
Multi-key and Multi-input Predicate Encryption
from Learning with Errors

Danilo Francati1[0000−0002−4639−0636], Daniele Friolo2[0000−0003−0836−1735],
Giulio Malavolta3, and Daniele Venturi2[0000−0003−2379−8564]

1 Aarhus University, Aarhus, Denmark
2 Sapienza University of Rome, Rome, Italy

3 Max Planck Institute for Security and Privacy, Bochum, Germany

Abstract. We put forward two natural generalizations of predicate en-
cryption (PE), dubbed multi-key and multi-input PE. More in details,
our contributions are threefold.

– Definitions. We formalize security of multi-key PE and multi-input
PE following the standard indistinguishability paradigm, and mod-
eling security both against malicious senders (i.e., corruption of en-
cryption keys) and malicious receivers (i.e., collusions).

– Constructions.We construct adaptively secure multi-key and multi-
input PE supporting the conjunction of poly-many arbitrary single-
input predicates, assuming the sub-exponential hardness of the learn-
ing with errors (LWE) problem.

– Applications. We show that multi-key and multi-input PE for ex-
pressive enough predicates suffices for interesting cryptographic ap-
plications, including non-interactive multi-party computation (NI-
MPC) and matchmaking encryption (ME).

In particular, plugging in our constructions of multi-key and multi-input
PE, under the sub-exponential LWE assumption, we obtain the first ME
supporting arbitrary policies with unbounded collusions, as well as robust
(resp. non-robust) NI-MPC for so-called all-or-nothing functions satis-
fying a non-trivial notion of reusability and supporting a constant (resp.
polynomial) number of parties. Prior to our work, both of these applica-
tions required much heavier tools such as indistinguishability obfuscation
or compact functional encryption.

Keywords: predicate encryption · non-interactive MPC · matchmaking
encryption · LWE

1 Introduction

Predicate encryption (PE) [17, 37, 30] is a powerful cryptographic primitive that
enriches standard encryption with fine-grained access control to the encrypted
data. In PE, the ciphertext is associated to both a message m and an attribute4

4 Sometimes, we also refer to x as the predicate input. Throughout the paper, we use
the terms attribute and input interchangeably.

x, whereas the secret key is associated to a predicate P, in such a way that the
decryption process reveals the message if and only if the attribute x satisfies the
predicate P (i.e., P(x) = 1). Typically, security of PE requires indistinguishability
in the presence of collusion attacks, namely, for any pair of attributes (x0, x1) and
for any pair of messages (m0,m1), ciphertexts corresponding to (x0,m0) and to
(x1,m1) are computationally indistinguishable, even for an adversary possessing
poly-many decryption keys dkP, so long as P(x0) = P(x1) = 0 (otherwise it is
easy to distinguish).

Recently, there has been a lot of progress in constructing PE supporting ex-
pressive predicates under standard assumptions [17, 37, 38, 42, 43, 5, 45, 46, 12,
30]. In particular, Gourbunov, Vaikuntanathan and Wee [30] give a construction
of selectively secure PE (with unbounded collusions) for arbitrary predicates un-
der the learning with errors (LWE) assumption. Moreover, under sub-exponential
LWE, the same construction achieves adaptive security (this requires complexity
leveraging).

1.1 Our Contributions

In this paper, we put forward two natural generalizations of PE which we dub
multi-key PE and multi-input PE. Furthermore, we construct both multi-key PE
and multi-input PE for a particular class of predicates, under the LWE assump-
tion. As we show, the class of predicates our schemes can handle is powerful
enough to yield interesting cryptographic applications, including matchmaking
encryption (ME) [10, 11] for arbitrary policies and non-interactive multi-party
computation (NI-MPC) [34] satisfying a weaker (but still non-trivial) notion of
reusability. We elaborate on these contributions in Section 1.3.

Prior to our work, all of the above applications required much stronger tools
such as indistinguishability obfuscation (iO) [13]. While recent work made sig-
nificant progress towards basing iO on standard assumptions [35, 36], these con-
structions are fairly complex and still require a careful combination of multiple
assumptions (i.e., learning parity with noise, the SXDH assumption on bilinear
groups, and the existence of pseudorandom generators computable in constant
depth). Furthermore, such constructions are not secure in the presence of a quan-
tum attacker. Candidate constructions of post-quantum iO also exist [28, 47, 18],
but they are based on problems whose hardness is less understood.

Multi-key PE. In multi-key PE, we consider an ensemble of predicates P =
{Pv} indexed by a value v ∈ V which is uniquely represented as a sequence
v = (v1, . . . , vn) ∈ V1 × . . . × Vn. A sender can encrypt a message under an
input x using the public-key encryption algorithm Enc(mpk, x,m). A trusted
authority generates decryption keys dkvi (using the corresponding master secret
key mski) for each i ∈ [n], with the guarantee that, given the decryption keys
dkv1 , . . . , dkvn , the receiver can decrypt successfully the ciphertext c (associated
to plaintext m and attributes x), so long as Pv(x) = Pv1,...,vn(x) = 1.

Security of multi-key PE says that, for any pair of attributes (x0, x1) and for
any pair of messages (m0,m1), ciphertexts c associated to (x0,m0) and (x1,m1)

2

should be computationally indistinguishable even under unbounded collusions,
where the latter essentially means that the adversary can obtain decryption keys
for (poly-many) arbitrary values v1, . . . , vn which correspond to predicates in-
dexed by any value v = (v1, . . . , vn) such that Pv(x

0) = Pv(x
1) = 0. This yields

so-called CPA-1-sided security. The stronger notion of CPA-2-sided security ad-
ditionally allows for predicates indexed by values v such that Pv(x

0) = Pv(x
1) =

1, so long as m0 = m1. These notions mimic the corresponding notions that are
already established for standard PE.

Our first result is a construction of multi-key PE, from the sub-exponential
LWE assumption, supporting conjunctions of arbitrary predicates, i.e. for pred-
icates of the form Pv(x) = Pv1(x1) ∧ . . . ∧ Pvn

(xn), where x = (x1, . . . , xn) and
v = (v1, . . . , vn).

Theorem 1 (Informal). Assuming the sub-exponential hardness of LWE, there
exists a CPA-1-sided adaptively secure multi-key PE scheme supporting conjunc-
tions of n = poly(λ) arbitrary predicates with unbounded collusions.

Multi-input PE. In multi-input PE, we consider predicates P with n inputs, i.e.
predicates of the form P(x1, . . . , xn). A trusted authority produces encryption
keys eki which are associated to the i-th slot of an input for P; namely, given
a (possibly secret)5 encryption key eki, a sender can generate a ciphertext ci
which is an encryption of message mi under attribute xi. At the same time, the
authority can produce a decryption key dkP associated to an n-input predicate
P, with the guarantee that the receiver can successfully decrypt c1, . . . , cn, and
thus obtain m1, . . . ,mn, so long as P(x1, . . . , xn) = 1.

As for security, we consider similar flavors as CPA-1-sided and CPA-2-sided
security for standard PE. Namely, for any pair of sequences of attributes (x0

1, . . . ,
x0
n) and (x1

1, . . . , x
1
n) and for any pair of sequences of messages (m0

1, . . . ,m
0
n) and

(m1
1, . . . ,m

1
n), ciphertexts c1, . . . , cn corresponding to either (x0

1,m
0
1), . . . , (x

0
n,

m0
n) or (x

1
1,m

1
1), . . . , (x

1
n,m

1
n) should be computationally indistinguishable. Here,

we additionally consider two cases:

– In the setting with no corruptions (a.k.a. the secret-key setting), all of the
encryption keys eki are secret and cannot be corrupted (and thus all the
senders are honest).

– In the setting with adaptive corruptions, the attacker can adaptively reveal
some of the encryption keys eki (and thus corrupt a subset of the senders).

Naturally, for both of these flavors, one can define CPA-1-sided and CPA-2-sided
security with or without collusions.

Our second result is a construction of multi-input PE, from the sub-exponential
LWE assumption, supporting conjunctions of n = poly(λ) arbitrary predicates
with wildcards, i.e. for predicates of the form P(x1, . . . , xn) = P1(x1)∧. . .∧Pn(xn)

5 This is one of the differences between multi-key PE and multi-input PE: the former
has a public-key encryption algorithm, whereas the latter could have a secret-key
encryption algorithm.

3

such that, for each i ∈ [n], there exists a (public) wildcard input x⋆
i for which

Pi(x
⋆
i) = 1 for every i-th predicate Pi.

6 Our multi-input PE construction retains
its security only in the setting of no corruptions (i.e., the encryption keys eki are
kept secret) and no collusions (i.e., the adversary only knows a single decryption
key dkP for an adversarially chosen predicate P).

Theorem 2 (Informal). Assuming the sub-exponential hardness of LWE, there
exists a CPA-1-sided adaptively secure multi-input PE scheme supporting con-
junctions of n = poly(λ) arbitrary predicates with wildcards, without corruptions
and without collusions.

Our third result is a construction of multi-input PE, from the sub-exponential
LWE assumption, supporting the same class of predicates as above but tolerating
adaptive corruptions of up to n−1 parties. However, this particular scheme only
supports predicates with constant arity.

Theorem 3 (Informal). Assuming the sub-exponential hardness of LWE, there
exists a CPA-1-sided adaptively secure multi-input PE scheme supporting con-
junctions of n = O(1) arbitrary predicates with wildcards, under n− 1 adaptive
corruptions and without collusions.

Finally, we anticipate that all our constructions are transformations that
leverage single-input PE schemes (e.g., [30]) and lockable obfuscation [48, 31]
as building blocks. Such transformations are general and achieve CPA-2-sided
security if the underlying single-input PE schemes are CPA-2-sided secure. In
particular, we obtain (i) CPA-2-sided secure multi-key PE with unbounded col-
lusions for n = poly(λ), (ii) CPA-2-sided secure multi-input PE without corrup-
tions and without collusions for n = O(log(λ)),7 and (iii) CPA-2-sided secure
multi-input PE under n − 1 corruptions and without collusions for n = O(1).
However, at the time of this writing, the LWE assumption is not sufficient for
CPA-2-sided security. Indeed, even for single-input PE for arbitrary predicates,
CPA-2-sided security implies iO [15]. The current state-of-the-art constructions
of iO require much stronger assumptions compared to standard LWE.

1.2 Technical Overview

We now give a high level overview of our constructions. As explained above, both
our multi-key and multi-input PE constructions handle conjunctions of arbitrary
predicates, i.e., predicates of the form:

P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn). (1)

6 Note that, in the setting with no corruptions, assuming the presence of a (single)
wildcard x⋆

i for each Pi does not affect the expressiveness and the security guarantees
of multi-input PE. This is because the i-th sender can simply choose not to encrypt
x⋆
i , which will not permit the receiver to evaluate Pi over x

⋆
i .

7 Note that, in case of no corruptions, our CPA-1-sided construction supports n =
poly(λ). However, to achieve CPA-2-sided security we use complexity leveraging and
this reduces n from poly(λ) to O(log(λ)).

4

We start by explaining how to build multi-key PE for the above class of predi-
cates by combining single-input PE and so-called lockable obfuscation [48, 31].
Informally, a lockable obfuscation scheme allows to obfuscate a circuit C under
a lock y together with a message m, in such a way that evaluating the obfus-
cated circuit, on input x, returns m if C(x) = y. As for security, an obfuscated
circuit can be simulated in a virtual black-box (VBB) fashion whenever the lock
is random and unknown to the adversary. Lockable obfuscation exists under the
standard LWE assumption.

Then, we explain how to build multi-input PE (for the same class of pred-
icates) by additionally using SKE and PKE. Here, we consider two settings:
without corruptions (a.k.a. the secret-key setting) and with corruptions. The
former assumes that all the encryption keys (each corresponding to an input)
are secret. The latter is a stronger model that allows the adversary to leak one
or more encryption keys (i.e., corruption of the senders). We achieve security
in each setting by changing the way lockable obfuscation is used. In particular,
part of the contribution of this paper is a new technique based on nested (lock-
able obfuscated) circuits that execute each other. This technique allows us to
construct a multi-input PE that can handle adaptive corruptions. We provide a
high-level overview in the remaining part of this section. For more details, we
refer the reader to Section 4, Section 5, and the full version of this work [25].

Multi-key Predicate Encryption. An n-key PE allows a sender to encrypt a mes-
sagem under an attribute x, by running c←$ Enc(mpk, x,m). Similarly to single-
input PE, a receiver can correctly decrypt c if it has a decryption key for a
predicate Pv, within a family P of predicates indexed by values v ∈ V, such that
Pv(x) = 1. The main difference between single-input PE and n-key PE is that in
the latter the receiver must have n independent decryption keys (dkv1 , . . . , dkvn)
that uniquely represent the predicate Pv(·) = Pv1,...,vn(·), i.e., the decryption
key associated to a particular predicate is decomposed into n decryption keys.
Each decryption key dkvi is generated by the authority via KGen(mski, vi) where
(msk1, . . . ,mskn) are the master secret keys generated during the setup. Hence,
once obtained (dkv1 , . . . , dkvn) from the authority, the receiver can decrypt the
ciphertext c (encrypted under attribute x) by executing Dec(dkv1 , . . . , dkvn , c).
The message is returned if the predicate Pv1,...,vn(x) = 1, where Pv1,...,vn(·) is
the predicate represented by the combination of the n decryptions keys dkv1 , . . . ,
dkvn . The security of n-key PE is analogous to that of single-input PE, where
the validity of the adversary A is defined with respect to the (poly-many) tu-
ples (dkv1 , . . . , dkvn) of n decryption keys that the adversary has access to. In
particular, we consider the well-known notion of CPA-1-sided security, i.e., the
attacker cannot distinguish between Enc(mpk, x0,m0) and Enc(mpk, x1,m1) so
long as it only holds combinations of n decryption keys (dkv1 , . . . , dkvn) such
that Pv1,...,vn(x

0) = Pv1,...,vn(x
1) = 0 (i.e., the adversary cannot decrypt the

challenge ciphertext).8

8 Observe that the decryption keys can be interleaved. For example, starting from
(dkv1 , . . . , dkvi , . . . dkvn) representing the predicate Pv1,...,vi,...,vn , the adversary can

5

As explained above, we focus on conjunctions of arbitrary predicates Pv1,...,vn(
x) = Pv1,...,vn(x1, . . . , xn) = Pv1(x1) ∧ · · · ∧ Pvn(xn) as defined in Equation (1);
hence, x = (x1, . . . , xn) and each dkvi identifies the i-th predicate of the conjunc-
tion (and, in turn, any tuple of n decryption keys uniquely identifies the global
predicate). We build an n-key PE handling this class of predicates by extending
the technique of Goyal et al. [31], that uses lockable obfuscation to transform any
CPA secure attribute-based encryption (ABE) (recall that ABE schemes only
guarantee the secrecy of the message) into a CPA-1-sided secure PE (i.e., secrecy
of both message and attribute). Let PEi = (Setupi,KGeni,Enci,Deci) for i ∈ [n]
be n single-input PE schemes, each with ciphertext expansion poly(λ) + |mi|
where |mi| is the message length supported by the i-th PE.9 In a nutshell, our
n-key PE scheme kPE = (Setup,KGen,Enc,Dec) works as follows. The setup al-
gorithm Setup simply executes Setupi of each PEi and outputs the master public
key mpk = (mpk1, . . . ,mpkn) and n master secret keys (msk1, . . . ,mskn). To gen-
erate a decryption key dkvi ←$ KGen(mski, vi) (representing the i-th predicate
Pvi(·) of the conjunction), the authority can use the key generation algorithm
of the i-th PE, i.e., dkvi ←$ KGeni(mski,Pvi). To encrypt a message m under
an input x = (x1, . . . , xn), a sender samples a random lock y and encrypts it n
times using PE1, . . . ,PEn, i.e., c←$ Encn(mpkn, xn,Encn−1(mpkn−1, xn−1, · · · ,
Enc1(mpk1, x1, y))). Note that, for n = poly(λ), the final ciphertext will be of
polynomial size since each underlying i-th PE scheme has poly(λ) + |mi| cipher-
text expansion where |mi| is the message length supported by i-th scheme.

The final ciphertext of the n-key PE kPE will be the obfuscation of the circuit
Cc under the lock y together with the message m (i.e., C̃←$ Obf(1λ,Cc, y,m)),
where Cc, on input (dkv1 , . . . , dkvn), iteratively decrypts c and returns the last
decrypted value, i.e., y = Cc(dkv1 , . . . , dkvn) = Dec1(dkv1 , · · · ,Decn(dkvn , c)).
Decryption is straightforward: the receiver simply executes C̃ using its n de-
cryption keys.

The CPA-1-sided security of our construction follows by the CPA security
(i.e., secrecy of the message) of PE1, . . . ,PEn and by the security of lockable
obfuscation.10 Intuitively, the proof works as follows. In order to be valid, an
adversary A cannot hold a tuple of decryption keys (dkv1 , . . . , dkvn) such that
Pv1,...,vn(x

b) = Pv1,...,vn(x
b
1, . . . , x

b
n) = 1, where xb = (xb

1, . . . , x
b
n) is the in-

put chosen by A during the challenge phase, and b is the challenge bit. Since
Pv1,...,vn(x

b
1, . . . , x

b
n) is a conjunction of arbitrary predicates (see Equation (1)),

this implies that there exists an i ∈ [n] such that Pvi(x
b
i) = 0 for every i-th de-

ask for an additional i-th decryption key dkv′
i
and rearrange the decryption keys as

(dkv1 , . . . , dkv′
i
, . . . dkvn) in order to obtain the tuple representing a different predi-

cate Pv1,...,v
′
i,...,vn

̸= Pv1,...,vi,...,vn .
9 By leveraging hybrid encryption, we can transform any PE into one with poly(λ) +
|m| ciphertext expansion, i.e., Enc′(mpk, x,m) = Enc(mpk, x, s)||PRG(s) ⊕m where
s←$ {0, 1}λ.

10 When we write CPA secure PE, without specifying 1-sided or 2-sided security, we
refer to a PE scheme that guarantees only the secrecy of the message. CPA secure
PE is the same as CPA secure ABE.

6

cryption key dkvi obtained by A. We can leverage this observation together with
the CPA security of PEi to do a first hybrid in which the challenger computes
the i-th layer of the challenge ciphertext as Enci(mpki, x

b
i , 0 . . . 0). Now, since

the lock y is not encrypted anymore, we can use the security of lockable obfus-
cation to do a second hybrid in which the challenge ciphertext C̃ is simulated
by using the simulator of lockable obfuscation. In this last hybrid, the challenge
ciphertext does not depend on the bit b sampled by the challenger.

Despite we focused the discussion on CPA-1-sided security, we stress that the
same construction achieves CPA-2-sided security if the underlying n single-input
PE schemes PE1, . . . ,PEn are CPA-2-sided secure, i.e., Enc(mpk, x0,m0) and
Enc(mpk, x1,m1) are indistinguishable even when Pv1,...,vn(x

0) = Pv1,...,vn(x
1)

= 1 and m0 = m1.

Multi-input Predicate Encryption. We now turn to the more challenging setting
of multi-input PE.11 Here, each of the n senders can use its corresponding en-
cryption key to independently encrypt messages under different inputs for the
predicate. For this reason, the setup algorithm of n-input PE outputs n encryp-
tion keys (ek1, . . . , ekn) and a master secret key msk. Each encryption key eki
is given to the i-th sender and allows the latter to handle the i-th slot of a
multi-input predicate. The i-th party encrypts a message mi under an input xi

by using its encryption key eki, i.e., ci←$ Enc(eki, xi,mi). On the other hand,
a receiver can use the decryption key dkP associated to an n-input predicate
P (recall that dkP is generated by the authority via KGen(msk,P)) to execute
Dec(dkP, c1, . . . , cn). Intuitively, the decryption algorithm returns (m1, . . . ,mn)
when P(x1, . . . , xn) = 1 where (mi, xi) are the message and the input associated
to the i-th ciphertext ci.

The CPA-1-sided security of n-input PE is similar to that of n-key PE, but
adapted to the multi-input setting. Informally, an adversary A must not be
able to distinguish between ciphertexts (Enc(eki, x

0
i ,m

0
i))i∈[n] and (Enc(eki, x

1
i ,

m1
i))i∈[n] where (x0

1, . . . , x
0
n), (x

1
1, . . . , x

1
n) and (m0

1, . . . ,m
0
n), (m

1
1, . . . ,m

1
n) are

chosen by A. Naturally, this is subject to the usual validity condition, informally
saying that A should not be able to decrypt (part of) the challenge ciphertext.
This condition can assume different meanings depending on whether the encryp-
tion keys are all secret or some of them are public (or can be leaked). Because of
this, we formalize security with and without corruptions. Throughout the rest
of this section, we describe how CPA-1-sided security of n-input PE changes in
these two settings, and give some intuition on our constructions for each setting.

Security in the secret-key setting. Here, no corruptions are allowed and thus
the encryption keys are all secrets. Hence, an adversary A playing the CPA-1-
sided security game has adaptive oracle access to both the key generation oracle
KGen(msk, ·) and to n encryption oracles {Enc(eki, ·, ·)}i∈[n]. The latter oracles

11 Indeed, as we discuss in Remark 1, CPA-1-sided (resp. CPA-2-sided) secure multi-
input PE for arbitrary predicates implies CPA-1-sided (resp. CPA-2-sided) secure
multi-key PE.

7

allow A to generate ciphertexts (associated to the i-th input/sender) on adversar-
ially chosen predicate inputs and messages. Since these ciphertexts are created
independently, the adversary has the power to interleave part of the challenge
ciphertext (c∗1, . . . , c

∗
n) with the ciphertexts obtained trough the encryption or-

acles. This has a huge impact on the security of the a n-input PE scheme and
on the validity condition that A must satisfy. For example, during the challenge
phase, A could choose two vectors of messages (m0

1, . . . ,m
0
n) and (m1

1, . . . ,m
1
n)

and two vectors of predicate inputs (x0
1, . . . , x

0
n) and (x1

1, . . . , x
1
n) such that for

every predicate P (submitted to oracle KGen(m, ·)) we have P(x0
1, . . . , x

0
n) =

P(x1
1, . . . , x

1
n) = 0. Although the vector (c∗1, . . . , c

∗
n) can not be directly de-

crypted, A could still be able to decrypt part of it by leveraging the encryp-
tion oracles. In more details, A could: (i) adversarially choose x′i such that
P(x0

1, . . . , x
′
i, . . . x

0
n) = 1 and P(x1

1, . . . , x
′
i, . . . x

1
n) = 0; (ii) submit (x′i,m

′
i) to ora-

cle Enc(eki, ·, ·) and obtain c′i;and (iii) simply decrypt the vector (c∗1, . . . , c
′
i, . . . ,

c∗n). When b = 0 (resp. b = 1), the adversary knows that the challenge ci-
phertext must (resp. must not) decrypt successfully. This allows it to easily
win the CPA-1-sided security experiment of n-input PE. As a consequence, the
condition defining when A is valid depends on both the queries submitted to
KGen(msk, ·) and to the oracles {Enc(eki, ·, ·)}i∈[n]. More precisely, for every de-
cryption key dkP corresponding to a predicate P, for every vector of ciphertexts
obtained by interleaving the challenge ciphertext (c∗1, . . . , c

∗
n) with the cipher-

texts generated trough any of the n encryption oracles, we must have that P is
not satisfied. This is formalized by the following condition: ∀P ∈ QKGen, ∀j ∈ [n],
∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], it holds that

P(x(i1,0)
1 , . . . , x

(ij−1,0)
j−1 , x0

j , x
(ij+1,0)
j+1 , . . . , x(in,0)

n) =

P(x(i1,1)
1 , . . . , x

(ij−1,1)
j−1 , x1

j , x
(ij+1,1)
j+1 , . . . , x(in,1)

n) = 0, (2)

where QKGen are the queries submitted to oracle KGen(msk, ·), (x0
1, . . . , x

0
n), (x

1
1,

. . . , x1
n) are the predicate inputs chosen by A during the challenge phase, and

Qb
i = {x(1,b)

i , . . . , x
(ki,b)
i , x

(ki+1,b)
i = xb

i} is the ordered list composed of the ki
predicate inputs submitted to oracle Enc(eki, ·, ·) and the challenge input xb

i for
b ∈ {0, 1}, i ∈ [n] (observe that Q0

i and Q1
i are identical except for the last

element). The formal security definition appears in Section 4.

Construction in the secret-key setting. We propose a construction of n-input PE
for conjunctions of arbitrary predicates (see Equation (1)) with wildcards from
single-input PE, lockable obfuscation, and SKE. In particular, we start from
single-input PE for arbitrary predicates. Actually, it will suffice that the under-
lying PE itself supports the predicates P(x1, . . . , xn) as defined in Equation (1),
where we view (x1, . . . , xn) as a single input chosen by the sender. In addition,
the predicate must have a (efficiently computable) wildcard input (x⋆

1, . . . , x
⋆
n)

such that x⋆
i satisfies every i-th predicate of the conjunction, i.e., Pi(x

⋆
i) = 1. As

we will describe next, the n − 1 subset of wildcards (x⋆
1, . . . , x

⋆
i−1, x

⋆
i+1, . . . , x

⋆
n)

will permit the i-th sender to put a “don’t care” placeholder on the slots of

8

the other senders. This will allow the construction to deal with multiple inputs
without compromising the evaluation of the predicate.

The main intuition behind our construction is to evaluate the conjunction of
the predicates inside lockable obfuscation in such a way that, as soon as one of
the predicates (of the conjunction) is not satisfied, both the messages and the
predicate inputs remain hidden (even if another predicate Pi is satisfied). To
accomplish that, we need to create a link between the independently generated
ciphertexts (each produced by different senders). This is done by leveraging an
SKE scheme as follows.

In a nutshell, the i-th secret encryption key has the form eki = (mpk, ki, ki+1)
where mpk is the master public key of the single-input PE, and ki for i ∈ [n] is
a secret key for the SKE (we also let ekn+1 = k1). In order to encrypt a message
mi under an input xi, the i-th sender samples a random lock yi and encrypts
(yi, ki+1) via the single-input PE, using the input made by all the wildcards x⋆

j

except for the position j = i, where, instead, the sender places its real input xi,

i.e., c
(1)
i ←$ Enc(mpk, (x⋆

1, . . . , x
⋆
i−1, xi, x

⋆
i+1, . . . , x

⋆
n), (yi, ki+1)). The final cipher-

text ci will be ci = (C̃i, c
(2)
i), where c

(2)
i ←$ Enc(ki, c

(1)
i) and C̃i is the obfuscation

of the circuit C
c
(2)
i ,ki+1

under the lock yi and message mi. Similarly to the case of

multi-key PE, the latter circuit is responsible for the decryption. In particular,

upon input the ciphertexts (c
(2)
i+1, . . . , c

(2)
n , c

(2)
1 , . . . , c

(2)
i−1)—note the order of the

ciphertexts—and the decryption key dkP for P(x1, . . . , xn), the circuit C
c
(2)
i ,ki+1

acts as follows:

1. Set k = ki+1 where ki+1 is the secret key hardcoded into the circuit.

2. For c
(2)
j ∈ {c(2)i+1, . . . , c

(2)
n , c

(2)
1 , . . . , c

(2)
i−1} do:

(a) Decrypt c
(2)
j using the secret key k, i.e., c

(1)
j = Dec(k, c

(2)
j).

(b) Decrypt c
(1)
j using dkP in order to get (yj , kj+1). If c

(1)
j decrypts correctly,

kj+1 is the secret key used to encrypt the next ciphertext c
(2)
j+1.

(c) Set k = kj+1.

3. Compute (yi, ki+1) = Dec(dkP,Dec(k, c
(2)
i)), where c

(2)
i is the ciphertext

hardcoded into the circuit.
4. Return yi (note that if none of the decryptions fails then yi is the lock used

to obfuscate the circuit).

By the above description, decryption is immediate: Upon input (ci)i∈[n], the re-

ceiver computes mi = C̃i(c
(2)
i+1, . . . , c

(2)
n , c

(2)
1 , . . . , c

(2)
i−1, dkP) where ci = (C̃i, c

(2)
i)

and dkP is the decryption key of the underlying single-input PE for a predi-
cate P(x1, . . . , xn). We highlight that the combination of the SKE with the PE
wildcards is what allows our construction to correctly implement the predicates

of Equation (1). This is because, when c
(1)
i correctly decrypts under the key

dkP (Item 2b), we are guaranteed that Pi(xi) = 1 (recall that xi is the input
of the i-th sender). In particular, the latter holds as, in any other slot, the i-th
sender has used the wildcards. By repeating this argument, we can conclude
that P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) is satisfied if the execution of each

9

C
c
(2)
i ,ki+1

goes as expected. We refer the reader to the full version [25] for the

formal construction.

As for security, we show that our construction satisfies CPA-1-sided security
in the presence of no collusions (i.e., the adversary can submit a single query to
the oracle KGen) if the underlying PE is CPA-1-sided secure, SKE is CPA secure,
and the lockable obfuscation is secure. Roughly, the proof works as follows. Let
P∗ be the only predicate submitted to KGen by the adversary. Starting from A’s
validity condition, we infer that, for any choice of the challenge bit b ∈ {0, 1},
then attacker A must maintain one of the following two conditions:

(i) either P∗1(xb
1) = . . . = P∗n(xb

n) = 0 (i.e., all the predicates of the conjunctions
are false);

(ii) or (if at least one predicate P∗i is satisfied, i.e., P∗i (xb
i) = 1) there exists j ̸= i

such that, for every xj ∈ Qb
j , it holds that P∗j (xj) = 0 whereQb

j is the ordered
list composed of predicate inputs submitted to the oracle Enc(ekj , ·, ·) and
the challenge input xb

j (see Equation (2)).12

When the first condition is satisfied, we can leverage the CPA-1-sided security
of the single-input PE to show that the every lock yi (encrypted using the PE),

and every input xi (encrypted in c
(2)
i), is completely hidden to the adversary. The

latter allows us to use the security of lockable obfuscation to move to a hybrid
experiment in which all the (obfuscated) circuits are simulated (including the
messages).

On the other hand, when the second condition is satisfied, we can transition
to a hybrid experiment (this time by leveraging the security of the underlying

PE scheme) in which Enc(ekj , ·, ·) computes c
(1)
j by encrypting the all-zero string

(instead of (yj , kj+1)). Thus, we can use the security of lockable obfuscation to
move to another hybrid in which Enc(ekj , ·, ·) simulates all the obfuscations. At
this point, the symmetric key kj+1 is not used anymore. Hence, we can use the
security of SKE to transition to another hybrid in which Enc(ekj+1, ·, ·) computes

c
(2)
j+1 by encrypting the all-zero string (instead of c

(1)
j+1 that, in turn, contains the

lock yj+1 and the symmetric key kj+2). After this hybrid, we can again use
the security of lockable obfuscation to simulate all the obfuscations computed
by Enc(ekj+1, ·, ·), and so on. By repeating these last two hybrids, we reach an
experiment whose distribution does not depend on the challenge bit. The formal
construction appears in the full version of this work [25].

We highlight that our scheme is not secure in the presence of collusions. In
particular, the fact that the adversary can obtain a single decryption key dkP
is crucial in order to get the validity condition (ii), i.e., for every b ∈ {0, 1}
there exists a j such that for every predicate (submitted to KGen(msk, ·)) we
have Pj(x

b
j) = 0. In fact, in the case of collusions, the adversary can ask for two

12 If this condition is not satisfied, the adversary has obtained through the encryption
oracles a set of ciphertexts that can be interleaved with one (or more) parts of the
challenge ciphertext in order to satisfy the predicate P∗.

10

decryption keys dkP and dkP′ such that for every b ∈ {0, 1}:

P1(x
b
1) = 0 and P2(x

b
2) = . . . = Pn(x

b
n) = 1

P′1(xb
1) = 1 and P′2(xb

2) = . . . = P′n(xb
n) = 0.

Note that these are valid queries for the CPA-1-sided security experiment of
n-input PE (the ciphertext cannot be decrypted). However, such a unique j for
every predicate (as per condition (ii)) does not exist. When this happens, we
are not able to conclude the proof by making a reduction to the security of
single-input PE (the reduction will make an invalid set of queries to the KGen
oracle of the single-input PE, making it invalid for the CPA-1-sided security of
the single-input PE).13

Lastly, we stress that since we start from a single-input PE supporting con-
junctions of arbitrary predicates with wildcards, we end up with an n-input PE for
conjunctions of arbitrary predicates (see Equation (1)) with wildcards. We high-
light that wildcards do not play any role in the security proof of our secret-key
construction. In other words, wildcards are required for functionality (correct-
ness) and not for security. Indeed, in the secret-key setting (i.e., no corruptions),
wildcards can be easily removed. This is because we can transform any secure
multi-input PE for P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn) with a single wild-
card (x⋆

1, . . . , x
⋆
n) into a secure multi-input PE for the same class of predicates

P(x1, . . . , xn) without the wildcard. This can be done by requiring the senders
not to encrypt the corresponding wildcard, i.e., for each i ∈ [n], Enc(eki, x

⋆
i ,mi)

outputs ⊥ whenever xi = x⋆
i . We stress that this only works in the case of no

corruptions. In fact, as we will discuss later, in case of corruption, wildcards play
a role in the security of our corruption-resilient multi-input PE scheme, e.g., an
adversary can encrypt wildcards on its own using the leaked encryption keys.

Security under corruptions. Next, let us explain how to define security of multi-
input PE in the presence of corruptions. Here, the adversary has the possibility
to corrupt a subset of the senders and leak their encryption keys eki. We model
this by introducing an additional corruption oracle Corr(·) that, upon input an
index i ∈ [n], returns eki. Note that, once obtained eki, the adversary A has
the possibility to produce arbitrary ciphertexts on any message and predicate
input, without interacting with the challenger during the CPA-1-sided security
game. As usual, the validity condition heavily depends on the queries submitted
to both the encryption oracles and the corruption oracle. More precisely, the
validity condition now says that, for every decryption key dkP, for every vec-
tor of ciphertexts that can be obtained by interleaving the challenge ciphertext
(c∗1, . . . , c

∗
n) with both the ciphertexts obtain trough any of the (uncorrupted)

encryption oracles and the ones that A may autonomously produce by using the
leaked encryption keys (trough oracle Corr(·)), we have that P is not satisfied.

13 As we discuss in the full version [25], our construction remains secure if we consider a
weaker form of collusion in which the adversary can only obtain multiple decryption
keys for predicates P such that there is a unique j for all predicates (submitted to
KGen) that satisfies the validity condition (ii).

11

Hence, the validity condition is identical to that of the secret-key setting (see
Equation (2)), except that:

– If the i-th encryption key eki has been corrupted/leaked, then Qb
i of Equa-

tion (2) corresponds to the i-th predicate input space. This is because the
adversary can produce a valid ciphertext on any input xi.

– Else (i.e., the i-th encryption key eki is still secret), Qb
i is defined as usual,

i.e., it is the ordered list of predicate inputs submitted to oracle Enc(eki, ·, ·)
and challenge input xb

i .

See Section 4 for the formal definition.

A simple attack. Before explaining our construction in details, let us show
why the previous construction is not secure under corruptions. For simplic-
ity, we focus on the 2-input setting. Suppose an adversary A has a single de-
cryption key dkP for P(x1, x2) = P1(x1) ∧ P2(x2) and a vector of ciphertexts

(c∗1, c
∗
2) = ((C̃1, c

(2)
1), (C̃2, c

(2)
2)) encrypted under the predicate input (x1, x2)

such that P1(x1) = 0 and P2(x2) = 1. Note that this ciphertext should not
decrypt under dkP, since the conjunction of P1 and P2 evaluates to 0. If A can
obtain ek2, then it can easily determine the message m2 (and thus the bit b).
Indeed, once A gets ek2 = (mpk, k2, k1), it can compute a malicious ciphertext

c̃
(1)
1 (using the single-input PE) by encrypting (ỹ, k2) (where ỹ is a random
lock) under the predicate input composed by (x′1, x

′
2) such that P1(x

′
1) = 1 and

P2(x
′
2) = 1. Then, it can compute c̃

(2)
1 ←$ Enc(k1, c̃

(1)
1) and execute C̃2(c̃

(2)
1 , dkP)

to get m2. Note that by definition the execution of C̃2 outputs the correct mes-

sage, since P1(x
⋆
1) ∧ P2(x2) = 1 and c̃

(2)
1 contains the correct secret encryption

key k2, allowing the circuit to correctly end the computation. Also, note that
this attack does not violate the validity condition. This is because P1(x1) = 0,
and A does not use the oracle Enc(ek1, ·, ·) at all. Hence, any interleaving of
the ciphertexts will involve the predicate input x1 that, in turn, will make the
conjunction P(x1, x

′
2) = P1(x1)∧P2(x

′
2) unsatisfied for every choice of the input

predicate x′2.
In light of the above attack, we can identify what we need to do in order

to extend our techniques to handle corruptions: First, following the proof of
the previous construction, it is important to hide the (plain) single-input PE
ciphertext that a particular sender produces (e.g., in the secret-key setting we

re-encrypt c
(1)
i using SKE). As we have described for the secret-key setting, this

allows us to claim that everything remains hidden whenever one of the predicate
Pi of the conjunction is not satisfied (even if a different Pj is satisfied).

14 Second,
the leakage of one (or more) encryption keys should not allow to produce a
malicious ciphertext on behalf of the uncorrupted senders (or simply decrypt
the ciphertexts of other parties). Otherwise, the attacker can follow a strategy
similar to the one above to break security.

14 The secret-key construction achieves this by linking multiple PE ciphertexts via
SKE, and including the secret key ki+1 into the PE ciphertext.

12

Construction under corruptions. In order to achieve the above properties, we
propose a new technique based on nested (lockable obfuscated) circuits that can
be executed one inside the other. This technique permits to make available se-
cret information (e.g., secret keys) only during nested execution. For the sake
of clarity, we first present our approach for the case of two inputs. As an initial
attempt to deal with corruptions, we replace the SKE in our previous construc-
tion with a PKE, so that the encryption key ek1 (resp. ek2) is now composed of
(mpk, sk1, pk1, pk2) (resp. (mpk, sk2, pk2, pk1)) where (ski, pki) is a secret/public
key pair. Each (ski, pki) is associated to the i-th sender (indeed, note that eki con-
tains also the secret key ski). From the perspective of the first sender, in order to
encrypt a message m1 under the input x1, it samples two random locks (yin1 , y

out
1)

and encrypts them (using the single-input PE) as before using the wildcard x⋆
2,

i.e., c
(0)
1 ←$ Enc(mpk, (x1, x

⋆
2), (y

in
1 , y

out
1)).15 At this point, the PE ciphertext c

(0)
1

is re-encrypted twice using pk1 and pk2, i.e., c
(i)
1 ←$ Enc(pki, c

(i−1)
1) for i ∈ [2].

Intuitively, the two layers of PKE have the role of hiding the PE ciphertexts
(that in turn contain the locks) even when the adversary leaks all encryption

keys except one. The final ciphertext is composed by the two obfuscations C̃out
1 ,

C̃in
1 of the circuits Cout

sk1,c
(2)
1

, Cin

sk1,c
(2)
1

, respectively. The former is obfuscated under

the lock yout1 and message m1, whereas the latter is obfuscated under the lock
yin1 and message sk1. The ciphertext produced by the second sender, is identi-

cal, except that it uses sk2 (instead of sk1) and that c
(0)
2 is computed using the

predicate input (x⋆
1, x2) (instead of (x1, x

⋆
2)).

The crux of our nesting technique comes from the definition of the circuits
Cout

ski,c
(2)
i

. More precisely, the outer circuit Cout

sk1,c
(2)
1

will take as input the ob-

fuscation C̃in
2 of the inner circuit Cin

sk2,c
(2)
2

and a decryption key dkP. Then, in

order to securely check the conjunction inside the lockable obfuscation, Cout

sk1,c
(2)
1

will execute C̃in
2 (sk1, dkP). At this point, C̃in

2 has everything it needs to check

the satisfiability of P2(·). It removes the PKE layers from c
(2)
2 by computing

c
(0)
2 = Dec(sk2,Dec(sk1, c

(2)
2)). Then, it decrypts the PE ciphertext (yin2 , y

out
2) =

Dec(dkP, c
(0)
2)—observe that the decryption succeeds if P2(x2) = 1—and returns

yin2 . By correctness of lockable obfuscation, if the computation of Cin

sk2,c
(2)
2

(sk1, dkP)

goes as intended, then C̃in
2 (sk1, dkP) will output sk2 (the message attached to the

obfuscation). Once obtained sk2, the computation of Cout

sk1,c
(2)
1

can continue and

perform a similar computation to check the satisfiability of P1(·) except that, if
the PE ciphertext c

(0)
1 decrypts correctly, it returns yout1 . If all the decryptions

(performed by Cout

sk1,c
(2)
1

and Cin

sk2,c
(2)
2

) succeed, the execution of the obfuscation

C̃out
1 of Cout

sk1,c
(2)
1

will output m1. A symmetrical argument holds for Cout

sk2,c
(2)
2

and

Cin

sk1,c
(2)
1

, releasing m2.

15 Recall that wildcards must be efficiently computable.

13

We show that the above 2-input PE construction is CPA-1-sided secure under
1 corruption (i.e., one encryption key remains secret) and no collusions if the
underlying single-input PE is CPA secure, PKE is CPA secure, and the lockable
obfuscation is secure. The high level intuition is that ski remains unknown to
the adversary if Pi(·) = 0 (unless the adversary invokes the oracle Corr(i)). This
is reflected by the proof technique that is sketched below.

Let dkP∗ be the decryption key obtained by A for the predicate P∗(·, ·) =
P∗1(·) ∧ P∗2(·) (recall the presence of wildcards), and let QCorr be the queries
submitted to the corruption oracle. Starting from the validity condition, we can
infer that for any choice of the challenge bit b ∈ {0, 1} we have:

(i) either P∗1(xb
1) = P∗2(xb

2) = 0;
(ii) or (i.e., there exists an i ∈ [2] such that predicate Pi is satisfied) j ̸∈ QCorr

such that j ̸= i and, for every xj ∈ Qb
j , P∗j (xj) = 0 (recall that xb

j ∈ Qb
j).

Observe that this second condition holds because of the following:
– If there is xj ∈ Qb

j such that P∗j (xj) = 1, A can use the correspond-
ing ciphertext to decrypt the i-th part of the challenge ciphertext since
P∗i (xb

i) = 1.
– If j ∈ QCorr, A can simply use ekj to encrypt a random message under the

wildcard x⋆
j (that always exists by design of our construction) and, again,

decrypt the i-th part of the challenge ciphertext. Note that, contrarily
from our secret-key construction, wildcards play an important role in
the security of our multi-input PE construction under corruptions (if an
encryption key ekj gets leaked then a malicious adversary can always
encrypt itself the j-th wildcards x⋆

j , satisfying the j-th predicate Pj).
Hence, in the corruption setting, wildcards are used for both functionality
and security.

By leveraging the above two conditions, the security of our scheme follows by
using a similar argument to that of the secret-key setting. In particular, when the
first condition is satisfied, we can show that the locks (yin1 , y

out
1) and (yin2 , y

out
2)

(used to encrypt the challenge) are completely hidden. This, in turn, allows
us to use the security of lockable obfuscation and simulate the obfuscations of
(Cout

sk1,c
(2)
1

,Cin

sk1,c
(2)
1

), (Cout

sk2,c
(2)
2

,Cin

sk2,c
(2)
2

), and the corresponding messages.

On the other hand, when the second condition is satisfied, we can move to
a hybrid (by leveraging the security of single-input PE) in which Enc(ekj , ·, ·)
computes c

(0)
j by encrypting the all-zero string (instead of (yinj , y

out
j)). Then, we

can use the security of lockable obfuscation to transition to another hybrid in
which Enc(ekj , ·, ·) simulates all the obfuscations. At this point, the secret key
skj of the uncorrupted j-th sender is not used anymore (recall that j ̸∈ QCorr).
Hence, we can leverage the security of the PKE to remove the locks (yini , y

out
i)

chosen by the i-th sender (recall i ̸= j). In more details, we do another hybrid

in which the j-th PKE layer c
(j)
i of the challenge ciphertext is an encryption

of zeroes (instead of c
(j−1)
i that, in turn, encrypts the locks (yini , y

out
i)). After

this hybrid, we can again use the security of lockable obfuscation to simulate
all the obfuscations (and the corresponding attached messages) that compose

14

the i-th component of the ciphertext. The distribution of this last hybrid does
not depend on the challenge bit b since all the ciphertexts are simulated by the
simulator of the lockable obfuscation scheme.

To sum up, we can observe that encrypting c
(0)
i (the PE ciphertext that

contains the locks) with the public keys (pk1, pk2) of both senders is crucial in
order for our proof to work independently of which encryption key the adversary
decides to leak. So long as at least one encryption key eki remains hidden, then
there is a PKE layer that cannot be decrypted by the adversary. This allows the
proof to go through.

Generalizing the nesting technique to (n > 2) inputs. By carefully modifying the
definition of the outer and inner circuits, we can generalize the above technique
to the case of n > 2. The structure of the encryption keys and of the encryption
algorithm is similar to the case n = 2:

– Each encryption key eki is of the form (mpk, ski, pk1, . . . , pkn).
– To compute the i-th encryption of (xi,mi), the sender computes the initial

PE ciphertext as c
(0)
i ←$ Enc(mpk, (x⋆

1, . . . , xi, . . . , x
⋆
n), (y

in
i , y

out
i)). Then, it

re-encrypts n times the ciphertext c
(0)
i using (pk1, . . . , pkn), i.e., c

(v)
i ←$

Enc(pkv, c
(v−1)
i) for v ∈ [n]. As usual, the final ciphertext ci = (C̃out

i , C̃in
i) is

composed of the obfuscations of Cout

ski,c
(n)
i

and Cin

ski,c
(n)
i

.

We now turn on the crucial point: the definition of the outer and inner circuits.
Again, for the sake of clarity, we only describe the outer circuit Cout

sk1,c
(n)
1

and of the

inner circuits (Cin

sk2,c
(n)
2

, . . . ,Cin

skn,c
(n)
n

) generated by the corresponding senders.

The remaining circuits are defined similarly. First off, the input space of these
circuits is a follows:

– Cout

sk1,c
(n)
1

takes as input the n − 1 obfuscations of the circuits (Cin

sk2,c
(n)
2

, . . . ,

Cin

skn,c
(n)
n

) and a decryption dkP. These obfuscations are the inner circuits

that needs to be executed in order to return the message m1 attached to the
obfuscation of Cout

sk1,c
(n)
1

.

– On the other hand, Cin

ski,c
(n)
i

, for i ∈ [n]\{1}, takes as input a tuple of n secret

keys (sk1, . . . , skn) (where some can be set to ⊥), a decryption key dkP, and
the obfuscations of (Cin

ski+1,c
(n)
i+1

, . . . ,Cin

skn,c
(n)
n

). Intuitively, these obfuscations

are the remaining inner circuits that we need to still execute in order to
complete the nested execution.

Intuitively, the decryption of m1 requires the nested execution of these circuits
(starting from the outer one) in order to get all the secret keys required to
decrypt the PE ciphertext. This is achieved as follows.

The outer circuit Cout

sk1,c
(n)
1

starts the nested execution by invoking the obfusca-

tion of Cin

sk2,c
(n)
2

upon input (sk1,⊥, . . . ,⊥), dkP, and the remaining obfuscations

15

of (Cin

sk3,c
(n)
3

, . . . ,Cin

skn,c
(n)
n

). In turn, Cin

sk2,c
(n)
2

will do a similar thing: It executes

the next obfuscated circuit Cin

sk3,c
(n)
3

upon input (sk1, sk2,⊥, . . . ,⊥), dkP, and the

remaining obfuscations (Cin

sk4,c
(n)
4

, . . . ,Cin

skn,c
(n)
n

). This process is repeated until

Cin

skn,c
(n)
n

is executed upon input (sk1, . . . , skn−1,⊥) and dkP. At this point, all

the secret keys are know (observe that skn is hardcoded). From c
(n)
n , we can

remove the n PKE layers, decrypt the PE ciphertext and, in turn, return yinn if
the PE ciphertext decrypts correctly (i.e., Pn(·) is satisfied). Once Cin

skn,c
(n)
n

ter-

minates, the secret key skn is released and Cin

skn−1,c
(n)
n−1

performs the computation

required to check if Pn−1(·) is satisfied. Indeed, Cin

skn−1,c
(n)
n−1

has been executed on

input (sk1, . . . , skn−2,⊥,⊥), it has skn−1 harcoded, and the execution of Cin

skn,c
(n)
n

has released skn. Hence, after the correct termination of Cin

skn,c
(n)
n

, all secret keys

are known.

It may seems that this argument can be iterated. However, there is a prob-
lem. Even if Cin

skn−1,c
(n)
n−1

correctly terminates, the circuit Cin

skn−2,c
(n)
n−2

that invokes

it does not have access to the secret key skn. This is because the latter circuit
receives as input (sk1, . . . , skn−3,⊥,⊥,⊥), it has skn−2 hardcoded, and the cir-
cuit Cin

skn−1,c
(n)
n

has returned skn−1. As a consequence, Cin

skn−2,c
(n)
n−2

must re-run

Cin

skn,c
(n)
n

on input (sk1, . . . , skn−1,⊥) in order to get skn and decrypt every PKE

layer. This needs to be done at any level of the nested execution, yielding an
asymptotic running time of O(nn). Hence, this technique only works assuming
n = O(1), i.e. for O(1)-input predicates. The formal construction is described
in Section 5.2.

On achieving CPA-2-sided secure multi-input PE. Until now, we only focused
the discussion on achieving CPA-1-sided security. Our multi-input constructions
achieve CPA-2-sided security if the underlying single-input PE is CPA-2-sided
secure (we highlight that, in our secret-key multi-input PE construction, we
need to reduce the n-arity from poly(λ) to O(log(λ)) since we use complexity
leveraging). We just recall here that, already for the simple notion of single-input
PE for arbitrary predicates, CPA-2-sided security implies iO [15].

1.3 Applications

Finally, we explore applications of multi-key and multi-input PE. This question
is particularly relevant given the fact that we are only able to obtain multi-
key and multi-input PE supporting conjunctions of arbitrary predicates (with
wildcards). Luckily, we can show that this class of predicates is already expressive
enough to yield interesting cryptographic applications which previously required
much stronger assumptions. We refer the reader to the full version [25] for more
details.

16

Matchmaking Encryption (ME). ME is a natural generalization of ABE in which
both the sender and the receiver can specify their own attributes and access
policies. Previous work showed how to obtain CPA-2-sided (i.e., mismatch and
match) secure ME for arbitrary policies with unbounded collusions using iO
[10, 11], or for very restricted policies (i.e., for identity matching) using bilinear
maps [26, 20] (and ROM [10]). To this end, our CPA-1-sided secure multi-key PE
scheme (from the sub-exponential LWE assumption) for conjunction of arbitrary
predicates implies the weaker (and non-trivial) notion of CPA-1-sided secure ME
(i.e., mismatch only). We stress that the seminal work of ME [10, 11] defined
ME in the setting of CPA-2-sided security (i.e., mismatch and match).

Non-interactive MPC (NI-MPC). NI-MPC [14, 34] allows n parties to evaluate
a function f(v1, . . . , vn) on their inputs using a single round of communication
(i.e., each party sends a single message ci←$ Enc(crs, eki, vi)). This is achieved by
assuming a trusted setup (that may depend on the function itself) that generates
(possibly correlated) strings (e.g., common reference string crs and encryption
keys eki) that can be later used by the parties to perform function evaluation.
Security is formalized using an indistinguishability-based definition: an adversary
A cannot distinguish between (Enc(crs, eki, v

0
i))i∈[n] and (Enc(crs, eki, v

1
i))i∈[n],

so long as any combination of the messages known by the adversary (including
the ones it can compute using the encryption key eki of a corrupted party)
yields the same function’s evaluation.16 Previous works [14, 29, 33, 32] showed
that NI-MPC implies iO even if we consider very weak security models, like
the non-reusable 1-robust (i.e., one malicious party) setting with n = 2 parties,
or the reusable 0-robust (i.e., no malicious parties) setting with n = poly(λ)
parties.17

We show that CPA-1-sided multi-input PE supporting predicates P(x1, . . . ,
xn) tolerating k corruptions and no collusions implies k-robust NI-MPC for the
following class of functions:

fP((x1,m1), . . . , (xn,mn)) =

{
(m1, . . . ,mn) if P(x1, . . . , xn) = 1

⊥ otherwise.

The resulting NI-MPC satisfies a weaker notion of reusability without session
identifiers (i.e., messages produced in different rounds can be interleaved by
design) specifically tailored for all-or-nothing functions, which we name CPA-1-
sided reusability. In a nutshell, CPA-1-sided reusable NI-MPC guarantees secu-
rity even if the same setup is reused multiple times, so long as fP outputs ⊥ (i.e.,
P is not satisfied) for any combination of the honest messages and the ones the

16 Note that security of NI-MPC for general functions is formalized by an
indistinguishability-based definition [32, 14]. This is because simulation-based NI-
MPC implies virtual black-box (VBB) obfuscation that is known to be impossible
for certain classes of functions [13].

17 Reusable NI-MPC remains secure even when the same setup is used over multiple
rounds. On the other hand, non-reusable NI-MPC does not permit to reuse the same
setup, i.e., after each round the setup algorithm needs to be executed.

17

adversary can maliciously compute using the encryption key eki of a corrupted
party.

By plugging in our results, we obtain either CPA-1-sided reusable (n − 1)-
robust NI-MPC with n = O(1), or CPA-1-sided reusable 0-robust NI-MPC with
n = poly(λ) where the predicate P of the function fP is a conjunctions of arbitrary
predicates (i.e., P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn)) with wildcards under
the LWE assumption. Note that a CPA-1-sided reusable NI-MPC for fP where
P(x1, . . . , xn) = P1(x1)∧ . . .∧Pn(xn) can be used to implement a voting protocol
with message passing, i.e., only when each parties’ vote xi satisfies its dedicated
set of requirements Pi(·) (i.e., Pi(xi) = 1 for every i ∈ [n]) the messages are
revealed to all the participants. Until this condition is not satisfied, everything
remains secret.

We stress that, nonetheless CPA-1-sided reusability is a weakening of the
standard reusability definition, our flavor of reusability is still non-trivial to
achieve in the setting of general functions. This is because we can build null iO
(and, in turn, witness encryption) [31, 48, 19] from CPA-1-sided reusable NI-
MPC using the same constructions of iO from (standard) reusable NI-MPC, i.e.,
CPA-1-sided reusable (resp. CPA-1-sided non-reusable) 0-robust (resp. 1-robust)
NI-MPC for n = poly(λ) parties (resp. n = 2 parties) and general functions
implies null iO.

1.4 Relation with Witness Encryption (WE).

We observe that both multi-input and multi-key schemes imply witness encryp-
tion (WE) [27], if the former support arbitrary predicates (or any predicate that
implements a desired NP relation). Brakerski et al. [19] have shown that n-input
ABE (i.e., predicate inputs can be public), secure in the secret-key setting and
without collusions, implies WE for NP and n-size witnesses. Similarly, we can
build WE from multi-key ABE (i.e., a multi-key scheme where predicate inputs
can be public) using a similar construction except that we substitute the multi-
ple inputs with the multiple decryption keys of multi-key ABE. Unfortunately,
we cannot use here our constructions of multi-key and multi-input since they
only support conjunctions of arbitrary predicates (we stress that CPA-1-sided
and CPA-2-sided security are not required for constructing WE).

We also observe that arbitrary predicates are not needed if we consider secu-
rity under corruptions. Indeed, 2-input ABE for conjunctions of arbitrary pred-
icates P(x1, x2) = P1(x1) ∧ P2(x2) without wildcards under 1 corruption and no
collusions, implies WE for any relation. Even in this case, our O(1)-input scheme
under corruptions fails to imply WE. This is because our construction supports
conjunctions of arbitrary predicates each one having a wildcard (in other words,
the wildcard is a trivial witness for any statement). We provide more details in
the full version of this work [25].

From these observations, we can identify two plausible approaches that could
lead to a construction of WE from standard assumptions: (i) enlarging the class
of predicates of our secret-key n-input or n-key constructions, or (ii) supporting

18

conjunctions of arbitrary predicates (without wildcards) in the setting of 2-input
ABE with security under 1 corruption.

2 Related Work

Multi-input PE is a special case of multi-input FE [29]. It is well known that
so-called compact FE (supporting arbitrary functions) implies multi-input FE
[9, 15], which in turn implies iO. Constructions of multi-input FE from standard
assumptions, in turn, exist for restricted functions [16, 4, 24, 3, 21, 2, 39, 44,
1, 6, 22, 7]. Multi-input PE can also be seen as stronger form of multi-input
ABE [19], the difference being that the attributes are not private in the case of
ABE. Previously to our work, all (provably secure) constructions of n-input ABE
with n > 2 required iO (the only exception is the concurrent work of Agrawal
et al. [8], which we discuss in the next paragraph).

The multi-input and multi-key settings have also been considered in the
context of fully-homomorphic encryption [40, 23, 41].

Concurrent and independent work. The independent and concurrent work of
Agrawal, Yadav, and Yamada [8] proposes two constructions of secret-key (i.e.,
no corruptions) 2-input key-policy ABE for NC1 with unbounded collusions (re-
call that, in the ABE setting, only the secrecy of the messages is guaranteed, i.e.,
inputs can be public). The first construction is based on LWE and pairings, and it
is provably secure in the generic group model. The second construction is based
on function-hiding inner-product FE, a variant of the non-falsifiable KOALA
knowledge assumption (which is proven to hold under the bilinear generic group
model), and LWE. However, this second construction achieves a weaker selective
flavor of security in which the adversary has to submit both the challenge and
the decryption key queries before the setup phase. Additionally, they propose
two heuristic constructions. The first is a 2-input ABE for P from lattices, and
the second is a 3-input ABE for NC1 from pairings and lattices. However, the
security of these heuristic constructions remains unclear.

In comparison, our work directly focuses on the PE setting (i.e., CPA-1-sided
security) and provides the first secret-key n-input PE that supports n = poly(λ)
inputs, with (adaptive) CPA-1-sided security (i.e., secrecy of both inputs and
messages) based solely on LWE. However, our construction only supports a re-
stricted class of predicates (i.e., conjunctions of arbitrary predicates with wild-
cards) and it is secure only in the case of no collusions. Furthermore, differ-
ently from [8], we move away from the secret-key setting and propose a second
construction of n-input PE (still for conjunctions of arbitrary predicates) that
supports n = O(1) inputs and can tolerate n−1 corruptions (i.e., up to n−1 en-
cryption keys can be adaptively revealed by the adversary). Finally, we propose
the notion of multi-key PE (not covered in [8]), and give the first construction
of CPA-1-sided secure n-key PE for n = poly(λ), with unbounded collusions and
still supporting conjunctions of arbitrary predicates, based on LWE.

Regarding the techniques, we highlight that both our work and that of [8]
introduce (albeit different) nesting techniques based on lockable obfuscation. In

19

particular, the nesting technique of [8] permits to transform any secret-key n-
input ABE into a secret-key n-input PE (achieving CPA-1-sided security). We
stress that their approach only works in the secret-key setting. In contrast, we
propose a different nesting technique which yields n-input PE for n = O(1) while
tolerating n− 1 corruptions. It is important to note that our nesting technique
is not generic, but it is specifically tailored to work with the class of predicates
considered in this work.

Turning to applications, we highlight that the multi-input schemes of [8] fail
to imply ME, since their constructions are all in the secret-key setting (whereas
ME requires a public-key encryption algorithm). As for NI-MPC, the construc-
tions in [8] can be used to obtain a CPA-1-sided 0-robust reusable NI-MPC for
all-or-nothing functions defined over arbitrary predicates, but only in the case
of 2 parties (3 parties if we consider also the heuristic constructions).

3 Preliminaries

We assume the reader to be familiar with standard cryptographic notation and
definitions. The preliminaries can be found in the full version [25].

4 Multi-key and Multi-input Predicate Encryption

We provide the formal definitions of multi-key PE and multi-input PE. In the full
version [25], we build ME from multi-key PE and CPA-1-sided reusable robust
NI-MPC for all-or-nothing functions from multi-input PE.

Multi-key PE. Formally, an n-key PE with message spaceM, input space X ,
and predicate space P = {Pv1,...,vn(x)}(v1,...,vn)∈V indexed by V = V1× . . .×Vn,
is composed of the following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the setup algorithm outputs
the master public key mpk and the n master secret key (msk1, . . . ,mskn).

KGen(mski, vi): Let i ∈ [n]. The randomized key generator takes as input the i-
th master secret key mski and the i-th index vi ∈ Vi. The algorithm outputs
the i-th secret decryption key dkvi for the predicate index vi.

Enc(mpk, x,m): The randomized encryption algorithm takes as the master pub-
lic key mpk, an input x ∈ X , and a message m ∈M. The algorithm produces
a ciphertext c.

Dec(dkv1 , . . . , dkvn , c): The deterministic decryption algorithm takes as input n
secret decryption keys (dkv1 , . . . , dkvn) for the n indexes (v1, . . . , vn) ∈ V and
a ciphertext c. The algorithm outputs a message m.

Correctness is intuitive: given the decryption keys (dkv1 , . . . , dkvn) for (v1, . . . , vn)
∈ V, the decryption algorithm returns the message m (encrypted under the in-
put x) with overwhelming probability, whenever Pv1,...,vn(x) = 1. See [25] for
the formal definition.

20

GCPA-t-kPE
Π,A (λ)

(mpk,msk1, . . . ,mskn)←$ Setup(1λ)

(m
0
,m

1
, x

0
, x

1
, α)←$ A

KGen(msk1,·),...,KGen(mskn,·)
0 (1

λ
,mpk)

b←$ {0, 1}, c←$ Enc(mpk, xb
,m

b
)

b
′←$ A

KGen(msk1,·),...,KGen(mskn,·)
1 (1

λ
, c, α)

If (b
′
= b): return 1

Else: return 0

Fig. 1: Game defining CPA-t-sided security of n-key PE.

As for security, we adapt the standard CPA-1-sided and CPA-2-sided secu-
rity of PE to the n-key setting. In particular, an adversary (with oracle access
to KGen(mski, ·) for i ∈ [n]) cannot distinguish between Enc(mpk, x0,m0) and
Enc(mpk, x1,m1) except with non-negligible probability. When considering CPA-
1-sided security, the adversary is valid only if it cannot decrypt the challenge
ciphertext, i.e., it asks to the n key generation oracles indexes (v1, . . . , vn) such
that Pv1,...,vn(x

0) = Pv1,...,vn(x
1) = 0. Analogously, the CPA-2-sided security

captures the indistinguishability of Enc(mpk, x0,m0) and Enc(mpk, x1,m1) even
when the adversary can decrypt the challenge ciphertext, i.e., Pv1,...,vn(x

0) =
Pv1,...,vn(x

1) = 1 and m0 = m1. These security definitions are formalized below.

Definition 1 (CPA-1-sided and CPA-2-sided security of n-key PE).
Let t ∈ [2]. We say that a n-key PE Π is CPA-t-sided secure if for all valid PPT
adversaries A = (A0,A1):∣∣∣∣P[GCPA-t-kPE

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where game GCPA-t-kPE
Π,A (λ) is depicted in Figure 1. Adversary A is called valid if

∀v1 ∈ QKGen(msk1,·), . . . ,∀vn ∈ QKGen(mskn,·), we have

Case t = 1: Pv1,...,vn(x
0) = Pv1,...,vn(x

1) = 0.

Case t = 2: Either Pv1,...,vn(x
0) = Pv1,...,vn(x

1) = 0

or Pv1,...,vn(x
0) = Pv1,...,vn(x

1) ∧m0 = m1.

Multi-input PE. Formally, an n-input PE with message space M = M1 ×
. . .×Mn, input space X = X1 × . . .× Xn, and predicate space P, is composed
of the following polynomial-time algorithms:

Setup(1λ): Upon input the security parameter 1λ the setup algorithm outputs
the encryption keys (ek1, . . . , ekn) and the master secret key msk.

KGen(msk,P): The randomized key generator takes as input the master secret
key msk and a predicate P ∈ P. The algorithm outputs a secret decryption
key dkP for predicate P.

21

Enc(eki, xi,mi): Let i ∈ [n]. The randomized encryption algorithm takes as
input an encryption key eki, an input xi ∈ Xi, and a message mi ∈ Mi.
The algorithm produces a ciphertext ci linked to xi.

Dec(dkP, c1, . . . , cn): The deterministic decryption algorithm takes as input a
secret decryption key dkP for predicate P ∈ P and n ciphertexts (c1, . . . , cn).
The algorithm outputs n messages (m1, . . . ,mn).

Correctness states that ciphertexts (c1, . . . , cn), each linked to an input xi, cor-
rectly decrypt with overwhelming probability if P(x1, . . . , xn) = 1. See the full
version of this work [25] for the formal definition.

Security with and without corruptions. The CPA-1-sided and CPA-2-sided secu-
rity of n-input PE capture the infeasibility in distinguishing between ciphertexts
(Enc(ek1, x

0
1,m

0
1), . . . ,Enc(ekn, x

0
n,m

0
n)) and (Enc(ek1, x

1
1,m

1
1), . . . ,Enc(ekn, x

1
n,

m1
n)). This is modeled by an adversary having oracle access to a key genera-

tion oracle KGen(msk, ·) (allowing it to get decryption keys dkP on predicates
of its choice) and n encryption oracles Enc(ek1, ·, ·), . . . ,Enc(ekn, ·, ·) (allowing
it to get encryptions of arbitrary messages and inputs). Differently from the
n-key setting, we consider different models of security with respect to whether
the encryption keys are secret (i.e., no corruptions) or public/leaked (i.e., the
adversary has the possibility to get one or more encryption keys of its choice).
The corruption of an encryption key is captured by giving access to a corruption
oracle Corr(·) to the adversary that, on input i ∈ [n], it returns eki. Intuitively,
the knowledge of eki impacts the validity condition that the adversary must
satisfy (e.g., the challenge ciphertext cannot be decrypted). Indeed, eki would
allow the adversary to produce arbitrary i-th ciphertexts on arbitrary i-th inputs
xi and potentially decrypt part of the challenge ciphertext. Concretely, as for
CPA-1-sided security, the validity of the adversary can be defined as follows:

– No corruptions (a.k.a. the secret-key setting). If all the encryption keys
(ek1, . . . , ekn) are secret the validity conditions of CPA-1-sided security is
straightforward. It intuitively states that for every dkP (obtained through
oracle KGen(msk, ·)) and any tuple of ciphertexts (c1, . . . , cn) (each linked to
an input xi) obtained through the interleaving of part of the challenge cipher-
text with the ciphertexts generated by invoking oracles {Enc(eki, ·, ·)}i∈[n],
we must have that P(x1, . . . , xn) = 0 (otherwise part of the challenge cipher-
text can be decrypted).

– With corruptions. If some of the encryption keys are known by the adver-
sary (i.e., obtained through the corruption oracle Corr(·)) then the validity
condition now changes according to which keys have been obtained. This
is because the adversary can now autonomously compute arbitrary cipher-
text (for a particular slot i) using the leaked i-th encryption key eki. Tak-
ing into account this observation, the validity of CPA-1-sided security with
corruptions says that any tuple of ciphertexts (c1, . . . , cn) that can be ob-
tained by interleaving part of the challenge ciphertexts with both the ones
generated through oracles {Enc(eki, ·, ·)}i∈[n] and the ones that can be au-

22

Gℓ-CPA-t-iPE
Π,A (λ)

(ek1, . . . , ekn,msk)←$ Setup(1λ)

((m
0
i)i∈[n], (m

1
i)i∈[n], (x

0
i)i∈[n], (x

1
i)i∈[n], α)←$ A

KGen(msk,·),Corr(·),{Enc(ekj ,·,·)}j∈[n]
0 (1

λ
)

b←$ {0, 1}, c1←$ Enc(ek1, x
b
1,m

b
1), . . . , cn←$ Enc(ekn, x

b
n,m

b
n)

b
′←$ A

KGen(msk,·),Corr(·),{Enc(ekj ,·,·)}j∈[n]
1 (1

λ
, c1, . . . , cn, α)

If (b
′
= b): return 1

Else: return 0

Fig. 2: Game defining CPA-t-sided security of n-input PE in the ℓ-corruptions
setting. Oracle Corr(j) returns ekj for j ∈ [n].

tonomously generated using the leaked encryption keys, we must have that
P(x1, . . . , xn) = 0.

The validity of CPA-2-sided security (with and without corruptions) can be
easily obtained by adapting the above discussion. Below, we provide the formal
definition.

Definition 2 (ℓ-Corruptions CPA-1-sided and CPA-2-sided security of
n-input PE). Let t ∈ [2]. We say that an n-input PE Π is CPA-t-sided secure
in the ℓ-corruptions setting if for all valid PPT adversaries A = (A0,A1):∣∣∣∣P[Gℓ-CPA-t-iPE

Π,A (λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

where game Gℓ-CPA-t-iPE
Π,A (λ) is depicted in Figure 2. Let Qi = {x|∃(x,m) ∈

QEnc(eki,·,·)} for i ∈ [n] \ QCorr and Qi = Xi for i ∈ QCorr. Moreover, let Qd
i

(for d ∈ {0, 1}) be the ordered list composed of the predicate inputs Qi and the

challenge input xd
i , i.e., Qd

i = {x(1,d)
i , . . . , x

(ki,d)
i , x

(ki+1,d)
i = xd

i } where ki = |Qi|
and x(j,d) ∈ Qi for j ∈ [ki].

18 Adversary A is called valid if |QCorr| ≤ ℓ and
∀P ∈ QKGen, ∀j ∈ [n], ∀i1 ∈ [k1 + 1], . . . ,∀in ∈ [kn + 1], we have

Case t = 1: P(x(i1,0)
1 , . . . , x

(ij−1,0)
j−1 , x0

j , x
(ij+1,0)
j+1 , . . . , x(in,0)

n) =

P(x(i1,1)
1 , . . . , x

(ij−1,1)
j−1 , x1

j , x
(ij+1,1)
j+1 , . . . , x(in,1)

n) = 0.

Case t = 2: Either

P(x(i1,0)
1 , . . . , x

(ij−1,0)
j−1 , x0

j , x
(ij+1,0)
j+1 , . . . , x(in,0)

n) =

P(x(i1,1)
1 , . . . , x

(ij−1,1)
j−1 , x1

j , x
(ij+1,1)
j+1 , . . . , x(in,1)

n) = 0

or

P(x(i1,0)
1 , . . . , x

(ij−1,0)
j−1 , x0

j , x
(ij+1,0)
j+1 , . . . , x(in,0)

n) =

P(x(i1,1)
1 , . . . , x

(ij−1,1)
j−1 , x1

j , x
(ij+1,1)
j+1 , . . . , x(in,1)

n) ∧m0
j = m1

j .

18 Observe that Q0
i and Q1

i are identical except for the last element.

23

Through the paper, for t ∈ [2], we say that Π is CPA-t-sided secure in the
ℓ-corruptions setting and without collusions if |QKGen| = 1 (i.e., the adversary
asks for a single decryption key). If |QCorr| = 0 (i.e., no corruptions), we say that
Π is CPA-t-sided secure in the secret-key setting. In case of both restrictions, we
say that Π is CPA-t-sided secure in the secret-key setting and without collusions
(i.e., |QCorr| = 0 and |QKGen| = 1).

Remark 1 (Relation with multi-key PE). In the full version of this work [25], we
show that CPA-t-sided secure (n+1)-input PE tolerating 1 corruption, naturally
implies CPA-t-sided secure n-key PE.19 We stress that such a relation holds only
if the (n+ 1)-input PE supports arbitrary predicates. On the other hand, if we
consider restricted classes of predicates (as studied in this work), the above
implication does not to hold anymore, making multi-input and multi-key PE
incomparable.20

Also, we discuss the relation between the multi-key and multi-input settings
when considering a weaker definition of security. In particular, if we drop the
secrecy of the predicate inputs, i.e., only the the messages remain secret (which
is equivalent to ABE), then we can show that multi-key ABE implies multi-input
ABE only in the presence of no corruptions.

5 Constructions

In this section, we give different constructions of multi-key and multi-input PE
(see also Section 1.2) for predicates P(x1, . . . , xn) = P1(x1) ∧ . . . ∧ Pn(xn).

In particular, in Section 5.1 we give a construction of n-key PE from single-
input PE and lockable obfuscation for n = poly(λ). This construction is secure
against unbounded collusions.

In Section 5.2, we give a construction of O(1)-input PE, that is CPA-1-side
secure without collusions and in the (n−1)-corruptions setting, from single-input
PE, lockable obfuscation, and PKE. It leverages a new nesting execution tech-
nique of (lockable obfuscated) circuits. Our secret-key n-input PE construction
for n = poly(λ) is deferred to full version [25].

Both multi-input constructions support conjunctions of arbitrary predicates
with wildcards, i.e., for every i ∈ [n], there exists (possibly unique) a wildcard
x⋆
i such that for every i-th predicate Pi we have Pi(x

⋆
i) = 1 (in [25] we discuss

how to remove the wildcard when no corruptions are in place).

19 If we restrict the n-key PE’s encryption algorithm to be secret-key (i.e., Enc(ek, ·, ·)
where ek is kept secret) then we can start from a secret-key (n + 1)-input PE, i.e.,
0 corruptions.

20 This is also reflected by the results achieved in this paper. For example, our multi-
key PE construction for conjunctions of arbitrary predicates tolerates unbounded
collusions whereas our multi-input PE constructions (for the same class of predicates
with wildcards) are significantly more complex and are secure only in the case of no
collusions.

24

Cc(dk1, . . . , dkn)

Initialize: cn = c

For i from n to 1 do: Deci(dki, ci) = ci−1

return c0

Fig. 3: Definition of the circuit Cc of Construction 1.

Also, our constructions are generic and achieve CPA-2-sided security if the
underlying single-input PE is CPA-2-sided secure (our CPA-2-sided secure secret-
key multi-input PE construction (see [25]) supports n = O(log(λ))).

5.1 Multi-key PE from PE and Lockable Obfuscation

Construction 1. Consider the following primitives:

1. For i ∈ [n], a PE scheme PEi = (Setupi,KGeni,Enci,Deci) with message
space Mi, input space Xi, and predicate space Pi = {Pv(x)}v∈Vi indexed by
Vi. Without loss of generality, we assume that PEi has ciphertext space Yi,
M1 = {0, 1}m(λ), and Mi = Yi−1 for every i ∈ [n] \ {1}. In order to do
not incur into an exponential ciphertext growth (e.g., for n = poly(λ)), each
i-th PE scheme must have a ciphertext expansion of poly(λ) + |mi| where
|mi| is the length of the messages mi ∈Mi supported by the i-th PE scheme
(this can be obtained generically from any PE scheme by leveraging hybrid
encryption, i.e., Enci(mpk, x, s)||PRG(s)⊕mi where s←$ {0, 1}λ).

2. A lockable obfuscation scheme LOBF = (Obf,Eval) with message space M
for the family of circuits Cn,s,d(λ) = {Cc} as defined in Figure 3, where
n(λ), s(λ), d(λ) depends on the schemes PE1, . . . ,PEn used, and the circuits
Cn,s,d(λ).

We build a n-key PE scheme Π with message space M, input space X =
X1 × . . . × Xn, and predicate space P = {Pv1,...,vn(x1, . . . , xn) = Pv1(x1) ∧ . . . ∧
Pvn(xn)}(v1,...,vn)∈V indexed by V = V1 × . . .× Vn (and Pvi ∈ Pi for i ∈ [n]), as
follows:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algorithm
outputs mpk = (mpk1, . . . ,mpkn) and msk1, . . . ,mskn where (mpki,mski)
←$ Setupi(1

λ) for i ∈ [n].
KGen(mski, vi): Let i ∈ [n]. Upon input the i-th master secret key mski and the

i-th predicate index vi ∈ Vi, the randomized key generator outputs dkvi ←$

KGeni(msk1,Pvi) where Pvi ∈ Pi.
Enc(mpk, x,m): Upon input the master public key mpk = (mpk1, . . . ,mpkn), an

input x = (x1, . . . , xn) ∈ X , and a message m ∈M, the randomized encryp-
tion proceeds as follows:
1. Sample y←$ {0, 1}s(λ) and let c0 = y.
2. For i ∈ [n], compute ci←$ Enci(mpki, xi, ci−1).

Finally, it outputs c = C̃ where C̃←$ Obf(1λ,Ccn , y,m).

25

Dec(dkv1 , . . . , dkvn , c): Upon input n decryption keys dkv1 , . . . , dkvn and a ci-

phertext c = C̃, the deterministic decryption algorithm outputs m = Eval(C̃,
(dkv1 , . . . , dkvn)).

Correctness follows from the correctness of the underlying schemes. We es-
tablish the following result whose proof is deferred to full version [25].

Theorem 4. Let n = poly(λ), PE1, . . . ,PEn and LOBF be as above. If LOBF is
secure and

1. each PE1, . . . ,PEn is CPA secure, then the n-key PE scheme Π from Con-
struction 1 is CPA-1-sided secure (Definition 1).

2. each PE1, . . . ,PEn is CPA-2-sided secure, then the n-key PE scheme Π
from Construction 1 is CPA-2-sided secure (Definition 1).

We stress that CPA secure single-input PE (see the above theorem) guarantees
only the secrecy of the message (whereas predicate inputs can be public). This
is equivalent to the notion of single-input ABE.

5.2 Multi-input PE from PE, Lockable Obfuscation and PKE

Corruption setting. We present our construction of n-input PE that is CPA-1-
sided secure in the (n−1)-corruptions setting without collusions. This construc-
tion handles constant-arity (i.e., n ∈ O(1)) since the decryption running time is
O(nn). It is based on CPA secure single-input PE, lockable obfuscation, and PKE
and it leverages the nested execution technique described in Section 1.2. Also,
the same construction achieves CPA-2-sided security if the initial single-input
PE is CPA-2-sided secure.

Construction 2 (n-input PE in the corruption setting). Consider the following
primitives:

1. A PE scheme PE = (Setup1,KGen1,Enc1,Dec1) with message space M1 =
{0, 1}m3(λ)+m4(λ), input space X1 = X1,1 × . . . × X1,n, and predicate space
P1 = {P(x1, . . . , xn)} = {P1(x1) ∧ . . . ∧ Pn(xn)}. Without loss of generality,
we assume that PE has ciphertext space Y1 and there exists a (single) wild-
card input (x⋆

1, . . . , x
⋆
n) ∈ X1 such that ∀(P1(x1) ∧ . . . ∧ Pn(xn)) ∈ P1,∀i ∈

[n],Pi(x
⋆
i) = 1.

2. For i ∈ [n], a PKE scheme PKE2,i = (KGen2,i,Enc2,i,Dec2,i) with message
spaceM2,i. Without loss of generality, we assume that PKEi has ciphertext
space Y2,i and secret-key space K2,i. Moreover, we assume that M2,1 = Y1,
andM2,i = Y2,i−1 for every i ∈ [n] \ {1}.

3. A lockable obfuscation scheme LOBF3 = (Obf3,Eval3) with message space
M3 = (K2,1∪. . .∪K2,n)×{0, 1}⌊log2(n)⌋+1 for the family of circuits C inn3,s3,d3

(λ)

= {Cin
c,sk,i} defined in Figure 4, where n3(λ), s3(λ), d3(λ) depends on the

schemes PE,PKE2,1, . . . ,PKE2,n used, and the circuits C inn3,s3,d3
(λ).

26

Cin
c,sk,i(C1, . . . ,Cn−2, sk1, . . . , skn, dkP)

Initialize:

cn = c, sk′i = sk,Cn−1 = ⊥, k = ⊥, ∀j ∈ [n] \ {i}, sk′j = skj

If ∃w ∈ [n− 2] such that Cw ̸= ⊥ and Cw+1 = ⊥: k = w

end initialize.

If k ̸= ⊥ do: // If k = ⊥, no circuit to execute.

// Execute each circuit received in input in order to retrieve the related secret key.

For t ∈ [k] do:

Eval3(Ct, (Ct+1, . . . ,Ck,

n−2+t−k︷ ︸︸ ︷
⊥, . . . ,⊥, sk′1, . . . , sk

′
n, dkP)) = r

If r = ⊥: return ⊥
Else: sk′h = sk where r = (sk, h) // Save the secret key returned by Ct.

end for.

end if.

// At this point, all secret keys are known.

For j from n to 1 do: Dec2,j(sk
′
j , cj) = cj−1

Dec1(dkP, c0) = v

If v = ⊥: return ⊥
Else: return y

in
i where v = (y

in
i , y

out
i)

Cout
c,sk,i(C1, . . . ,Cn−1, dkP)

Initialize: cn = c, sk′i = sk, ∀j ∈ [n] \ {i}, sk′j = ⊥
// Execute each circuit received in input in order to retrieve the related secret key.

For t from 1 to n− 1 do:

Eval3(Ct, (Ct+1, . . . ,Cn−1,

t−1︷ ︸︸ ︷
⊥, . . . ,⊥, sk′1, . . . , sk

′
n, dkP)) = r

If r = ⊥: return ⊥
Else: sk′h = sk where r = (sk, h) // Save the secret key returned by Ct.

end for.

// At this point, all secret keys are known.

For j from n to 1 do: Dec2,j(sk
′
j , cj) = cj−1

Dec1(dkP, c0) = v

If v = ⊥: return ⊥
Else: return y

out
i where v = (y

in
i , y

out
i)

Fig. 4: Definitions of the circuits Cin
c,sk,i and Cout

c,sk,i supported by the lockable
obfuscation schemes LOBF3 and LOBF4 of Construction 2.

4. A lockable obfuscation scheme LOBF4 = (Obf4,Eval4) with message space
M4 for the family of circuits Coutn4,s4,d4

(λ) = {Cout
c,sk,i} defined in Figure 4,

where n4(λ), s4(λ), d4(λ) depends on the schemes PE,PKE2,1, . . . ,PKE2,n,
LOBF3 used, and the circuits Coutn4,s4,d4

(λ).

We build a n-input PE scheme with message spaceM =

n︷ ︸︸ ︷
M4 × . . .×M4, input

space X = X1, and predicate space P = P1 = {P(x1, . . . , xn)} = {P1(x1) ∧ . . . ∧
Pn(xn)} with wildcard (i.e., there exists a (single) wildcard (x⋆

1, . . . , x
⋆
n) ∈ X

such that ∀(P1(x1) ∧ . . . ∧ Pn(xn)) ∈ P, ∀i ∈ [n], Pi(x
⋆
i) = 1), as follows:

Setup(1λ): Upon input the security parameter 1λ the randomized setup algo-
rithm outputs (ek1, . . . , ekn) and msk where (mpk,msk)←$ Setup1(1

λ), eki =
(mpk, ski, pk1, . . . , pkn), and (ski, pki)←$ KGen2,i(1

λ) for i ∈ [n].

27

KGen(msk,P): Upon input the master secret key msk and a predicate P ∈ P, the
randomized key generator algorithm outputs dkP←$ KGen1(msk,P).

Enc(eki, xi,mi): Let i ∈ [n]. Upon input an encryption key eki = (mpk, ski,
pk1, . . . , pkn), an input xi ∈ X1,i, and a message mi ∈ M4, the randomized
encryption algorithm samples (yini , y

out
i)←$ {0, 1}s3(λ)+s4(λ) and proceeds as

follows:

1. Compute c
(0)
i ←$ Enc1(mpk, (x1, . . . , xn), (y

in
i , y

out
i)) where xj = x⋆

j for
j ∈ [n] \ {i}.

2. For j ∈ [n], compute c
(j)
i ←$ Enc2,j(pkj , c

(j−1)
i).

Finally, it outputs ci = (C̃out
i , C̃in

i), where C̃out
i ←$ Obf4(1

λ,Cout

c
(n)
i ,ski,i

, youti ,

mi) and C̃in
i ←$ Obf3(1

λ,Cin

c
(n)
i ,ski,i

, yini , (ski, i)).

Dec(dkP, c1, . . . , cn): Upon input a decryption key dkP for predicate P ∈ P, and
n ciphertexts (c1, . . . , cn) such that ci = (C̃out

i , C̃in
i) for i ∈ [n]. The de-

terministic decryption algorithm returns (m1, . . . ,mn) where mi = Eval4(

C̃out
i , (C̃in

1 , . . . , C̃in
i−1, C̃in

i+1, . . . , C̃in
n , dkP)) for i ∈ [n].

Correctness follows from the one of the underlying primitives (see also Fig-
ure 4 for the definitions of Cin

c,sk,i and Cout
c,sk,i). Moreover, decryption is polynomial

time when n ∈ O(1). Below, we establish the following result whose proof is de-
ferred to full version [25].

Theorem 5. Let n = O(1), PE, PKE2,1, . . . ,PKE2,n, LOBF3, and LOBF4 be as
above. If each PKE2,i (for i ∈ [n]) is CPA secure, both LOBF3 and LOBF4 are
secure, and

1. PE is CPA secure without collusions, then the n-input PE scheme Π from Con-
struction 2 is CPA-1-sided secure in the (n− 1)-corruptions setting without
collusions (Definition 2).

2. PE is CPA-2-sided secure without collusions, then the n-input PE scheme Π
from Construction 2 is CPA-2-sided secure in the (n−1)-corruptions setting
without collusions (Definition 2).

As for Theorem 4, CPA secure single-input PE (see the above theorem) guaran-
tees only the secrecy of the message (whereas predicate inputs can be public).
This is equivalent to the notion of single-input ABE.

Acknowledgements. The authors would like to thank the anonymous re-
viewers for useful feedback. The first author was supported by the Carlsberg
Foundation under the Semper Ardens Research Project CF18-112 (BCM); the
second and the fourth author were partially supported by project SERICS
(PE00000014) under the NRRPMUR program funded by the EU - NGEU and by
Sapienza University under the project SPECTRA; the third author was partially
supported by the German Federal Ministry of Education and Research (BMBF)
in the course of the 6GEM research hub under grant number 16KISK038 and
by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
under Germany’s Excellence Strategy - EXC 2092 CASA – 390781972.

28

References

1. Abdalla, M., Benhamouda, F., Gay, R.: From single-input to multi-client inner-
product functional encryption. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 552–582. Springer, Heidelberg
(Dec 2019). https://doi.org/10.1007/978-3-030-34618-8_19

2. Abdalla, M., Benhamouda, F., Kohlweiss, M., Waldner, H.: Decentralizing inner-
product functional encryption. In: Lin, D., Sako, K. (eds.) PKC 2019, Part II.
LNCS, vol. 11443, pp. 128–157. Springer, Heidelberg (Apr 2019). https://doi.
org/10.1007/978-3-030-17259-6_5

3. Abdalla, M., Catalano, D., Fiore, D., Gay, R., Ursu, B.: Multi-input functional en-
cryption for inner products: Function-hiding realizations and constructions without
pairings. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 597–627. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96884-1_20

4. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Heidelberg (Apr / May 2017).
https://doi.org/10.1007/978-3-319-56620-7_21

5. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for in-
ner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.)
ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (Dec 2011).
https://doi.org/10.1007/978-3-642-25385-0_2

6. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption
from pairings. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS,
vol. 12828, pp. 208–238. Springer, Heidelberg, Virtual Event (Aug 2021). https:
//doi.org/10.1007/978-3-030-84259-8_8

7. Agrawal, S., Goyal, R., Tomida, J.: Multi-input quadratic functional encryption:
Stronger security, broader functionality. In: TCC 2022. pp. 711–740. Springer
(2023). https://doi.org/10.1007/978-3-031-22318-1_25

8. Agrawal, S., Yadav, A., Yamada, S.: Multi-input attribute based encryption and
predicate encryption. In: CRYPTO 2022. pp. 590–621. Springer (2022). https:
//doi.org/10.1007/978-3-031-15802-5_21

9. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional en-
cryption. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part I. LNCS,
vol. 9215, pp. 308–326. Springer, Heidelberg (Aug 2015). https://doi.org/10.
1007/978-3-662-47989-6_15

10. Ateniese, G., Francati, D., Nuñez, D., Venturi, D.: Match me if you can: Match-
making encryption and its applications. In: Boldyreva, A., Micciancio, D. (eds.)
CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 701–731. Springer, Heidelberg (Aug
2019). https://doi.org/10.1007/978-3-030-26951-7_24

11. Ateniese, G., Francati, D., Nuñez, D., Venturi, D.: Match me if you can: match-
making encryption and its applications. Journal of Cryptology 34(3), 1–50 (2021).
https://doi.org/10.1007/s00145-021-09381-4

12. Attrapadung, N.: Dual system encryption via doubly selective security: Framework,
fully secure functional encryption for regular languages, and more. In: Nguyen,
P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577.
Springer, Heidelberg (May 2014). https://doi.org/10.1007/978-3-642-55220-
5_31

29

https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-34618-8_19
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-030-17259-6_5
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-96884-1_20
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-642-25385-0_2
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-030-84259-8_8
https://doi.org/10.1007/978-3-031-22318-1_25
https://doi.org/10.1007/978-3-031-22318-1_25
https://doi.org/10.1007/978-3-031-15802-5_21
https://doi.org/10.1007/978-3-031-15802-5_21
https://doi.org/10.1007/978-3-031-15802-5_21
https://doi.org/10.1007/978-3-031-15802-5_21
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-662-47989-6_15
https://doi.org/10.1007/978-3-030-26951-7_24
https://doi.org/10.1007/978-3-030-26951-7_24
https://doi.org/10.1007/s00145-021-09381-4
https://doi.org/10.1007/s00145-021-09381-4
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-642-55220-5_31
https://doi.org/10.1007/978-3-642-55220-5_31

13. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (Aug 2001).
https://doi.org/10.1007/3-540-44647-8_1

14. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Garay, J.A.,
Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 387–404. Springer,
Heidelberg (Aug 2014). https://doi.org/10.1007/978-3-662-44381-1_22

15. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Guruswami, V. (ed.) 56th FOCS. pp. 171–190. IEEE Computer
Society Press (Oct 2015). https://doi.org/10.1109/FOCS.2015.20

16. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Se-
mantically secure order-revealing encryption: Multi-input functional encryption
without obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015,
Part II. LNCS, vol. 9057, pp. 563–594. Springer, Heidelberg (Apr 2015). https:
//doi.org/10.1007/978-3-662-46803-6_19

17. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (Feb 2007). https://doi.org/10.1007/978-3-540-70936-7_29

18. Brakerski, Z., Döttling, N., Garg, S., Malavolta, G.: Factoring and pairings
are not necessary for io: Circular-secure lwe suffices. In: ICALP 2022. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/

LIPIcs.ICALP.2022.28
19. Brakerski, Z., Jain, A., Komargodski, I., Passelègue, A., Wichs, D.: Non-trivial

witness encryption and null-iO from standard assumptions. In: Catalano, D., De
Prisco, R. (eds.) SCN 18. LNCS, vol. 11035, pp. 425–441. Springer, Heidelberg
(Sep 2018). https://doi.org/10.1007/978-3-319-98113-0_23

20. Chen, J., Li, Y., Wen, J., Weng, J.: Identity-based matchmaking encryption from
standard assumptions. In: ASIACRYPT 2022. Springer (2022). https://doi.org/
10.1007/978-3-031-22969-5_14

21. Chotard, J., Dufour Sans, E., Gay, R., Phan, D.H., Pointcheval, D.: Decentralized
multi-client functional encryption for inner product. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 703–732. Springer,
Heidelberg (Dec 2018). https://doi.org/10.1007/978-3-030-03329-3_24

22. Ciampi, M., Siniscalchi, L., Waldner, H.: Multi-client functional encryption for
separable functions. In: Garay, J. (ed.) PKC 2021, Part I. LNCS, vol. 12710,
pp. 724–753. Springer, Heidelberg (May 2021). https://doi.org/10.1007/978-
3-030-75245-3_26

23. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from learning
with errors. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II.
LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (Aug 2015). https://doi.
org/10.1007/978-3-662-48000-7_31

24. Datta, P., Okamoto, T., Tomida, J.: Full-hiding (unbounded) multi-input inner
product functional encryption from the k-Linear assumption. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 245–277. Springer,
Heidelberg (Mar 2018). https://doi.org/10.1007/978-3-319-76581-5_9

25. Francati, D., Friolo, D., Malavolta, G., Venturi, D.: Multi-key and multi-input
predicate encryption from learning with errors. Cryptology ePrint Archive (2022)

26. Francati, D., Guidi, A., Russo, L., Venturi, D.: Identity-based matchmaking en-
cryption without random oracles. In: INDOCRYPT 2021. pp. 415–435. Springer
(2021). https://doi.org/10.1007/978-3-030-92518-5_19

30

https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1007/978-3-662-44381-1_22
https://doi.org/10.1109/FOCS.2015.20
https://doi.org/10.1109/FOCS.2015.20
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.4230/LIPIcs.ICALP.2022.28
https://doi.org/10.4230/LIPIcs.ICALP.2022.28
https://doi.org/10.4230/LIPIcs.ICALP.2022.28
https://doi.org/10.4230/LIPIcs.ICALP.2022.28
https://doi.org/10.1007/978-3-319-98113-0_23
https://doi.org/10.1007/978-3-319-98113-0_23
https://doi.org/10.1007/978-3-031-22969-5_14
https://doi.org/10.1007/978-3-031-22969-5_14
https://doi.org/10.1007/978-3-031-22969-5_14
https://doi.org/10.1007/978-3-031-22969-5_14
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-03329-3_24
https://doi.org/10.1007/978-3-030-75245-3_26
https://doi.org/10.1007/978-3-030-75245-3_26
https://doi.org/10.1007/978-3-030-75245-3_26
https://doi.org/10.1007/978-3-030-75245-3_26
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-662-48000-7_31
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-319-76581-5_9
https://doi.org/10.1007/978-3-030-92518-5_19
https://doi.org/10.1007/978-3-030-92518-5_19

27. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 467–
476. ACM Press (Jun 2013). https://doi.org/10.1145/2488608.2488667

28. Gay, R., Pass, R.: Indistinguishability obfuscation from circular security. In:
Khuller, S., Williams, V.V. (eds.) STOC ’21: 53rd Annual ACM SIGACT Sympo-
sium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021. pp. 736–749.
ACM (2021). https://doi.org/doi.org/10.1145/3406325.3451070

29. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A.,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(May 2014). https://doi.org/10.1007/978-3-642-55220-5_32

30. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M.J.B. (eds.) CRYPTO 2015, Part II. LNCS,
vol. 9216, pp. 503–523. Springer, Heidelberg (Aug 2015). https://doi.org/10.
1007/978-3-662-48000-7_25

31. Goyal, R., Koppula, V., Waters, B.: Lockable obfuscation. In: Umans, C. (ed.) 58th
FOCS. pp. 612–621. IEEE Computer Society Press (Oct 2017). https://doi.org/
10.1109/FOCS.2017.62

32. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-
interactive multiparty computation without correlated randomness. In: Takagi,
T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 181–211.
Springer, Heidelberg (Dec 2017). https://doi.org/10.1007/978-3-319-70700-
6_7

33. Halevi, S., Ishai, Y., Jain, A., Kushilevitz, E., Rabin, T.: Secure multiparty com-
putation with general interaction patterns. In: Sudan, M. (ed.) ITCS 2016. pp.
157–168. ACM (Jan 2016). https://doi.org/10.1145/2840728.2840760

34. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: Computing
without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 132–150. Springer, Heidelberg (Aug 2011). https://doi.org/10.
1007/978-3-642-22792-9_8

35. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded
assumptions. In: Khuller, S., Williams, V.V. (eds.) STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25,
2021. pp. 60–73. ACM (2021). https://doi.org/10.1145/3406325.3451093

36. Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from LPN over
Fp, DLIN, and PRGs in NC0. In: Dunkelman, O., Dziembowski, S. (eds.) EU-
ROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 670–699. Springer, Heidelberg
(May / Jun 2022). https://doi.org/10.1007/978-3-031-06944-4_23

37. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (Apr 2008). https://doi.org/
10.1007/978-3-540-78967-3_9

38. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (May / Jun 2010). https://doi.org/10.1007/978-3-642-
13190-5_4

39. Libert, B., Titiu, R.: Multi-client functional encryption for linear functions in
the standard model from LWE. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 520–551. Springer, Heidelberg
(Dec 2019). https://doi.org/10.1007/978-3-030-34618-8_18

31

https://doi.org/10.1145/2488608.2488667
https://doi.org/10.1145/2488608.2488667
https://doi.org/doi.org/10.1145/3406325.3451070
https://doi.org/doi.org/10.1145/3406325.3451070
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1109/FOCS.2017.62
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1007/978-3-319-70700-6_7
https://doi.org/10.1145/2840728.2840760
https://doi.org/10.1145/2840728.2840760
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-030-34618-8_18
https://doi.org/10.1007/978-3-030-34618-8_18

40. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Karloff, H.J., Pitassi,
T. (eds.) 44th ACM STOC. pp. 1219–1234. ACM Press (May 2012). https://doi.
org/10.1145/2213977.2214086

41. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE.
In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666,
pp. 735–763. Springer, Heidelberg (May 2016). https://doi.org/10.1007/978-
3-662-49896-5_26

42. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (Aug 2010). https://doi.
org/10.1007/978-3-642-14623-7_11

43. Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner
product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (Apr 2012). https://doi.org/
10.1007/978-3-642-29011-4_35

44. Tomida, J.: Tightly secure inner product functional encryption: Multi-input
and function-hiding constructions. In: Galbraith, S.D., Moriai, S. (eds.) ASI-
ACRYPT 2019, Part III. LNCS, vol. 11923, pp. 459–488. Springer, Heidelberg
(Dec 2019). https://doi.org/10.1007/978-3-030-34618-8_16

45. Waters, B.: Functional encryption for regular languages. In: Safavi-Naini, R.,
Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235. Springer, Hei-
delberg (Aug 2012). https://doi.org/10.1007/978-3-642-32009-5_14

46. Wee, H.: Dual system encryption via predicate encodings. In: Lindell, Y. (ed.)
TCC 2014. LNCS, vol. 8349, pp. 616–637. Springer, Heidelberg (Feb 2014). https:
//doi.org/10.1007/978-3-642-54242-8_26

47. Wee, H., Wichs, D.: Candidate obfuscation via oblivious LWE sampling. In: Can-
teaut, A., Standaert, F.X. (eds.) EUROCRYPT 2021, Part III. LNCS, vol. 12698,
pp. 127–156. Springer, Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-
030-77883-5_5

48. Wichs, D., Zirdelis, G.: Obfuscating compute-and-compare programs under LWE.
In: Umans, C. (ed.) 58th FOCS. pp. 600–611. IEEE Computer Society Press (Oct
2017). https://doi.org/10.1109/FOCS.2017.61

32

https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-642-29011-4_35
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-030-34618-8_16
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-32009-5_14
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-642-54242-8_26
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1007/978-3-030-77883-5_5
https://doi.org/10.1109/FOCS.2017.61
https://doi.org/10.1109/FOCS.2017.61

	Multi-key and Multi-input Predicate Encryption from Learning with Errors
	Introduction
	Our Contributions
	Technical Overview
	Applications
	Relation with Witness Encryption (WE).

	Related Work
	Preliminaries
	Multi-key and Multi-input Predicate Encryption
	Constructions
	Multi-key PE from PE and Lockable Obfuscation
	Multi-input PE from PE, Lockable Obfuscation and PKE

