the standard RSD problem, with only a factor 2 loss
in the success probability, hence this does not harm security.

In fact, we push this approach even further. The bound p which we obtain
by the previous analysis is essentially tight, but remains relatively high for our
purpose. Concretely, fixing a value of K ~ 1500 (this is roughly to the range of
our parameter choices), we get p = 1/250. This bound is met when the prover
uses a witness which is regular almost everywhere, with at most one exceptional
block, where it has Hamming weight 3 or 5 (or the antiregular version of that).
In this case, the prover builds (s, t) honestly, except on a single position (s;,;),
where he sets s; = 1 — t;. Then, with probability 1/250, the permutation aligns
i with the unique faulty block (there are 250 blocks in total), and the (s;, ;)
pair “corrects” the faulty block, passing the verifier checks. Even though a 1/250
bound is not too bad, in our context it largely dominates the soundness error
of the proof. This stems from the fact that our protocol has extremely low
computational costs, hence we can freely set the number n of virtual parties
much higher than in previous works, e.g. n = 1024 or n = 2048, while still
achieving comparable computational costs. In this high-n setting, the hope is
to achieve a soundness error close to the best possible value of 1/n, in order to
minimize the number of parallel repetitions (hence reducing communication).

To get around this limitation, we choose to allow almost-reqular witnesses
(or almost-antiregular witnesses). Concretely, we relax the soundness of our zero-
knowledge proof to guarantee only that a successful cheating prover must at least



Short Signatures from RSD in the Head 17

know an almost-regular (or almost-antiregular) witness, i.e., a witness whose
blocks all have weight 1 except one, which might have weight 1, 3, or 5. This form
of zero-knowledge proof with a gap between the language of honest witnesses
and the language of extracted witnesses is not uncommon in the literature. In
particular, it is similar in spirit to the notion of soundness slack in some lattice-
based zero-knowledge proofs, where a witness is a vector with small entries,
and an extracted witness can have much larger entries |4,|17]. By using this
relaxation, our bound p improves by (essentially) a quadratic factor: a cheating
prover must now cheat on (at least) two positions (s;,t;), and hope that both
align with the (at least) two incorrect blocks of . Concretely, using K = 1500,
our combinatorial analysis gives p ~ 3 - 1075 in this setting, which becomes a
vanishing component of the soundness error (dominated by the 1/n term).

When building a signature scheme from this relaxed zero-knowledge proof,
we use the Fiat-Shamir transform on a 5-round protocol, and must therefore
adjust the number of repetitions to account for the attack of |28]. For a bound
of p as above, this severely harms efficiency. Following the strategy of [21], we
avoid the problem by making p much smaller. Concretely, denoting 7zx the
smallest integer such that (1/n +p- (1 — 1/n))™< < 272, the optimal number
of repetitions which one can hope for in the signature scheme is 7 = 77 + 1.
Therefore, denoting f the number of faulty blocks in the witness, we set f to
be the smallest value such that the resulting bound p yields 7 = 77k + 1, hence
achieving the optimal number of repetitions. At this stage, the unforgeability of
the signature now reduces to the hardness of finding either an almost-regular or
an almost-antiregular solution to an RSD problem (with up to f faulty block),
which seems quite exotic (though it remains in itself a plausible assumption).
For the sake of relying only on the well-established RSD assumption, we set
parameters such that, except with 27* probability, a random RSD instance does
not in fact have any almost-regular or almost-antiregular solution (with up to f
faulty blocks) on top of the original solution. This implies that, for this choice
of parameters, this “ f-almost-RSD” assumption is in fact equivalent to the RSD
assumption (with essentially no loss in the reduction).

Summing up. We first describe and construct an optimized zero-knowledge ar-
gument of knowledge, following the template outlined in this technical overview.
We compile our new zero-knowledge proof into a signature using Fiat-Shamir.
We use the combinatorial analysis to identify a bound p on the probability that
the verifier picks a bad permutation, and formally prove that the zero-knowledge
proof achieves e-soundness, where € = (1/n+p- (1 —1/n)) (n being the number
of parties in the MPC protocol). To achieve optimal efficiency for the signature
scheme, we reduce p by allowing up to f faulty blocks in the witness, and select
RSD parameters such that the underlying assumptions remains the standard
RSD assumption despite this relaxation of the proof soundness. Due to the page
limitations, and although the combinatorial analysis of our construction (the
bound p) is a core technical contribution of our work, we had to defer it to the
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full version, to cover the description of the zero-knowledge proof of the signature
scheme in the main body.

3.4 Cryptanalysis of RSD

We complement our analysis by providing an overview of the security of RSD.
In particular, we give a precise picture of how RSD relates to the standard syn-
drome decoding assumption, depending on the parameters (K, k, w). Concretely,
we define a “RSD uniqueness bound”, analogous to the Gilbert-Varshamov (GV)
bound for standard syndrome decoding, and show that (1) above the GV bound,
RSD is always easier than SD; (2) below the RSD uniqueness bound, RSD be-
comes in fact harder than SD, and (3) in between the two bounds is a gray zone,
where the hardness of the two problems is not directly comparable. Looking
ahead, our choice of parameters lies inside this gray zone, and corresponds to a
setting where a random RSD instance does not have additional f-almost-regular
solutions with high probability, to guarantee a tight reduction to the standard
RSD assumption even when allowing such relaxed solutions.

We also overview existing attacks on RSD, and in most cases revisit and im-
prove them to exploit more carefully the structure of the RSD problem, obtaining
significant speedups. Eventually, we design a new attack which outperforms all
previous attacks. Our attack is not fully explicit: it requires an approximate
birthday paradox search (i.e., finding an almost-collision between items of two
lists). For the sake of being conservative, when choosing concrete parameters, we
assume that this approximate birthday paradox can be solved in time linear in
the list size (it is far from clear how to perform such a fast approximate collision
search, but it does not seem implausible that it can be done, hence we choose
to stay on the safe side. We view finding such an algorithm as an interesting
open problem). Due to space limitations, the details on our analysis of the RSD
problem are deferred to the full version.

4 Zero-Knowledge Proof for Regular Syndrome Decoding

4.1 Optimizations

We start from the template given in the Technical Overview (Section , and
refine it using various optimizations. Some of these optimizations are standard,
used e.g. in works such as [5/21,[29] (we present them as such when it is the
case), and others are new, tailored optimizations.

Using a collision-resistant hash function. The “hash trick” is a standard
approach to reduce the communication of public coin zero-knowledge proofs.
It builds upon the following observation: in a zero-knowledge proof, the veri-
fication equation on a list of messages (mq,- - ,my) often makes the messages
reverse samplable: the verifier can use the equation to recover what the value of
(mq,--- ,myg) should be. Whenever this is the case, the communication can be
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reduced by sending h = H(my,--- ,my) instead of (mq,--- ,my), where H de-
notes collision-resistant hash function. The verification proceeds by reconstruct-
ing (my,---,my) and checking that h = H(mg,---,my), and security follows
from the collision resistance of H. As h can be as small as 2A-bit long, this
significantly reduces communication.

Using regular syndrome decoding in systematic form. Without loss of
generality, we can set H to be in systematic form, i.e. setting H = [H'|I}],
where I, denotes the identity matrix over {0, 1}***. This strategy was used in
the recent code-based signature of [21]. Using H in systematic form, and writing
x as ¢ = (x1]|ze) where z1 € ]Fé(_k,l‘g € F5, we have Hx = H'xy + 29 = y.
Since the instance (H,y) is public, this implies that the prover need not share
x entirely over Fy: it suffices for the prover to share zi, and all parties can
reconstruct [xz2]s < y@® H' - [21]2. Additionally, the parties need not opening z
entirely: denoting 7(r) = (r1]r2), the parties can open instead [z1]2 = [z1 ® 1]
and define zo = H'z; & y. This way, they can reconstruct the complete z as
z = (z1|22). The rest of the protocol proceeds as before. Following the above
considerations, and to simplify notations, from now on we refer to the short
vector of length K — k in the small field (previously indicated with x;) simply as
x and to the long vector of size K in the large field as & (i.e. £ = (z|H'x @ y)).

Exploiting the regular structure of x. We further reduce the size of x using
an optimization tailored to the RSD setting. Thanks to its regular structure, we
can divide x into w blocks each of size T = K /w. But since each block has exactly
one non-zero entry, given the first 7'— 1 entries (by,--- ,byr_1) of any block, the
last entry can be recomputed as by = 1@ @iT:_ll b;. In the zero-knowledge proof,
the prover does therefore only share T'— 1 out of the T' bits in each block of x
among the virtual parties. Similarly, the size of r; and z; are reduced by the
same factor, since only 1" — 1 bits of each block need to be masked.

Reducing the size of the messages. With the above optimizations, the
equation Hi = H'x @ zo = y needs not be verified anymore: it now holds by
construction, as Z is defined as (z|H'x®y). This removes the need to include y; in
the messages msg; sent by each party F;; this is in line with previous works, which
also observed that linear operations are for free with proper optimizations. The
message of each party becomes simply msg; = (z;, v}). Note that in this concrete
instantiation the entries of v/ are computed as (1,%;’), where the vectors %;7 for
j = 1 to w are the blocks of P;’s share of the vector z® (1 —7(t))+(1—2z) O7(t).

Using the Chinese remainder theorem. In the zero-knowledge proof, verify-
ing any linear equation modulo 2 on the witness X is for free communication-wise.
Ultimately, the verifier wants to check that (x7,1) = 1 mod T. Setting T to be
equal to 2 modulo 4 guarantees that T is even, and ged(7/2,2) = 1. Hence,
it suffices to work over the integer ring Zz /5 instead of Zr, to let the verifier
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check the equation (%7,1) = 1 mod T/2 for j = 1 to w. Indeed, by the Chinese
remainder theorem, together with the relations (X’,1) = 1 mod 2 (which can
be checked for free), this ensures that (%/,1) = 1 mod T for j = 1 to w. This
reduces the size of the t; vectors from K -logT to K -log(7T/2). As outlined in
Section [3.2] we actually set T' = 6 in our concrete instantiation, hence executing
the protocol over the integer ring Zs, the smallest possible ring satisfying the
coprimality constraint.

Compressing share with PRG. Another standard technique from [29] uses
a pseudorandom generator to compress all-but-one shares distributed during the
input sharing and preprocessing phases. Indeed, writing [x]2 = (X1,...,Xn),
then x, = x — @?;11 x; mod 2. Denoting also [r]a = (s1,...,8n) and [r]r =
(t1,...,tn), it holds that Y. ; t; = @;_, si mod T, which rewrites to t, =
D, si— Z?;ll t; mod T.

We can compress the description of these shares by giving to each party P;
a A—bit seed seed; and letting each of them apply a pseudorandom generator to
seed; in order to obtain (pseudo)random shares x;, s; and t;. All shares of s can
be compressed this way (since s need just be a random vector), and all-but-one
shares of [x]2 and t. The missing shares can be obtained by letting P, receive
an auxiliary string aux,, defined as:

n—1 n n—1
aux, < (x—@xi modZ,@si — Zti modT) .
i=1 i=1 i=1

We refer to the information shared with each party as the state of the party. For
each P; for 1 < ¢ < n — 1, we therefore have state; = seed;. The last party P,
has state,, = (seed,|aux,): in the online phase of the protocol each party seed,
can be used to randomly generate sy.

Tree-based generation of the seeds. To further reduce the overhead of
communicating the seeds, we apply the standard tree-based technique of [29|
and generate the seeds as the leaves of a complete binary tree. We introduced a
master seed seed” from which we generate n minor seeds seedy, - - - , seed,, as the
leaves of a binary tree of depth logn, where the two children of each nodes are
computed using a length-doubling pseudorandom generators. This way, revealing
all seeds except seed; requires only sending the seeds on the nodes along the co-
path from the root to the j-th leave, which reduces the communication from
A-(n—1) to A-logn. Note that due to this optimization, when compiling the
proof into a signature, collisions among seed™ for different signatures are likely
to appear after 2*/2 signatures. To avoid this issue, an additional random salt
of length 2\ must be use, see Section [5}

Using deterministic commitments. As in [29] and other previous works, we
observe that all committed values are pseudorandom. Therefore, the commit-
ment scheme does not have to be hiding: in the random oracle model, it suffices
to instantiate Commit(z;7) deterministically as H () for zero-knowledge to hold.
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Final Zero Knowledge protocol. We represent on Figure [3| our final zero-
knowledge proof of knowledge for a solution to the regular syndrome decoding
problem, taking into account all the optimizations outlined above, except the use
of deterministic commitments (using deterministic commitments requires using
the ROM, which is otherwise not needed for the zero-knowledge proof. Looking
ahead, we still use this optimization when compiling the proof to a signature
using Fiat-Shamir, since we use the ROM at this stage anyway).

4.2 Security Analysis

We now turn to the security analysis of the protocol. A crucial component of our
analysis is a combinatorial bound, which we introduce below. Before, we state
some definition.

Definition 4 (f-Strongly invalid candidate witness). We say that x € FX
is a f-weakly valid witness if © is almost a regular vector (in the sense that it
differs from a regular vector in at most f blocks), or almost an antiregular vector.
Formally, let (27) <. be the w length-K Jw blocks of x. Assume that K /w is even.
Then x is an f-weakly valid witness if

1. Vj <w, HW(mj) =1 mod 2, and ‘
2. {7« HW(2?) # 1} < for [{j : HW((Q @ z)?) # 1} < f,

where 1@ x is the vector obtained by flipping all bits of x. If x is not an f-weakly
valid witness, we say that x is an f-strongly invalid candidate witness.

Below, set T' +— K/w. We assume for simplicity that the parameters are
such that w divides K, and that T = 2 mod 4. Note that this ensures that
a block x7 of the candidate witness x has Hamming weight 1 if and only if
Zfi/lw 2) =1mod T/2 and YK/ 27 = 1 mod 2.

=

Definition 5 (Combinatorial Bound). Given a vector u € N¥X divided into
w length-K /w blocks v’ , we denote Succ(u) the event that Zfi/lw u) =1 mod T/2
for all j < w. Then, a combinatorial bound for the zero-knowledge proof of
Figure @ with parameters (K,w) is a real p = p(K,w, f) € (0,1) such that for
any f-strongly invalid candidate witness x € FX satisfying Vi < w, HW(27) =
1mod 2 (i.e. x still satisfies condition 1 of Definition , and for any pair of
vectors (s,t) € FEK x ZIIS/Q,

Pr[m <, Permg, 2’ < 7(t) + (z ® 7(s)) © (1 — 27 (t)) : Succ(x’)] < p(K,w, f),
where Permy denotes the set of all permutations of {1,--- , K}.

Informally, the combinatorial bound p is a bound on the probability that
a malicious prover passes the verification without guessing the subset of views
requested by the verifier. The formal notion relax what we mean by a mali-
cious prover, by requesting that they use a witness sufficiently far from a honest
regular witness. Looking ahead, this feature allows us to obtain much smaller
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Inputs: The prover and the verifier have a matrix H € F;** = [H’|I}] and a
vector y € F5. The prover also knows a regular vector & = (z|z2) € FX with
Hamming weight HW(Z) = w and such that HZ = y.

Parameters and notations. We let n denote number of parties. We let 2’ denote
the vector obtained by deleting the T-th bit in each block of x. We call “expanding”
the action of recomputing x from z’, i.e. adding a T-th bit at the end of each length-
(T — 1) block, computed as the opposite of the XOR of all bits of the block.
Round 1 The prover emulates the preprocessing phase of I as follows:

1.
2. Uses seed™ as the root of a depth-logn full binary tree to produce the leaves

5.
6.
7.

Round 2 The verifier chooses a permutation w € Sk _j and sends it to the prover.
Round 3 The prover:

1.

2.
3.

Round 4 The verifier chooses a challenge d € [n] and sends it to the prover.
Round 5 The prover sends (state;, oi)#d and comg.
Verification The verifier checks that everything is correct:

1.
2.
3.

4.
5.

Chooses a random seed seed™;

(seed;, ;) using a length-doubling PRG for each i € [n];

Use (seedy, - - ,seed,_1) to create pseudorandom shares (xj,- -+ ,X,_1) of 2/,
as well as vectors (si, ti) € IFngl)'(ka)/T X ZQIS/Q. Use seed,, to create sn as
well. Let x; denote the vector obtained by “expanding” x} to K — k bits;

Let s} denote the value obtained by “expanding” s; to a (K — k)-bit vector,

and let s’ < @], si. Set s+ (s'|H' - s’ @ y). Define

n—1 n—1
auxy, — <x/ D EBxi,s/ - Zti mod T/2> ;
i=1 i=1

Sets state; = seed; for 1 <7 < n — 1 and state, = seed,||auxy;
For each ¢ € [n] computes com; := Commit(state;, 0;);
Computes h := H(comi,--- ,com,) and sends it to the verifier.

Simulates the online phase of the m parties protocol II using the pairs
(m(si), w(t;i)) as the preprocessing material of the i-th party:
— for each i € [n] compute z; = x; @ 7(s;) getting [21]2 = (21, - ,2n) by
“expanding” the z}’s;
— Define 2o = H' - 21 ® y and 2z = (21]22);
— Set [Z]r/2 = (¥X1,...,%Xn) where X3 = z 4 (1 — 22) © 7(t;) mod T'/2;
— For each i € [n] compute:
e W) = HW(x;?) mod T/2 for all the blocks 1 < j < w;
o msg; = (2, (Wi)1<j<w);
Compute b’ = H(msg,, - ,msg,);
Send z; and A’ to the verifier. sending 2] actually suffices

Recompute com; = Commit(state;, o;) for j # d;
Recompute msg, for all ¢ # d using state; and z1;

Recompute
msg,; = zl—Zzi, l—z:v_v‘ii ;
i£d i£d 1<j<w
Check if h = H(cdmy, -+ ,comg,- - ,comy);

Check if b’ = H(msgy, -+ ,msg,, -+, msg,,).

Fig. 3. A five-round zero-knowledge proof of knowledge of a solution to the regular
syndrome decoding problem
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combinatorial bounds for concrete choices of parameters. When building a sig-
nature scheme from the zero-knowledge proof, we further prove that finding a
“relaxed” witness is at least as hard as solving the standard regular syndrome
decoding problem, hence justifying that this relaxation does not harm security.

Theorem 6. Let Commit be a non-interactive commitment scheme, and H be
collision-resistant hash function. Let p be a combinatorial bound for the proto-
col of Figure[3 The protocol given on Figure [3 is a gap honest-verifier zero-
knowledge argument of knowledge for the relation R such that ((H,y),x) € R if
H -z =ymod 2 and x is a regular vector of weight w. The gap relation R’ is
such that ((H,y),x) € R if H-x =y mod 2 and x is an f-weakly valid witness.
The soundness error of the proof is at most e = p+1/n — p/n.

The completeness of the protocol naturally derives from its definition. In the
full version, we prove the honest-verifier zero-knowledge and soundness proper-
ties.

4.3 Communication

The expected communication of the zero-knowledge argument amounts to:

n

2n—1\ T -1 -1
AN+ T - ()\(logn—i—l)—i—( z )T(K—k‘)—i- (n) K10g2T> bits,
n

where we assume that hashes are 2\ bits long, and commitments are A bits long,
and where 7 denotes the number of parallel repetitions of the proof.

5 A Signature scheme from Regular Syndrome Decoding

A signature scheme is composed of three algorithms (KeyGen, Sign, Verify). KeyGen,
starting with a security parameter A, returns a key pair (pk,sk) where pk and
sk are respectively the public key and the private key. The algorithm Sign on
an input a message m and the secret key sk, gives a signature o. Verify with
input a message m, a public key pk and a signature o, returns 0 or 1 depend-
ing on whether the signature o is verified for m under pk or not. The security
property for a signature scheme is the existential unforgeability against chosen
message attacks: given a public key pk and an oracle access to Sign(sk,-) it is
hard to obtain a pair (s, m) such that m was not queried to the signing oracle
and Verify(pk, s,m) = 1.

In this section, we turn our 5-round protocol into a signature scheme us-
ing the Fiat-Shamir transform. The switch from an interactive protocol to a
non-interactive protocol is done by calculating the two challenges 7 and d (cor-
responding respectively to the challenges chosen by the verifier in rounds 2 and
4 of our 5-round protocol) as follows:

hi = H(m,salt,h), w+« PRG(h1), hy=H(m,salt,h,h),  d < PRG(hs)



24 Eliana Carozza, Geoffroy Couteau, and Antoine Joux

where m is the input message, H is an hash function and h and h’ are the Round
1 and Round 3 hash commitments merged for the 7 repetitions. As in previous
works, we use a salt salt € {0,1}?* to avoid 22 query attack resulting from
collisions between seeds. We also take into account the forgery attack presented
by Kales and Zaverucha [28] against the signature schemes obtained by applying
the Fiat-Shamir transform to 5-round protocols. Adapting this attack to our
context yields a forgery cost of

_ : 1 T2
CoSttorge = Tm'zgil-{-lfz:f { ST (T) pi(l —p)—* o } @

i:Tl 7

5.1 Description of the Signature Scheme

In our signature scheme, the key generation algorithm randomly samples a syn-
drome decoding instance (H,y) with solution x. We describe it on Figure

Inputs: A security parameter \.

1. Randomly chooses a seed < {0,1}*;

2. Using a pseudorandom generator with seed to obtain a regular vector = € FX
with HW(z) = w and a matrix H;

Compute y = Hzx;

4. Set pk = (H,y) and sk = (H,y, ).

@

Fig. 4. Key generation algorithm of the signature scheme

For a secret key sk = (H,y,x) and a message m € {0,1}*, the signing
algorithm is described on Figure [5| Given a public key pk = (H,y), a message
m € {0,1}* and a signature o, the verification algorithm is described in Figure|[6]

Theorem 7. Suppose the PRG used is (t,eprg)-secure and any adversary run-
ning in time t has at most an advantage esp against the underlying d-split syn-
drome decoding problem. Model the hash functions Hy, Hy, Hy as random oracles
with output of length 2\-bit. Then chosen-message adversary against the signa-
ture scheme depicted in Figure[J, running in time t, making qs signing queries,
and making qo,q1,q2 queries, respectively, to the random oracles, succeeds in
outputting a valid forgery with probability

(g0 +7ns)* L (s +q0 + @1 + q2)

Pr[Forge| < 5 92 522

+qs-T-eprg+esp+HPI[X+Y = 7]

2)
where € = p+ + — 2 with p given in the full version, X = maxacq,{Xa}
and Y = maxge,{Ys} with X, ~ Binomial(7,p) and Y3 ~ Binomial (1 — X, 1)
where Q1 and Qo are sets of all queries to oracles Hy and Hs.

n
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Inputs: A secret key sk = (H,y,z) and a message m € {0,1}".
Sample a random salt € {0, 1}*.
Phase 1 For each iteration e € [7]

1. Choose a random seed seed. <+ {0, 1}*;
2. Use seed. and salt as input of a pseudorandom generator to produce seed; for
each i € [n];
3. Compute auxj;
Set statef = seedf for 1 < i < n — 1 and state;, = seed;, ||aux},;
5. Use all the states to create, through a pseudorandom generator:
o = (K5 X0);
— s=[rila =(s§,...,sn);
— b= [y = (85, t2);
6. For each i € [n] computes com{ := Hy(salt, i, statef).

=

Phase 2

1. Compute h; = H;(m,salt,comi, - ,com}, - ,comi,- - com});
2. Obtain ﬂfeeT} € Sk—_i via a pseudorandom generator using h;.

Phase 3 For each iteration e € [7]

1. Each party P; computes z{ = x{ @ 7(s});
2. The parties get [2{]2 = (2%, - ,2z5) and set [25]2 = H'[2{]2 ® y and so
2¢ = (21]25); B . )
Obtain [z¢]q = (x§,...,x8) where x§ = 2° + (1 — 22°) * w(tf);
4. For each j € [n] compute:
- v_vg’e = (1,%%¢) for all the blocks 1 < j < w;

- msgt = (s {7} ).
1<j<w

Phase 4

w

1. Compute hy = Ha(m,salt, h1,msgl,--- msgl, --- msgl, --- msgl);
2. Obtain df.c.y € [n] via a pseudorandom generator using ha.

Phase 5 Output the signature

o = salt|h1|ha|(statefz4|comge ) feery-

Fig. 5. Signing algorithm of the signature scheme

The proof of Theorem [7] follows directly from the standard analysis of Fiat-
Shamir-based signatures from 5-round identification protocol. It is identical to

the proof of Theorem 5 in |21], and we omit it here.

5.2 Parameters Selection Process

In this section, we explain how to select parameters for the zero-knowledge argu-
ment system of Section [f.1] and the signature scheme of Section [5l Let f be the
number of faulty blocks (of Hamming weight 3 or 5) allowed in the witness ex-
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Inputs: A public key pk = (H,y), a message m € {0,1}* and a signature o.
1. Split the signature as follows
o = salt|hi |ha|(statefzq|comge ) feery;

2. Recompute TI'({BeeT} € Sk—_r via a pseudorandom generator using hi;
3. Recompute d{.c.y € [n] via a pseudorandom generator using hz;
4. For each iteration e € [7]
— For each i # d recompute com$ = Ho(salt, i, statef);
— Use all the states, except stateje, to simulate the Phase 3 of the signing
algorithm for all parties but the d°—th, obtaining msg;_se;

— Compute
— e e —j,e
msgs. = 21*2 Zi, 1*2 Wi )
i£d i£d <<
5. Check if hy = Hi(m,salt,com},--- com},--- coml, .- comy);

6. Check if ha = Ha(m,salt, hi, msg}, - ,msg’, --- msg] --- msgl);
7. Output ACCEPT if both condition are satisfied.

Fig. 6. Verification algorithm of the signature scheme

tracted from a cheating prover. Looking ahead, f is chosen as the smallest value
that minimizes 7, the number of repetitions of the underlying zero-knowledge
argument, which has a strong impact on the size of the signature. Given a can-
didate value f, our selection of the parameters (K, k,w) proceeds as outlined
below. We remind the reader that we always enforce w = K/6 to get a block-
size 6, in order to work over the smallest possible field F3 in the zero-knowledge
proof. We also set the target bit-security to A = 128.

Choosing k. As explained in the full version, we set k such that even when
allowing f > 0 faulty blocks in the zero-knowledge proof, the assumption un-
derlying the unforgeability of the signature remains equivalent to the standard
RSD assumption. Concretely, this is achieved by setting k to

f
ke {logQ (Z@’wi. (f) -26i)-‘ Y
1=0

with b = 1. We also consider a second choice of parameters, in which we set
b = 0 in the above equation. This second choice of parameters corresponds
to the f-almost-RSD uniqueness bound, the threshold where the number of
almost-regular solution becomes close to 1. This setting should intuitively leads
to the hardest instance of the almost-RSD problem. However, it does not reduce
anymore to the standard RSD problem, since a random RSD instance might
have irregular (but almost-regular) solutions. We use this alternative choice as
a way to pick more aggressive parameters, under an exotic (albeit plausible)
assumption.
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Choosing K. Having chosen & (as a function of w = K/6), we turn our at-
tention to K. Here, we use the attacks described in the full version, to select
the smallest K such that, when setting k as above, we achieve A bits of security
against all attacks. We note that the approximate birthday paradox attack (see
full version) is always the most efficient attack, by a significant margin. Yet, it
relies upon the assumption that approximate collisions can be found in linear
time, and no such linear-time algorithm is known as of today. We view this op-
timistic evaluation of the attack efficiency as leading to a conservative choice of
parameters.

Computing p. Equipped with a candidate instance (K, k,w) for a number f
of faulty blocks, we use the formula of a lemma in the full version to compute a
bound p on the probability that a malicious prover can use an incorrect witness
(with at least f + 1 faulty blocks) in the first part of the zero-knowledge proof.
More precisely, since computing p exactly using the code given in the full version
takes a few hours of computation, we first set p using the value predicted by a
conjecture, which is in the full version (which we found to match with all exact
calculations we tried with the formula). Then, once we get a final choice of all
parameters, we verify that the final bound p obtained was indeed correct, by
running the explicit formula (hence running the code only once).

Computing 7. We compute the number of repetitions 7 of the zero-knowledge
argument, and of the signature scheme. This is where the parameter selection
differs in each case:

Zero-knowledge argument. For the zero-knowledge argument, 7 is computed as
the smallest value such that €7 < 27*, where ¢ = 1/n+p-(1—1/n), n being the
number of parties. Here, there is no optimal choice of f. Instead, f is a tradeoft:
choosing f = 0 guarantees that the zero-knowledge argument achieves standard
soundness (with no gap) but makes € higher. A larger f reduces p, hence ¢, but
introduces a gap in soundness. In any case, as soon as p < 1/n, we have ¢ = 1/n.
In practice, using f = 1 already leads to p < 5- 1075, which is much smaller
than any reasonable value of 1/n (since increasing n to such values would blow
up computation). Hence, the only reasonable choices are f = 0 (for standard
soundness) and f =1 (for optimal efficiency).

Signature scheme. The signature scheme is obtained by compiling the zero-
knowledge argument using Fiat-Shamir. Since we are compiling a 5-round zero-
knowledge proof, the attack of Kales and Zaverucha |28] applies, and we must
choose 7 according to Equation [1} This changes completely the optimal choice,
since it is no longer true that any value of p < 1/n already leads to the smallest
possible 7. In fact, by the convexity of Equation [I] the smallest possible 7 one
can hope for is 77k +1, where 7z is the optimal value of 7 for the zero-knowledge
argument (i.e. the smallest value such that e™2% < 27*). Our strategy is therefore
the following: we compute 7 with Equation [I] for our candidate choice of f.
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Then, if 7 > 77k + 1, we increase f by 1, and restart the entire procedure
(choosing new parameters K, k, recomputing p, etc). After a few iterations, the
procedure converges and yields the smallest number f of faulty blocks such that
the resulting value of 7 is minimal.

Choosing n. Eventually, it remains to choose the number of parties n. This
choice is orthogonal to the other choices: a larger n always decreases communi-
cation (since it lowers the soundness error), but it increases computation (which
scales linearly with n). To choose n, we use the same strategy as Banquet [5]: we
set n to a power of two, targeting a signing time comparable to that of previous
works (on a standard laptop) for fairness of comparison. Then, we compute all
parameters (K, k,w, f,7), and reduce n to the smallest value which still achieves
A bits of security.

Runtime estimations. Eventually, it remains to estimate the runtime of the
signature and verification algorithms of our signature scheme. Unfortunately, we
do not yet have a full-fledged implementation of our signature scheme. We plan
to write an optimized implementation of our new signature scheme in a future
work. In the meantime, we use existing benchmark to conservatively estimate
the runtime of our scheme. We consider the following implementation choices:

— The tree-based PRG is implemented with fixed-key AES. This is the standard
and most efficient way to implement such PRGs over machines with hardware
support for AES [1].

— The commitment scheme is implemented with fixed-key AES when commit-
ting to short values (A bits), and with SHAKE when committing to larger
values.

— The hash function is instantiated with SHAKE.

For fixed-key AES operations, the estimated runtime using hardware instructions
is 1.3 cycles/byte [31]. For SHAKE, the runtime strongly depends on a machine.
However, according to the ECRYPT benchmarkingsﬂ on one core of a modern
laptop, the cost of hashing long messages ranges from 5 to 8 cycles/byte (we
used 8 cycles/byte in our estimations, to stay on the conservative side). Eventu-
ally, we also counted XOR operations (XORing two 64-bit machine words takes
one cycle) and mod-3 operations. The latter are harder to estimate without a
concrete implementation at hand. However, the contribution to the overall cost
is relatively small: even estimating conservatively up to an order of magnitude
of overhead compared to XOR operations has a minor impact on the overall
runtime. We assumed an order of magnitude of overhead in our estimations, to
remain on the conservative side. Eventually, when converting cycles to runtime,
we assumed a 3.8 GHz processor, the same as in the previous work of |21], to
facilitate comparison with their work (which is the most relevant to ours).

® https://bench.cr.yp.to/results-hash.html
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Of course, the above estimations ignore additional costs such as allocating
or copying memory, and should therefore only be seen as a rough approximation
of the timings that an optimized implementation could get. For comparison, in
the Banquet signature scheme [5], another candidate post-quantum signature
scheme based on the MPC-in-the-head paradigm, 25% of the runtime of their
optimized implementation was spent on allocating and copying memory, and
75% on the actual (arithmetic and cryptographic) operations.

Results. We considered two settings: a conservative setting, where the under-
lying assumption reduces to the standard RSD assumption, and an aggressive
setting, where the parameters rely on the conjectured hardness of the f-almost-
RSD assumption. All our numbers are reported on Table [I, We obtained the
following parameters:

Conservative setting (standard RSD). We obtain an optimal choice of number
f of faulty blocks equal to f = 12. Given this f, we set K = 1842, k = 1017,
and w = 307. We targeted 128 bits of security against all known attacks, assum-
ing conservatively that approximate birthday collisions can be found in linear
time to estimate the cost of our most efficient attack. In this parameter range,
the solution to the random RSD instance is the only 12-almost-regular solution
except with probability 27128, hence 12-almost-RSD reduces to standard RSD.
With these parameters, we considered three values of n. Each time, we first set
n to a power of two, compute the optimal value of 7, and then reduce n to the
smallest value that still works for this value of 7.

— Setting 1 — fast signature (rsd-f): 7 = 18, n = 193. In this setting, the
signature size is 12.52 KB. The runtime estimated with our methodology
described above is 2.7ms.

— Setting 2 — medium signature 1 (rsd-ml): 7 = 13, n = 1723. In this setting,
the signature size is 9.69 KB. The runtime estimated with our methodology
described above is 17ms.

— Setting 3 — medium signature 2 (rsd-m2): 7 = 12, n = 3391. In this setting,
the signature size is 9.13 KB. The runtime estimated with our methodology
described above is 31ms.

— Setting 4 — short signature 2 (rsd-s): 7 = 11, n = 7644. In this setting,
the signature size is 8.55 KB. The runtime estimated with our methodology
described above is 65ms.

Aggressive setting (f-almost-RSD). In this setting, we set k at the f-almost-
RSD uniqueness bound (the threshold above which the number of f-almost-
regular solutions approaches 1). In this setting, there might be additional almost-
regular solution beyond the regular solution x for a random RSD instance, hence
f-almost-RSD does not reduce directly to the standard RSD assumption. We
consider this assumption to be plausible but exotic, and investigate how relying
on it improves the parameters. We view the conservative parameters as our main
choice of parameters. The aggressive parameters yield noticeable improvements



30 Eliana Carozza, Geoffroy Couteau, and Antoine Joux

in signature size and runtime, which could motivate further cryptanalysis of
this exotic variant. We provide four settings of parameters, comparable to our
conservative settings, using the optimal value f = 13 and the same numbers n
of parties as above. In this setting, we have K = 1530, k = 757, and w = 255.
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