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Abstract. We give the first black box lower bound for signature proto-
cols that can be described as group actions, which include many based on
isogenies. We show that, for a large class of signature schemes making
black box use of a (potentially non-abelian) group action, the signa-
ture length must be Ω(λ2/ log λ). Our class of signatures generalizes all
known signatures that derive security exclusively from the group action,
and our lower bound matches the state of the art, showing that the signa-
ture length cannot be improved without deviating from the group action
framework.

1 Introduction

Post-quantum cryptography aims to develop classical cryptosystems that re-
main secure against an adversary who has access to a large-scale quantum com-
puter. One approach to post-quantum cryptography relies on the observation
that Shor’s discrete log algorithm [35] does not apply in an algebraic struc-
ture called a group action. This gives rise to group-action-based cryptography
for post-quantum public key encryption, key exchange, digital signatures, and
more [4, 21, 1]. The resulting cryptosystems look somewhat similar to classical
systems that rely on the difficulty of discrete log in a finite cyclic group.

Informally, a group action is a mapping of the form ∗ : G ×X → X, where
G is a finite group and X is a set, such that for any g1, g2 ∈ G and any x ∈ X,
we have g1 ∗ (g2 ∗ x) = (g1g2) ∗ x. Moreover, if e ∈ G is the identity of G then
e ∗ x = x for all x ∈ X. The discrete log problem for such a group action is
to find a g ∈ G, if one exists, such that x0 = g ∗ x1, given only x0, x1 ∈ X as
input. Note that Shor’s algorithm fails to solve this problem precisely because
there is no efficiently computable group operation on the set X. The best known
quantum algorithms for group action discrete log run in sub-exponential time in
the security parameter [22, 31, 23, 29].

Currently the most widely studied cryptographic group action is derived
from isogeny graphs of elliptic curves [7, 33]. To avoid the sub-exponential quan-
tum algorithm mentioned above, some constructions use supersingular isogeny
graphs [20, 17], which present less structure than a group action. However, a



recent attack by Castryck and Decru [5] and Maino and Martindale [25] shows
that certain key exchange protocols that rely on supersingular isogeny graphs
(in particular, rely on the SIDH assumption) are insecure. The attack does not
appear to affect various isogeny-based signature schemes such as SeaSign [9, 12],
CSI-FiSh [3, 16, 8], and SQISign [10, 11].

Short signatures. An important open problem in post-quantum cryptography
is to construct a signature scheme for which the combined length of a pub-
lic key and a signature is comparable to that of the Schnorr scheme, namely
32 + 64 = 96 bytes (for 128-bit security). The four post-quantum NIST signa-
ture finalists [6] have the following combined public-key/signature lengths: 3740
bytes for Dilithum2, 1563 bytes for Falcon512, and over 50KB for both Rainbow
variants. These numbers are an order of magnitude higher than the combined
length for the Schnorr scheme. We note that the combined public-key/signature
length for SQISign is only 268 bytes — better than the NIST candidates, but still
worse than Schnorr. SQISign uses specific properties of supersingular isogenies,
and is not a generic group-action signature scheme.

Can we do better? One might expect that due to the similarity between
group-action-based systems and systems using a finite cyclic group, one should
be able to design a post-quantum Schnorr-like signature scheme using a generic
group action. However, this remains an open problem. For example, the signature
scheme SeaSign [9], which can be described as a generic group-action signature
scheme (as in Section 1.3), has a combined public-key/signature length of about
3KB (see column 3 of Table 2 from [9]). In this paper we show that this is no
accident.

1.1 Our Results

Let λ be a security parameter. Our main result is a lower bound of Ω(λ2/ log λ)
for a wide class of group-action-based signatures. This lower bound matches the
signature length of state-of-the-art constructions such as SeaSign. Concretely,
we prove the following theorem about identification (ID) protocols:

Theorem 1.1 (Informal). For any public-coin identification protocol secure
against eavesdropping in a black box (potentially non-abelian) group action model,
the sender must send at least (λ − 1)/ log2 λ set elements in order to achieve
soundness 2−λ.

Here, public coin means that the verifier generates its messages by simply sam-
pling uniform bit strings. Note that Theorem 1.1 works for any such group action;
in particular we do not assume any regularity or transitivity. Also note that by
handling non-abelian group actions, our model easily incorporates features like
twists, as twists can be seen as action by a slightly larger group arising from a
semi-direct product.

Since set elements need to be at a minimum λ bits to prevent solving dis-
crete logarithms, we thus obtain a lower bound of (λ − 1)2/ log2 λ bits for the
communication from prover to verifier.
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All known efficient group-action-based signature schemes are built by trans-
forming a public coin ID protocol into a signature, typically via Fiat-Shamir [18],
but other transforms are also possible [37]. Thus, our lower bound yields a lower
bound on the length of signatures in such protocols.

Our model of black box group actions. We formalize black box group actions
by adapting Maurer’s [26] generic group model to the black box group action
setting. In this model, instead of getting set elements “in the clear”, all parties
are only given handles to the set elements, and then operate on these handles
via an oracle. This reflects how current group-action based signature and ID
protocols are constructed. Below, we discuss why we choose to adapt Maurer’s
model instead of Shoup’s [36] model.

Extensions. We also discuss several extensions to structures that generalize
group actions. In particular, many isogenies cannot be framed straightforwardly
as group actions. We therefore formalize a graph action model, which generalizes
group actions to these more general structures, and observe that our impossibil-
ity readily applies in this more general setting as well.

1.2 Discussion

Schnorr identification requires sending only a single group element, and security
can be proven under the discrete logarithm assumption in plain groups. Theo-
rem 1.1 shows that the situation is quite different in the group action setting. In
the language of [32], our result shows there is no semi-black box construction of
an efficient ID protocol from hard discrete logarithms over group actions. Even
more, “discrete logarithm” can be replaced by any problem that is (classically)
unconditionally hard in generic group actions, including CDH and even more ex-
otic assumptions such as the linear hidden shift assumption [1]. Thus, to sidestep
our lower bound, one must design signatures that are not based on ID protocols,
rely on non-generic use of the group action, or rely on cryptographic hardness
assumptions beyond what a group action alone provides.

On our black box model. A natural question is whether our lower bound also
applies to an analog of Shoup’s generic group model tailored to group actions,
replacing handles with random labels. Unfortunately, lower bounding signatures
in Shoup’s model appears to be very challenging. In particular, a lower bound
in such a model would imply as a special case a lower bound in the random
oracle model (ROM)4. Even through the best-known (many-time) random oracle
signatures have signature size Ω(λ3) [27]5, it is a long-standing open problem to
obtain any non-trivial bound. We cannot even rule out that optimal O(λ)-length

4 Shoup’s generic groups imply random oracles [39], and the proof readily adapts to
group actions with random labels.

5 If the number of messages is a priori bounded, it is possible to have signatures of
length O(λ2) [28].
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signatures from random oracles exist. We sidestep this major barrier by instead
utilizing Maurer’s model.

Our model of group actions using handles captures all known techniques for
efficient ID protocols from group actions. However, it is known that such a model
fails to capture a number of standard generic techniques [38]. These standard
generic techniques are typically used in symmetric key settings, as they involve
operations like breaking strings into individual bits or XORs. Such operations
break algebraic structure, seemingly negating the purpose of introducing alge-
braic tools in the first place. Nevertheless, such techniques could perhaps be
employed in combination with algebraic tools to achieve more efficient signa-
tures. As such, our impossibility does not fully rule out short signatures from
group actions, but still represents a significant barrier.

On ID protocols. At a technical level, our lower bound is for ID protocols. This
is because it is known that signatures are impossible in Maurer’s generic group
model [15], and the impossibility readily extends to our formalization of the
black box group action model using handles. As such, any direct lower bound
for signatures in our group action model would be completely meaningless.

Thus, any attempt at proving a lower bound for signatures is presented with
a conundrum: work in Shoup’s version of group actions, where the long-standing
open problem of signature length from random oracles presents a major barrier.
Or work in Maurer’s model, where signatures are simply impossible.

While signatures do not exist in Maurer’s version of black box groups/group
actions, ID protocols do exist. The transformation from ID protocol to signature,
say via Fiat-Shamir, is then the only part of the signature that doesn’t work in
Maurer’s model. This is because applying Fiat-Shamir requires hashing a group
element/set element into a bit string. Such hashing is of course allowed in the
standard model, but it is forbidden in Maurer’s since only the group (action)
operation is allowed to be applied to elements. Fortunately, the most efficient
signature schemes from groups and group actions are obtained by transforming
ID protocols.

The Fiat-Shamir transformation is well-understood, both classically [2, 30]
and quantumly [24, 14], and adds zero signature-length overhead over the un-
derlying ID protocol6. But the length of any signature based on ID protocols is
always lower-bounded by the ID protocol itself. Thus, our lower bound imme-
diately applies to signatures based on ID protocols, which captures all-known
practical group-action based signatures. Thus, our lower bound shows that a
Ω(λ2/ log2 λ) signature length is inherent with current techniques.

Note that our lower bound is only for public coin protocols. This is inher-
ent, as group actions give public key encryption, and any public key encryption
scheme can be turned into an ID protocol, as follows [13]: the verifier encrypts
a random message and sends the ciphertext, and the prover simply decrypts the
ciphertext and sends the resulting message. The number of set elements in the
protocol is just the number of set elements in a ciphertext, which in the case

6 Other transforms such as Unruh’s [37] do require overhead.
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of group-action-based public key encryption, is just a constant. This protocol,
however, is secret coin, as the verifier’s message is a ciphertext that hides both
the message and the encryption randomness. Such secret coin ID protocols are
not amenable to Fiat-Shamir or related transformations, and there is no known
direct way to turn them into signatures. Thus, our restriction to public coin
protocols is justified by the ultimate goal of lower-bounding signatures.

1.3 Technical overview

Existing Group Action-based Signatures. The main group-action-based signa-
tures are built from a public coin identification (ID) protocol, and then by
converting the ID protocol into a signature. This conversion is typically Fiat-
Shamir [18], but other transforms are possible [37]. For reasons explained above,
we focus on analyzing the underlying ID protocol.

Throughout, we will focus on the number of set elements sent by the prover,
which is a proxy for the total communication of the ID protocol. Note that when
converting into a signature scheme, usually not all the terms of the ID protocol
need to be sent explicitly, since they can be computed from the other terms for
a valid signature. Nevertheless, the number of set elements remains linear in the
total signature size.

The usual way to build an ID protocol from group actions, is the following
adaptation of Schnorr’s identification protocol [34] for plain groups:

– The public key contains two set elements x0, x1 such that x0 = g ∗ x1. The
secret key is a random g ∈ G.

– The prover first chooses a random h ∈ G, and sends a = h ∗ x1.
– The verifier replies with a random bit b.
– The prover then outputs r = hgb−1.
– The verifier checks that a = r ∗ xb

The ID protocol is easily seen to be zero knowledge. The protocol has (classical)
soundness error 1/2: if an adversary can break security with probability non-
negligibly greater than 1/2, then a standard rewinding argument shows that it
can compute hgb−1 for both b = 0 and b = 1; dividing gives g, the discrete log
between x0 and x1, which is presumably hard to compute. On the other hand, it
is trivial to break security with probability 1/2: the prover simply guesses the bit
b, and computes a = r ∗xb for a random r. Conditioned on the guess for b being
correct, the transcript seen by the verifier will have the correct distribution.

To achieve better soundness, one can run the protocol many times, either
sequentially or in parallel. To get soundness error 2−λ, one would need λ trials,
requiring λ set elements to be sent from the prover.

One can do slightly better, at the cost of a somewhat larger public key.
Abstracting an optimization of De Feo and Galbraith [9] (See [9], Section 4) to
the setting of group actions, consider the following protocol:

– The public key contains P set elements x1, . . . , xP . The secret key is g2, . . . , gP
such that xi = gi ∗ x1 for i > 1.
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– The prover chooses a random h ∈ G, and sends a = h ∗ x1.
– The verifier replies with a random c ∈ [P ]
– The prover then outputs r = hg−1

c , where g1 = 1.
– The verifier checks that a = r ∗ xc

The above protocol achieves soundness error 1/P , without any additional set
elements in the protocol, but at the cost of expanding the public key to P set
elements. To achieve soundness error 2−λ, we can set P = λ/ log λ, and repeat the
protocol P times. The result is public keys and protocol transcripts containing
P set elements.

Generalizing both protocols, if we let P,N be the number of set elements in
the public key and protocol transcript, and S the soundness error, both protocols
above have S = P−N .

We note that if one relaxes zero knowledge, then smaller soundness error is
possible. For example, for security against direct attacks, the prover can just
reveal g, and now soundness matches the hardness of computing discrete log-
arithms. For eavesdropping security where the attacker sees t transcripts, one
can modify the large public key protocol above to have the prover simply reveal
a discrete logarithm between x1 and a random choice of xi. While this latter
scheme has noticeable soundness error, in both cases here the prover actually
sends no set elements at all. Other strategies are possible to improve soundness
in the bounded eavesropping setting. Nevertheless, for schemes of this nature, it
seems to always be the case that t ≤ P .

Our Lower Bound. Our main result is that for eavesdropping security under t
transcripts, for any desired polynomial poly:

S ≥ (1− P/t− 1/poly)× P−N (1)

For unbounded transcripts, this shows that the S = P−N of the known group-
action-based protocols is essentially tight. It also shows to get non-trivial sound-
ness when the prover sends no elements at all requires the number of elements
in the public key to be at least as large as the number of transcripts, matching
intuition for such schemes.

Intuition. We now provide the intuition for our lower bound. Consider the col-
lection of set elements seen by the verifier, which we will call V . V includes both
set elements in the public key, as well as set elements sent by the prover and
any set elements computed by the verifier. Now, consider a group action query
by the verifier, such as g ∗ x, resulting in output y. The verifier therefore knows
the discrete logarithm between x and y. Since the protocol is public coin, this
means the discrete logarithm is also revealed by the protocol transcript.

By looking at all such queries, we induce a graph structure on V , where we
connect the input and output nodes of any query by the verifier. Since discrete
logarithms compose, the verifier knows the discrete logarithm between any two
connected nodes.
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We can now assume, essentially without loss of generality, that no two public
key nodes are in the same connected component. After all, if they were, then
the protocol transcript reveals the discrete logarithm between these nodes. If
the protocol were zero-knowledge, this would mean the discrete logarithm can
be computed from publicly-available information. Even in the eavesdropping
setting, it means the discrete logarithm can be computed from the transcripts
provided to the adversary. In either case, this means that one of the two nodes
was in some sense superfluous. We can make this precise, showing that if the ID
protocol is secure even if the adversary sees sufficiently many transcripts, then we
can compile the protocol into one where all public key components are in different
connected components. This transformation slightly impacts correctness, and
results in the P/t term in Equation 1.

We then give an adversary for any scheme where the public key nodes are in
different connected components. Essentially, whenever the adversary is required
to send a set element y, it simply guesses which of the public key nodes x that y
will be connected to, and generates y such that it knows the discrete logarithm
between y and x. We show, essentially, that conditioned on the guess being
correct for every node sent by the prover, our adversary can correctly simulate
the protocol execution, and convince the verifier. The probability of guessing
correctly at every step is exactly P−N , where P is the number of public key
elements, and N is the number of elements sent by the prover.

For technical reasons, the above does not quite work perfectly. Essentially,
our simulation ensures that the graph seen by the verifier has an edge everywhere
it should, but does not guarantee that the graph has no edges where it should
not. But we observe that if there is a bad edge in the simulated graph, this
connects two nodes that should not be connected. We are able to argue, roughly,
that this means we can remove nodes from the graph, somewhat analogous to
how we handled public key elements in the same connected component. As in
that case, there is still some error in the simulation, though it can be made an
arbitrary small polynomial. This results in the 1/poly term in Equation 1.

Formalizing the above intuition is non-trivial. The main difficulty, analogous
to all black box separations, is that the construction and adversary could com-
pletely ignore the group action and just run some standard-model short signature
scheme such as Schnorr.

Following Impagliazzo-Rudich [19], we block such a construction by giving
the adversary unlimited private computation and only bound the number of
queries to the group action to a polynomial. This captures constructions whose
only source of hardness is the group action.

With unlimited private computation, we can brute force any signature scheme
that does not use the group action. The challenge comes in attacking schemes
that are a combination of using the group action, but also using standard-model
building blocks, as a naive brute force will result in exponentially many queries.

We formalize the above intuition through a sequence of protocol simplifica-
tion steps, where we gradually restrict the prover and verifier, showing that the
simplifications are without loss of generality. Eventually we reach a simplified
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protocol where we can apply the intuition above and prove our lower bound. See
Section 3 for details.

Extensions. In Section 4, we discuss a couple of extensions to our main lower
bound. We first consider a generalized model where it is possible to directly
sample set elements, without having to derive them from other elements. While
no existing group-action-based signature utilizes such direct sampling, it is sup-
ported by elliptic curves and therefore important to consider. We show, with
some key modifications to our main proof, that our lower bound applies in this
model as well.

We also give a generalization of black box group actions, that we call black
box graph actions. This captures many of the features of group actions, but
eliminates the group structure on the acting set, instead viewing the action as
a walk on a graph. This is how isogeny-based signatures tend to work anyway,
and by generalizing to a less-structured object, we make our lower bound more
general. Our lower bound does not use any particular features of the group
structure, and trivially adapts to a graph action.

2 Preliminaries

Notation: We use λ ∈ Z to denote the security parameter. We use x ← y
to denote the assignment of the value of y to x. We write x ←$ S to denote
sampling an element from the set S independently and uniformly at random. For
a randomized algorithm A we write y ←$ A(x) to denote the random variable
that is the output of A(x). We use [n] for the set {1, . . . , n}. We denote vectors
in bold font: u ∈ Zm

q is a vector of length m whose elements are each in Zq.

2.1 Group actions

A group action consists of a (not necessarily abelian) group G, a set X, and a
binary operation ∗ : G×X → X satisfying the following properties:

– Identity: If e ∈ G is the identity element, then e ∗ x = x for any x ∈ X.
– Compatibility: For all g, h ∈ G and x ∈ X, (gh) ∗X = g ∗ (h ∗X).

For applications to cryptography, we want the group action to have certain
computationally intractible problems. A typical minimal hard problem is that
of computing “discrete logarithms”: computing g from x and g ∗ x.

Our Model of Black Box Group Actions. Here, we give our model of a black
box group action. Our model is analogous to Maurer’s [26] model for generic
groups, but adapted to group actions. In our case, we model the group itself as a
standard-model object, but then the set elements are only provided via handles.
In more detail, the following oracles are provided to all parties:

– Eq(⟨x⟩, ⟨y⟩) takes as input two handles for set elements x, y, are returns 1 if
x = y and 0 otherwise.
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– Act(g, ⟨x⟩) takes as input a group element g and a handle ⟨x⟩ to a set element,
and returns a handle ⟨y⟩ for the set element y = g ∗ x.

Additionally, all parties are provided with a handle ⟨x0⟩ to a starting set element
x0. Each query incurs unit cost, and all computation outside of queries is zero
cost. Algorithms are not allowed any computation on handles, except to pass
them to other algorithms or send as inputs to the oracles Eq,Act. The only
handles an algorithm can query to Eq,Act are those provided explicitly as input
(including ⟨x0⟩), or provided as output of prior queries to Act. A probabilistic
polynomial time algorithm is a probabilistic algorithm in this model whose total
cost is bounded by a polynomial.

Remark 2.1. The above model assumes there is a single starting handle ⟨x0⟩,
and the only way to derive additional set elements is to act on this handle. This
is how existing isogeny-based identification protocols work. However, isogenies
provide a bit more functionality: in particular, it is possible to sample directly
into the set elements. This does not give the adversary any more power, since
such directly sampled elements will be essentially random and unrelated to any
other element. However, such sampling could potentially be used in protocol
design.

We will not allow such sampling for the rest of this section, as it allows us
to explain our main ideas in a simpler manner. In Section 4.1 we extend the
black box group action model to capture such a functionality, and show that our
impossibility also extends to this model.

Verification Oracle. We can augment our black box group action model with
the following oracle:

– Ver(g, ⟨x⟩, ⟨y⟩) which returns 1 if g ∗ x = y and 0 otherwise.

This oracle can readily be simulated as Eq(Act(g, ⟨x⟩), ⟨y⟩), so including Ver does
not change the model. However, this oracle will still be convenient for our proofs.
Concretely, we will make crucial use of the following lemma:

Lemma 2.2. Let A be a deterministic algorithm in the black box group ac-
tion model that may take as input handles ⟨x1⟩, . . . , ⟨xn⟩ and non-handle terms,
and outputs k handles ⟨y1⟩, . . . , ⟨yk⟩, as well as non-handle terms. Let q be the
number of queries A makes. Then there is another algorithm A′ with identical
input/output behavior to A. However, A′ is restricted in the following way:

– It makes no queries to Eq.
– It makes at most O(q) queries to Ver, which must all come before any Act

query.
– After making its queries to Ver, it makes exactly k queries to Act in parallel

to produce its handle outputs: ⟨y1⟩ = Act(g1, ⟨xi1⟩), . . . , ⟨yk⟩ = Act(gk, ⟨xik⟩).
After making the Act queries, A′ is not allowed to make any queries to any
oracle.
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Lemma 2.2 allows us to reduce general algorithms to relatively simple forms,
which will make analyzing them easier. Note that Lemma 2.2 applies also to
randomized algorithms by considering the random coins as an input. Then A′

will also get these same random coins. We now prove Lemma 2.2.

Proof. Consider a general algorithm A in the black box group action model,
which makes arbitrary queries to Eq and Act. We construct A′ as follows. We
assume that integers and set elements are encoded such that they are disjoint.
A′ creates “dummy” handles ⟨1⟩, . . . , ⟨n⟩, which it feeds into A along with any
non-handle inputs. These dummy handles will be stand-ins for the true handles
⟨x1⟩, . . . , ⟨xn⟩ provided to A′. We will also create a table T containing tuples
(j, g, i), which correspond to the dummy handle ⟨j⟩ being a stand-in for the
real handle ⟨g ∗ xi⟩. Therefore, T is initialized to contain the tuples (i,1, i) for
i = 1, . . . , n. We will maintain that A only ever sees dummy handles.

A′ simulates A on the dummy handles ⟨1⟩, . . . , ⟨n⟩ as well as any non-handle
inputs to A′. However, A′ will intercept all the queries A makes. On each query:

– If the query has the form Act(g, ⟨j⟩) query, A′ looks up an entry (j, g′, i) in
T , which will be guaranteed to exist. It will then add the entry (j′, g · g′, i)
to T , where j′ is one more than the number of entries in T so far. A′ then
replies with the dummy handle ⟨j′⟩. Note that the entry (j, g′, i) ∈ T means
that ⟨j⟩ is a stand-in for ⟨g′ ∗ xi⟩. Therefore, A expects the result of the
query to be ⟨(g · g′) ∗ xi⟩, corresponding exactly to the newly added entry
(j′, g · g′, i).

– If the query has the form Eq(⟨j0⟩, ⟨j1⟩), look up entries (j0, g0, i0), (j1, g1, i1)
in T , which are guaranteed to exist. Then it makes a query b ← Ver(g−1

1 ·
g0, ⟨xi0⟩, ⟨xi1⟩) and replies with b. Note that since ⟨j0⟩ is a stand-in for
⟨g0 ∗ xi0⟩ and ⟨j1⟩ is a stand-in for ⟨g1 ∗ xi1⟩, we have equality if any only if
g0 ∗ xi0 = g1 ∗ xi1 ⇔ (g−1

1 · g0) ∗ xi0 = xi1 , which is exactly the result of the
Ver query.

Finally, when itA outputs handles ⟨j1⟩, . . . , ⟨jk⟩,A′ will look up entries (jt, gt, it) ∈
T for t = 1, . . . , k. It will then make a single round of Act queries ⟨yt⟩ =
Act(gt, xit). Observe that ⟨jt⟩ is exactly a stand-in for ⟨gt ∗ xit⟩ = ⟨yt⟩. A′ will
output ⟨y1⟩, . . . , ⟨yk⟩, as well as any non-handle outputs of A.

At every step, we therefore see that A′ simply replaces the handles A sees
with appropriate stand-ins, but correctly answers the Eq queries and produces
the correct output handles and non-handle elements. Thus A′ perfectly simulates
the outputs of A. ⊓⊔

We then define an abstract model for ID protocols that use a graph action.

2.2 ID protocols using a group action oracle

Here, we define the abstract model for an ID protocol using a group action oracle.
An ID protocol in the black box group action model consists of the following
algorithms:
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– Gen(), a probabilistic algorithm which makes a polynomial number of queries,
and samples a public key/secret key pair (pk, sk). We will always assume
without loss of generality that sk is just the random coins used in Gen().
On the other hand, pk may contain a combination of both (handles to) set
elements and non-set element terms.

– P(pk, sk), a probabilistic interactive algorithm that makes a polynomial num-
ber of queries, which takes as input (pk, sk), and interacts with a verifier
through several rounds of interaction. In general, the prover’s messages may
contain any combination of handles to set elements and also non-set element
terms.

– V(pk), a probabilistic interactive algorithm that makes a polynomial num-
ber of queries, which takes as input pk, and interacts with the prover. In
general, the verifier’s messages may contain any combination of handles to
set elements and also non-set element terms. At the end of the interaction,
V outputs a bit b.

We denote the interaction of of P and V by b ←$ V(pk) ⇐⇒ P(pk, sk). The
transcript of the interaction is the list T of all messages sent. As we are in
the black box group action model, we bound the number of queries of each
algorithm to polynomial, but do not otherwise bound the computation outside
of the queries.

Definition 2.3. A protocol Π = (Gen,P,V) has completeness C if

Pr[1←$ V(pk)⇐⇒ P(pk, sk)] ≥ C ,

where the probability is over (pk, sk)←$ Gen() and the random coins of P,V.

We do not define soundness, but instead define the opposite of soundness, since
we are interested showing that protocols with too little communication are un-
sound:

Definition 2.4. A protocol Π = (Gen,P,V) is (t, S)-unsound if there exists an
algorithm A making polynomially many queries such that

Pr[1←$ V(pk)⇐⇒ A(pk, T1, . . . , Tt)] ≥ S ,

where T1, . . . , Tt are t transcripts of independent trials of V(pk) ⇐⇒ P(pk, sk).
Here, the probability is over (pk, sk)←$ Gen(), the randomness of the transcripts
Ti, and the random coins of A,V.

Definition 2.5. We say a protocol Π is public coin if V’s random coins can be
written as (c1, . . . , ck) such that the ith message of V is ci.

For a public coin protocol, we will equivalently think of V as just being an
algorithm which takes as input the transcript and outputs a bit b. The execution
of the protocol itself simply chooses each message from the verifier uniformly at
random.

11



Notation. We will be using the following notation for ID protocols throughout
this paper:

C: the correctness probability t: number of transcripts given to the adversary
S: the soundness error P : the number of set elements in the public key
R: the number of rounds N : the number of set elements sent by the prover

We will be considering multiple ID protocols throughout this paper, which
we distinguish by subscripts, e.g. Π1, Π2, . . . . In such cases, we will use the same
subscripts for our notation: e.g. C1, C2, . . . for correctness probability, etc.

3 The lower bound

This section contains our main theorem, a lower bound on the communication
of any secure group-action-based ID protocol.

3.1 The main theorem

Theorem 3.1. If a public coin ID protocol Π in the black box group action model
has completeness C, then for any polynomial t, the protocol is (t, S)-unsound,
for S ≥ (C −P/t− 1/poly)×P−N , where poly is any polynomial. In particular,
if S ≤ 2−λ, C ≥ 0.99 and t ≥ 2.05P , then N ≥ (λ− 1)/ log2 P .

In other words, if we want λ-bit security, we need the number of set elements
sent by the prover to be at least (λ − 1)/ log2 P . As each set element itself
will generally be at least λ bits, and the number of public key elements is a
polymomial, this means λ bits of security requires total prover communication
size of Ω(λ2/ log λ). This corresponds to the size of signatures once we apply
Fiat-Shamir.

In the remainder of this section, we now prove this theorem using a sequence of
protocol simplification steps.

3.2 Normal Form Protocols

Label the set elements of the public key 1, . . . , P . Given a transcript T , we
will then number the set elements in T as P + 1, . . . , P + N in the order they
appear in T . Let V = [P + N ]. We will somewhat abuse notation and refer to
{1, . . . , P} ⊆ V as public key elements, and {P + 1, . . . , P + N} as transcript
elements.

Definition 3.2. A public coin ID protocol is in normal form if the following are
true:

– Verification is deterministic conditioned on the transcript.
– Verification only queries Ver and not Act,Eq.

12



– The final message from the prover contains a list Q, where each entry in
Q has the form (g, i, j, b). Here, i, j ∈ [P + N ] index into the combined set
elements of the public key and transcript, g is a group element, and b is
a bit. Let xi, xj be the elements at position i and j, respectively. (g, i, j, b)
corresponds to querying Ver(g, ⟨xi⟩, ⟨xj⟩) and receiving outcome b.

– The verifier first makes verification queries corresponding to those in Q: for a
tuple (g, i, j, b), it queries b′ ← Ver(g, ⟨xi⟩, ⟨xj⟩). These are the only queries
it makes. If any of the query responses are inconsistent with Q, that is if
b ̸= b′, the verifier immediately aborts and rejects.
Assuming all queries are consistent, the verifier is allowed arbitrary subse-
quent deterministic computation to decide whether to accept or reject, but it
can make no additional queries.

Lemma 3.3. If there is a public coin ID protocol Π in the group action model,
then there is also a normal form ID protocol Π1 such that t1 = t, C1 = C, S1 =
S,N1 = N,P1 = P,R1 = R+ 2.

Proof. First, observe that we can trivially make any protocol have deterministic
verification by adding to the end of the protocol a message from V to P contain-
ing the random coins of V. We therefore assume deterministic verification. By
Lemma 2.2, since verification outputs a bit (and therefore no handles), we can
also assume the verifier only makes queries to Ver and not Eq,Act.

Now that verification is deterministic, let P1 be the new prover, which runs
P. Then, at the end of running P, P1 runs the verifier for itself, to see exactly
what queries the verifier will make, assembling the query list Q.

We now explain how to construct V1. First, for each (g, i, j, b) ∈ Q, V1 makes
the corresponding query to Ver, obtaining b′. If b ̸= b′, then V1 immediately
aborts and rejects.

If b = b′ for each (g, i, j, b) ∈ Q, then V1 runs V on the first r + 1 messages
of the transcript, except that it has to intercept all of the Ver queries V makes,
which correspond to an entry (g, i, j, b) ∈ Q, and answers the query with b.

It is straightforward that V1 ⇐⇒ P1 exactly simulates the behavior of V ⇐⇒
P, and so C1 = C. For soundness, consider an adversary A1 that convinces
V1 with probability S1. We construct an adversary A that convinces V with
probability S. A runs A1, and just discards the query list Q that A′ outputs. If
A1 wins, then it must be that all queries V1 (and hence V) makes are consistent
with Q, and also that V accepts. In other words, V accepts transcript T whenever
V1 accepts transcript T1, where T is the same as T ′ but with the query list Q
discarded. Hence S ≥ S1. ⊓⊔

3.3 The Transcript Graph

Recall that V = [P+N ] indexes the combined set elements of the public key and
transcript, with [P ] corresponding to the public key elements and [P +1, P +N ]
corresponding to the transcript elements.

Consider running the verifier V. Any accepting Ver query by V corresponds
to an edge between nodes in V ; call this edge set of accepting queries E. Then
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GT = (V,E) forms an undirected graph. GT is the transcript graph of T . We note
that verification may be randomized, yielding different transcript graphs each
time. However, we will always assume a normal form protocol with deterministic
verification, meaning that GT is uniquely determined by the protocol transcript.

We say that a transcript graph is valid if there is no path between any two
distinct public key elements. In other words, each public key element lies in a
different connected component. Otherwise, a transcript graph is invalid.

3.4 Respecting Verifiers

Definition 3.4. A respecting verifier for a normal-form protocol is one that
always rejects transcripts with invalid transcript graphs.

Lemma 3.5. If there is a public coin normal form ID protocol Π1 in the group
action model, then there is also a public coin normal form ID protocol Π2 with
a respecting verifier, such that t2 = 0, C2 ≥ C1 −N1/t1, S2 ≤ S1, N2 = N1, P2 ≤
P1, R2 = R1.

Proof. The intuition is that we use the provided protocol transcripts to com-
pute the discrete logarithms between public key elements, and then use this
information to represent certain public key elements in terms of others. This lets
us remove such public key elements. If the next protocol run would have likely
connected two public key elements together, then the previous runs would have
also likely connected them anyway, meaning one of the elements would not have
been in the public key in the first place.

In more detail, given Π1 = (Gen1,P1,V1) for a public coin normal form ID
protocol, we construct Π2 = (Gen2,P2,V2) as follows.

Gen2(): First run (pk1, sk1) ←
$ Gen1(). Now run P1(pk1, sk1) ⇐⇒ V1(pk1) for

t1 independent trails, collecting transcripts T1, . . . , Tt1 . It then computes the
transcript graphs GT1 , . . . , GTt1

. Then for i = 1, . . . , P1, it does the following:

– If the i-th public key set element ⟨xi⟩ is connected to any previous public key
set element ⟨xj⟩ at position j < i through any path of edges in ∪ℓ∈[t1]GTℓ

,
take the minimal such j. Then use the queries in Tℓ to determine the group
element g such that xi = g ∗xj . Delete ⟨xi⟩ from the public key, and replace
it with the pair (j, g). If there is no such path, then leave ⟨xi⟩ as is.

Note that since j is minimal, in particular xj is not connected to any xℓ for
ℓ < j. So if ⟨xi⟩ is replaced with (j, g), it must mean that ⟨xj⟩ has not been
deleted.

Then pk2 = pk1, except with all the deleted set elements replaced by the
appropriate (j, g). sk2 = sk1

7.

7 Technically, we assumed sk was the random coins of Gen, and so our sk2 should also
include the random coins used to generate the Ti. However, this information will not
be needed in the actual protocol, so we can think of sk2 as being just sk1.
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P2: P2 runs P1, except that any time P2 would need a deleted ⟨xi⟩ from the
public key, P2 re-computes it as ⟨xi⟩ = Act(g, ⟨xj⟩) for the appropriate (j, g).

V2: V2 runs V1, except that any time V1 would needs a deleted ⟨xi⟩ from the
public key, V2 re-computes it as ⟨xi⟩ = Act(g, ⟨xj⟩) for the appropriate (j, g).
Moreover, at the end of the protocol V2 computes the transcript graph GT ,
defined over the non-deleted elements in pk2, and automatically rejects if GT is
invalid.

Security. If V2 did not check the validity of GT , then the interaction between
P2 and V2 is identical to that of P1,V1, since each just re-computes the correct
⟨xi⟩ as needed. Moreover, notice that computing pk2 from pk1 can be done by
an adversary for P1,V1 using the t1 transcripts provided to it in the passive
security game. Adding a reject condition in V2 only decreases the adversary’s
success probability.

Correctness. In order to establish the correctness of the protocol, we just need
to bound the probability GT is invalid. Fix some (pk1, sk1). For any transcript
graph GT , let G′

T be the induced graph with nodes in [P1], where there is an
edge between two nodes in [P1] if and only if there is a path between those nodes
in GT . Let ni be the number of connected components in in G′

i := ∪j≤iG
′
Tj
, and

ei = E[ni] be the expectation of ni. Note that n0 = P1, ni ≥ 0 for all i, and
ni+1 ≤ ni. Therefore, these (in)equalities hold in expectation.

Moreover, i 7→ ei is convex, meaning ei − ei+1 ≤ ei−1 − ei for all i. To
see this, let n′

i be the number of connected components in G′
Ti−1
∪ G′

Ti+1
. The

difference relative to ni is that we swap out G′
Ti

for G′
Ti+1

. Let e′i = E[n′
i]. Since

G′
Ti

and G′
Ti+1

come from the same distribution, we must have e′i = ei. Now let

ri := ni−1 − ni and r′i := ni−1 − n′
i. This means G′

Ti+1
connects ri+1 pairs of

the connected components of G′
i together, and r′i pairs of connected components

of G′
i−1. For every connection G′

Ti+1
makes between connected components of

G′
i, there are corresponding connected components of G′

i−1 that it also connects,
since the connected components of G′

i−1 is just a refinement of the the connected
components of G′

i. Thus r′i ≥ ri+1, meaning E[ri] = E[r′i] ≥ E[ri+1]. Hence
ei − ei+1 ≤ ei−1 − ei.

By the triangle inequality, this means |et1+1 − et1 | ≤ P1/t1. In particular,
Pr[nt1+1 < nt1 ] < P1/t1. But notice that nt1+1 = nt1 corresponds to the tran-
script graph of P2 ⇐⇒ V2 being valid. This is because pk2 has exactly nt1 public
key elements remaining, one for each connected component in ∪j∈[t1]G

′
Tj
. Then

any edge between remaining public key elements in pk2 would have reduced the
number of connected components, implying nt1+1 < nt1 .

Therefore, except with probability P1/t1, the transcript graph for P2 ⇐⇒ V2
is valid. This means V2 accepts with probability at least C2 ≥ C1 − P1/t1. ⊓⊔

3.5 Guessing Provers

A guessing prover has the following structure:
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– The prover initially guesses a random partition W of V , such that each set
in the partition contains exactly one public key element. In other words,
for each transcript element in V , the prover chooses a random public key
element to associate the transcript element to. The number of possible W is
PN .

– Recall by Lemma 2.2 that we can always assume the prover only queries Act
on input set elements, and immediately outputs the result of the query as an
set output. Consider such a query ⟨y⟩ = Act(g, ⟨x⟩). The prover guarantees
that for any such query, ⟨y⟩ is in the same element of W as is ⟨x⟩.

– Let W ′ be the partition corresponding to the connected components of the
final transcript graph GT . Then if W ′ is not a refinement of W , the prover
aborts and sends ⊥ for its last message (which the verifier would presumably
reject if it were respecting).

– The prover never makes any queries to Eq.

Lemma 3.6. If there is a public coin normal form ID protocol Π2 with a re-
specting verifier in the group action model and t2 = 0, then there is a public
coin normal form ID protocol Π3 with a respecting verifier and guessing prover
such that t3 = 0, C3 ≥ C2 × P−N2

2 , S3 ≤ S2, N3 = N2, P3 = P2, R3 = R2. In
particular, conditioned on P3 not sending ⊥, its correctness probability is at least
C2.

Proof. Recall that we assume P is given the random coins used during setup. In
particular, P is able to compute the discrete logs between public key elements.
This means it always knows the discrete logs between any group elements, and
can therefore answer any Eq query by itself without making the query.
P3 simply runs P2, except that it processes each query. Suppose P2 computes

⟨y⟩ = Act(g, ⟨x1⟩) for public key element ⟨x1⟩, while P3 needs to compute ⟨y⟩ =
Act(g′, ⟨x2⟩) for some other public key element ⟨x2⟩. Since P3 can compute the
discrete log h such that x1 = h ∗ x2, we can simply set g′ = gh. Thus, P3

perfectly simulates the messages of P2, until the last message. Importantly, all
the previous messages are independent of W .

Whenever the prover convinces the verifier, since the verifier is respecting,
the transcript graph is valid and must therefore have each public key element in a
different connecting component. Let W ′ be the associated partition of the public
key elements. Since W ′ is independent of W , we must have that W ′ = W with
probability P−N2

2 . In particular,W ′ is a refinement ofW with probability at least
P−N2
2 . Hence, the overall correctness probability is at least C3 ≥ C2×P−N2

2 . ⊓⊔

3.6 Finishing the Proof of Theorem 3.1

We are now ready to finish the proof of Theorem 3.1, by showing the following

Lemma 3.7. If there is a public coin normal form ID protocol Π2 with a re-
specting verifier in the group action model, then for any polynomial poly, S2 ≥
(C2 − 1/poly)× P−N2

2
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Proof. We first invoke Lemma 3.6 to arrive at a protocol Π3 with soundness
error S3 ≤ S2, and where the guessing prover P3 has correctness C2 conditioned
on it not sending ⊥ in the last message, for an overall correctness probability
C3 ≥ C2 × P−N2

2 .

We create a family of malicious provers A(i), which are only given pk3, and
attempt to simulate P3. Let aux3 be the non-set element part of pk3. A(i) samples
random coins for Gen3, conditioned on Gen3 outputting aux3. By Lemma 2.2, the
part of Gen3 that outputs aux3 maps bits to bits, and so makes no oracle queries
at all. Therefore, sampling the random coins can be done without making any

queries. Let sk
(1)
3 be the obtained public key.

In the case of A(1), we now simply run P3(pk3, sk
(1)
3 ). Let q(1) be the prob-

ability of convincing the verifier, conditioned on the final message of P3 not

being ⊥. When ignoring the set elements, sk
(1)
3 is identically distributed to sk3.

Therefore, P3(pk3, sk
(1)
3 ) is identically distributed to P3(pk3, sk3), unless (1) the

P3(pk3, sk
(1)
3 ) does not send ⊥, and also (2) there is a query in (g, i, j, b) ∈ Q

where b ̸= Ver(g, ⟨xi⟩, ⟨xj⟩). We note that if i, j are in the same part of the par-
tition W , then this is guaranteed to never happen, since all elements within a
partition element are generated as in the honest P3. Also, recall that the verifier
is respecting, meaning for i, j in different parts, it rejects if ever b = 1.

Therefore, the only “bad” case is when i, j are in different parts of the parti-
tionW , A(1) generates (g, i, j, b = 0), but actually Ver(g, ⟨xi⟩, ⟨xj⟩) = 1, meaning
g ∗ xi = xj . But observe that, in this case, the actual Ver query reveals the dis-
crete log between two public key elements, which presumably should be hard.
We will use this bad event to create a different adversary with a better success
probability.

Concretely, let A(2), generates sk
(1)
3 , but then simulates for itself the in-

teraction V3(pk) ⇐⇒ A(1)(pk3, sk
(1)
3 ) (choosing its own messages for V3), but

conditioned on the final transcript graph GT yielding a partition W ′ that is a
refinement ofW . Note that since P3 never makes queries to Eq and the transcript
graph GT does not contain set elements, determining whether the simulation has
W ′ being a refinement of W can be computed without making any oracle queries
at all (by Lemma 2.2). So even though this event is exponentially unlikely, con-
ditioning on this event can be done with only a polynomial number of queries
(namely the number of queries in the protocol). Let p(1) be the probability a
discrete log is revealed. By our conditioning on P3 not sending ⊥, we have that
(C3 − q(1)) ≤ p(1).

Then A(2) chooses sk
(2)
3 from the same distribution as sk

(1)
3 , except that if

any discrete logs g ∗ xi = xj are revealed in the first step, it also conditions on
Gen producing public key elements with these discrete log. As before, this condi-
tional sampling can be done without making any queries. Now A(2) simply runs

P3(pk3, sk
(2)
3 ). Let q(1) be the probability of convincing the verifier, conditioned

on the final output of P3 not being ⊥. Now by similar arguments as before,

P3(pk3, sk
(2)
3 ) is identically distributed to P3(pk3, sk3), unless a “bad” case oc-

curs, where Q contains (g, i, j, b = 0) such that Ver(g, ⟨xi⟩, ⟨xj⟩) = 1. Except
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here, the ”bad” case must also reveal a “new” discrete log, meaning g ∗ xi = xj

could not be derived from any discrete logs revealed in the first step. This is
because if g ∗ xi = xj could be derived from the discrete logs in the first step,
our conditioning on the discrete logs in the first step would have ensured that Q
contained the correct value of b. Let p(2) be the probability that a new discrete
log is revealed. By our conditioning, we have that (C3 − q(2)) ≤ p(2).

We similarly define A(3),A(4), . . . . We have that (C3 − q(i)) ≤ p(i).
Now, note that there can only be at most P3−1 “new” discrete logs revealed

across the various steps. This means that, for any u,
∑u

i=1 p
(i) ≤ P3− 1. This in

particular means that, for any u, there must be an i ∈ [u] such that p(i) < P3/u.
So for any desired polynomial error poly, there will be some i ≤ poly × P3

such that p(i) < 1/poly, in which case q(i) > C3 − 1/poly. In other words, A(i),
conditioned on not outputting ⊥ in the final message, convinced the verifier with
probability at least C3 − 1/poly. Then, since A(i) outputs something other than
⊥ with probability at least P−N3

3 , the overall soundness error of A(i) is at least
S3 ≥ (C3 − 1/poly)× P−N3

3 .
It remains to show that A(i) makes a polynomial number of queries. Indeed,

the sampling of the various sk
(j)
3 requires no queries, and then A(i) runs i exe-

cutions of the protocol, each incurring a polynomial number of queries. Since i
itself is polynomial, the total query count is polynomial. ⊓⊔

4 Extensions

Here, we discuss a few possible different models for black box group actions,
extending our model from Section 3.

4.1 Direct Sampling

We now consider a model which captures the following feature of isogeny-based
group actions: the ability to directly sample into the set elements, without having
to act on existing elements. Our model is identical to the model from Section 2,
except that it provides an additional random oracle for sampling elements:

– Eq(⟨x⟩, ⟨y⟩) takes as input two handles for set elements x, y, are returns 1 if
x = y and 0 otherwise.

– Act(g, ⟨x⟩) takes as input a group element g and a handle ⟨x⟩ to a set element,
and returns a handle ⟨y⟩ for the set element y = g ∗ x.

– Samp(s) takes as input a string s ∈ {0, 1}λ and outputs ⟨L(s)⟩ where L :
{0, 1}λ → X is a uniform random function.

As before, each query incurs unit cost, and all computation outside of queries
is zero cost. Algorithms are not allowed any computation on handles, except
to pass them to other algorithms or send as inputs to the oracles Eq,Act. The
only handles an algorithm can query to Eq,Act are those provided explicitly as
input, or provided as output of prior queries to Act or Samp. Note that we do
not explicitly provide an ⟨x0⟩ as it is redundant, given Samp.
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We call this model the extended black box group action model. We now prove
the following:

Theorem 4.1. If a public coin ID protocol Π in the extended black box group
action model has completeness C, then for any polynomial t, the protocol is (t, S)-
unsound, for S ≥ (C−P/t−1/poly)× (P +1)−N , where poly is any polynomial.
In particular, if S ≤ 2−λ, C ≥ 0.99 and t ≥ 2.05P , then N ≥ (λ−1)/ log2(P+1).

Note that the quantitative theorem statement is almost identical to that of
Theorem 3.1, except that P−N is replaced with (P +1)−N . This slightly weaker
bound is inconsequential for security.

Proof. The proof follows a very similar outline to the proof of Theorem 3.1, with
a couple of key changes.

Normal Form Protocols. We first define a normal form protocol similar to Defi-
nition 3.2, but with some changes:

– Verification is deterministic conditioned on the transcript. This is identical
to Definition 3.2.

– Verification only queries Ver,Samp and not Act,Eq. This is identical to Def-
inition 3.2, except that we allow for Samp queries.

– The final message from the prover contains a list Q, where each entry in Q
has either the form (g, i, j, b) or s. Here, (g, i, j, b) represents an Act query as
in Definition 3.2. The new part are terms of the form s, which correspond
to a query Samp(s).

– The verifier first makes queries corresponding to those in Q. These are the
only queries it makes. If any of the query responses are inconsistent with Q,
the verifier immediately aborts and rejects.
Assuming all queries are consistent, the verifier is allowed arbitrary subse-
quent deterministic computation to decide whether to accept or reject, but
it can make no additional queries.

By an essentially identical proof to that of Lemma 3.3, we can conclude the
following:

Lemma 4.2. If there is a public coin ID protocol Π in the group action model,
then there is also a normal form ID protocol Π1 such that t1 = t, C1 = C, S1 =
S,N1 = N,P1 = P,R1 = R+ 2.

The Transcript Graph. We define the transcript graph similarly to Section 3,
except that we also include the results of any verifier queries to Samp as nodes
in the graph. We connect nodes in this graph via accepting Ver queries as before.

We say that a transcript graph is valid if there is no path between any two
public key elements, and also no path between a public key element and an Samp
element. We include paths of length zero in our notion of paths, so every node
has a path to itself. In other words, each public key element lies in a different
connected component, and those connected components are distinct from any
connected component containing an Samp element. Otherwise, a transcript graph
is invalid.
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Respecting Verifiers. As in Section 3, a respecting verifier for a normal-form
protocol is one that rejects invalid transcript graphs, except we use our updated
notion of invalid transcripts. We now state an updated version of Lemma 3.3 to
work with extended group actions, which follows from an essentially identical
argument.

Lemma 4.3. If there is a public coin normal form ID protocol Π1 in the ex-
tended group action model, then there is also a public coin normal form ID
protocol Π2 with a respecting verifier, such that t2 = 0, C2 ≥ C1 − N1/t1, S2 ≤
S1, N2 = N1, P2 ≤ P1, R2 = R1.

Guessing Provers. A guessing prover has the following structure:

– The prover initially guesses a random partition W of V into P + 1 sets, P
of which contain exactly one public key element, and the final set contain-
ing none. The difference from Section 3 is that we allow for this extra set
containing no public key elements. The number of possible W is (P + 1)N ,
slightly more than in Section 3 owing to the additional set.

– The prover only queries Act on input set elements or the result of a Samp
query. It then immediately outputs the result of the Act query as an set
output. Moreover, for any such query ⟨y⟩ = Act(g, ⟨x⟩), the prover guarantees
that ⟨y⟩ and ⟨x⟩ are in the same element of W . This is the same as Section 3,
except we allow the prover to derive its outputs also from Samp queries.

– Let W ′ be the partition corresponding to the connected components of the
final transcript graph GT . Then if W ′ is not a refinement of W , the prover
aborts and sends ⊥ for its last message (which the verifier would presumably
reject if it were respecting).

– The prover never makes any queries to Eq.

The following is proved via an almost identical proof to Lemma 3.6:

Lemma 4.4. If there is a public coin normal form ID protocol Π2 with a re-
specting verifier in the extended group action model and t2 = 0, then there is a
public coin normal form ID protocol Π3 with a respecting verifier and guessing
prover such that t3 = 0, C3 ≥ C2 × P−N2

2 , S3 ≤ S2, N3 = N2, P3 = P2, R3 = R2.
In particular, conditioned on P3 not sending ⊥, its correctness probability is at
least C2.

Finishing the Proof. We now give an extension of Lemma 3.7, which finishes the
proof of Theorem 4.1:

Lemma 4.5. If there is a public coin normal form ID protocol Π2 with a re-
specting verifier in the group action model, then for any polynomial poly, S2 ≥
(C2 − 1/poly)× (P2 + 1)−N2

The proof follows an almost identical argument to that of Lemma 3.7, leveraging
Lemma 4.4. Putting Lemmas 4.2, 4.3, and 4.5 together gives Theorem 4.1.

⊓⊔
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4.2 Black Box Graph Actions

Here, we generalize the group structure of the black box group action to what
we call a graph action. Instead of a group, there is a labelled directed graph
G = (X,E) whose nodes are the set X, satisfying the following properties:

– Reversibility: If there is an edge (x, y) ∈ E, then (y, x) ∈ E.
– Composition: If there is a path p from x to y, then the edge (x, y) ∈ E.
– Unambiguous labels: For any node x, all the outgoing edges from x have

distinct labels. Likewise, all the incoming edges to x have distinct labels.
There may be overlapping edges amongst between the incoming and outgoing
edges.

– Base labels: There is a set S of labels, such that for every node x ∈ X and
every label s ∈ S, there is an incoming edge and an outgoing edge from x
with label s.

In the case of a group action, the edge labels are group elements, and for
all nodes x and group elements g, the edge (x, g ∗ x) ∈ E and has label g.
Reversibility, composition, and unambiguous labels follow immediately from the
basic properties of group actions.

Now the following oracles are provided to all parties:

– Eq(⟨x⟩, ⟨y⟩) takes as input two handles for set elements x, y, are returns 1 if
x = y and 0 otherwise.

– Act(ℓ, ⟨x⟩) takes as input a label ℓ and a handle ⟨x⟩ to a node. If there is an
edge (x, y) ∈ E with label ℓ, then output (ℓ′, ⟨y⟩), where ℓ′ is the label for
(y, x) ∈ E. Otherwise output ⊥.

– Inv(ℓ, ⟨x⟩) takes as input a label ℓ and a handle ⟨x⟩ to a node. If there is an
edge (y, x) ∈ E with label ℓ, then output (ℓ′, ⟨y⟩), where ℓ′ is the label for
(x, y) ∈ E. Otherwise output ⊥.

– Comp(ℓ1, ℓ2, ⟨x⟩) takes as input labels ℓ1, ℓ2 and a handle ⟨x⟩ to a node. If
there are edges (x, y) ∈ E and (y, z) ∈ E with labels ℓ1, ℓ2 respectively, then
output ℓ3, the label for the edge (x, z). Otherwise output ⊥.

Like with the group action model, each query incurs unit cost, and all compu-
tation outside of queries is zero cost. Algorithms are not allowed any computation
on handles, except to pass them to other algorithms or send as inputs to the
oracles Eq,Act, Inv,Comp. A probabilistic polynomial time algorithm is a prob-
abilistic algorithm in this model whose total cost is bounded by a polynomial.
We can also consider extending the model to include an Samp which generates
handles to random nodes.

By inspecting our proof of Theorem 3.1, we see that our lower bound also
holds in the black box graph action model. The limitation of this model, however,
is that for many graphs, there is trivially no security. Thus, while our impos-
sibility for short signatures will apply for arbitrary graphs, in many cases the
impossibility is uninteresting as there will be more trivial attacks.

In more detail, consider an adversary given a handle ⟨x⟩ to a node. The
adversary can choose two arbitrary labels ℓ1, ℓ2, and compute Comp(ℓ1, ℓ2, ⟨x⟩),

21



resulting in a label ℓ3. Observe that ℓ1, ℓ2, ℓ3 are given as bit-strings, as opposed
to handles.

For a general graph structure, it may be that Comp(ℓ1, ℓ2, ⟨x⟩) ̸= Comp(ℓ1, ℓ2,
⟨y⟩) for different nodes x, y. Thus, ℓ3 potentially tells us information about x. If
the adversary can generate many such (ℓ1, ℓ2) pairs, then after a polynomial num-
ber of queries x may be uniquely determined by the list of ℓ3 = Comp(ℓ1, ℓ2, ⟨x⟩)
values. In such a case, the graph action trivially has no security: an adversary
can de-reference ⟨x⟩ into x by making a polynomial number of queries to get a
list of ℓ3 values, and then brute force search for a node x ∈ G with the given
composition structure. This brute force search may require exponential com-
putation, but since the query count is polynomial this would be considered an
adversary in the black box graph action model.

Such a trivial insecurity does not contradict our lower bound, but would
render it meaningless.

The obvious way out would be for the graph to have the property that
Comp(ℓ1, ℓ2, ⟨x⟩) = Comp(ℓ1, ℓ2, ⟨y⟩) for all x, y, or at least for equality to hold
with overwhelming probability over random x, y. In other words, for any ℓ1, ℓ2,
there is a unique ℓ3 such that Comp(ℓ1, ℓ2, ⟨x⟩) = ℓ3 for most x.

But in this case, if we define ℓ1 × ℓ2 as the unique ℓ3, this gives us a group
structure on the set of labels, and this group acts on the set X. Thus, it appears
that to avoid trivial attacks, we actually imposed a group action structure, and
thus reduce to the case of Section 3.

4.3 A Fully Idealized Graph Action

Here, we present a fully idealized graph action model, which allows for general
graphs (not corresponding to group actions) without rendering the graph action
model trivially insecure.

The idea is to protect edge labels behind handles, in addition to the nodes.
This means that, even though Comp(ℓ1, ℓ2, ⟨x⟩) ̸= Comp(ℓ1, ℓ2, ⟨y⟩), the actual
output of Comp(ℓ1, ℓ2, ⟨x⟩) is a handle. Attempting to brute force search for x
given the list of label handles is no longer possible without making exponentially
many queries.

This model is incomparable to the previous graph action model and also the
group action model: while it prevents the attacker from making use of the bit
representation of edge labels, it also prevents the construction from making use of
such labels. In much of the group action and isogeny literature, the protocols do
not need the bit representation, and would work with such a fully idealized graph
action model. But there are construction techniques that would make use of such
a bit representation (see [38] for a discussion in the context of generic groups),
and our fully idealized model would not allow for such techniques. Thus, while
the model extends the graph structure, it limits constructions in other ways.

We now give the model. The graph G = (X,E) is still defined in the same
way, but we modify the oracles that are provided to the parties:

– Eq(⟨x⟩, ⟨y⟩) takes as input two handles for set elements x, y, are returns 1 if
x = y and 0 otherwise.

22



– Act(⟨ℓ⟩, ⟨x⟩) takes as input a handle ⟨ℓ⟩ to a label and a handle ⟨x⟩ to a node.
If there is an edge (x, y) ∈ E with label ℓ, then output (⟨ℓ′⟩, ⟨y⟩), where ℓ′ is
the label for (y, x) ∈ E. Otherwise output ⊥.

– Inv(⟨ℓ⟩, ⟨x⟩) takes as input a handle ⟨ℓ⟩ to a label and a handle ⟨x⟩ to a node.
If there is an edge (y, x) ∈ E with label ℓ, then output (⟨ℓ′⟩, ⟨y⟩), where ℓ′ is
the label for (x, y) ∈ E. Otherwise output ⊥.

– Comp(⟨ℓ1⟩, ⟨ℓ2⟩, ⟨x⟩) takes as input handles ⟨ℓ1⟩, ⟨ℓ2⟩ to labels and a handle
⟨x⟩ to a node. If there are edges (x, y) ∈ E and (y, z) ∈ E with labels ℓ1,
ℓ2 respectively, then output ⟨ℓ3⟩, the handle to the label for the edge (x, z).
Otherwise output ⊥.

The following is a straightforward extension of Theorem 3.1:

Theorem 4.6. If a public coin ID protocol Π in the fully idealized black box
graph action model has completeness C, then for any polynomial t, the protocol is
(t, S)-unsound, for S ≥ (C−P/t−1/poly)×P−N , where poly is any polynomial.
In particular, if S ≤ 2−λ, C ≥ 0.99 and t ≥ 2.05P , then N ≥ (λ− 1)/ log2 P .
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