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Abstract. Multi-signatures have been drawing lots of attention in recent
years, due to their applications in cryptocurrencies. Most early construc-
tions require three-round signing, and recent constructions have managed
to reduce the round complexity to two. However, their security proofs are
mostly based on non-standard, interactive assumptions (e.g. one-more
assumptions) and come with a huge security loss, due to multiple uses
of rewinding (aka the Forking Lemma). This renders the quantitative
guarantees given by the security proof useless.

In this work, we improve the state of the art by proposing two efficient
two-round multi-signature schemes from the (standard, non-interactive)
Decisional Diffie-Hellman (DDH) assumption. Both schemes are proven
secure in the random oracle model without rewinding. We do not require
any pairing either. Our first scheme supports key aggregation but has
a security loss linear in the number of signing queries, and our second
scheme is the first tightly secure construction.

A key ingredient in our constructions is a new homomorphic dual-mode
commitment scheme for group elements, that allows to equivocate for
messages of a certain structure. The definition and efficient construction
of this commitment scheme is of independent interest.
Keywords. Multi-Signatures, Tightness, Forking Lemma, Commitment
Scheme, Round Complexity

1 Introduction

A multi-signature scheme [24,5] allows N parties to jointly sign a message,
where each party i holds an independent key pair (pki, ski). Recently, multi-
signature schemes have been drawing new attention due to their applications in
cryptocurrencies. In this setting, multiple parties share ownership of funds, and
can use multi-signatures to sign transactions spending these funds. For details,
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we refer to [8]. A trivial construction is that each signer i computes a signature
σi using ski, and the final signature is (σ1, . . . , σN ). Yet, this trivial approach
leads to large signature size. Motivated by this, cryptographers are proposing
more sophisticated multi-signature schemes with interactive signing protocols
to compress the signature size. In this work, we focus on concrete security of
two-round multi-signature schemes.

Security Models. There are different models in which multi-signatures have been
proposed and analyzed. Namely, schemes may require interactive key generation
[31], or require that keys are verified and include a proof of possesion of the secret
key [14,11]. Other schemes require to use a knowledge of secret key assumption
[7,29]. Besides these models, the widely accepted model for multi-signatures
nowadays is the so called plain public key model, introduced by Bellare and
Neven in their seminal work [5]. In this model, each signer generates her key pair
independently, and no knowledge assumption or proof of possession is needed. In
this paper, we are interested in the plain public key model.

Concrete Security and Tightness. Cryptographic schemes are proven secure using
reductions. To prove security of a scheme S, we transform any adversaryAS against
the security of S with success probability εS into a solver AΠ for some underlying
hard problem Π with success probability εΠ . Thereby, we establish a bound
εS ≤ L · εΠ . We call L the security loss. Ideally, we want the underlying hardness
assumption to be as standard as possible, since a more standard assumption
gives us more confidence on the scheme’s security. We also want the security loss
as small as possible, since it relates the concrete security of our scheme to the
hardness of the underlying computational problem. This is reflected when we use
the security proof as a quantitative statement to derive concrete parameters for
scheme S based on cryptanalytic results for the well-studied problem Π. Roughly
speaking, to get κ bits of security for S, we have to guarantee κ+ logL bits of
security for Π. If L is large, or depends on choices of the adversary unknown at
deployment time, instantiating the scheme in this way leads to prohibitively large
parameters, or is not even possible. This motivates striving for a tight reduction,
i.e. a reduction where L is a small constant. Tightness has been studied for
many primitives, including standard digital signatures and related primitives,
e.g., [26,6,28,22]. Unfortunately, most of existing multi-signature schemes are
non-tight. Even worse, existing two-round multi-signature schemes have only
non-tight reductions based on strong, non-standard assumptions.

Limitations of Existing Constructions. An overview of existing schemes (based
on assumptions in cyclic groups) and their properties and security loss can be
found in Table 1. In the plain public key model, Bellare and Neven [5] constructed
a three-round multi-signature scheme (BN) based on the Discrete Logarithm
Assumption (DLOG). Proving the security of this scheme relies on rewinding
and uses the (general) Forking Lemma [5], which leads to a highly non-tight
security bound. To improve this, Bellare and Neven introduced a second three-
round construction (BN+) tightly based on the Decisional Diffie-Hellman (DDH)
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Assumption. Further works focus on key aggregation [30,8,16]. This feature allows
to publicly compute a single aggregated key from a given list of public keys, which
can later be used for verification. The key aggregation property saves bandwidth
and is desirable in many applications. Notably, the three-round scheme Musig
[30,8] can be seen as a variant of BN that supports key aggregation. The scheme
is based on DLOG and a double forking technique is introduced for its analysis.
This leads to a security bound of the form ε4S ≤ L · εΠ , which is useless in terms
of concrete security. Using the Decisional Diffie-Hellman (DDH) assumption, a
tightly secure variant Musig+ of Musig has been proposed in [16].

To further reduce round complexity, recent works focused on two-round
constructions [32,4,2,11,13]. However, while achieving certain desirable properties
(e.g. deterministic signing [33]) the proposed schemes have their drawbacks
in terms of assumptions and concrete security. The scheme [33] makes use of
heavy cryptographic machinery and is not comparable with others in terms
of efficiency. Further, even in the more idealized models such as the algebraic
group model, security proofs of most two-round schemes rely on non-standard
interactive assumptions [32,11,4,2]. The only exceptions are [13,4,9]. A second
drawback is the apparent need for (double) rewinding in the random oracle model
[14,32,13,4,9]. While such security proofs show the absence of major structural
attacks, concrete parameters are not supported by cryptanalytic evidence.

Our Goal. Motivated by the state of the art, we study whether interactive as-
sumptions and rewinding techniques are necessary for two-round multi-signatures.
If not, we want to construct a scheme without either of them. Ideally, our scheme
comes with additional features such as key aggregation or a fully tight security
proof. We summarize our central question as follows, which is of both practical
and theoretical interest.

Can we construct two-round multi-signatures
from non-interactive pairing-free assumptions without the use of rewinding?

1.1 Our Contribution

Our work answers the above question in the affirmative. Our contributions are
the first two multi-signature schemes that are two-round from a non-interactive
assumption without using the Forking Lemma. Both of our schemes are proven
secure in the random oracle model based on the DDH assumption. Concretely,
we construct

1. a two-round multi-signature scheme with a security loss O(QS) and key
aggregation, where QS is the number of signing queries, and

2. the first two-round multi-signature scheme with a fully tight security proof

We compare our schemes with existing schemes in Table 14. For roughly 128 bit
security, our second scheme can be instantiated with standardized 128 bit secure
4 We do not consider proofs in the (idealized) algebraic group model and do not list
schemes that are not in the plain public key model.
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curves, in contrast to all previous two-round schemes. For our first scheme, its
proof is non-tight, but it does not rely on rewinding and has tighter security based
on standard, non-interactive assumptions than other non-tight schemes (such
as HBMS and Musig2). Hence, as long as the number of signing queries QS is
less than 2192−128 = 264, we can implement our first scheme with a standardized
192-bit secure curve to achieve 128-bit security, while this is not the case for
HBMS and Musig2. We note that our schemes do not have some additional
beneficial properties (e.g. having Schnorr-compatible signatures or supporting
preprocessing) as in Musig2 [32]. We leave achieving these properties without
rewinding as an interesting open problem.

Scheme Assumption Rounds Key Aggregation Loss

BN [5] DLOG 3 7 O(QH/ε)
BN+ [5] DDH 3 7 O(1)
Musig [30,8] DLOG 3 3 O(Q3

H/ε
3)

Musig+ [16] DDH 3 3 O(1)
Musig2 [32] AOMDL 2 3 O(Q3

H/ε
3)

HBMS [4] DLOG 2 3 O(Q4
SQ

3
H/ε

3)

Ours (Section 3.2) DDH 2 3 O(QS)
Ours (Section 3.3) DDH 2 7 O(1)

Table 1. Comparison of existing multi-signature schemes (top) in the random oracle
model with our schemes (bottom). Here, QH , QS denote the number of random oracle
and signing queries, respectively, ε denotes the advantage of an adversary against the
scheme. The algebraic one-more discrete logarithm (AOMDL) assumption is a (stronger)
interactive variant of DLOG.

A crucial building block for our construction is a special kind of DDH-based
commitment scheme without pairings. Concretely, our commitment scheme has
the following properties.
– It commits to pairs of group elements in a homomorphic way.
– It has a dual-mode property, i.e. indistinguishable keys in statistically hiding

and statistically binding mode, with tight multi-key indistinguishability.
– The hiding mode offers a special form of equivocation trapdoor, which allows

to open commitments to group elements output by the Honest-Verifier Zero-
Knowledge (HVZK) simulator of Schnorr-like identification protocols.

Such a commitment scheme can be useful to construct other interactive signature
variants, and we believe that this is of independent interest. In this paper, we con-
struct the first commitment scheme satisfying the above properties simultaneously
without using pairings. Our commitment scheme can be seen as an extension
of the commitment scheme in [3]5. Contrary to our scheme, the commitment
5 Drijvers et al. [14] showed a flaw in the proof of the multi-signature scheme presented
in [3], but it does not affect their commitment scheme.
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scheme in [3] commits to single group elements and no statistically binding mode
is shown, which makes it less desirable for our multi-signature constructions.
Other previous commitment schemes either have no trapdoor property [19,20],
or homomorphically commit to ring or field elements [21,35]. To the best of our
knowledge, there is only a solution using pairings [18].

1.2 Concurrent Work

In a concurrent work (also at Eurocrypt 2023), Tessaro and Zhu [37] also presented
(among other contributions) a new two-round multi-signature scheme. Both our
work and theirs focus on avoiding interactive assumptions. However, while we
additionally remove the security loss, Tessaro and Zhu concentrate on having a
partially non-interactive scheme. That is, the first round of the signing protocol
is independent of the message being signed. In a nutshell, they generalize Musig2
to linear function families. Then, under a suitable instantiation, the interactive
assumption for Musig2 can be avoided. Similar to Musig2, the resulting scheme is
partially non-interactive. Still, their scheme inherits the security loss of Musig2
due to (double) rewinding.

1.3 Technical Overview

We give an intuitive overview of our constructions and the challenges we solve.

Schnorr-Based Multi-Signatures. We start by recalling the basic template for
multi-signatures based on the Schnorr identification scheme [36]. Let G be a
group of prime order p with generator g. We explain the template using the vector
space homomorphism F : x 7→ gx mapping from Zp to G, and write both domain
and range additively. In a first approach to get a multi-signature scheme, we let
each signer i with secret key ski sample a random ri ∈ Zp, and send Ri := F(ri)
to all other signers. Then, an aggregated R is computed as R =

∑
iRi. From

this R, signers derive challenges ci using a random oracle. Then, each signer
computes a response si = ciski+ri and sends this response. Finally, the signature
contains R and the aggregated response s =

∑
i si. Verification is very similar to

the verification of Schnorr signatures. As each signer in this simple two-round
scheme is almost identical to the prover algorithm of the Schnorr identification
scheme, one may hope that this scheme is secure. However, early works already
noted that it is not [5].

While there are concrete attacks against the scheme, for our purposes it is more
important to understand where the security proof fails. The proof fails when we
try to simulate honest signer without knowing its secret key sk1. Following Schnorr
signatures and identification, this would be done by sampling R1 := F(s1)− c1pk1
for random c1 an s1, and then programming the random oracle accordingly at
position R. The problem in the multi-signature setting is that we first have to
output R1, and then the adversary can output the remaining Ri, such that he
has full control over the aggregate R. Thus, the random oracle may already be
defined. Previous works [5,30,8] solve this issue by introducing an additional
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round, in which all signers commit to their Ri using a random oracle. This allows
us to extract all Ri from these commitments in the reduction, and therefore R
has enough entropy to program the random oracle.

A second problem that we encounter in the above approach is the extraction
of a solution from the forgery. Namely, to extract a discrete logarithm of pk1,
we need to rely on rewinding. Some of the well-known schemes [30,8] even use
rewinding multiple times. This leads to security bounds with essentially no useful
quantitative guarantee for concrete security.

Towards A Scheme without Rewinding. To avoid rewinding, our first idea is to
rely on a different homomorphism F. Namely, we borrow techniques from lossy
identification [26,1,27] and use F : x 7→ (gx, hx) for a second generator h ∈ G.
We can then give a non-rewinding security proof for the three-round schemes in
[5,30,8]. Concretely, we first switch pk1 from the range of F to a random element
in G2, using the DDH assumption. Then, we can argue that a forgery is hard
to compute using a statistical argument. We note that this idea is (implicitly)
already present in [5,16]. As we will see, combining it with techniques to avoid
the extra round is challenging.

Towards Two-Round Schemes. To go from a three-round scheme as above to a
two-round scheme, our goal is to avoid the first round. Recall that this round
was needed to simulate R1 using random oracle programming. Our idea to tackle
the simulation problem is a bit different. Namely, going back to the (insecure)
two-round scheme, our goal is to send R1 after we learn c1. If we manage to do
that, we can simulate by setting it as R1 := F(s1) − c1pk1 for random s1. Of
course, just sending R1 after learning c1 should only be possible for the reduction.
Following Damgård [12], this high-level strategy can be implemented using a
trapdoor commitment scheme Com, and sending com1 = Com(ck, R1) as the first
message. The challenges ci are then derived from an aggregated commitment
com using the random oracle. Later, the reduction can open this commitment to
F(s1)− c1pk1 using the trapdoor for commitment key ck. To support aggregation,
the commitment scheme should have homomorphic properties. Note that this
approach has been used in the lattice setting in a recent work [13]. However,
implementing such a commitment scheme for (pairs of) group elements is highly
non-trivial, as we will see. Also, as already pointed out in [13], it is hard to make
this two-round approach work while avoiding rewinding at the same time. The
reason is that a trapdoor commitment scheme can not be statistically binding.
But if we want to make use of the statistical argument from lossy identification
discussed above, we need that R is fixed before the ci are sampled, which requires
statistical binding. With a computationally binding commitment scheme, we
end up in a rewinding reduction (to binding) again. Our first technical main
contribution is to overcome this issue.

Chopstick One: Our Scheme Without Rewinding. Our idea to overcome the
above problem is to demand a dual-mode property from the commitment scheme
Com. Namely, there should be an indistinguishable second way to set up the
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commitment key ck, such that for such a key the scheme is statistically binding.
This does not solve the problem yet, because we require ck to be in trapdoor mode
for simulation, and in binding mode for the final forgery. The solution is to sample
ck in a message-dependent way using another random oracle, which is (for other
reasons) already done in earlier works [14,13]. In this way, we can embed a binding
commitment key in some randomly guessed random oracle queries, and a trapdoor
key in others. Note that this requires a tight multi-key indistinguishability of the
commitment scheme. Assuming we have such a commitment scheme, we end up
with our first construction, which is presented formally in Section 3.2. Of course,
this strategy still has a security loss linear in the number of signing queries due to
the guessing argument, but it avoids rewinding, leading to an acceptable security
bound. In addition, we can implement the approach in a way that supports key
aggregation.

Chopstick Two: Our Fully Tight Scheme. The security loss in our first scheme
results from partitioning random oracle queries into two classes, namely queries
returning binding keys, and queries returning trapdoor keys. To do such a
partitioning in a tight way, we may try to use a Katz-Wang random bit approach
[17]. This simple approach can be used in standard digital signatures. However,
it turns out that it does not work for our case. To see this, recall that following
this approach, we would compute two message-dependent commitment keys

ck0 := H(0,m), ck1 := H(1,m).

Then, for each message, we would embed a binding key in one branch, and a
trapdoor key in the other branch, e.g. ck0 binding and ck1 with trapdoor. In the
signing protocol, we would abort one of the branches pseudorandomly based on
the message. Then we could use the trapdoor branch in the signing, and hope
that the forgery uses the binding branch. However, this strategy crucially relies
on the fact that the aborting happens in a way that is pseudorandom to the
adversary. Otherwise the adversary could always choose the trapdoor branch for
his forgery. While we can implement this in a signature scheme, in our multi-
signature scheme this fails, because all signers must use the same commitment
key to make aggregation possible. At the same time, the aborted branch must
depend on secret data of the simulated signer to remain pseudorandom.

To solve this problem, we observe that the above approach uses a pseudoran-
dom “branch selection” and aborts the other branch. Our solution can be phrased
as a pseudorandom “branch-to-key matching”. Namely, we give each signer two
public keys (pki,0, pki,1). The signing protocol is run in two instances in parallel.
One instance uses ck0, and one uses ck1 as above. More precisely, we commit to
R0 via ck0 and to R1 via ck1. Then we aggregate and determine the challenges
ci,0 and ci,1. However, before sending the response si = (si,0, si,1), each signer
separately determines which key to use in which instance, i.e. it computes

si,0 = ci,0 · xi,bi
+ ri,0, si,1 = ci,1 · xi,1−bi

+ ri,1,

where bi is a pseudorandom bit that each signer i computes independently, and
that will be included in the final signature to make verification possible. This
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decouples the public key that is used from the commitment key that is used. Now
we are ready to discuss the implication of this change. Namely, our reduction
chooses pk1,0 honestly and pk1,1 as a lossy key, i.e. random instead of in the range
of F. Then, in each signing interaction, the reduction can match the honest public
key with the binding commitment key and the lossy public key with the trapdoor
commitment key by setting b1 accordingly. In this way, we can simulate one
branch using the actual secret key, and the other branch using the commitment
trapdoor. For the forgery, we hope that the matching is the other way around,
such that binding commitment key and lossy public key match, which makes
the statistical argument from lossy identification possible. Overall, this approach
leads to our fully tight scheme, presented in Section 3.3.

The Challenge of Instantiating the Commitment. One may observe that we shifted
a lot of the challenges that we encountered into properties of the underlying
commitment scheme. This naturally raises the question if such a commitment
scheme can be found. In fact, constructing this commitment scheme can be
understood as our second technical main contribution.

Let us first explain why it is non-trivial to construct such a scheme. The
main barrier results from the algebraic structure that we demand. Namely, we
need to commit to group elements6 R ∈ G. A naive idea would be to use any
trapdoor commitment scheme, e.g. Pedersen commitments, by first encoding R
in the appropriate message space. However, this would destroy all homomorphic
properties that we need, and we should not forget that we need a dual-mode
property. This brings us to Groth-Sahai commitments [20], which can commit
to group elements. Indeed, these commitments are homomorphic, and have
(indistinguishable from) random keys, such that we can sample them using a
random oracle. They are also dual-mode based on DDH, which allows us to use
the random self-reducibility of DDH to show tight multi-key indistinguishability.
However, the trapdoor property turns out to be the main challenge. To see why this
is problematic, note that the opening information of these commitments typically
contains elements from Zp that are somehow used as exponents. There are
exceptions to this rule, like [18], but they use pairings and the DLIN assumption,
which we aim to avoid. This means that the trapdoor should allow us to sample
exponents, given a group element R to which we want to open the commitment.
This naturally corresponds to having a trapdoor for the discrete logarithm
problem, which we do not have.

Our Solution: Weakly Equivocable Commitments. Our starting point is the
commitment scheme for group elements given in [20]. Namely, commitment keys
correspond to matrices A = (Ai,j)i,j ∈ G2×2, and to commit to a message
R = gr ∈ G with randomness (α, β) ∈ Zp, one computes

com := (C0, C1)t :=
(
Aα1,1 ·A

β
1,2, R ·Aα2,1 ·A

β
2,2

)t
.

6 In the actual construction, we need to commit to pairs of group elements, but we
consider the simpler setting of one group element in this overview.
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That is, setting E = (Ei,j)i,j ∈ Zp such that gEi,j = Ai,j , we can write the
discrete logarithm of com as (0, r)t + E · (α, β)t. In binding mode, matrix E is
a matrix of rank 1, while E has full rank in hiding mode. It is easy to see that
this commitment scheme to group elements is homomorphic. However, we stress
that there is no simple solution to implement a trapdoor for equivocation. To
see this, note that if we want to open a commitment com to a message R′ ∈ G,
we need to output a suitable tuple (α, β). If we knew the discrete logarithm of
com, then we still would need to know the discrete logarithm of R′ to find such
a tuple. The key insight of our trapdoor construction is that we do not need to
be able to open com to any message R′. Instead, it will be sufficient if we can
open it to messages of the form R′ = gs · pkc, where we do not know c when we
fix the commitment com, but we know pk when setting up A. To explain why
this helps, assume we want to find a valid opening (α, β) in this case. Then we
need to satisfy

com =
(
C0
C1

)
=
(

0
gspkc

)
· gE·(α,β)t

.

It seems like we did not make progress, because even if we know the discrete
logarithms of C0, C1, the term pkc is not known in the exponent. Now, our key
idea to solve this is to write and generate A with respect to basis pk in the second
row. Namely, we generate A as

A =
(
A1,1 A1,2
A2,1 A2,2

)
:=
(
gd1,1 gd1,2

pkd2,1 pkd2,2

)
.

In this way, the equation that we need to satisfy becomes(
C0
C1

)
=
(

gd1,1α+d1,2β

gspkc+d2,1α+d2,2β

)
.

Next, we get rid of the term gs by shifting C1 accordingly. Namely, recall that we
can sample s at random long before we learn c. Setting C0 = gτ and C1 = gspkρ
for random τ, ρ, we obtain the equation(

gτ

pkρ
)

=
(

gd1,1α+d1,2β

pkc+d2,1α+d2,2β

)
.

Given the trapdoor D = (di,j)i,j , this can easily be solved for (α, β) by solving
(τ, ρ − c)t = D · (α, β)t. We are confident that such a weak and structured
equivocation property can be used in other applications as well, and formally
define this type of commitment scheme in Section 3.1.

2 Preliminaries

We denote the security parameter by λ ∈ N, and all algorithms get 1λ implicitly
as input. We write x $← S if x is sampled uniformly at random from a finite
set S, and we write x ← D if x is sampled according to a distribution D. We
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write y ← A(x), if y is output from (probabilistic) algorithm A on input x with
uniform coins. To make the coins explicit, we use the notation y = A(x; ρ). The
notation y ∈ A(x) indicates that y is a possible output of A(x). We use standard
asymptotic notation, and the notions of negligible functions, and PPT algorithms.
If G is a security game, we write G ⇒ b to state that G outputs b. In all our
games, numerical variables are implicitly initialized with 0, and lists and sets
are initialized with ∅. We define [K] := {1, . . . ,K}, and denote the Bernoulli
distribution with parameter γ ∈ [0, 1] by Bγ .

Multi-Signatures. We introduce syntax and security for multi-signatures, following
the established security notions in the plain public key model [5]. We will assume
that there is an canonical ordering of given multi-sets, e.g. lexicographically, that
allows us to uniquely encode multi-sets P = {pk1, . . . , pkN}. For this encoding,
we write 〈P〉 throughout the paper. Further, for simplicity of notation, we assume
that the honest public key in our security definition is the entry pk1 in this
multi-set.

Alg MS.Exec(P,S,m)
01 let P = {pk1, . . . , pkN}, S = {sk1, . . . , skN}
02 for i ∈ [N ] : (pm1,i, St1,i)← Sig0(P, sk,m)
03 M1 := (pm1,1, . . . , pm1,N )
04 for i ∈ [N ] : (pm2,i, St2,i)← Sig1(St1,i,M1)
05 M2 := (pm2,1, . . . , pm2,N )
06 for i ∈ [N ] : σi ← Sig2(St2,i,M2)
07 if ∃i 6= j ∈ [N ] s.t. σi 6= σj : return ⊥
08 return σ := σ1

Fig. 1. The algorithm MS.Exec for a (two-round) multi-signature scheme MS =
(Setup,Gen, Sig,Ver), representing an honest execution of the signing protocol Sig.

Definition 1 (Multi-Signature Scheme). A (two-round) multi-signature
scheme is a tuple of PPT algorithms MS = (Setup,Gen,Sig,Ver) with the follow-
ing syntax:
– Setup(1λ)→ par takes as input the security parameter 1λ and outputs global
system parameters par. We assume that par implicitly defines sets of public
keys, secret keys, messages and signatures, respectively. All algorithms related
to SIG take at least implicitly par as input.

– Gen(par) → (pk, sk) takes as input system parameters par, and outputs a
public key pk and a secret key sk.

– Sig = (Sig0,Sig1,Sig2) is split into three algorithms:
• Sig0(P, sk,m) → (pm1, St1) takes as input a multi-set P = {pk1, . . . ,

pkN} of public keys, a secret key sk, and a message m, and outputs a
protocol message pm1 and a state St1.
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• Sig1(St1,M1)→ (pm2, St2) takes as input a state St1 and a tupleM1 =
(pm1,1, . . . , pm1,N ) of protocol messages, and outputs a protocol message
pm2 and a state St2.

• Sig2(St2,M2) → σi takes as input a state St2 and a tuple M2 =
(pm2,1, . . . , pm2,N ) of protocol messages, and outputs a signature σ.

– Ver(P,m, σ)→ b is deterministic, takes as input a multi-set P = {pk1, . . . ,
pkN} of public keys, a message m, and a signature σ, and outputs a bit
b ∈ {0, 1}.

We require that MS is complete, i.e. for all par ∈ Setup(1λ), all N = poly(λ), all
(pkj , skj) ∈ Gen(par) for j ∈ [N ], and all messages m, we have

Pr
[
Ver(P,m, σ) = 1

∣∣∣∣P = {pk1, . . . , pkN},S = {sk1, . . . , skN},
σ ← MS.Exec(P,S,m)

]
= 1,

where algorithm MS.Exec is defined in Figure 1.

Definition 2 (Key Aggregation). A multi-signature scheme MS = (Setup,
Gen,Sig,Ver) is said to support key aggregation, if the algorithm Ver can be split
into two deterministic polynomial time algorithms Agg,VerAgg with the following
syntax:
– Agg(P) → p̃k takes as input a multi-set P = {pk1, . . . , pkN} of public keys
and outputs an aggregated key p̃k.

– VerAgg(p̃k,m, σ)→ b is deterministic, takes as input an aggregated key p̃k, a
message m, and a signature σ, and outputs a bit b ∈ {0, 1}.

Precisely, algorithm Ver(P,m, σ) can be written as VerAgg(Agg(P),m, σ).

Definition 3 (MS-EUF-CMA Security). Let MS = (Setup,Gen,Sig,Ver) be
a multi-signature scheme and consider the game MS-EUF-CMA defined in
Figure 2. We say that MS is MS-EUF-CMA secure, if for all PPT adversaries A,
the following advantage is negligible:

AdvMS-EUF-CMA
A,MS (λ) := Pr

[
MS-EUF-CMAAMS(λ)⇒ 1

]
.

Linear Function Families. To present our constructions in a modular way, we
make use of the abstraction of linear function families. Our definition is close
to previous definitions [23,25,10]. As it is not needed for our instantiations, we
restrict our setting to vector spaces instead of pseudo modules.

Definition 4 (Linear Function Family). A linear function family (LFF) is
a tuple of PPT algorithms LF = (Gen,F) with the following syntax:
– Gen(1λ)→ par takes as input the security parameter 1λ and outputs parame-
ters par. We assume that par implicitly defines the following sets:
• A set of scalars Spar, which forms a field.
• A domain Dpar, which forms a vector space over Spar.
• A range Rpar, which forms vector space over Spar.

We omit the subscript par if it is clear from the context, and naturally denote
the operations of these fields and vector spaces by + and ·.
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Game MS-EUF-CMAAMS(λ)
01 par← Setup(1λ)
02 (pk, sk)← Gen(par)
03 Sig := (Sig0,Sig1,Sig2)
04 (P∗,m∗, σ∗)← ASig(par, pk)
05 if pk /∈ P∗ ∨ (P∗,m∗) ∈ L :
06 return 0
07 return Ver(P∗,m∗, σ∗)

Oracle Sig0(P,m)
08 let P = {pk1, . . . , pkN}
09 if pk1 6= pk : return ⊥
10 L := L ∪ {(P,m)}
11 sid := sid+ 1, ctr[sid] := 1
12 (pm1, St1)← Sig0(P, sk,m)
13 (pm1[sid], St1[sid]) := (pm1, St1)
14 return (pm1[sid], sid)

Oracle Sig1(sid,M1)
15 if ctr[sid] 6= 1 : return ⊥
16 let M1 = (pm1,1, . . . , pm1,N )
17 if pm1[sid] 6= pm1,1 : return ⊥
18 ctr[sid] := ctr[sid] + 1
19 (pm2, St2)← Sig1(St1[sid],M1)
20 (pm2[sid], St2[sid]) := (pm2, St2)
21 return pm2[sid]

Oracle Sig2(sid,M2)
22 if ctr[sid] 6= 2 : return ⊥
23 let M2 = (pm2,1, . . . , pm2,N )
24 if pm2[sid] 6= pm2,1 : return ⊥
25 ctr[sid] := ctr[sid] + 1
26 σ ← Sig2(St2[sid],M2)
27 return σ

Fig. 2. The game MS-EUF-CMA for a (two-round) multi-signature scheme MS and
an adversary A. For simplicity of exposition, we assume that the canonical ordering of
multi-sets is chosen such that pk is always at the first position if it is included.

– F(par, x) → X is deterministic, takes as input parameters par, an element
x ∈ D, and outputs an element X ∈ R. For all parameters par, F(par, ·)
realizes a homomorphism, i.e.

∀s ∈ S, x, y ∈ D : F(par, s · x+ y) = s · F(par, x) + F(par, y).

We omit the input par if it is clear from the context.

We formalize necessary conditions under which a linear function family can be
used to construct so called lossy identification [1]. Our constructions will rely on
such linear function families. We also give a similar definition that captures a
similar property in the context of key aggregation.

Definition 5 (Lossiness Admitting LFF). We say that a linear function
family LF = (Gen,F) is εl-lossiness admitting, if the following properties hold:
– Key Indistinguishability. For any PPT algorithm A, the following advan-
tage is negligible:

Advkeydist
A,LF (λ) := |Pr

[
A(par, X) = 1

∣∣par← Gen(1λ), x $← D, X := F(x)
]

−Pr
[
A(par, X) = 1

∣∣par← Gen(1λ), X $← R
]
|.

– Lossy Soundness. For any unbounded algorithm A, the following probability
is at most εl:

Pr

F(s)− c ·X = R

∣∣∣∣∣∣
par← Gen(1λ), X $← R,
(St,R)← A(par, X),
c $← S, s← A(St, c)

 .
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Definition 6 (Aggregation Lossy Soundness). We say that a linear func-
tion family LF = (Gen,F) satisfies εal-aggregation lossy soundness, if for any
unbounded algorithm A, the following probability is at most εal:

Pr

F(s)− c ·
N∑
i=1

aiXi = R

∣∣∣∣∣∣∣∣
par← Gen(1λ), X1

$← R,
(St, (X2, a2), . . . , (XN , aN ))← A(par, X1),
a1

$← S, (St′, R)← A(St, a1),
c $← S, s← A(St′, c)

 .
Assumptions. We recall the computational assumptions that we need.
Definition 7 (DDH Assumption). Let GGen be an algorithm that on input 1λ
outputs the description of a prime order group G of order p with generator g. We
say that the DDH assumption holds relative to GGen, if for all PPT algorithms
A, the following advantage is negligible:

AdvDDH
A,GGen(λ) := |Pr

[
A(G, p, g, h, ga, ha) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
h $← G, a $← Zp

]
−Pr

[
A(G, p, g, h, ga, gb) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
h $← G, a, b $← Zp

]
|.

In the following, we define an equivalent variant of the DDH assumption, uDDH3.
uDDH3 is the 2-fold U3,1-Matrix-DDH (MDDH) assumption (with terminology in
[15]). By its random self-reducibility [15, Lemma 1], the 2-fold U3,1-Matrix-DDH
(MDDH) assumption (namely, the uDDH3 assumption) is tightly equivalent to the
U3,1-MDDH assumption. By Lemma 1 in [28], U3,1-MDDH is tightly equivalent to
U1-MDDH that is the DDH assumption. Hence, the DDH and uDDH3 assumptions
are tightly equivalent.
Definition 8 (uDDH3 Assumption). Let GGen be an algorithm that on input
1λ outputs the description of a prime order group G of order p with generator
g. We say that the uDDH3 assumption holds relative to GGen, if for all PPT
algorithms A, the following advantage is negligible:

AdvuDDH3
A,GGen(λ) := |Pr

A(G, p, g, (hi,j)i,j∈[3]) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

(G, g, p)← GGen(1λ),
a, b $← Zp,
h1,1, h2,1, h3,1

$← G
h1,2 := ha1,1, h1,3 := hb1,1
h2,2 := ha2,1, h2,3 := hb2,1
h3,2 := ha3,1, h3,3 := hb3,1


−Pr

[
A(G, p, g, (hi,j)i,j∈[3]) = 1

∣∣∣∣ (G, g, p)← GGen(1λ),
∀(i, j) ∈ [3]× [3] : hi,j $← G

]
|.

3 Constructions

In this section, we present our construction of two-round multi-signatures. First,
we give a definition of a special commitment scheme that will be used in both
constructions. Then, we present the constructions in an abstract way. For the
instantiation, we refer to Section 4.
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3.1 Preparation: Special Commitments

In this section we define a special kind of commitment scheme. We will make
use of such a scheme in our constructions of multi-signatures. Before we give the
definition, we explain the desired properties at a high level. First of all, we want
to be able to commit to elements R ∈ R in the range of a given linear function
family. Second, we need the commitment scheme to be homomorphic in both
messages and randomness, allowing us to aggregate commitments during the
signing protocol. Third, we need a certain dual mode property, ensuring that
we can set up keys either in a perfectly hiding or in a perfectly binding mode.
This will allow us to make the commitment key for the forgery binding, while
associating a equivocation trapdoor to the keys used to answer signing queries.
We emphasize that we do not need a full-fledged equivocation feature. This is
because we already know parts of the structure of messages to which we want to
open the commitment. Looking ahead, this is the reason we can instantiate the
commitment in the DDH setting.

Game Q-KEYDISTA0,CMT(λ)
01 par← LF.Gen(1λ), x $← D
02 if (par, x) /∈ Good : return 0
03 for i ∈ [Q] : cki ← BGen(par)
04 β ← A(par, x, (cki)i∈[Q])
05 return β

Game Q-KEYDISTA1,CMT(λ)
06 par← LF.Gen(1λ), x $← D
07 if (par, x) /∈ Good : return 0
08 for i ∈ [Q] : cki $← Kpar
09 β ← A(par, x, (cki)i∈[Q])
10 return β

Fig. 3. The games KEYDIST0,KEYDIST1 for a special commitment scheme CMT
and an adversary A.

Definition 9 (Special Commitment Scheme). Let LF = (LF.Gen,F) be a
linear function family and G = {Gpar},H = {Hpar} be families of subsets of abelian
groups with efficiently computable group operations ⊕ and ⊗, respectively. Let
K = {Kpar} be a family of sets. An (εb, εg, εt)-special commitment scheme for
LF with key space K, randomness space G and commitment space H is a tuple
of PPT algorithms CMT = (BGen,TGen,Com,TCom,TCol) with the following
syntax:
– BGen(par)→ ck takes as input parameters par, and outputs a key ck ∈ Kpar.
– TGen(par, X) → (ck, td) takes as input parameters par, and an element
X ∈ R, and outputs a key ck ∈ Kpar and a trapdoor td.

– Com(ck, R;ϕ) → com takes as input a key ck, an element R ∈ R, and a
randomness ϕ ∈ Gpar, and outputs a commitment com ∈ Hpar.

– TCom(ck, td) → (com, St) takes as input a key ck and a trapdoor td, and
outputs a commitment com ∈ Hpar and a state St.

– TCol(St, c)→ (ϕ,R, s) takes as input a state St, and an element c ∈ S, and
outputs randomness ϕ ∈ Gpar, and elements R ∈ R, s ∈ D.

We omit the subscript par if it is clear from the context.
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Further, the algorithms are required to satisfy the following properties:
– Homomorphism. For all par ∈ LF.Gen(1λ), ck ∈ Kpar, R0, R1 ∈ R and
ϕ0, ϕ1 ∈ G, the following holds:

Com(ck, R0;ϕ0)⊗ Com(ck, R1;ϕ1) = Com(ck, R0 +R1;ϕ0 ⊕ ϕ1).

– Good Parameters. There is a set Good, such that membership to Good can
be decided in polynomial time, and

Pr
[
(par, x) /∈ Good | par← LF.Gen(1λ), x $← D

]
≤ εg,

– Uniform Keys. For all (par, x) ∈ Good, the following distributions are
identical:

{(par, x, ck) | ck $← Kpar} and {(par, x, ck) | (ck, td)← TGen(par, X)}.

– Special Trapdoor Property. For all (par, x) ∈ Good, and all c $← S, the
following distributions T0 and T1 have statistical distance at most εt:

T0 :=

(par, ck, td, x, c, com, tr)

∣∣∣∣∣∣
(ck, td)← TGen(par,F(x))
(com, St)← TCom(ck, td),
tr← TCol(St, c)


T1 :=

(par, ck, td, x, c, com, tr)

∣∣∣∣∣∣∣∣
(ck, td)← TGen(par,F(x))
r $← D, R := F(r), ϕ $← G,
com := Com(ck, R;ϕ),
s := c · x+ r, tr := (ϕ,R, s)


– Multi-Key Indistinguishability. For every Q = poly(λ) and any PPT
algorithm A, the following advantage is negligible:

AdvQ-keydist
A,CMT (λ) := |Pr

[
Q-KEYDISTA0,CMT(λ)⇒ 1

]
−Pr

[
Q-KEYDISTA1,CMT(λ)⇒ 1

]
|,

where games KEYDIST0,KEYDIST1 are defined in Figure 3.
– Statistically Binding. There exists some (unbounded) algorithm Ext, such
that for every (unbounded) algorithm A the following probability is at most
εb:

Pr

Com(ck, R′;ϕ′) = com
∧ R 6= R′

∣∣∣∣∣∣
par← LF.Gen(1λ),
ck← BGen(par), (com, St)← A(ck),
R← Ext(ck, com), (R′, ϕ′)← A(St)

 .
3.2 Our Construction with Key Aggregation

In this section, we construct a two-round multi-signature scheme with key ag-
gregation. Although the scheme will not be tight, the security proof will not use
rewinding, leading to an acceptable security loss. For our scheme, we need a
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lossiness admitting linear function family LF = (LF.Gen,F). It should also satisfy
aggregation lossy soundness. Further, let CMT = (BGen,TGen,Com,TCom,TCol)
be an (εb, εg, εt)-special commitment scheme for LF with key space K randomness
space G and commitment spaceH. We make use of random oracles H : {0, 1}∗ → K,
Ha : {0, 1}∗ → S, and Hc : {0, 1}∗ → S. We give a verbal description of our scheme
MSa[LF,CMT]. Formally, the scheme is presented in ??.

Setup and Key Generation. The public parameters of the scheme are par ←
LF.Gen(1λ) defining the linear function F = F(par, ·). To generate a key (algorithm
Gen), a user samples sk := x $← D. The public key is pk := X := F(x).

Key Aggregation. For N users with public keys P = {pk1, . . . , pkN}, the aggre-
gated public key p̃k is computed (by algorithm Agg) as

p̃k := X̃ :=
N∑
i=1

ai ·Xi,

where pki = Xi and ai := Ha(〈P〉, pki) for each i ∈ [N ].

Signing Protocol. Suppose N users with public keys P = {pk1, . . . , pkN} want to
sign a message m ∈ {0, 1}∗. We describe the signing protocol (algorithms Sig0,
Sig1,Sig2) from the perspective of the first user, which holds a secret key sk1 = x1
for public key pk1 = X1.

1. Commitment Phase. The user derives the aggregated public key p̃k as
described above. Then, it derives a commitment key ck := H(p̃k,m) de-
pending on the message. The user samples an element r1

$← D and sets
R1 := F(r1). Next, it commits to R1 by sampling ϕ1

$← G and setting
com1 := Com(ck, R1;ϕ1). Finally, it sends pm1,1 := com1 to all users.

2. Response Phase. LetM1 = (pm1,1, . . . , pm1,N ) be the list of messages output
in the commitment phase. Here, message pm1,i is sent by user i and has the
form pm1,i = comi. With this notation, the user aggregates the commitments
via com :=

⊗
i∈[N ] comi. It computes the challenge c and coefficient a1 via

c := Hc(p̃k, com,m) and a1 := Ha(〈P〉, pk1). Then, it computes the response
s1 as s1 := c · a1 · x1 + r1.
Finally, the user sends pm2,1 := (s1, ϕ1) to all users.

3. Aggregation Phase. Let M2 = (pm2,1, . . . , pm2,N ) be the list of messages
output in the response phase. Here, message pm2,i is sent by user i and has
the form pm2,i = (si, ϕi). To compute the final signature, users aggregate
the responses and commitment randomness as follows:

s :=
∑
i∈[N ]

si, ϕ :=
⊕
i∈[N ]

ϕi.

They output the final signature σ := (com, s, ϕ).
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Verification. For verification (algorithm Ver), let P = {pk1, . . . , pkN} be a multi-
set of public keys, m ∈ {0, 1}∗ be a message, and σ = (com, s, ϕ) be a signature. To
verify σ, we determine the aggregated public key p̃k = X̃ as above. We reconstruct
the commitment key ck := H(p̃k,m), and the challenge c := Hc(p̃k, com,m). Then,
we output 1 if and only if the following equation holds:

com = Com
(
ck,F(s)− c · X̃;ϕ

)
.

Completeness easily follows from the homomorphic properties of CMT and F. For
a similar calculation, we refer to the proof of Lemma 2.

Lemma 1. Let LF be a linear function family. Let CMT be a (εb, εg, εt)-special
commitment scheme for LF. Then MSa[LF,CMT] is complete.

Theorem 1. Let LF be a εl-lossiness admitting linear function family with εal-
aggregation lossy soundness. Let CMT be a (εb, εg, εt)-special commitment scheme
for LF. Further, let H : {0, 1}∗ → K,Ha : {0, 1}∗ → S, and Hc : {0, 1}∗ → S be
random oracles. Then MSa[LF,CMT] is MS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QH, QHa , QHc , QS
queries to oracles H,Ha,Hc,Sig0, respectively, there are PPT algorithms B,B′
with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,MSa[LF,CMT](λ) ≤ εg + 4Q2

Sεt + 4QSεg + 4QSQHQHc
εb

+ 4QS
|R|

+ 4QSQHa
QHc

|S|
+ 4QSQHa

QHc
εal

+ 4QS
(

AdvQH-keydist
B,CMT (λ) + Advkeydist

B′,LF (λ)
)
.

We postpone the proof to the full version [34].

3.3 Our Tight Construction

In this section, we present a tightly secure two-round multi-signature scheme
MSt[LF,CMT] = (Setup,Gen,Sig,Ver). Let us first describe the building blocks
that we need. We make use of a lossiness admitting linear function family LF =
(LF.Gen,F). Also, let CMT = (BGen,TGen,Com,TCom,TCol) be an (εb, εg, εt)-
special commitment scheme for LF with key space K randomness space G and
commitment spaceH. We make use of random oracles H : {0, 1}∗ → K, Hb : {0, 1}∗
→ {0, 1}, and Hc : {0, 1}∗ → S. We give a verbal description of the scheme.
Formally, the scheme is presented in ??.

Setup and Key Generation. The public parameters of the scheme are par ←
LF.Gen(1λ). They define the linear function F = F(par, ·). To generate a key
(algorithm Gen), a user samples x0, x1

$← D and a seed seed $← {0, 1}λ. Then, it
sets

sk := (x0, x1, seed), pk := (X0, X1) := (F(x0),F(x1)).
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Signing Protocol. Suppose N users with public keys P = {pk1, . . . , pkN} want
to sign a message m ∈ {0, 1}∗. We describe the signing protocol (algorithms
Sig0,Sig1,Sig2) from the perspective of the first user, which holds a secret key
sk1 = (x1,0, x1,1, seed1) for public key pk1 = (X1,0, X1,1).

1. Commitment Phase. The user derives commitment keys ck0 := H(0, 〈P〉,m),
ck1 := H(1, 〈P〉,m) depending on the message. Then, the user computes a
bit b1 := Hb(seed1, 〈P〉,m). It samples two elements r1,0, r1,1

$← D and sets

R1,0 := F(r1,0), R1,1 := F(r1,1).

Next, it commits to the resulting elements by sampling ϕ1,0, ϕ1,1
$← G and

setting

com1,0 := Com(ck0, R1,0;ϕ1,0), com1,1 := Com(ck1, R1,1;ϕ1,1).

Finally, it sends pm1,1 := (b1, com1,0, com1,1) to all users.
2. Response Phase. LetM1 = (pm1,1, . . . , pm1,N ) be the list of messages output

in the commitment phase. Here, message pm1,i is sent by user i and has
the form pm1,i = (bi, comi,0, comi,1). With this notation, the user sets B :=
b1 . . . bN ∈ {0, 1}N . Then, it aggregates the commitments via

com0 :=
⊗
i∈[N ]

comi,0, com1 :=
⊗
i∈[N ]

comi,1.

It computes user specific challenges via

c1,0 := Hc(pk1, com0,m, 〈P〉, B, 0), c1,1 := Hc(pk1, com1,m, 〈P〉, B, 1),

and the responses as

s1,0 := c1,0 · x1,b1 + r1,0, s1,1 := c1,1 · x1,1−b1 + r1,1.

Observe that the bit b1 determines the link between the responses, challenges,
and public keys. Finally, the user sends pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1) to all
users.

3. Aggregation Phase. Let M2 = (pm2,1, . . . , pm2,N ) be the list of messages
output in the response phase. Here, message pm2,i is sent by user i and has
the form pm2,i = (si,0, si,1, ϕi,0, ϕi,1). To compute the final signature, users
aggregate the responses and commitment randomness as follows:

s0 :=
∑
i∈[N ]

si,0, s1 :=
∑
i∈[N ]

si,1, ϕ0 :=
⊕
i∈[N ]

ϕi,0, ϕ1 :=
⊕
i∈[N ]

ϕi,1.

They define σ0 := (com0, ϕ0, s0), σ1 := (com1, ϕ1, s1) and output the final
signature σ := (σ0, σ1, B).
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Verification. For verification (algorithm Ver), let P = {pk1, . . . , pkN} be a multi-
set of public keys, m ∈ {0, 1}∗ be a message, and σ = (σ0, σ1, B) be a signature.
To verify σ, we write B = b1 . . . bN , σ0 = (com0, ϕ0, s0) and σ1 = (com1, ϕ1, s1).
Further, we write the public keys pki as pki = (Xi,0, Xi,1). We reconstruct the
commitment keys ck0 := H(0, 〈P〉,m), ck1 := H(1, 〈P〉,m), and the user specific
challenges

ci,0 := Hc(pki, com0,m, 〈P〉, B, 0), ci,1 := Hc(pki, com1,m, 〈P〉, B, 1).

Then, we output 1 if and only if the following two equations hold:

com0 = Com
(

ck0,F(s0)−
N∑
i=1

ci,0 ·Xi,bi
;ϕ0

)

com1 = Com
(

ck1,F(s1)−
N∑
i=1

ci,1 ·Xi,1−bi
;ϕ1

)
.

Lemma 2. Let LF be a linear function family. Let CMT be a (εb, εg, εt)-special
commitment scheme for LF. Then MSt[LF,CMT] is complete.

The proof is an easy calculation and is given in the full version [34].

Theorem 2. Let LF be a εl-lossiness admitting linear function family. Let CMT
be a (εb, εg, εt)-special commitment scheme for LF. Further, let H : {0, 1}∗ → K,
Hb : {0, 1}∗ → {0, 1},Hc : {0, 1}∗ → S be random oracles. Then MSt[LF,CMT] is
MS-EUF-CMA secure.

Concretely, for any PPT algorithm A that makes at most QH, QHb
, QHc , QS

queries to oracles H,Hb,Hc,Sig0, respectively, there are PPT algorithms B,B′
with T(B) ≈ T(A),T(B′) ≈ T(A) and

AdvMS-EUF-CMA
A,MSt[LF,CMT](λ) ≤ QHb

2λ + 4εg + 2QSεt + 2QHQHc
εb + 2QHc

εl

+ 2 · AdvQH-keydist
B,CMT (λ) + 2 · Advkeydist

B′,LF (λ).

Proof. Set MS := MSt[LF,CMT]. Let A be a PPT algorithm as in the statement.
We prove the claim via a sequence of games G0-G8. The games are formally
presented in ??????, and we describe and analyze them verbally. For each game
Gi, i ∈ [8], we define

Advi := Pr [Gi ⇒ 1].

Game G0:We defineG0 to be exactly as MS-EUF-CMAAMS, with the following
modification: The adversary A does not get access to oracle Sig2. Note that in
MS, algorithm Sig2 does not make any use of the secret key or a secret state
and can be publicly run using the messages output in Sig0 and Sig1. Therefore,
for any adversary in the original game, there is an adversary in game G0 that
simulates oracle Sig2 and has the same advantage.
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Before we proceed, let us describe game G0 in more detail to fix some
notation. In the beginning, the game samples parameters par← LF.Gen(1λ). It
also samples a public key pk∗ = (X1,0, X1,1) = (F(x1,0),F(x1,1)) for a secret key
sk∗ = (x1,0, x1,1, seed1) with x1,0, x1,1

$← D, seed1
$← {0, 1}λ. Then, it runs A on

input par, pk∗ with access to the following oracles:
– Signing oracles Sig0,Sig1: The oracles simulate algorithms Sig0 and Sig1

on secret key sk∗, respectively. Here, A can submit a query Sig0(P,m)
to start a new interaction in which message m is signed for public keys
P = {pk1, . . . , pkN}. We assume that pk∗ = pk1, and the oracle adds (P,m)
to a list L.

– Random oracles H,Hb,Hc: The random oracles H,Hc are simulated honestly
via lazy sampling. To this end, the game holds maps h, hc that map the inputs
of the respective random oracles to their outputs. Random oracle Hb, however,
is simulated by forwarding the query to an internal oracle H̄b with the same
interface. This oracle holds a similar map ĥb, is kept internally by the game,
and is not provided to the adversary. Looking ahead, this indirection allows
us to distinguish queries to Hb that some of the following games issue from
the queries that the adversary issues.

In the end, A outputs a forgery (P∗,m∗, σ∗). The game outputs 1 if and only if
pk∗ ∈ P∗,(P∗,m∗) /∈ L, and Ver(P∗,m∗, σ∗) = 1. Without loss of generality, we
assume that the public key pk∗ is equal to pk1 for P∗ = {pk1, . . . , pkN}. To fix
notation, write σ∗ = (σ∗0 , σ∗1 , B∗), B∗ = b∗1 . . . b

∗
N and σ∗0 = (com∗0, ϕ∗0, s∗0), σ∗1 =

(com∗1, ϕ∗1, s∗1). Clearly, we have

Adv0 = AdvMS-EUF-CMA
A,MSt[LF,CMT](λ).

Game G1: In game G1, we add an abort. Namely, the game sets bad := 1, and
aborts, if the adversary makes a random oracle query Hb(seed1, ·). Note that this
does not include the queries that are made by the game itself, as these are done
using oracle H̄b directly. As the only information about seed1 that A gets are the
values of Hb(seed1, ·), and seed1 is sampled uniformly at random from {0, 1}λ,
we can upper bound the probability of bad by QHb

/2λ. Therefore, we have

|Adv0 − Adv1| ≤ Pr [bad] ≤ QHb

2λ .

Game G2: In gameG2, we restrict the winning condition. Namely, the game out-
puts 0, if the forgery (P∗,m∗, σ∗) output byA satisfies b∗1 6= 1−H̄b(seed1, 〈P∗〉,m∗).
Recall that b∗1 is the bit related to pk1 = pk∗ that is included in the signature σ∗.
Assuming G1 outputs 1, we know that (P∗,m∗) /∈ L. Therefore, A can only get
information about the bit H̄b(seed1, 〈P∗〉,m∗), if it queries the wrapper random
oracle Hb at this position. However, in this case G1 would set bad := 1 and abort.
Thus, the view of A is independent of bit H̄b(seed1, 〈P∗〉,m∗). We obtain

Adv2 = Pr [G2 ⇒ 1] = Pr
[
G1 ⇒ 1 ∧ b∗1 = 1− H̄b(seed1, 〈P∗〉,m∗)

]
= 1

2Adv1.
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Game G3: In game G3, the game aborts if (par, x1,1) /∈ Good, where Good is as
in the definition of a special commitment scheme. It is clear that

|Adv2 − Adv3| ≤ Pr [(par, x1,1) /∈ Good] ≤ εg.

Game G4: In game G4, we change the behavior of random oracle H. Recall
that before, to answer a query H(b, 〈P〉,m) for which the hash value has not
been defined, a key ck $← K was sampled and returned. In this game, the oracle
instead distinguishes two cases. In the first case, if b = 1 − H̄b(seed1, 〈P〉,m),
the game samples (ck, td) ← TGen(par, X1,1). It also stores tr[〈P〉,m] := td,
where tr is a map. In the second case, if b = H̄b(seed1, 〈P〉,m), it samples
ck← BGen(par). In both cases, ck is returned as before. To see thatG3 andG4 are
indistinguishable, we first note that for the first case, the distribution of ck stays
the same. This is because we can assume (par, x1,1) ∈ Good due to the previous
change. The keys returned in the second case are indistinguishable by the multi-
key indistinguishability of CMT. More precisely, we give a reduction B against
the multi-key indistinguishability of CMT that interpolates between G3 and G4.
The reduction gets as input par, x1,1 and QH commitment keys ck1, . . . , ckQH . It
simulates G3 for A with par while embedding the commitment keys in random
oracle responses for queries H(b, 〈P〉,m) with b = 1 − H̄b(seed1, 〈P〉,m). In the
end, it outputs whatever the game outputs7 . We have

|Adv3 − Adv4| ≤ AdvQH-keydist
B,CMT (λ).

Game G5: In game G5, we change the signing oracles Sig0,Sig1. Our goal is
to eliminate the use of the secret key component x1,1. Recall that in previous
games, oracle Sig0 derived a bit b1 := H̄b(seed1, 〈P〉,m) and sampled random
r1,0, r1,1 and ϕ1,0, ϕ1,1. Then, these were used with to compute commitments
com1,0, com1,1, which where then output together with b1. Then, in oracle Sig1 the
values s1,0, s1,1 were computed using the secret keys x1,b1 , x1,1−b1 , respectively.

In this game, we change how the commitment ϕ1,1−b1 and the value s1,1−b1

is computed to eliminate the dependency on x1,1. Namely, in oracle Sig0, we
do not compute r1,1−b1 , ϕ1,1−b1 and R1,1−b1 anymore. Instead, we compute the
commitment com1,1−b1 via

td := tr[〈P〉, ,m], (com1,1−b1 , St)← TCom(ck1−b1 , td).

Note that ck1−b1 = H(1− b1, 〈P〉,m), and therefore ck1−b1 and td were generated
using TGen(par, X1,1) due to the change in G4. Later, in oracle Sig1, we derive

(ϕ1,1−b1 , R1−b1 , s1,1−b1)← TCol(St, c1,1−b1).

Then, message pm2,1 := (s1,0, s1,1, ϕ1,0, ϕ1,1) is output as before.

7 Note that at this point, it was important that we introduced the oracle H̄b. This
is because otherwise, if we queried Hb(seed1, ·) in oracle H, game G3 would always
output 0 and the games would not be indistinguishable.
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We can easily argue indistinguishability by using the special trapdoor property
of CMT QS0 many times and get

|Adv4 − Adv5| ≤ QSεt.

Game G6: Here we do not abort if (par, x1,1) /∈ Good anymore. That is, we
revert the change introduced in G3. It is clear that

|Adv5 − Adv6| ≤ Pr [(par, x1,1) /∈ Good] ≤ εg.

Game G7: In game G7, we change how the public key component X1,1 is
computed. Recall that before, X1,1 is computed as X1,1 := F(x1,1) for x1,1

$←
x1,1

$← D. Also, note that due to the previous changes, the value x1,1 is not used
anymore. In G7, we sample X1,1

$← R. A direct reduction B′ against the key
indistinguishability of the lossiness admitting linear function family LF shows
indistinguishability of G6 and G7. Concretely, B′ gets par and X1,1 as input, and
simulates G6 for A. In the end, it outputs whatever the game outputs. We have

|Adv6 − Adv7| ≤ Advkeydist
B′,LF (λ).

Game G8: In game G8, we change how Hc is executed. Concretely, consider
a query Hc(pk, com,m, 〈P〉, B, b) with pk = pk∗ and b = H̄b(seed1, 〈P〉,m).
For these queries, the game now runs R ← Ext(H(b, 〈P〉,m), com) and stores
r[com,m, 〈P〉, B] := R, where r is another map. Here, Ext is the (unbounded)
extractor for the statistical binding property of CMT. The rest of the oracle
does not change. Note that for b of this form, the value ck = H(b, 〈P〉,m)
is sampled as ck ← BGen(par) (cf. G4). We also slightly change the winning
condition of the game. Namely, in G8, consider the forgery (P∗,m∗, σ∗) with
σ∗ = (σ∗0 , σ∗1 , B∗), B∗ = b∗1 . . . b

∗
N , and let R∗0, R∗1 ∈ R be the values that

are computed during the execution of Ver(P∗,m∗, σ∗). The game returns 0
if R∗1−b∗1 6= r[com∗1−b∗1 ,m

∗, 〈P∗〉, B∗].
We claim that indistinguishability of G7 and G8 can be argued using the

statistical binding property of CMT. To see this, assume that G7 outputs 1.
Then, due to the change in G2, we know that 1 − b∗1 = H̄b(seed1, 〈P∗〉,m∗).
Therefore, in the corresponding query Hc(pk1, com∗1−b∗1 ,m

∗, 〈P∗〉, B∗, 1− b∗1) al-
gorithm Ext was run and the value r[com∗1−b∗1 ,m

∗, 〈P∗〉, B∗] is defined. Next,
by definition of Ver, we have Com(ck1−b∗1 , R

∗
1−b∗1

;ϕ∗1−b∗1 ) = com∗1−b∗1 . Therefore,
if R∗1−b∗1 6= r[com∗1−b∗1 ,m

∗, 〈P∗〉, B∗], we have a contradiction to the statistical
binding property of CMT. More precisely, we sketch an (unbounded) reduction
from the statistical binding property. Namely, this reduction gets as input par and
a commitment key ck∗. Then, the reduction guesses iH $← [QH] and iHc

$← [QHc
].

It simulates game G8 honestly, except for query iH to random oracle H and query
iHc to random oracle Hc. If it had to sample a ck ← BGen(par) in the former
query, it instead responds with ck∗. Similarly, if it had to run Ext in the latter
query, it outputs com to the binding experiment. If these queries are the queries
of interest (i.e. query iH was used to derive ck1−b∗1 and query iHc

was used to
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derive c∗1,1−b∗1 ) for the forgery, and R∗1−b∗1 6= r[com∗1−b∗1 ,m
∗, 〈P∗〉, B∗], then the

reduction outputs R∗1−b∗1 ;ϕ∗1−b∗1 . Otherwise, it outputs ⊥. It is easy to see that if
the reduction guesses the correct queries and the bad event separating G7 and
G8 occurs, then it breaks the statistical binding property. As the view of A is as
in G8, and independent of (iH, iHc

), we obtain

|Adv7 − Adv8| ≤ QHQHc
εb.

Finally, we use lossy soundness of LF to bound the probability that G8
outputs 1. To do that, we give an unbounded reduction from the lossy soundness
experiment, which is as follows.
– The reduction gets par, X1,1 as input. It samples î $← [QHc ]. Then, it simulates
G8 honestly until A outputs a forgery, except for query î to oracle Hc.

– Consider this query Hc(pk, com,m, 〈P〉, B, b). The reduction aborts its ex-
ecution, if the hash value for this query is already defined, or if pk 6=
pk∗ ∨ b 6= H̄b(seed1, 〈P〉,m). Otherwise, it runs R̂ ← Ext(H(b, 〈P〉,m), com)
as in G8. Then, it parses P = {pk1, . . . , pkN} and B = b1 . . . bN . It parses
pki = (Xi,0, Xi,1) for each i ∈ [N ], and it sets ci,b = Hc(pki, com,m, 〈P〉, B, b)
for each i ∈ [N ] \ {1}. Next, it defines

R := R̂+
N∑
i=2

ci,b ·Xi,b̂i
,

where b̂i := (b+ bi) mod 2. It outputs R to the lossy soundness game and
obtains a value c in return. Then, it sets hc[pk, com,m, 〈P〉, B, b] := c and
continues the simulation as in G8.

– When the reduction gets the forgery (P∗,m∗, σ∗) from A, it runs all the
verification steps in G8. Additionally, it checks if the value Hc(pk1, com∗1−b∗1 ,
m∗, 〈P∗〉, B∗, 1− b∗1) was defined during query î to Hc. If this is not the case,
it aborts its execution. Otherwise, it returns s := s∗1−b∗1

to the lossy soundness
game.

It is clear that the view of A is independent of the index î until a potential abort
of the reduction. Also, if the reduction does not abort its execution, it perfectly
simulates game G8 for A. Thus, it remains to show that if G8 outputs 1, then
the values output by the reduction satisfy F(s) − c · X1,1 = R. Once we have
shown this, it follows that

Adv8 ≤ QHc
εl.

To show the desired property, assume that the reduction does not abort and
G8 outputs 1. Then, define b̂∗i = (1− b∗1 + bi) mod 2 for all i ∈ [N ]. Note that
b̂∗i = 1. Due to the change in G2, we have

b = 1− b∗1 = H̄b(seed1, 〈P∗〉,m∗).

As the reduction guessed the right query and does not abort, we have

c∗1,1−b∗1 = Hc(pk1, com∗1−b∗1 ,m
∗, 〈P∗〉, B∗, 1− b∗1) = c.
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Due to the change in G8, we have

F(s∗1−b∗1 )−
N∑
i=1

c∗i,1−b∗1 ·Xi,b̂∗
i

= R∗1−b∗1 = R̂.

Therefore, we have

F(s)− c ·X1,1 = F(s∗1−b∗1 )− c∗1,1−b∗1 ·X1,1

= F(s∗1−b∗1 )−
N∑
i=1

c∗i,1−b∗1 ·Xi,b̂∗
i

+
N∑
i=2

c∗i,1−b∗1 ·Xi,b̂∗
i

= R̂+
N∑
i=2

c∗i,1−b∗1 ·Xi,b̂∗
i

= R.

Concluded. ut

4 Instantiation

In this section, we show how to instantiate the building blocks that are needed
for our constructions in the previous section. Concretely, we give a linear function
family and a commitment scheme based on the DDH assumption. Then, we also
discuss the efficiency of the resulting multi-signature schemes.

4.1 Linear Function Family

We make use of the well-known [27] linear function family LFDDH = (Gen,F)
based on the DDH assumption. Precisely, let GGen be an algorithm that on input
1λ outputs the description of a prime order group G of order p with generator g.
Then, Gen runs GGen and outputs8 par := (g, h) ∈ G2 for h $← G. Then, the set
of scalars, domain, range, and function F(par, ·) are given as follows:

S := Zp, D := Zp, R := G×G, F(par, x) := (gx, hx).

It is easily verified that this constitutes a linear function family. Due to space
limitation, the proofs of the following two lemmas are postponed to the full
version [34].
Lemma 3. Assuming that the DDH assumption holds relative to GGen, the linear
function family LFDDH is εl-lossiness admitting, with εl ≤ 3/p. Concretely, for
any PPT algorithm A there is a PPT algorithm B with T(B) ≈ T(A) and

Advkeydist
A,LFDDH

(λ) ≤ AdvDDH
B,GGen(λ).

Lemma 4. Linear function family LFDDH satisfies εal-aggregation lossy sound-
ness with εal ≤ 4/p.

8 We omit the description of G from par to make the presentation concise.
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4.2 Commitment Scheme

We give a special trapdoor commitment scheme CMTDDH = (BGen,TGen,Com,
TCom,TCol) for the linear function family LFDDH. For given parameters of LFDDH,
the commitment scheme has key space K := G3×3 and message space D = G×G.
It has randomness space G = Z3

p and commitment space H = G3. Both are
associated with the natural componentwise group operations. We describe the
algorithms of the scheme verbally.
– BGen(par)→ ck: Sample g1, g2, g3

$← G, and a, b $← Zp, and set

ck := A :=

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 :=

g1 g
a
1 g

b
1

g2 g
a
2 g

b
2

g3 g
a
3 g

b
3

 ∈ G3×3.

– TGen(par, X = (X1, X2))→ (ck, td): Sample di,j $← Zp for all (i, j) ∈ [3]× [3]
and set

ck := A :=

A1,1 A1,2 A1,3
A2,1 A2,2 A2,3
A3,1 A3,2 A3,3

 :=

 gd1,1 gd1,2 gd1,3

X
d2,1
1 X

d2,2
1 X

d2,3
1

X
d3,1
2 X

d3,2
2 X

d3,3
2

 ∈ G3×3.

Next, set

td := (D, X1, X2), for D :=

d1,1 d1,2 d1,3
d2,1 d2,2 d2,3
d3,1 d3,2 d3,3

 ∈ Z3×3
p .

– Com(ck, R = (R1, R2);ϕ)→ com: Let ϕ = (α, β, γ) ∈ Z3
p. Compute

com := (C0, C1, C2), for

C0
C1
C2

 :=

 Aα1,1 ·A
β
1,2 ·A

γ
1,3

R1· Aα2,1 ·A
β
2,2 ·A

γ
2,3

R2· Aα3,1 ·A
β
3,2 ·A

γ
3,3

 .

– TCom(ck, td)→ (com, St): Sample τ, ρ1, ρ2, s
$← Zp. Set St := (td, τ, ρ1, ρ2, s)

and compute

com := (C0, C1, C2), for

C0
C1
C2

 :=

 gτ

Xρ1
1 · gs

Xρ2
2 · hs

 .

– TCol(St, c) → (ϕ,R, s): Set R := (R1, R2) :=
(
gs ·X−c1 , hs ·X−c2

)
. Then, if

D is not invertible, return ⊥. Otherwise, compute

ϕ := (α, β, γ), for

αβ
γ

 = D−1 ·

 τ
ρ1 + c
ρ2 + c

 .
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Theorem 3. If the DDH assumption holds relative to GGen, then CMTDDH is a
(εb, εg, εt)-special commitment scheme for LFDDH, with

εb ≤ 1/p, εg ≤ 2/p, εt ≤ 6/p.

Concretely, for any PPT algorithm A, there is a PPT algorithm B with T(B) ≈
T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ AdvuDDH3
B,GGen(λ) + 6

p
.

The homomorphism property is trivial to check. Next, we define the set Good as
in the definition of a special commitment scheme. Namely, we define

Good = {((g, h), x) ∈ G2 × Zp | (g, h) ∈ LF.Gen(1λ) ∧ h 6= g0 ∧ x 6= 0}.

Clearly, for (g, h) ← LF.Gen(1λ) and x $← Zp, the probability that ((g, h), x) /∈
Good is at most 2/p. Therefore, εg ≤ 2/p. In the following we also need the
following observation: If ((g, h), x) ∈ Good, then the elements g, h, gx, hx are all
generators of G. The rest of proof of the theorem is given in separate lemmas.

Lemma 5. CMTDDH satisfies the uniform keys property of an (εb, εg, εt)-special
commitment scheme for LFDDH.

Proof. Let (par, x) ∈ Good for par = (g, h). Let (X1, X2) = F(x) = (gx, hx).
Consider the distribution of ck for (ck, td)← TGen(par, (X1, X2)). Then ck has
the form  gd1,1 gd1,2 gd1,3

X
d2,1
1 X

d2,2
1 X

d2,3
1

X
d3,1
2 X

d3,2
2 X

d3,3
2

 ∈ G3×3

for uniformly random and independent exponents di,j ∈ Zp (i, j ∈ [3]). As
g,X1, X2 are generators, we see that ck is uniform over G3×3, proving the claim.

ut

Lemma 6. CMTDDH satisfies the special trapdoor property of an (εb, εg, εt)-
special commitment scheme for LFDDH, where εt ≤ 6/p.

Proof. Let ((g, h), x) ∈ Good and c ∈ Zp. Set (X1, X2) := (gx, hx). We have to
show that the distributions T0 and T1 of tuples

((g, h),A,D, X1, X2, x, c, (C0, C1, C2), α, β, γ,R1, R2, s)

are identical. Here, we have (A,D, X1, X2)← TGen(par, (X1, X2)). The remain-
ing components in T0 are generated via

((C0, C1, C2), St)← TCom(ck, td), ((α, β, γ), (R1, R2), s)← TCol(St, c),

and in T1 via

r $← Zp, R1 := gr, R2 := hr, s := c · x+ r

α, β, γ $← Zp, (C0, C1, C2) := Com(A, (R1, R2); (α, β, γ)).
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First, we make the assumption that in both distributions, the matrix D has full
rank. The probability that this does not hold can easily be bounded by 3/p.

We can equivalently9 write T1 as

s $← Zp, R1 := gs ·X−c1 , R2 := hs ·X−c2 ,

α, β, γ $← Zp, (C0, C1, C2) := Com(A, (R1, R2); (α, β, γ)).

Using that D is full rank and g,X1, X2 are generators of G, we see that in
this distribution, (C0, C1, C2) is uniform over G3. Therefore, this is identically
distributed to the distribution that we get from

s $← Zp, R1 := gs ·X−c1 , R2 := hs ·X−c2 ,

τ, ρ1, ρ2
$← Zp, (C0, C1, C2) := (gτ , Xρ1

1 gs, Xρ2
2 hs),

and then finding the unique values (α, β, γ) that satisfy (C0, C1, C2) = Com(A,
(R1, R2); (α, β, γ)). We claim that this can be done using (α, β, γ)t := D−1(τ, ρ1 +
c, ρ2 + c)t, which is equivalent to distribution T0.

To see this, note that (C0, C1, C2) = Com(A, (R1, R2); (α, β, γ)) is equivalent
to C0

C1
C2

 =

 Aα1,1 ·A
β
1,2 ·A

γ
1,3

R1· Aα2,1 ·A
β
2,2 ·A

γ
2,3

R1· Aα3,1 ·A
β
3,2 ·A

γ
3,3

 =

 gd1,1α · gd1,2β · gd1,3γ

gs ·X−c1 · X
d2,1α
1 ·Xd2,2β

1 ·Xd2,3γ
1

hs ·X−c2 · X
d3,1α
2 ·Xd3,2β

2 ·Xd3,3γ
2

 .

Using the way we generate (C0, C1, C2), we see that the gs and hs terms cancel
out, and this is equivalent to gτ

Xρ1
1

Xρ2
2

 =

 gd1,1α · gd1,2β · gd1,3γ

X
d2,1α
1 ·Xd2,2β

1 ·Xd2,3γ
1

X
d3,1α
2 ·Xd3,2β

2 ·Xd3,3γ
2

⇐⇒
 τ
ρ1 + c
ρ2 + c

 = D ·

αβ
γ

 .

This concludes the proof. ut

Lemma 7. CMTDDH satisfies the statistically binding property of an (εb, εg, εt)-
special commitment scheme for LFDDH, with εb ≤ 1/p.

Proof. We describe an unbounded algorithm Ext, that takes as input a commit-
ment key ck = A = (Ai,j)i,j ∈ G3×3, and a commitment com = (C0, C1, C2) ∈ G3,
and outputs a tuple R = (R1, R2) ∈ G×G. It is given as follows:
1. Extract discrete logarithms c = (c0, c1, c2)t ∈ Z3

p and a = (a0, a1, a2)t ∈ Z3
p

such that C0
C1
C2

 =

gc0

gc1

gc2

 and

A1,1
A2,1
A3,1

 =

ga0

ga1

ga2

 .

2. If a0 = 0, return ⊥. Otherwise, let e2 = (0, 1, 0)t and e3 = (0, 0, 1)t. Note
that a, e2, e3 form a basis of Z3

p.
9 This corresponds to the HVZK property of linear identification protocols.



28 J. Pan, and B. Wagner

3. Write c as c = ta + r1e2 + r2e3 for t, r1, r2 ∈ Zp, and return (R1, R2) :=
(gr1 , gr2).

To finish the proof, let A be any algorithm. We have to bound the probability

Pr

Com(A, (R′1, R′2);ϕ′) = (C0, C1, C2)
∧ (R1, R2) 6= (R′1, R′2)

∣∣∣∣∣∣∣∣∣∣
(g, h)← LF.Gen(1λ),
A← BGen(par),
((C0, C1, C2), St)← A(A),
(R1, R2)← Ext(A, (C0, C1, C2)),
(R1, R

′
2, ϕ
′)← A(St)

 .
Note that the probability that Ext outputs ⊥ in this experiment is 1/p, as A1,1
is uniform in G. We assume that Ext does not output ⊥, and want to show that
the above probability conditioned on this event is zero. First, it is easy to see
that we have Com(A, (R1, R2); (t, 0, 0)) = (C0, C1, C2). Further, assume that A
outputs (R′1, R′2) = (gr′1 , gr′2) and ϕ′ = (α, β, γ) such that

Com(A, (R′1, R′2);ϕ′) = (C0, C1, C2) = Com(A, (R1, R2); (t, 0, 0)).

Using the definition of Com and BGen, we see that this implies the vector
(0, r1 − r′1, r2 − r′2)t is in the span of a. As a0 6= 0 this implies that it is the zero
vector, showing that R1 = R′1 and R2 = R′2. ut

Lemma 8. For any PPT algorithm A, there is a PPT algorithm B with T(B) ≈
T(A) and

AdvQ-keydist
A,CMTDDH

(λ) ≤ AdvuDDH3
B,GGen(λ) + 6

p
.

The lemma is proven by a simple reduction. Looking at one fixed commitment
key Ai, indistinguishability would directly follow from the uDDH3 assumption.
To give a tight reduction for any Q = poly(λ), we use the random self-reducibility
of uDDH3. We postpone it to the full version [34].

4.3 Efficiency

In our full version [34], we discuss the efficiency of our schemes both asymptotically,
as well as in terms of concrete parameters.
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