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Abstract. Falcon is one of the three post-quantum signature schemes
selected for standardization by NIST. Due to its low bandwidth and high
efficiency, Falcon is seen as an attractive option for quantum-safe embed-
ded systems. In this work, we study Falcon’s side-channel resistance by
analysing its Gaussian samplers. Our results are mainly twofold.
The first result is an improved key recovery exploiting the leakage within
the base sampler investigated by Guerreau et al. (CHES 2022). Instead
of resorting to the fourth moment as in former parallelepiped-learning
attacks, we work with the second order statistics covariance and use its
spectral decomposition to recover the secret information. Our approach
substantially reduces the requirement for measurements and computa-
tion resources: 220 000 traces is sufficient to recover the secret key of
Falcon-512 within half an hour with a probability of ≈ 25%. As a com-
parison, even with 106 traces, the former attack still needs about 1000
hours CPU time of lattice reduction for a full key recovery. In addition,
our approach is robust to inaccurate leakage classification, which is an-
other advantage over parallelepiped-learning attacks.
Our second result is a practical power analysis targeting the integer
Gaussian sampler of Falcon. The analysis relies on the leakage of ran-
dom sign flip within the integer Gaussian sampling. This leakage was
exposed in 2018 by Kim and Hong, but it is not considered in Falcon’s
implementation and unexploited for side-channel analysis until now. We
identify the leakage within the reference implementation of Falcon on an
ARM Cortex-M4 STM32F407IGT6 microprocessor. We also show that
this single bit of leakage is in effect enough for practical key recovery:
with 170 000 traces one can fully recover the key of Falcon-512 within
half an hour. Furthermore, combining the sign leakage and the afore-
mentioned leakage, one can recover the key with only 45 000 signature
measurements in a short time.
As a by-product, we also extend our power analysis to Mitaka which is
a recent variant of Falcon. The same leakages exist within the integer
Gaussian samplers of Mitaka, and they can also be used to mount key
recovery attacks. Nevertheless, the key recovery in Mitaka requires much



more traces than it does in Falcon, due to their different lattice Gaussian
samplers.

1 Introduction

Recently, NIST announced the first post-quantum cryptography algorithms to
be standardized. For digital signatures, two of the three selected algorithms
are lattice-based: Dilithium [25] and Falcon [33], the third one is a hash-based
signature scheme SPHINCS+ [19]. In comparison, Dilithium and Falcon have
better overall performance.

Dilithium and Falcon are constructed in two distinct frameworks. Dilithium
uses “Fiat-Shamir with aborts” paradigm, developed by Lyubashevsky [23,24]
and Falcon uses the hash-and-sign paradigm. Two schemes achieve acceptable
overall performance for many use cases and also have their own advantages:
Dilithium has a simpler implementation and more flexible parameter selections,
while Falcon has a greatly smaller public key and signature sizes. For this, each of
them would have potential applications in various situations and NIST eventually
selected both schemes for standardization.

For a real-world deployed scheme, implementation security is of great im-
portance. For insecure implementations, sensitive information may leak through
side channels, e.g. execution time, power consumption, and electromagnetic em-
anations. These leakages may be exploited to mount devastating attacks that
are the major threat to cryptographic embedded devices. The implementation
security of Dilithium is relatively well-studied. The reference implementation of
Dilithium is constant time, which eliminates side-channel vulnerabilities in for-
mer Fiat–Shamir lattice signatures [16,30,10,2,34]. Moreover, efficient masking
of Dilithium at any order is proposed in [27], which protects Dilithium against
stronger side-channel attacks.

In contrast, the implementation security of Falcon is intricate. Falcon fol-
lows the GPV framework [14] to prevent statistical attacks [28,7,37,9]. In the
GPV signature scheme, signing requires Gaussian sampling which is a notori-
ous target of side-channel attacks [16,10,21,13]. Furthermore, Falcon’s sampling
heavily relies on floating-point operations, which complicates the secure imple-
mentation. For the above reasons, while the implementation of Falcon is now
secure against timing attacks [18,31], countermeasures against stronger side-
channel attacks like power analysis remain a challenging open problem. The
lack of side-channel protections provides an avenue for side-channel attacks. The
first side-channel attack on Falcon is an electromagnetic attack presented by
Karabulut and Aysu [20] that targets the floating-point multiplications within
Falcon’s Fast Fourier Transform. The Karabulut-Aysu attack is substantially
improved later [17]: 5 000 power traces is sufficient for a full key recovery of
Falcon-512 on ChipWhisperer. Also in [17], Guerreau et al. proposed another
practical power analysis on Falcon based on a different side-channel leakage.
It exploits the power leakage within the base Gaussian sampler to filter signa-
tures in a secret-dependent region, and completes the key recovery by applying
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parallelepiped-learning attacks [28,7]. As the very first side-channel attack tar-
geting Falcon’s Gaussian sampling, this attack is rather expensive in terms of
computation resources and measurements: practical key recovery needs millions
of traces.

Our contributions. In this work, we develop several power analysis attacks on
Falcon. Our contributions are mainly twofold.

We substantially improve the key recovery in the power analysis of Falcon’s
base sampler of [17]. The exploited leakage, called half Gaussian leakage, filters
signatures in the slice {v : |⟨v,b⟩| ≤ ∥b∥2} where b is the secret key. The key
recovery is in essence to learn b from this secret-dependent slice, which was
done by parallelepiped-learning attacks [28,7] in [17]. Our main idea stems from
the observation that the projection of filtered signatures tends to be unusually
short in the direction of the slice. We therefore proceed to learn the direction
and the width of the slice, i.e. b

∥b∥ and ∥b∥, through the spectral decomposition
of the covariance of filtered signatures. Compared with the fourth moment con-
sidered in previous parallelepiped-learning attacks, covariance, as a lower order
statistic, allows smaller measure errors and thus leads to a more accurate ap-
proximation of b. As a result, our new key recovery algorithm significantly lowers
the requirement of measurements and computation resources: 220 000 traces is
sufficient for our algorithm to recover the secret key within half an hour with a
probability of ≈ 25%; by contrast, even with 106 traces, the key recovery of [17]
still requires around 1000 hours CPU time of lattice reduction. Moreover, the
effectiveness of our key recovery relies on the condition number and the measure-
ment of the covariance of filtered signatures, thus our algorithm can even work
with inaccurate leakage classification, say with accuracy 55%. In comparison,
parallelepiped-learning attacks do not work well if the domain of filtered signa-
tures has no clear boundary, which makes previous analysis reliant on accurate
leakage classification. Therefore our result validates half Gaussian leakage to be
a threat more serious than previously imagined.

We also propose a new power analysis of Falcon’s integer sampler that is
at the layer6 above the base sampler investigated in [17]. To cope with variable
parameters, Falcon’s integer sampler first transforms a sample z+ from fixed half
integer Gaussian into a bimodal half Gaussian sample z = b + (2b − 1)z+ with
a random b ∈ {0, 1} and then accepts z with corresponding probability. The
random bit b can be retrieved via simple power analysis as shown in [21]. This
leakage, called sign leakage, filters signatures in the halfspace {v : ⟨v,b⟩ ≥ 0}.
The aforementioned statistical attack can be directly applied to the case of
halfspace in the same spirit, but the approximate direction, denoted u, of b
is less accurate. To refine the key recovery, we use the rough approximation u
to filter signatures in the slice {v : |⟨v,b⟩| ≤ b} with a well-chosen b. Applying
the former key recovery again, we can recover the key given 170 000 of traces.
Moreover, the sign leakage can be combined with the previous half Gaussian

6 There are 3 layers of Gaussian samplers in Falcon: lattice Gaussian sampler - integer
Gaussian sampler - base sampler.
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leakage and then filter a thinner slice. Focusing on the thinner slice, the statistical
attack can be even more effective: only 45 000 traces is sufficient for a direct
key recovery with a probability of ≈ 25%. Additionally, through simple power
analysis, we practically identify the sign leakage in the reference implementation
of Falcon. Furthermore, we also propose an efficient countermeasure to mitigate
this leakage, which (based on our settings of leakage acquisition) decreases the
sign classification accuracy to ≈ 52% from almost 100%.

As an additional contribution, we extend the power analysis on Falcon to
its recent variant Mitaka. Since Mitaka uses Falcon’s integer sampler, both half
Gaussian leakage and sign leakage exist within its reference implementation in
the same manner. Different from Falcon, Mitaka uses the hybrid sampler [32]
for lattice Gaussian sampling, in which the output is the sum of two samples
from two ellipsoid Gaussians. This makes the domain of filtered signatures the
ambient space rather than a slice or a half-space. Nevertheless, the distribution
of filtered signatures is still secret-dependent, thus our aforementioned approach
is able to recover the key with more traces.

Roadmap. We start in Section 2 with preliminary material. Section 3 introduces
the Gaussian samplers of Falcon that are the targets of our side-channel attacks.
We present in Section 4 an improved key recovery using the same side-channel
leakage studied in [17]. Section 5 exhibits a new power analysis attack targeting
the integer Gaussian sampling of Falcon and a countermeasure against this attack
is provided. We extend the above power analysis to Mitaka in Section 6 and
conclude in Section 7.

2 Preliminaries

We use bold lowercase (resp. uppercase) letters for vectors (resp. matrices). By
convention, vectors are in column form. For a distribution D, we write z ← D
when the random variable z sampled from D and denote by D(x) the probability
of z = x. We denote by z ∼ D a random variable distributed as D. Let E[z] be
the expectation of random variable z and var[z] be the variance. For a random
vector z = (z0, · · · , zn−1) ∈ Rn, its covariance is

Cov[z] =


c0,0 c0,1 · · · c0,n−1

c1,0 c1,1 · · · c1,n−1

...
...

...
...

cn−1,0 cn−1,1 · · · cn−1,n−1

 where ci,j = E[zizj ]− E[zi]E[zj ].

For a real-valued function f and a countable set S, we write f(S) =
∑

x∈S f(x)
assuming this sum is absolutely convergent. Let N (µ, σ2) be the normal distri-
bution of the mean µ and the standard deviation σ.

2.1 Linear Algebra and Lattices

Let bi (resp. bi) denote the i-th coordinate (resp. column) of b (resp. B). Given
u,v ∈ Rn, their inner product is ⟨u,v⟩ =

∑n−1
i=0 uivi. When ⟨u,v⟩ = 0, we call u
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and v are orthogonal. Let ∥v∥ =
√
⟨v,v⟩ be the ℓ2-norm of v, ∥v∥1 =

∑
i |vi| be

the ℓ1-norm and ∥v∥∞ = maxi{|vi|} be the ℓ∞-norm. Let I denote the identity
matrix. For H ∈ Rn×m, we let span(H) be the linear span of the rows of H.

A symmetric matrix Σ ∈ Rn×n is positive definite, denoted Σ > 0, if xtΣx >
0 for all nonzero x ∈ Rn. The spectral decomposition of a positive definite matrix
Σ is Σ = QDQ−1 = QDQt where D = diag(λ1, · · · , λn) with λ1 ≤ · · · ≤ λn

being the eigenvalues of Σ and Q is an orthogonal matrix whose i-th column is
the eigenvector corresponding to λi.

Let B = (b0, · · · ,bn−1) ∈ Rm×n of rank n. The Gram-Schmidt Orthogonal-
ization (GSO) of B is the unique matrix B̃ =

(
b̃0, · · · , b̃n−1

)
∈ Rm×n such that

B = B̃U where b̃i’s are pairwise orthogonal and U is upper-triangular with 1
on its diagonal. Let ∥B∥GS = maxi ∥b̃i∥.

A lattice L is the set of all integer linear combinations of linearly inde-
pendent vectors b0, · · · ,bn−1 ∈ Rm, i.e. L =

{∑n−1
i=0 xibi | xi ∈ Z

}
. We call

B = (b0, · · · ,bn−1) a basis and n the dimension of L. Let L(B) denote the
lattice generated by a basis B.

2.2 Gaussian Distributions

Let ρσ,c(x) = exp
(
−∥x−c∥2

2σ2

)
be the Gaussian function with center c ∈ Rn and

standard deviation σ. The discrete Gaussian over a lattice L with center c and
standard deviation σ is defined by the probability function DL,σ,c(v) =

ρσ,c(v)
ρσ,c(L)

for any v ∈ L.
We call DZ,σ,c integer Gaussian that is of particular interest. It suffices to

study the case where c ∈ [0, 1), since DZ,σ,c = i + DZ,σ,c−i for any i ∈ Z.
By restricting DZ,σ,c over N, we get a half integer Gaussian D+

Z,σ,c satisfying
D+

Z,σ,c(v) =
ρσ,c(v)
ρσ,c(N) for any v ∈ N.

2.3 NTRU

Typically, an NTRU-based scheme is defined over some polynomial ring R along
with a modulus q. In this work, R = Z[x]/(xn + 1) with n a power-of-2. Let
K = Q[x]/(xn + 1) and KR = R[x]/(xn + 1). The NTRU secret key consists
of two short polynomials f, g ∈ R where f is invertible modulo q, and the
public key is h = f−1g mod q. The NTRU module determined by h is LNTRU =
{(u, v) ∈ R2 | u + vh = 0 mod q}. From (f, g), by solving the NTRU equation

fG − gF = q, one can compute Bf,g =

(
g G
−f −F

)
a basis of LNTRU that is

called an NTRU trapdoor basis. When the context is clear, we simply denote
Bf,g as B. Elements in R are identified with their matrix of multiplication in a
certain basis, thus the NTRU module is seen as a lattice of dimension 2n that
is an NTRU lattice.
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2.4 Falcon Signature Scheme

We now briefly describe the Falcon signature scheme. Some details that are
unnecessary for understanding this work are omitted, and we refer to [33] for a
complete description of Falcon.

Falcon is an instantiation of the GPV hash-and-sign framework [14] over
NTRU lattices. The secret key of Falcon is an NTRU trapdoor basis Bf,g and
the public key is h = f−1g mod q. The secret polynomials f and g are drawn
from DR,σ,0 with σ = 1.17

√
q
2n for nearly optimal parameters as per [6]. In

addition, Bf,g is required to have a bounded Gram-Schmidt norm: ∥Bf,g∥GS ≤
1.17
√
q. This work focuses on the parameters of Falcon-512 for NIST Level-I

where R = Z[x]/(xn + 1), n = 512 and q = 12289.
Following the GPV hash-and-sign framework, the signing procedure of Falcon

is in essence sampling a lattice point v from DL(B),σ,c with a relatively small
σ where c is the hashed message. The signature is s = v − c that is short:
∥s∥ ≈ σ

√
2n. To verify the signature, one just needs to compute the hashed

message c and then check if s + c ∈ L and if ∥s∥ is less than the acceptance
bound B. A simplified description of the signing and verification algorithms is
given as follows:

Sign(m, sk = B)
Compute c = hash(m) ∈ R;
Using sk, sample a short (s1, s2)
such that s1 + s2h = c mod q;
If ∥(s1, s2)∥ > B, restart
Return s = s2.

Verify(m, s, pk = h)
Compute c = hash(m) ∈ R;
Compute s1 = c− sh mod q;
If ∥(s1, s)∥ > B, reject.
Accept.

Falcon sets σ = 1.17
√
q · ηϵ(R2) where ηϵ(R2) is the smoothing parameter

with respect to R2 and a small ε > 0. The acceptance bound is B ≈ 1.1
√
2nσ.

3 Gaussian Samplers of Falcon

This section is dedicated to the presentation of the Gaussian samplers used in
the signing procedure of Falcon. Indeed these samplers are the target of our
side-channel attacks.

The signing procedure of Falcon relies on three layers of Gaussian sampling.
At the top layer, the used sampler is FFOSampler and the output distribution
is a lattice Gaussian DL(B),σ,c. At the intermediate layer, the sampler SamplerZ
samples from some integer Gaussian DZ,σ′,c where σ′ and c are variable. At
the bottom layer, the sampler BaseSampler samples from a fixed half integer
Gaussian D+

Z,σmax,0
.

3.1 FFOSampler

The FFOSampler algorithm is a ring variant of the KGPV sampler [14,22] based
on fast Fourier nearest plane algorithm [8]. In FFOSampler, lattice Gaussian sam-
pling is reduced to a series of integer Gaussian samplings, which is the same as
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FFOSampler: v← DL(B),σ,c

SamplerZ: z ← DZ,σ′,c

BaseSampler: z+ ← D+
Z,σmax,0

Fig. 1. Three layers of Gaussian samplers in Falcon signing algorithm.

Algorithm 1: The KGPV sampler

Input: a basis B = (b0, · · · ,bn−1), a center c and σ ≥ ∥B∥GS · ηϵ(Z)
Output: a lattice point v following a distribution close to DL(B),σ,c.

1 v← 0, c′ ← c
2 for i = n− 1, · · · , 0 do
3 c′′i = ⟨c′, b̃i⟩/∥b̃i∥2, σi = σ/∥b̃i∥
4 zi ← SamplerZ(σi, c

′′
i − ⌊c′′i ⌋) + ⌊c′′i ⌋

5 c′ ← c′ − zibi,v← v + zibi

6 end for
7 return v

the KGPV algorithm. Therefore we just describe the KGPV sampler in Algo-
rithm 1.

3.2 SamplerZ

The integer Gaussian samplings in FFOSampler have variable standard deviations
and centers, which complicates the implementation. To this end, SamplerZ uses
rejection sampling to obtain target samples from a fixed half integer Gaussian.
It first generates z+ ∼ D+

Z,σmax,0
by calling BaseSampler, then computes z ←

b+(2b−1)z+ with a random bit b, and finally outputs z with certain probability.
A detailed algorithmic description is given in Algorithm 2 where σmin = 1.2778
and σmax = 1.8205 for Falcon-512. Particularly, SamplerZ is provably resistant
against timing attacks [18].

3.3 BaseSampler

The BaseSampler algorithm for D+
Z,σmax,0

is implemented by table-based ap-
proach as described in Algorithm 3. Specifically, BaseSampler uses the (scaled)
reverse cumulative distribution table (RCDT) of 18 items, which ensures the dis-
tribution sufficiently close to D+

Z,σmax,0
. Also, the implementation of BaseSampler

is constant time.
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Algorithm 2: SamplerZ

Input: a center c ∈ [0, 1) and standard deviation σ′ ∈ [σmin, σmax]
Output: an integer z ∼ DZ,σ′,c

1 z+ ← BaseSampler()

2 b
$← {0, 1}

3 z ← b+ (2b− 1)z+

4 x← − (z−c)2

2σ′2 + (z+)2

2σ2
max

5 return z with probability σmin
σ′ · exp(x), otherwise restart;

Algorithm 3: BaseSampler

Output: an integer z+ ∼ D+
Z,σmax,0

1 u
$← {0, 1}72

2 z+ ← 0
3 for i = 0 · · · 17 do
4 z+ ← z+ + [[u < RCDT [i]]]
5 end for
6 return z+

4 Improved Key Recovery from Half Gaussian Leakage

While the distribution of Falcon signatures is statistically independent of the
secret key, the intermediate variables during Falcon’s Gaussian sampling are
sensitive, which poses a threat to the side-channel security. Recently, Guerreau
et al. proposed a side-channel attack on Falcon exploiting power leakage within
BaseSampler [17]. This attack is quite demanding in terms of computation re-
sources and measurements: a direct key recovery for Falcon-512 needs ≈ 10
million of signature measurements, and with 1 million traces, the key recovery
has to resort to lattice reduction requiring around 1000 hours CPU time.

In this section, we propose an improved key recovery exploiting the same side-
channel leakage exposed in [17]. With around 220 000 traces, our attack suffices
to recover the key within half an hour with a probability of ≈ 25%. If lattice
reduction is allowed, the number of required traces can be further reduced.

4.1 The Attack of [17]

Let us first recall the attack of [17] for better completeness and comparisons.

Half Gaussian leakage. Falcon’s BaseSampler uses a table-based approach that
was shown to be vulnerable to simple power analysis in [21]. More precisely,
through the power consumption of the comparison [[u < RCDT [i]]] (line 4, Al-
gorithm 3), one can effectively determine the value of z+. The attack of [17]
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exploits this leakage to classify if z+ = 0 or not. When z+ = 0, the correspond-
ing output of SamplerZ belongs to {0, 1}. This allows to filter the signatures
s =

∑2n−1
i=0 yi · b̃i with y0 ∈ (−1, 1] where b̃0 = b0 = (g,−f) is the secret key.

The region of filtered signatures is a slice in the direction of b0 (see Figure 2).
In this paper, the leakage used in [17] is called half Gaussian leakage.

200 0 200 400

400

200

0

200

400

Fig. 2. Simplified 2-dimensional representation of Falcon signatures. Signatures with
y0 ∈ (−1, 1] are in orange.

The key recovery. The slice of filtered signatures can be seen as a deformed
parallelepiped of B. The authors of [17] thus propose to recover the secret key
using a variant of the parallelepiped-learning attack, developed in [28,7]. Since
only one direction of the parallelepiped of B is preserved in the slice, the key
recovery of [17] needs much more signatures to reconstruct B compared with the
previous attacks [28,7].

4.2 Our Key Recovery

Let us first formally define the Learning Slice Problem.

Definition 1 (LSPb,σ,N). Given b ∈ Rn, let Sb(b) = {v : |⟨v,b⟩| ≤ b}. Let
Ds be the conditional distribution of z ∼ (N (0, σ2))n given z ∈ Sb(b). Given N
independent samples drawn from Ds, find an approximation of ±b.

With half Gaussian leakage, we are able to identify signatures in Sb0
(∥b0∥2).

Hence the key recovery now becomes to solve LSPb,σ,N . Our idea stems from
the geometric intuition that the projection of signatures in the slice on b0 tends
to be unusually short. Instead of resorting to the fourth moment (known as
kurtosis) as in parallelepiped-learning attacks, we discover that the covariance
of the samples in the slice, i.e. filtered signatures, suffices to reveal the secret b0.
Our LSP algorithm consists of two steps:

1. we learn the direction of b0;
2. we estimate ∥b0∥;
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Learning the slice direction. Let B = (b0,b1, · · · ,bn−1) of full-rank where b0

is the solution to the LSP instance. Let di = b̃i/∥b̃i∥, then D = (d0, · · · ,dn−1)
is orthogonal. For s ∼ (N (0, σ2))n, let s =

∑
i yidi, then the coefficients yi

independently follow N (0, σ2) and Cov[s] = σ2I. When s ∈ Sb0(b), we have
|y0| ≤ b

∥b0∥ and thus the variance of y0 is σ′2 < σ2. Then the covariance of s
given s ∈ Sb0

(b) becomes

Cov[s|s ∈ Sb0(b)] = D ·
(
σ′2

σ2I

)
·Dt.

In the above covariance matrix, the smallest eigenvalue σ′ is unique and clearly
less than others. In addition, the eigenvector corresponding to the smallest eigen-
value is in the same direction as b0. Therefore, we can learn the direction of b0

through spectral decomposition.

Learning the norm of the secret. The covariance Cov[s|s ∈ Sb0(b)] also leaks the
information of ∥b0∥. Specifically, the coefficient y0 of samples in the slice follows
the truncated normal distribution N (0, σ2) over

[
− b

∥b0∥ ,
b

∥b0∥

]
. Its variance is

σ′2 =

∫ b′

−b′
x2 exp(− x2

2σ2 )dx∫ b′

−b′
exp(− x2

2σ2 )dx
where b′ =

b

∥b0∥
.

that can be also computed through spectral decomposition. Then ∥b0∥ can be
numerically estimated given σ′.

With the approximate direction and the norm of b0, we can immediately
construct a solution to the LSPb,σ,N instance. A theoretical justification for the
effectiveness of our LSP algorithm is provided in Appendix A.

Key recovery from approximate vectors. Up to now, we have shown that one is
able to get an approximate secret key b′

0 by solving the underlying LSP instance
given by half Gaussian leakage. By rounding the coefficients of b′

0, an integer
vector (g′,−f ′) ∈ R2 is recovered. As a certain number, denoted N0, of signature
measurements are performed, (g′,−f ′) is exactly the key with good probability,
that is set around 25% throughout the paper, in practice. Even with fewer traces,
the key can be fully recovered by combining exhaustive search or lattice reduction
and the cost depends on the size of e = (g−g′, f ′−f) ∈ R2. We further introduce
N1 and N1(x) as follows:

– N1 : when the number of traces ≥ N1, ∥e∥∞ ≤ 1 with good probability;
– N1(x) : when the number of traces ≥ N1(x), ∥e∥∞ ≤ 1 and ∥e∥1 ≤ x with

good probability.

It is worth noting that when ∥e∥∞ ≤ 1 and ∥e∥1 ≤ x, either g − g′ or f − f ′

has hamming weight ≤ ⌊x/2⌋. In practice, it suffices to correct either g′ or f ′:
exploiting the NTRU public key h, it is easy to derive the other half and to check
if the guess is correct or not.
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Remark 1. We particularly treat the case where e is ternary, as this allows a
practical key recovery by a simple exhaustive search. However, larger errors can
also be corrected by expensive lattice reduction. (see Section 4.3 for details).

4.3 Experimental Results of Key Recovery

The experiments focus on the key recovery, since our attack uses the same side-
channel leakage presented in [17]. In fact, [17] has shown that the leakage can
be correctly identified in practice with a fairly high probability: 94% for Chip-
Whisperer and 100% for ELMO. We did not repeat the measurements and just
assumed a 100% accurate classification as done in [17].

We tested our key recovery attack over 40 Falcon-512 instances and 400 000
traces per instance. The practicality of our new key recovery is well supported
by experimental results. More precisely, 360 000 traces suffices for our attack
to directly recover the key. As a comparison, the attack in [17] requires about
10 000 000 traces. The value of N1(7) is around 220 000, and in this region, a
certain proportion of keys can be recovered by combining a simple exhaustive
search within half an hour. For clarity, we highlight that the trace number counts
all signature measurements which is about twice the number of filtered signatures
in the slice. Detailed experimental results are shown in Figure 3. We also tested
our attack on Falcon-1024 and Falcon-256, and experimental results are given in
Appendix B.

Furthermore, there is a tradeoff between measurement and computation. The
approximation obtained from fewer traces can be used by lattice reduction to ef-
fectively reduce the cost of key recovery. Figure 4 shows the bit security estimated
by leaky LWE estimator [4] given a certain number of signature measurements.
Given 20 000 traces, the security of Falcon-512 would decrease from 133 bits to
85 bits.

In practice, the half Gaussian leakage is noisy, inducing errors in the classifi-
cation. The error can be further amplified in presence of side-channel protections.
In this respect, we conduct the attack by emulating the case that the classifi-
cation of z+ = 0 or not only has imperfect accuracy. The result is shown in
Figure 5, where the required trace number increases with the classification accu-
racy. Notably, when the accuracy is 65%, an adversary is still able to practically
recover the key using our attack with 10 million traces. In comparison, the attack
in [17] cannot apply to inaccurate leakage classifications, because it requires that
the domain of filtered signatures has a clear boundary.
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5 Power Analysis Using Sign Leakage

As outlined in Section 3.2, the integer Gaussian sampler SamplerZ requires trans-
forming a half Gaussian sample into a bimodal one via a uniformly random sign
flip and then accepting it with proper probability. While both the half Gaussian
sample and the random sign can be revealed through single trace analysis as
shown in [21], the sign leakage remains unexploited until now. Compared to the
half Gaussian leakage, the sign flip seems to offer less information, as it can only
help to filter signatures in a half-space instead of a slice.

In this section, we first identify the sign leakage in the reference implemen-
tation of Falcon. Then we show that sign leakage can indeed be used to mount
effective key recovery attacks: about 170 000 traces is enough to fully recover the
key. Perhaps counter-intuitively, the key recovery solely using sign leakage needs
even fewer signature measurements than the one solely using half Gaussian leak-
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age. Moreover, combining sign leakage with half Gaussian leakage, we can further
reduce the requirements of measurements and computations for key recovery: a
full key recovery needs only 45 000 signatures given two sources of leakage. At
last, we propose a practical countermeasure to mitigate the sign leakage.

5.1 Side-Channel Analysis

As the goal of the side-channel analysis is to classify the sign of z (which is
indicated by b), it is necessary to analyze its leakages. The most straightforward
leakage of the sign should be directly from the generation of variable b, including
the loading and storing process. We term this leakage type-1. Besides, the value
of b also affects the intermediate variables in the Gaussian sampling. By its
instruction, Falcon first performs half Gaussian sample to obtain the value z+

and maps it to z using the sign-flip function based on a bit b, i.e., [[z ← b +
(2b − 1)z+]] (line 3, Algorithm 2). Then, z is involved in the computation of x:
[[x← − (z−c)2

2σ′2 + (z+)2

2σ2
max

]] (line 4, Algorithm 2). We term the sign leakage from the
calculation of z and x type-2.

To better analyze the leakages of the above two types, we insert delay macros
(by using an empty loop) between the generation of b, the calculation of [[z ←
b+(2b−1)z+]] and [[x← − (z−c)2

2σ′2 + (z+)2

2σ2
max

]]. Thus, the power consumption before
the first delay only contains the type-1 leakage. Meanwhile, the algorithm after
the first delay comprises the loading of b and computation of z and x, thus
containing both type-1 and type-2 leakages.

We run the reference implementation of Falcon (with the delay macro in-
serted) on an ARM Cortex-M4 STM32F407IGT6 microprocessor. The power
traces are collected by using a PicoScope 3206D oscilloscope at a sampling rate
of 1 GSa/s, equipped with a Mini-Circuits 1.9 MHz low pass filter. We collect
50 000 traces with different random seeds, and compute the Signal-to-Noise Ratio
(SNR) with respect to the sign of z.

As shown in Figure 6, we can identify the three regions, as well as the cor-
responding leakages by peak clusters. Moreover, the SNRs of regions B and C
(containing type-1 and type-2 leakage) are much larger than those of region
A (only containing type-1 leakage), showing that the type-2 leakage is much
more significant than the type-1. It conveys that the calculations of z and x can
amplify the leakage of the sign (i.e., the value of b). We attribute the leakage
amplification to the following reasons.

– The first reason should be the power consumption of ((b≪ 1)− 1). Con-
cretely, the corresponding register is assigned to the value of b, then adds
itself and minus 1. The value in register turns into −1 (0xFFFFFFFF for
complement) when b = 0 and 1 (0x00000001 for complement) when b = 1.
The Hamming distance of two results is 31, which is sufficiently large to dis-
tinguish the sign of the output z. It should be noted that this type of leakage
was detected in [21] and comprehensively analyzed in the very recent work
by Wisiol et al. [36].
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Fig. 6. Power traces and the corresponding SNR value.

– Another reason should be in [[x ← − (z−c)2

2σ′2 + (z+)2

2σ2
max

]] (line 4, Algorithm 2).
In the calculation of z− c, z is an integer while c is a floating point number.
In most cases, z is first converted to the floating point number, and then
the subtraction is performed. The former is essentially a conversion between
complement and floating representations of z. If z is negative, the Hamming
distance of complement and floating representation is relatively large. This
eventually brings the sign leakage in the step of [[x← − (z−c)2

2σ′2 + (z+)2

2σ2
max

]].

To verify the vulnerabilities in practice, we conduct the Gaussian template
attack [3], where the number of profiling traces varies from 70 to 100, 000. After
the profiling, we repeat the single-trace attack 5, 000 times (with different at-
tacking traces) to calculate the success rate. We perform the evaluation with four
different configurations: 3 attacks targeting regions A, B, and C separately, and
1 attack targeting their combination. For each configuration, we apply the prin-
cipal component analysis (PCA) to the samples before profiling and attacking,
and then only target the points of the first 65 principal components.

Figure 7 presents the classification accuracy (as functions of the number of
profiling traces). The results show that the attacks using samples in regions B
and C (involving type-1 and type-2 leakages) are significantly better than those
using region A (only involving type-1 leakages). The leakages in region C have
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led to an attack with an almost 1 classification accuracy, and using the leakages
in region B can also achieve an accuracy ≈ 0.9. On the contrary, the classification
accuracy corresponding to region A is up to 0.52. At last, using the combination
of three regions leads to the best attack, which is slightly better than the attack
using region C.

Fig. 7. The classification accuracy targeting the three regions and combination thereof.

5.2 Key Recovery Using Sign Leakage

Using the sign leakage, one can determine whether a signature s is in the half-
space H+ = {v : ⟨v,b0⟩ ≥ 0} or H− = {v : ⟨v,b0⟩ < 0} (see Figure 8). It
is worth noting that one can transform a signature in H+ into one in H− by
multiplying −1. Therefore no waste of signature measurements occurs in this
classification, which is different from the case presented in Section 4.

To study the key recovery, we define the Learning Halfspace Problem.

Definition 2 (LHPσ,N). Given b ∈ Rn, let H+
b = {v : ⟨v,b⟩ ≥ 0}. Let Dh be

the conditional distribution of z ∼ (N (0, σ2))n given z ∈ H+
b . Given N indepen-

dent samples drawn from Dh, find an approximate direction of ±b.

Exploiting the sign leakage, signatures can be transformed into Gaussian samples
in H+

b0
. By solving LHPσ,N , we can get an approximate direction of b0.

The distribution of the given samples in the LHPσ,N instance is determined
by the secret b0. It is feasible to get a solution to LHPσ,N through the spectral
decomposition of Cov[s|s ∈ H+

b0
] as done in Section 4. However, the accuracy of

the solution is poor because the gap between the smallest eigenvalue and others
is reduced. To overcome this issue, we propose to use a rough LHP solution
to filter a slice and then apply the previous LSP algorithm to get an accurate
solution. This can be roughly viewed as the following reduction:

LHPσ,N → LSPb,σ,N ′ .
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Fig. 8. Simplified 2-dimensional representation of Falcon signatures. Signatures in H+
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Specifically, our LHP algorithm proceeds as follows:

1. we learn a relatively rough direction, denoted v, of b0 from samples in H+
b0

;
2. we filter out those samples in Sv(b) using v;
3. we learn the direction of b0 from the filtered samples in Sv(b);

Learning a rough direction. By the same argument with Section 4, we have

Cov[s|s ∈ H+
b0
] = D ·

(
σ′2

σ2I

)
·Dt

where D = (d0, · · · ,dn−1) with di = b̃i/∥b̃i∥. The term σ′2 equals the variance
of half Gaussian, and a routine computation yields σ′2 = σ2(1 − 2

π ) < σ2.
Therefore the direction of b0 still corresponds to the eigenvector with respect to
eigenvalue σ′2.

Remark 2. The expectation of samples in H+
b0

is also the direction of b0. Nev-
ertheless, the use of the expectation does not improve the learning accuracy as
per our experimental results.

Filtering out a slice. To refine the learning accuracy, we attempt to amplify
the distinction between σ′ and σ. To do so, we use the above rough direction,
denoted v, to classify all samples into two sets S = {s | |⟨s,v⟩| ≤ b} and
C = {s | |⟨s,v⟩| > b} (see Figure 9). The parameter b decides both the width
of the approximate slice and the proportion of filtered samples. For a tradeoff,
our key recovery sets b = 1.17

√
q that is around the expectation of the secret

key norm as per Falcon parameters. This actually corresponds to the case in
Section 4. It should be noted here that the covariance of filtered samples is

Cov[s|s ∈ H+
b0
∩ S] = D′ ·


σ′2

σ2
1

. . .
σ2
n−1

 ·D′t
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where D′ is slightly different from D due to the inaccuracy of v and σ1, · · · , σn−1

are no longer equal. Still, σ′ is clearly less than others. As a consequence, its
corresponding eigenvector is supposed to be in a very close direction of b0.
Applying the LSP algorithm in Section 4 on filtered samples, one can obtain an
approximate direction of b0 that is more accurate than v.
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Fig. 9. Simplified 2-dimensional representation of Falcon signatures. Signatures in
H+

b0
∩ Sv(b) are in orange.

Remark 3. Strictly speaking, the region H+
b0
∩ Sv(b) is not an exact slice as the

directions of b0 and v differ. But this region still maintains some information of
b0 from H+

b0
that is captured by the LSP algorithm to refine the direction.

Remark 4. We can also use this idea to reduce the width of the slice in Section 4,
but the effect is not good for our key recovery. The reason is that signatures in
S are distributed densely, the reduction of slice width would eliminate a big
number of signatures. In this section, the signature density in C is lower than
that in S. We therefore can reduce the slice width at the cost of fewer signatures.

Key recovery from an approximate direction. While ∥b0∥ cannot be learnt purely
from the sign information, we can still approximate ∥b0∥ with some alternatives
in {1.17√q, · · · , 1.17√q − 10}. This works well in practice: one can always get
one approximation well close to b0 using some alternatives to ∥b0∥. In later
experimental results, we shall present the best approximation for each tested
instance.

5.2.1 Experimental Results We use the same 40 Falcon-512 instances as
in Section 4. Figure 10 shows the detailed experimental results. In the context
of the key recovery in this subsection, N1(7) is around 170 000. This implies
that one can recover the key from the approximation within half an hour with a
probability of ≈ 25% given a moderate number of traces. Compared with the key
recovery presented in Section 4, the attack exploiting sign leakage seems more
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powerful, as it requires fewer traces to achieve the same size of the approximate
error. A crucial reason for this is that the sign information of each signature
contributes to the key recovery, at least to recover a rough direction, but in the
attack in Section 4, about one half measured signatures are directly discarded
in the first place. We also exhibit the tradeoff between measurements and the
cost of key recovery combining lattice reduction in Figure 11: 20 000 signature
measurements would reduce the security of Falcon-512 by 50 bits.

Furthermore, we test our attack in the case of inaccurate sign classification.
As shown in Figure 12, our attack is robust to inaccurate classification: for 65%
classification accuracy, 10 million traces are sufficient for key recovery in a short
time. One can also observe that the number of required traces grows sharply as
the accuracy gets below 65%.
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Fig. 10. The approximate error size
∥e∥1 measured over 40 Falcon-512 in-
stances solely using the sign leakage.
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Fig. 11. The bit security estimated as
per the approximate error. We use the
Core-SVP model in classical setting, i.e.
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Fig. 12. The required trace numbers for different
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5.3 Key Recovery Using Both Sign and Half Gaussian Leakages

It is natural to work with both sign leakage and half Gaussian leakage (presented
in Section 4). Specifically, this allows filtering a slice that is only one half wide as
the one filtered solely by half Gaussian leakage. Through spectral decomposition
of the covariance, one can learn the secret key.

The combination of two leakages significantly improves the key recovery.
When 20 000 signature measurements are available, the approximate error be-
comes ternary for all 40 tested instances. Detailed experimental results are pre-
sented in Figures 13 and 14. In particular, with only 45 000 traces, one can fully
recover the key with a probability of ≈ 25% within half an hour. With around
12 000 traces, the attacker may reduce the security of Falcon-512 by 60 bits.
Nevertheless, further tradeoff seems infeasible. As the number of traces is insuf-
ficient, the approximate error can enlarge quickly due to the measurement error,
which makes the approximation ineffective.
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Fig. 13. The approximate error size
∥e∥1 measured over 40 Falcon-512 in-
stances using both sign and half Gaus-
sian leakages.
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Fig. 14. The bit security estimated as
per the approximate error. We use the
Core-SVP model in classical setting, i.e.
20.292β where β is the required BKZ
blocksize

5.4 A Countermeasure Against the Sign Leakage

We present a countermeasure to mitigate the leakage of the sign in the Gaussian
sampling, which is made up of two components as follows.

The first component is for the direct leakage of the sign b. The leakage (e.g.,
power consumption) of a variable in software is largely related to its Hamming
weight [26]. Thus, to eliminate the difference in Hamming weight between differ-
ent values of b, the countermeasure encodes the sign by {1, 2} instead of {0, 1}.
Concretely, we first generate a 4-bit variable t by uniformly sampling a value in
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Algorithm 4: Protected SamplerZ

Input: a center c′′ and standard deviation σ′ ∈ [σmin, σmax]
Output: an integer z ∼ DZ,σ′,c′′

1 c← c′′ − ⌊c′′⌋
2 z+ ← BaseSampler()
3 (t̃[0], . . . , t̃[15])← (2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2)

4 t
$← {0, . . . , 15}

5 b← t̃[t]
6 (c̃[0], c̃[1], c̃[2])← (0, c, 1− c)
7 (z̃[0], z̃[1], z̃[2])← (0, ⌊c′′⌋ − z+, ⌊c′′⌋+ 1 + z+)

8 x← − (z++c̃[b])2

2σ′2 + (z+)2

2σ2
max

9 return z̃[b] with probability σmin
σ′ · exp(x), otherwise restart;

{0, . . . , 15}, and map it to the variable b in {1, 2} by using a look-up table with
16 entries in {1, 2}.

The second component is for the leakage amplified from the computation of
z and x. By its instruction in Algorithms 1 and 2, the output of SamplerZ will
be added by ⌊c′′⌋. Thus, we can consider the output to be z + ⌊c′′⌋ instead of
z. We observe that, unlike the computation, the leakages of variables z + ⌊c′′⌋
and x are not quite related to the sign. It conveys that our goal should be to
mitigate the leakage during the computation. The main idea is that, for each
sign value (positive or negative), we directly compute the values of z+ ⌊c′′⌋ and
x, and then choose the correct ones by using b ∈ {1, 2}. The sign leakage within
the calculation of x is from the calculation of (z − c)2, more precisely, z − c. We
note that (z − c)2 = (z+ + c̃[b])2 where c̃[b] = c for b = 1 and c̃[b] = 1 − c for
b = 2. Instead of computing two x’s for b ∈ {1, 2}, it suffices to compute two
c̃[b]’s and to perform the calculation of x using (z+, c̃[b]) only once.

The new SamplerZ equipped with the above components is provided in Al-
gorithm 4. Lines 3-5 present the generation of b ∈ {1, 2}, and Lines 6-9 present
the calculation of x and z + ⌊c′′⌋.

To verify the effectiveness of the countermeasure, we implement the protected
Gaussian sampling in C and collect the power traces using the same setup as
in Section 5.1. The SNR for the sign value is depicted in Figure 15, which is
much lower than that of the unprotected algorithm (see Figure 6). We conduct
the template attack with 5 000 traces to calculate the classification accuracy.
As shown in Figure 16, with the increase of the number of profiling traces, the
classification accuracy is growing up to ≈ 0.52.
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Fig. 15. SNR for the sign value of the Algorithm 4.

Fig. 16. Classification accuracy of the template attack on Algorithm 4.

Remarks. Our countermeasure can mitigate, but cannot prevent the leakage
of the sign. As we can see from the experimental results, the accuracy of the
template attack for sign classification is still significant (up to ≈ 0.52), and it is
even possible to be higher if an adversary

1. adopts a more sophisticated setup for acquisition, or
2. exploits other targets than the direct leakage of b and the computation of x

and z.

In this respect, we position our countermeasure as a (quite) efficient method
to make the offline key recovery attack more difficult. As shown in Figure 12,
the number of required traces grows dramatically when the accuracy of the sign
classification decreases. One can still conduct a successful attack if she can sign
a lot of times (it usually can be avoided in practice by setting a counter for
the maximum time of calls). A candidate of sufficiently secure countermeasures
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might be masking, with inevitably high overhead. Thus, we deem an efficient
and provably secure countermeasure for Gaussian sampling as challenging and
promising further work.

6 Attacks on Mitaka

Mitaka [11] is a recent variant of Falcon. Its base sampler and integer sampler are
almost the same as those in Falcon, hence both half Gaussian leakage and sign
leakage can be identified within Mitaka. Nevertheless, Mitaka performs lattice
Gaussian sampling in a different way from Falcon, which significantly changes
the distributions of the signatures filtered as per the leakages. It is therefore
unclear if and how previous attacks apply to Mitaka.

To this end, we test previous attacks on Mitaka. Experiments verify that half
Gaussian leakage and sign leakage can indeed lead to a key recovery in Mitaka,
but the key recovery requires much more traces compared to the case of Falcon.

6.1 Mitaka Signatures Filtered by Leakages

Mitaka uses the hybrid sampler [32] (Algorithm 5) as its lattice Gaussian sam-
pler.7 The hybrid sampler follows the framework of the KGPV sampler (Algo-
rithm 1) that is a randomized version of Babai’s nearest plane algorithm, but the
randomization is done at the ring level instead of the integer level. The ring-level
randomization (Algorithm 6) is accomplished by Peikert’s sampler [29] which is
a randomized version of Babai’s rounding-off algorithm. Specifically, to sample
from DR,σ,D, the randomization subroutine proceeds in two steps:

1. (perturbation sampling): it samples a perturbation U ← σp · NKR,1 where
σpσp = σσ − r2 and NKR,1 denotes the normal distribution over KR.

2. (rounding-off): it samples the output Z ← DR,r,D−U .

From Algorithms 5 and 6, it follows that the signature s can be written as
s = v − c =

∑1
i=0 b̃i(Zi − Di) =

∑1
i=0 b̃i(Yi + Ui) where Yi = Zi − D′

i ∈ KR
and Ui ∈ KR is the perturbation. Then the signature is identified with s =∑2n−1

i=0 (yi+ui)hi where (y0, · · · , y2n−1) (resp. (u0, · · · , u2n−1)) is the coefficient
vectors of (Y0, Y1) (resp. (U0, U1)) and hi’s correspond to B̃.

We target the integer Gaussian sampler called in the rounding-off step. Sim-
ilar to the case of Falcon, half Gaussian leakage allows filtering signatures with
y0 ∈ (−1, 1], while sign leakage allows distinguishing y0 > 0 or not. Exploiting
these leakages, one can actually distort the spherical Gaussian in the direction
of h0 (See Figure 17). This makes our previous attacks feasible. Note that the
domain of filtered signatures is now the ambient space due to the perturbation
u0, thus parallelepiped-learning attacks do not seem to work.

7 We do not discuss the integer arithmetic friendly version of Mitaka that uses the
integral perturbation sampler [5,12] proceeding differently.
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Algorithm 5: Hybrid sampler

Input: a basis B = (b0,b1) ∈ R2×2 and its GSO (over K) B̃ = (b̃0, b̃1),
a center c ∈ K2 and σ > 0

Output: a lattice point v following a distribution close to DL(B),σ,c.

1 v1 ← 0, c1 ← c

2 D1 ← ⟨b̃1,c̃1⟩
⟨b̃1,b̃1⟩

, σ1 ←
√

σ2

⟨b̃1,b̃1⟩

3 Z1 ← RingPeikert(D1, σ1)
4 v0 ← b1Z1, c0 ← c1 − b1Z1

5 D0 ← ⟨b̃0,c̃0⟩
⟨b̃0,b̃0⟩

, σ0 ←
√

σ2

⟨b̃0,b̃0⟩

6 Z0 ← RingPeikert(D0, σ0)
7 v← v0 + b0Z0

8 return v

Algorithm 6: RingPeikert

Input: a center D ∈ K and σ ∈ KR.
Output: z ∈ R following a distribution close to DR,σ,D

1 Compute σp ∈ KR such that σpσp = σσ − r2 for some r > 0
2 U ← σp · NKR,1, D

′ ← D + U
3 for i = 0 · · ·n− 1 do
4 zi ← SamplerZ(r, d′i − ⌊d′i⌋) + ⌊d′i⌋ /** D′ =

∑
i d

′
ix

i ∈ KR **/
5 end for
6 return Z =

∑
i zix

i ∈ R

Fig. 17. Simplified 2-dimensional representation of Mitaka signatures. From left to
right, the first graph is for half Gaussian leakage: signatures with y0 ∈ (−1, 1] in orange;
the second graph is for sign leakage: signatures with y0 ∈ [0,+∞) in orange; the third
graph is for the combination of two leakages: signatures with y0 ∈ [0, 1] in orange; the
fourth graph is for the combination of two leakages: signatures with y0 ∈ (1,+∞) in
orange.
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6.2 Experimental Results

Both half Gaussian leakage and sign leakage can be well detected as shown in [17]
and Section 5. We thus only present the experimental results for the key recovery
procedure.

6.2.1 Key Recovery Using Half Gaussian Leakage. We tested the at-
tack in Section 4 and experimental results are shown in Figure 18. Experiments
validate the effectiveness of the attack: one can get a good approximation or a
full recovery of the key with a certain number of Mitaka signatures. However,
compared to the attack on Falcon, the key recovery on Mitaka requires much
more signatures: the number of signatures required for a quick key recovery gets
close to 9 million. This is because the condition number of the covariance of
filtered signatures gets smaller due to the existence of the perturbation.

6.2.2 Key Recovery Using Sign Leakage. We can only partially apply
the attack in Section 5.2 to Mitaka. Specifically, it is feasible to learn a relatively
rough direction, denoted h′, of h0 through the covariance as in the first step.
However, refining h′ via filtering out a slice does not work, as the domain of
filtered signatures does not have a clear boundary. Hence we have to use h′

directly for key recovery. We also observed that for Mitaka, using the expectation
can give a better approximate direction than using the covariance, which is
different from the case in Remark 2. For this, our test used the expectation to
get h′ and then used h′ to recover the key. In this way, a practically efficient
key recovery needs about 2.25 million signatures. Figure 19 shows the detailed
experimental results.

6.2.3 Key Recovery Using Two Leakages. As shown in the last two graphs
of Figure 17, combining two leakages allows filtering signatures in two regions.
For each region, we can obtain an approximate direction using the approach in
the last subsection based on either the expectation or the covariance of filtered
signatures. Extensive experiments suggested that using the expectation of the
signatures with y0 ∈ (1,+∞) gives the most accurate approximate direction.
Different from the case in Section 5.3, using two leakages together does not
reduce the number of required signatures so significantly: it still requires about
1.8 million signatures to recover the key in a short time. Detailed experimental
results are shown in Figure 20.

7 Conclusion

In this work, we provide an improved power analysis for Falcon. Our first result
is a new key recovery using the half Gaussian leakage within the base sampler.
It turns out to be much more effective than the existing method [17] in terms
of both measurements and computations. Our second result is to show that the
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Fig. 18. Experimental results for the attack solely using half Gaussian leakage. The left
figure shows the approximate error size ∥e∥2, and the right one shows the bit security
estimated as per ∥e∥2. Experiments ran over 40 Mitaka-512 instances.
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Fig. 19. Experimental results for the attack solely using sign leakage. The left figure
shows the approximate error size ∥e∥2, and the right one shows the bit security esti-
mated as per ∥e∥2. Experiments ran over 40 Mitaka-512 instances.
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Fig. 20. Experimental results for the attack using both half Gaussian leakage and sign
leakage. The left figure shows the approximate error size ∥e∥2, and the right one shows
the bit security estimated as per ∥e∥2. Experiments ran over 40 Mitaka-512 instances.
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sign leakage within the integer Gaussian sampler also can be well exploited to
recover the key. This is the very first side-channel analysis on Falcon taking
the sign leakage into account. We also extend our power analysis to the Mitaka
signature scheme.

Our attacks are practical and powerful: only tens of thousand traces are
enough to greatly weaken the security of Falcon; they can even work when leakage
classification is inaccurate. This suggests that two exploited leakages are more
dangerous than previously imagined. In addition, though we target the reference
implementation of Falcon, the attacks apply to many other implementations
including clean PQClean and pqm4 implementations.

With the standardization and deployment of Falcon underway, there is a
clear need for side-channel protections. While we have proposed some coun-
termeasure to mitigate the attacks, it cannot completely prevent the leakages.
Masking might be a reassuring countermeasure. Despite some efforts [15,1,11],
efficient masked implementation of integer Gaussian sampling, particularly for
variable and sensitive parameters, remains a challenging problem.
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A Theoretical Analysis for the LSP algorithm

In this section, we will show that given a sufficiently large polynomial number of
samples, our LSP algorithm finds a solution with constant approximation errors
with some constant probability. This is formally described in Lemma 1.

Lemma 1. Given an LSPb,σ,N instance with exact solution b, let b′ be the out-
put by our LSP algorithm. Let σ′2 = var

[
x ∼ N (0, σ2) | − b

∥b∥ ≤ x ≤ b
∥b∥

]
. Then

∥b− b′∥ ≤ Ce ·
(
σ2 +

σ2

σ2 − σ′2 · ∥b∥
)(√

n+ u

N
+

n+ u

N

)
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with a probability ≥ 1− 4e−u for some constant Ce.

To prove Lemma 1, we need the following theorems.

Theorem 1 (Weyl’s inequality). Let S,T ∈ Rn×n be symmetric matrices.
Then

max
i
|λi(S)− λi(T)| ≤ ∥S−T∥2.

Here ∥S∥2 denotes the spectral norm of S.

Theorem 2 (Davis-Kahan [35]). Let S,T ∈ Rn×n be two symmetric matri-
ces. Suppose that for some i, the i-th largest eigenvalue of S is well separated
from the rest of the spectrum:

min
j:j ̸=i
|λi(S)− λj(S)| = δ > 0.

Then the unit eigenvectors vi(S) and vi(T) satisfies:

∃θ ∈ {−1, 1} : ∥vi(S)− θvi(T)∥ ≤ 2
3
2 ∥S−T∥2

δ
.

Theorem 3 (Adapted from Theorem 4.7.1 [35]). Let X be a sub-gaussian
random vector in Rn and Σ = Cov[XXt]. For independent samples X1, · · · ,XN ,
let ΣN = 1

N

∑N
i=0 XiX

t
i. Then there exists a constant K (related to X) and a

universal constant C > 0 such that for any u ≥ 0,

∥ΣN −Σ∥2 ≤ CK2

(√
n+ u

N
+

n+ u

N

)
∥Σ∥2

with probability at least 1− 2e−u

Proof of Lemma 1. Let v = b
∥b∥ and v′ = b′

∥b′∥ . We have

e = b− b′ = ∥b∥ · (v − v′) + (∥b∥ − ∥b′∥) · v′

and then ∥e∥ ≤ ∥b∥ · ∥v − v′∥+ |∥b∥ − ∥b′∥|.
Let Σ = Cov[s|s ∈ Sb(b)] and ΣN be the covariance matrix measured over

N given samples. Then v and v′ are respectively the eigenvectors corresponding
to the smallest eigenvalue of Σ and ΣN . Since the smallest eigenvalue of Σ is

σ′2 and other eigenvalues are σ2, Theorem 2 shows ∥v − v′∥ ≤ 2
3
2 ∥Σ−ΣN∥2

σ2−σ′2 . By

Theorem 3, we have ∥v−v′∥ ≤ 2
3
2CK2 σ2

σ2−σ′2 ·
(√

n+u
N + n+u

N

)
with probability

at least 1− 2e−u.
We next analyse the term |∥b∥− ∥b′∥|. Let σ′2

N be the smallest eigenvalue of

ΣN . By Theorems 1 and 3, we have |σ′2−σ′2
N | ≤ ∥ΣN−Σ∥2 ≤ σ2CK2

(√
n+u
N + n+u

N

)
with probability at least 1− 2e−u. Our LSP algorithm uses the equation

σ′2 =

∫ b
∥b∥

− b
∥b∥

x2 exp(− x2

2σ2 )dx∫ b
∥b∥

− b
∥b∥

exp(− x2

2σ2 )dx
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to estimate ∥b∥, hence ∥b∥ = f(σ′2) for some continuous function f determined
by b, σ and σ′. Accordingly, ∥b′∥ = f(σ′2

N ). Therefore, there exists a constant

C ′ such that |∥b∥ − ∥b′∥| ≤ C ′|σ′2 − σ′2
N | ≤ σ2CC ′K2

(√
n+u
N + n+u

N

)
. So far,

we prove that ∥e∥ ≤ Ce

(
σ2 + σ2

σ2−σ′2 · ∥b∥
)(√

n+u
N + n+u

N

)
with probability at

least 1− 4e−u where Ce = max{CC ′K2, 2
3
2CK2}. ⊓⊔

B Attacks on Other Falcon Parameters

Our attacks easily apply to other Falcon parameter sets. The base sampler and
the integer Gaussian sampler are exactly the same for different n, thus both
leakages can be measured in the same way. Table 1 shows the experimental data
for n = 256, 512, 1024, where N1(x) is the number of required traces to get an
approximate error of hamming weight ≤ x with probability ≈ 1

4 .

Table 1. Experimental data of N1(x) measured over 40 Falcon instances for each n.
The item “A/B/C” represents the values for n = 256/512/1024.

Half Gaussian leakage Sign leakage Two leakages
N1(0)× 10−3 270 / 360 / 400 210 / 230 / 280 60 / 70 / 75

N1(5)× 10−3 200 / 230 / 270 142.5 / 175 / 203 39 / 47 / 56

N1(7)× 10−3 182.5 / 217 / 255 132.5 /164 / 188 37 / 45 / 54

N1(9)× 10−3 175 / 201 / 240 127 / 155 / 184 35 / 43 / 50
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