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Abstract. We introduce the notion of public key encryption with secure
key leasing (PKE-SKL). Our notion supports the leasing of decryption
keys so that a leased key achieves the decryption functionality but comes
with the guarantee that if the quantum decryption key returned by a
user passes a validity test, then the user has lost the ability to decrypt.
Our notion is similar in spirit to the notion of secure software leasing
(SSL) introduced by Ananth and La Placa (Eurocrypt 2021) but captures
significantly more general adversarial strategies?. Our results can be
summarized as follows:

1. Definitions: We introduce the definition of PKE with secure key
leasing and formalize a security notion that we call indistinguishability
against key leasing attacks (IND-KLA security). We also define a
one-wayness notion for PKE-SKL that we call OW-KLA security
and show that an OW-KLA secure PKE-SKL scheme can be lifted
to an IND-KLA secure one by using the (quantum) Goldreich-Levin
lemma.

2. Constructing IND-KLA PKE with Secure Key Leasing: We provide
a construction of OW-KLA secure PKE-SKL (which implies IND-
KLA secure PKE-SKL as discussed above) by leveraging a PKE
scheme that satisfies a new security notion that we call consistent or
inconsistent security against key leasing attacks (ColC-KLA security).
We then construct a ColC-KLA secure PKE scheme using 1-key
Ciphertext-Policy Functional Encryption (CPFE) that in turn can
be based on any IND-CPA secure PKE scheme.

3. Identity Based Encryption, Attribute Based Encryption and Func-
tional Encryption with Secure Key Leasing: We provide definitions of
secure key leasing in the context of advanced encryption schemes such
as identity based encryption (IBE), attribute-based encryption (ABE)
and functional encryption (FE). Then we provide constructions by
combining the above PKE-SKL with standard IBE, ABE and FE
schemes.

Notably, our definitions allow the adversary to request distinguishing
keys in the security game, namely, keys that distinguish the challenge
bit by simply decrypting the challenge ciphertext, as long as it returns

4 In more detail, our adversary is not restricted to use an honest evaluation algorithm
to run pirated software.



them (and they pass the validity test) before it sees the challenge
ciphertext. All our constructions satisfy this stronger definition, albeit
with the restriction that only a bounded number of such keys is
allowed to the adversary in the IBE and ABE (but not FE) security
games.
Prior to our work, the notion of single decryptor encryption (SDE) has
been studied in the context of PKE (Georgiou and Zhandry, Eprint 2020)
and FE (Kitigawa and Nishimaki, Asiacrypt 2022) but all their construc-
tions rely on strong assumptions including indistinguishability obfuscation.
In contrast, our constructions do not require any additional assumptions,
showing that PKE/IBE/ABE/FE can be upgraded to support secure key
leasing for free.

1 Introduction

Recent years have seen amazing advances in cryptography by leveraging the
power of quantum computation. Several novel primitives such as perfectly secure
key agreement [11], quantum money [35], quantum copy protection [1], one shot
signatures [5] and such others, which are not known to exist in the classical world,
can be constructed in the quantum setting, significantly advancing cryptographic
capabilities.

In this work, we continue to study harnessing quantum powers to protect
against software piracy. The quantum no-cloning principle intuitively suggests
applicability to anti-piracy, an approach which was first investigated in the
seminal work of Aaronson [1], who introduced the notion of quantum copy
protection. At a high level, quantum copy protection prevents users from copying
software in the sense that it guarantees that when an adversary is given a copy
protected circuit for computing some function f, it cannot create two (possibly
entangled) quantum states, both of which can compute f. While interesting in
its own right for preventing software piracy, quantum copy protection (for some
class of circuits) also has the amazing application of public-key quantum money
[2]. Perhaps unsurprisingly, constructions of quantum copy protection schemes
from standard cryptographic assumptions have remained largely elusive. This
motivates the study of primitives weaker than quantum copy protection, which
nevertheless offer meaningful guarantees for anti-piracy.

Secure software leasing (SSL), introduced by Ananth and La Placa [9], is
such a primitive, which while being weaker than quantum copy-protection, is
nevertheless still meaningful for software anti-piracy. Intuitively, this notion
allows to encode software into a version which may be leased or rented out, for
some specific term at some given cost. Once the lease expires, the lessee returns
the software and the lessor can run an efficient procedure to verify its validity. If
the software passes the test, we have the guarantee that the lessee is no longer
able to run the software (using the honest evaluation algorithm).

In this work, we explore the possibility of equipping public key encryption
(PKE) with a key leasing capability. The benefits of such a capability are indis-
putable — in the real world, decryption keys of users often need to be revoked,



for instance, when a user leaves an organization. In the classical setting, nothing
prevents the user from maintaining a copy of her decryption key and misusing its
power. Revocation mechanisms have been designed to prevent such attacks, but
these are often cumbersome in practice. Typically, such a mechanism entails the
revoked key being included in a Certificate Revocation List (CRL) or Certificate
Revocation Trees (CRT), or some database which is publicly available, so that
other users are warned against its usage. However, the challenges of effective
certificate revocation are well acknowledged in public key infrastructure — please
see [12] for a detailed discussion. If the decryption keys of a PKE could be
encoded as quantum states and allow for verifiable leasing, this would constitute
a natural and well-fitting solution to the challenge of key revocation.

1.1 Prior Work

In this section, we discuss prior work related to public key encryption (PKE) and
public key functional encryption (PKFE), where decryption keys are encoded
into quantum states to benefit from uncloneability. For a broader discussion on
prior work related to quantum copy protection and secure software leasing, we
refer the reader to Section 1.4.

Georgiou and Zhandry [20] introduced the notion of single decryptor en-
cryption (SDE), where the decryption keys are unclonable quantum objects.
They showed how to use one-shot signatures together with extractable witness
encryption with quantum auxiliary information to achieve public key SDE. Subse-
quently, Coladangelo, Liu, Liu, and Zhandry [17] achieved SDE assuming iO and
extractable witness encryption or assuming subexponential iO, subexponential
OWF, LWE and a strong monogamy property (which was subsequently shown to
be true [19]). Very recently, Kitagawa and Nishimaki [27] introduced the notion of
single-decryptor functional encryption (SDFE), where each functional decryption
key is copy protected and provided collusion-resistant single decryptor PKFE for
P/poly from the subexponential hardness of iO and LWE.

It is well-known [3,9] that copy protection is a stronger notion than SSL> —
intuitively, if an adversary can generate two copies of a program, then it can
return one of them while keeping the other for later use. Thus, constructions
of single decryptor encryption [20,17,27] imply our notion of PKE with secure
key leasing from their respective assumptions, which all include at least the
assumption of iO (see Appendix A of the full version for the detail). Additionally,
in the context of public key FE, the only prior work by Kitagawa and Nishimaki
[27] considers the restricted single-key setting where an adversary is given a
single decryption key that can be used to detect the challenge bit. In contrast,
we consider the more powerful multi-key setting, which makes our definition of
FE-SKL incomparable to the SDFE considered by [27]. For the primitives of
IBE and ABE, there has been no prior work achieving any notion of key leasing
to the best of our knowledge. We also note that Aaronson et al. [3] studied

5 The informed reader may observe that this implication may not always be true due
to some subtleties, but we ignore these for the purpose of the overview.



the notion of “copy-detection”, which is a weaker form of copy protection, for
any “watermarkable” functionalities based on iO and OWF. In particular, by
instantiating the construction with the watermarkable PKE of [22], they obtain
PKE with copy-detection from iO + PKE.

Overall, all previous works that imply PKE-SKL are designed to achieve the
stronger goal of copy protection (or the incomparable goal of copy detection) and
rely at least on the strong assumption of iO. In this work, our goal is to achieve
the weaker goal of PKE-SKL from standard assumptions.

1.2 Owur Results

In this work, we initiate the study of public key encryption with secure key
leasing. Our results can be summarized as follows:

1. Definitions: We introduce the definition of PKE with secure key leasing
(PKE-SKL) to formalize the arguably natural requirement that decryption
keys of a PKE scheme is encoded into a leased version so that the leased
key continues to achieve the decryption functionality but now comes with
an additional “returnability” guarantee. In more detail, the security of PKE-
SKL requires that if the quantum decryption key returned by a user passes
a validity test, then the user has lost the ability to decrypt. To capture
this intuition, we formalize a security notion that we call indistinguishability
against key leasing attacks (IND-KLA security). We also define a one-wayness
notion for PKE-SKL that we call OW-KLA security and show that an OW-
KLA secure PKE-SKL scheme can be lifted to an IND-KLA secure one by
using the (quantum) Goldreich-Levin lemma.

2. Constructing IND-KLA PKE with Secure Key Leasing: We provide a con-
struction of OW-KLA secure PKE-SKL (which imples IND-KLA PKE-SKL
as discussed above) by leveraging a PKE scheme that satisfies a new security
notion that we call consistent or inconsistent security against key leasing
attacks (ColC-KLA security). We then construct a ColC-KLA secure PKE
scheme using 1-key Ciphertext-Policy Functional Encryption (CPFE) that in
turn can be based on any IND-CPA secure PKE scheme.

3. Identity Based Encryption, Attribute Based Encryption and Functional En-
cryption with Secure Key Leasing: We provide definitions of secure key leasing
in the context of advanced encryption schemes such as identity based en-
cryption (IBE), attribute-based encryption (ABE) and functional encryption
(FE). Then we provide constructions by combining the above PKE-SKL with
standard IBE, ABE and FE schemes.

Notably, our definitions allow the adversary to request distinguishing keys in
the security game, namely, keys that distinguish the challenge bit by simply
decrypting the challenge ciphertext. Recall that this was not permitted in
the classical setting to avoid trivializing the security definition. However, in
the quantum setting, we consider a stronger definition where the adversary
can request such keys so long as it returns them (and they pass the validity
test) before it sees the challenge ciphertext. All our constructions satisfy this



stronger definition, albeit with the restriction that only a bounded number
of such keys be allowed to the adversary in the IBE and ABE (but not
FE) security games. We emphasize that this restriction is a result of our
techniques and could potentially be removed in future work.

We note that, in general, secure software leasing (SSL) only ensures a notion of
security where the adversary is forced to use an honest evaluation algorithm for
the software. However, our definition (and hence constructions) of PKE/ABE/FE
SKL do not suffer from this limitation. Our constructions do not require any
additional assumptions, showing that PKE/IBE/ABE/FE can be upgraded to
support secure key leasing for free.

1.3 Technical Overview

We proceed to give a technical overview of this work.

Definition of PKE with secure key leasing. We first introduce the definition of
PKE with secure key leasing (PKE-SKL). A PKE-SKL scheme SKL consists
of four algorithms (%G, Enc, Dec, Vrfy), where the first three algorithms form a
standard PKE scheme except the following differences on %g.%

— XG outputs a quantum decryption key 4k instead of a classical decryption
key.

— %G outputs a (secret) verification key vk, together with a public encryption
key and quantum decryption key.

The verification algorithm %rfy takes as input a verification key and a quantum
decryption key, and outputs T or L. In addition to decryption correctness, SKL
should satisfy verification correctness that states that ¥rfy(vk,dk) = T holds,
where (ek, dk,vk) + KG(1*).

The security of PKE-SKL requires that once a user holding a quantum
decryption key returns the key correctly, the user can no longer use the key and
lose the ability to decrypt. We formalize this as a security notion that we call
indistinguishability against key leasing attacks (IND-KLA security). It is defined
by using the following security game.

1. First, the challenger generates (ek, 4k, vk) < %G (1*) and sends ek and dk to
an adversary 4. N

2. 4 sends two challenge plaintexts (m§, m7) and a quantum state dk that is sup-
posed to be a correct decryption key. The challenger checks if Vrfy(vk, dk) = T
holds. If not, 4 is regarded as invalid and the game ends here. Otherwise,
the game goes to the next step.”

5 In this paper, standard math or sans serif font stands for classical algorithms and
classical variables. The calligraphic font stands for quantum algorithms and the
calligraphic font and/or the bracket notation for (mixed) quantum states.

7 We also consider a slightly stronger definition where the adversary can get access to
a verification oracle many times, and the adversary is regarded as valid if the answer
to at least one query dk is T. In this overview, we focus on the “l-query” security for
simplicity.



*
coin

3. The challenger generates ct* <+ Enc(ek,m
coin < {0, 1}.
4. 4 outputs coin’.

) and sends it to 4, where

IND-KLA security guarantees that any QPT A4 cannot guess coin correctly
significantly better than random guessing, conditioned on A4 being valid. In more
detail, for any QPT adversary 4 that passes the verification with a non-negligible

probability, we have ’Pr [coin’ = coin | Vrfy(vk, :{E) = T] - 1/2’ = negl(\).

One-wayness to indistinguishability. It is natural to define a one-wayness notion
for PKE-SKL, which we call OW-KLA security, by modifying the above definition
so that the adversary is required to recover entire bits of a randomly chosen
message from its ciphertext. Similarly to standard PKE, we can transform a OW-
KLA secure PKE-SKL scheme into an IND-KLA secure one by using (quantum)
Goldreich-Levin lemma [4,17]. Hence, though our goal is to construct an IND-KLA
secure scheme, it suffices to construct an OW-KLA secure one.

Basic idea for OW-KLA secure scheme. Towards realizing a OW-KLA secure
PKE-SKL scheme, we construct an intermediate scheme Basic = (Basic. Xg, Basic.Enc,
Basic.Dec, Basic. Vrfy) using two instances of a standard PKE scheme, with parallel
repetition. Let PKE = (PKE.KG, PKE.Enc, PKE.Dec) be a standard PKE scheme.
Basic. XG generates two key pairs (eko, dkg) and (ekq,dk;) using PKE.KG and out-
puts ek := (eko, ekq), dk := 1/v/2(|0) |dko)+|1) |dk1)), and vk := (dkg, dky ). Given
m and ek, Basic.Enc generates cty + PKE.Enc(ekg, m) and ct; + PKE.Enc(eky, m)
and outputs ct := (cto, ct1). Basic.Dec can decrypt this ciphertext using the de-
cryption keys dkg and dki, respectively, in superposition. Since both decryptions
result in the same message m, we can decrypt ciphertexts without collapsing k.
Finally, Basic.¥rfy checks if the input decryption key is an equal-weight superpo-
sition of dkg and dk;. Concretely, it applies a binary outcome measurement w.r.t.
a projection Iy == 3 (|0) |dko) + [1) [dk1)) ((0] (dko| + (1] (dkq|), and returns T
if and only if the state is projected onto Ily,fy.

Intuitively, if the adversary has returned the correct decryption key, then
it no longer has the capability to decrypt since the decryption key cannot be
cloned. However, this scheme does not satisfy OW-KLA because an adversary
can pass the verification with probability 1/2 simply by measuring the decryption
key and returning the collapsed decryption key. Such an adversary can keep
the decryption capability even after passing verification because the decryption
key collapses to a classical string, which can be easily copied. Nonetheless, it is
reasonable to expect that this attack strategy is optimal because there appears
to be no obvious way to attack with a better advantage. That said, it is unclear
how to turn this intuition into a formal proof assuming only IND-CPA security
of the underlying PKE. To address this gap, we introduce a new security notion
for PKE, that we call consistent or inconsistent security against key leasing
attacks (ColC-KLA security). Using this, we can prove that the aforementioned
adversarial strategy is optimal and Basic satisfies 1/2-OW-KLA security.



By being 1/2-OW-KLA secure, we mean that the probability that an adver-
sary can correctly return a decryption key and recover the challenge plaintext
simultaneously is at most 1/2 4 negl()). Below, we introduce the definition of
CoIC-KLA security and how to prove 1/2-OW-KLA security of Basic using
CoIC-KLA security. Then, we explain how to achieve a full OW-KLA secure
scheme by applying parallel amplification to Basic.

Definition of ColC-KLA security. ColC-KLA security is defined by using the
following game.

1. The challenger generates (ekg, dko) and (eky,dk;) using PKE.KG, and gener-
ates dk = 1/v/2(]0) |[dko) + |1) |dk;)). The challenger sends ekg, ek;, and k.
to an adversary 4. In this game, 4 can access the verification oracle only
once, where the oracle is given a quantum state and returns the outcome of
the projective measurement ([Iyypy, I — ITyy)-

2. 4 sends two plaintexts (mg, m}) to the challenger. The challenger picks
random bits a,b and generates ctg = Enc(ekg, m,) and ct; = Enc(eky, magp).
Then, the challenger sends cty and ct; to 4.

3. 4 outputs a bit b'.

Then, ColC-KLA security requires that any QPT 4 cannot guess b significantly
better than random guessing. In the above game, if b = 0, cty and ct; are
ciphertexts of the same plaintext m’. On the other hand, if b = 1, cty and ct; are
ciphertexts of the different plaintexts m} and mig,. Thus, we call this security
notion consistent or inconsistent security.

1/2-OW-KLA security of Basic. We explain how to prove 1/2-OW-KLA security
of Basic based on ColC-KLA security of PKE. The OW-KLA security game for
Basic is as follows.

1. The challenger generates (ekq,dkp) and (eky, dk;) using PKE.KG, sets ek :=
(eko,eky) and dk := 1/v/2(|0) |dko) + |1)|dk;)), and sends ek and dk to an
adversary 4. -

2. The adversary returns a quantum state dk that is supposed to be a correct
decryption key. The challenger checks if the result of applying Il,.¢ defined
above to dk is 1. If not, 4 is regarded as invalid and the game ends here.
Otherwise, the game goes to the next step.

3. The challenger generates random plaintext m* and two ciphertexts cty
PKE.Enc(ekg, m*) and ct; + PKE.Enc(eky, m*), and sends ct := (cto, ct1) to
A.

4. 4 outputs m/.

In this game, we say that 4 wins if (a) dk passes the verification, that is, the
result of applying IT.¢ to :{E is 1, and (b) m’ = m™* holds. 4 can win this game
with probability at least 1/2 by just measuring 1/v/2(|0) |dko)+|1) |dk1)), returns
collapsed key, and decrypt the challenge ciphertext with the key. As stated above,
we can prove that this is the optimal strategy for 4, that is, we can bound the



advantage of 4 by 1/2+ negl()). The proof can be done by using game sequences.
We denote the probability that 4 wins in Game ¢ as Pr[S;].

Game 0: This is exactly the above game. .
Game 1: We defer the verification of the returned key dk after 4 outputs m’.

From the deferred measurement principle, we have Pr[Sy] = Pr[S1].

Game 2: We change 4’s winning condition (b). Concretely, we replace (b) with
(') m" € {m*,m} holds, where m is a random plaintext.

Since we relaxed 4’s winning condition, we have Pr[S;] < Pr[Ss].
Game 3: We generate ct; as ct; + PKE.Enc(eky, m) instead of ct; < PKE.Enc(eky, m*).

The only difference between Game 2 and 3 is that ctg and ct; are ciphertexts of
the same plaintext in Game 2, but they are ciphertexts of different plaintexts
in Game 3. Thus, we obtain |Pr[S2] — Pr[S3]| = negl(\) using ColC security of
PKE.

We complete the proof by showing that Pr[Ss] < 1/2 + negl(\) holds if PKE
satisfies one-wayness (that is implied by ColC-KLA security). To show it, we use
the following Fact 1.

Fact 1: Assume PKE satisfies one-wayness. Then, given 1/v/2(]0) |dko)-+|1) |dk1)),
PKE.Enc(ekg, m*), and PKE.Enc(ekq, m), no adversary can obtain (dkg, m) or
(dkq, m*) with non-negligible probability.

This can be proved by using the fact that even if we measure 1/v/2(]0) |dko) +
[1) |dk1)) in the computational basis before giving it to the adversary, the adver-
sary still has success probability at least €/2, where € is the success probability
of the original experiment [13, Lemma 2.1].

Suppose Pr[Ss3] = 1/2 + 1/poly(\) for some polynomial poly. This means
that conditioned that m’ € {m* ,m}, dk returned by 4 passes the verification
with probability significantly greater than 1/2. Thus, if we measure 4K in the
computational basis, we obtain dky with some inverse polynomial probability
and also dk; with some inverse polynomial probability. (If either one is obtained
with overwhelming probability, :{Z cannot pass the verification with probability
significantly greater than 1/2.) This means that using 4, we can obtain either
one pair of (dkg,m) or (dki,m*) with inverse polynomial probability, which
contradicts Fact 1. Thus, we obtain Pr[Ss] < 1/2 + negl(}\).

From the above discussions, we can conclude that if PKE satisfies ColC-KLA
security, Basic satisfies 1/2-OW-KLA security.

Full OW-KLA security by parallel repetition. To achieve a fully OW-KLA secure
scheme, we apply parallel amplification to Basic in the following way. When
generating a key tuple, we generate A key tuples (ek;, dk;,vk;) of Basic and
set ek’ = (eki)ie[rs dk’ = (dk;)icin), and vk’ = (vki)iepn- When encrypting a
plaintext m, we divide it into A\ pieces my,--- ,my, and encrypt each m; using



ek;. Then decryption and verification are performed naturally by running the
underlying procedures in Basic for every i € [A]. We can prove the full OW-KLA
security of this construction using a strategy analogous to that used to achieve
1/2-OW-KLA security of Basic. We remark that it is unclear whether we can
amplify 1/2-OW-KLA security to full OW-KLA security in a black box way and
our security proof relies on the specific structure of our scheme.

Constructing ColC-KLA secure PKE scheme. In the rest of this overview, we
mainly explain how to construct ColC-KLA secure PKE scheme. We construct it
using 1-key Ciphertext-Policy Functional Encryption (CPFE) that in turn can
be based on any IND-CPA secure PKE scheme.

We first review the definition of 1-key CPFE scheme. A 1-key CPFE scheme
CPFE consists of four algorithms (FE.Setup, FE.KG, FE.Enc, FE.Dec). Given a
security parameter, FE.Setup outputs a master public key mpk and a master
secret key msk. FE.KG takes as input msk and a string « and outputs a decryption
key sk, tied to the string . FE.Enc takes as input mpk and a description of a
circuit C' and outputs a ciphertext ct. If we decrypt this ciphertext ct with sk,
using FE.Dec, we can obtain C(z). The security of it states that ciphertexts of
two circuits Cy and Cp are computationally indistinguishable for an adversary
who has decryption key sk, for z of its choice, as long as Cy(x) = C(x) holds.

Letting CPFE = (FE.Setup, FE.KG, FE.Enc, FE.Dec) be a 1-key CPFE scheme,
we construct a ColC secure PKE scheme PKE = (PKE.KG, PKE.Enc, PKE.Dec)
as follows. PKE.KG generates (mpk, msk) < CPFE.Setup(1*) and a decryption
key sk, +— CPFE.KG(msk, z) for random string =, and outputs an encryption key
ek := mpk and the corresponding decryption key dk := sk,. Given ek = mpk
and m, PKE.Enc outputs FE.Enc(mpk, C[m]), where C[m] is the constant circuit
that outputs m on any input. Given dk = sk, and ct, PKE.Dec simply outputs
CPFE.Dec(sk, ct). We see that PKE satisfies decryption correctness from that of
CPFE.

Before proving ColC-KLA security of PKE, we explain a nice tracing property
of PKE that plays an important role in the proof. It says that if there exists a
decoder that can distinguish PKE.Enc(ek, m§) and PKE.Enc(ek, m}) with proba-
bility 1/2 + 1/poly(\) for some plaintexts mg, m} and polynomial poly, we can
extract the string x tied to the decryption key from the decoder. Concretely, the
following fact holds.

Fact 2: Consider the following experiment. The challenger generates (ek :=
mpk, dk := sk, ) using PKE.KG and sends them to an adversary 4. 4 outputs
a decoder D together with m{, m} that can predict random bit b from
PKE.Enc(ek, m}) with probability 1/2 + 1/poly(A) for some polynomial poly.
Then, we can extract x from D with inverse polynomial probability.

In fact, if the decoder D is a classical decoder, we can extract x from D
with a probability close to 1 as follows. Let C[b, mg, my,4] be the circuit that is
given x as an input and outputs myg,[;), where z[i] is the i-th bit of x. Then,
suppose we generate many random (b, FE.Enc(mpk, C'[b, m§, m%,i])) and estimate



the probability that the decoder D outputs b given FE.Enc(mpk, C’[b, mg, m3, 4])

as an input. By the CPFE’s security, FE.Enc(mpk, C[b, m%, m%,i]) is indistinguish-

able from a correctly generated ciphertext of mj, ., that is, PKE.Enc(ek, mp, ) =
FE.Enc(mpk, Cmj,.]) from the view of 2 and D who has sk, since Clb,ms, mt, i) (z) =
Clmig,, (¥) = mjg, . Then, the result of the estimation should be as follows.

— In the case of z[i] = 0, each sample used for the estimation looks (b, PKE.Enc(ek, my))
from the view of D. Thus, the result of the estimation should be greater than
1/2 from the fact that D correctly predicts random bit b from PKE.Enc(ek, m)
with probability 1/2 4+ 1/poly(A).

— Inthe case of z[i] = 1, each sample used for the estimation looks (b, PKE.Enc(ek, migp))
from the view of D. Thus, the result of the estimation should be smaller
than 1/2 since D outputs 1 @ b given PKE.Enc(ek, m1q;) with probability

1/2+ 1/poly(A).

Therefore, by checking if the result of the estimation is greater than 1/2 or not,
we can extract x[i]. By doing this for every 4, we can extract entire bits of x.

The above extraction technique is a direct application of that used by Kitagawa
and Nishimaki [28] to realize watermarking scheme secure against quantum
adversaries. By using their technique, even if the decoder is a quantum decoder
D that consists of a unitary and an initial quantum state, we can extract x from
D with inverse polynomial probability, as long as © has a high distinguishing
advantage. Roughly speaking, this is done by performing the above estimation
using (approximate) projective implementation proposed by Zhandry [37] that is
based on the technique by Marriott and Watrous [30]. By extending the above
extraction technique, we can obtain the following fact.

Fact 3: Consider the following experiment. The challenger generates (ekg :=
mpkg, dkg := sks,) and (eky := mpky, dky := sk,, ) using PKE.KG, and sends
eko, eki, and 1/v/2(]0) |dko) + |1) |[dk1)) = 1/v/2(|0) |ske,) + |1) |ske,)) to an
adversary 4. 4 outputs a quantum decoder D together with (mf, m}) that can
predict b from PKE.Enc(ekg, m,) and PKE.Enc(eky, m,gp) with probability
1/2+4 1/poly(A) for some polynomial poly. Then, we can extract both xy and
21 from D with inverse polynomial probability.

We now explain how we can prove ColC-KLA security of PKE using Fact 3.
To this end, we introduce one more fact.

Fact 4: Given mpk,, mpk;, and 1/v/2(|0) |sky,) + |1) |sks, ), where (mpkq, skz, )
and (mpky,sk,,) are generated as in PKE.KG, no adversary can compute
both zg and x; with non-negligible probability.

Similarly to Fact 1, we can prove this from the fact that even if we measure
1//2(|0) |ske, ) + |1) sk, )) in the computational basis before giving it to the
adversary, the adversary still has success probability at least €¢/2, where € is the
success probability of the original experiment [13, Lemma 2.1].

Suppose there exists a QPT adversary 4 that breaks ColC-KLA security
of PKE. We consider the following adversary B using 4. Given mpk,, mpky,
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and 1/v/2(|0) |skg,) + |1) |ske, ), B simulates ColC-KLA security game for 4 by
setting ekg := mpk,, ek; := mpky, and 4k := 1/v/2(]0) |sky,) + |1) sk, )) until
4 outputs two plaintexts (mg, m?). When 2 makes a verification query, B just
returns a random bit. Let U be the unitary that performs the rest of 4’s actions
given the challenge ciphertexts. Also, let g be the internal state of 4 at this
point. Then, from the averaging argument and the fact that B correctly answers
to 4’s verification query with probability 1/2, with some inverse polynomial
probability, the quantum decoder D = (U, q) is a decoder that can predict b from
PKE.Enc(eko, m}) and PKE.Enc(ek;, m ;) with probability 1/2 + 1/poly(A) for
some polynomial poly. Thus, by using the extractor that is guaranteed to exist
by Fact 3, B can obtain both zg and x1 with some inverse polynomial probability,
which contradicts Fact 4. This means that PKE satisfies ColC-KLA security.

Extension to Advanced Encryption Systems with Secure Key Leasing. We also
provide constructions of advanced encryption schemes such as ABE and FE with
secure key leasing. We do not focus on IBE in this paper since IBE is a special
case of ABE and our transformation preserves the underlying function class.® We
construct these schemes by carefully combining standard ABE (resp. FE) with
PKE-SKL in the way that each decryption key of the resulting ABE-SKL (resp.
FE-SKL) scheme includes a decryption key of the underlying PKE-SKL scheme
and a ciphertext of the ABE-SKL (resp. FE-SKL) scheme cannot be decrypted
without the decryption key of the underlying PKE-SKL scheme. By doing so,
our ABE-SKL and FE-SKL take over the secure key leasing security from the
underlying PKE-SKL. Moreover, since PKE-SKL can be based on any PKE, our
ABE-SKL and FE-SKL can be based on any standard ABE and FE, respectively.

ABE-SKL. Here, we provide an overview of ABE with secure key leasing. Let us
start with the definition of plain ABE (without key leasing). An ABE scheme
ABE consists of four algorithms (ABE.Setup, ABE.KG, ABE.Enc, ABE.Dec) and is
associated with a relation R. Given a security parameter, ABE.Setup outputs a
master public key mpk and a master secret key msk. ABE.KG takes as input msk
and a key attribute y and outputs a user secret key sk, tied to the attribute
y. ABE.Enc takes as input mpk, a ciphertext attribute z, and a message m
and outputs a ciphertext ct. The decryption of the ciphertext is possible only
when R(x,y) = 1. For this reason, we call a user secret key for attribute y
satisfying R(x,y) = 1 a decrypting key (for a ciphertext associated with x). As
for the security, we require that ABE.Enc(z*, m{) should be computationally
indistinguishable from ABE.Enc(z*, m}) as long as an adversary is only given
non-decrypting keys for the ciphertext (i.e., user secret keys for y satisfying
R(z*,y) =0).

We now define the notion of ABE with secure key leasing (ABE-SKL) by
extending the syntax of ABE. The difference from the above is that the key

8 Although ABE is a special case of FE, we need stronger assumptions for (collusion-
resistant) FE to instantiate them. In addition, the security level of FE-SKL that we
can achieve is different from that of ABE-SKL. Hence, we consider both ABE and
FE.
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generation algorithm is now quantum and it outputs user secret key usk,, along
with verification key vk. We also additionally introduce a verification algorithm
that takes vk and a quantum state usk’ and outputs T if it judges that the
user secret key corresponding to vk is correctly returned and L otherwise. As
for the security, we require that ABE.Enc(z*, mg) should be computationally
indistinguishable from ABE.Enc(2*, m;) if the adversary returns all decrypting
keys before it is given the challenge ciphertext. Here, we say the adversary returns
the key if the adversary provides the challenger with a quantum state that makes
the verification algorithm output T.

For the construction, the basic idea is to use ABE for access control and
PKE-SKL for obtaining security against key leasing attacks. To enable this
idea, we encrypt a message m for an attribute x so that the decryptor recovers
PKE-SKL ciphertext skl.ct = SKL.Enc(skl.ek, m) if it has decrypting key and
nothing otherwise, where skl.ek is an individual encryption key corresponding
to the user. The user is given the corresponding decryption key skl.dk and can
recover the message by decrypting skl.ct. Roughly speaking, the security follows
since (1) a user with a non-decrypting key cannot obtain any information and (2)
even a user with a decrypting key cannot recover the message from skl.ct once it
returns skl.dk due to the security of SKL.

The generation of user individual SKL ciphertext is somewhat non-trivial
since ABE can only encrypt a single message. In order to achieve this, we use
an idea similar to [32,23] that combines encryption with the garbled circuits. In
particular, we garble the encryption circuit of SKL that hardwires a message and
encrypt the labels by ABE. We then provide a secret key of ABE for a user only
for the positions corresponding to skl.ek. This allows a user with decrypting key
to recover the labels corresponding to skl.ek and then run the garbled circuit on
input the labels to recover skl.ct.

Unfortunately, the introduction of the garbled circuits in the construction
poses some limitations on the security of the scheme. In particular, once the
adversary obtains two decrypting user secret keys, the message can be revealed
from the garbled circuit in the ciphertext since the security of garbled circuits is
compromised when labels for two different inputs are revealed. Therefore, we are
only able to prove 1-bounded distinguishing key security,” where the adversary
can make a single decrypting key query and should return the key before the
challenge ciphertext is given. We note that the adversary can make an arbitrary
number of non-decrypting key queries throughout the game, unlike bounded
collusion ABE [21,26] and only the number of decrypting keys is bounded.

Ideally, we would like to have a scheme without restriction on the number
of decrypting keys. However, we do not know how to achieve it without strong
assumptions like functional encryption or indistinguishability obfuscation. Instead,
we achieve intermediate security notion that we call g-bounded distinguishing

9 When we consider the security game for ABE-SKL, a decrypting key can be used
for distinguishing the challenge bit by decrypting the challenge ciphertext (if it is
not returned). Therefore, we use the term “decrypting key" and “distinguishing key"
interchangeably.
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key security without introducing additional assumption, where the number of
decrypting keys is bounded by some pre-determined polynomial. To do so, we
use the same idea as [26], which converts single bounded collusion ABE into
g-bounded collusion ABE. The construction is based on the balls and bins idea,
where we prepare multiple “bins", each of which consists of multiple instances
of 1-bounded distinguishing key secure ABE-SKL 1ABE. The key generation
algorithm chooses a single instance from each bin randomly and generates a user
secret key for each of them. The encryption algorithm secret shares the message
and encrypts them using the instances of the 1ABE so that the same share is
encrypted by the instances in the same bin. By careful choices of the parameters
and analysis, in the security proof, we can argue that there exists a bin such that
1ABE instances used for generating decrypting keys in that bin are all distinct.
This means that for every 1ABE instance in that bin, only a single decrypting
key is generated and thus, we can use 1-bounded distinguishing key security for
each of them. While this overall proof strategy is the same as [26], our proof is a
little bit more complex than theirs because the adversary is allowed to make an
unbounded number of (non-decrypting) key queries.

PKFE-SKL. We move to the overview of PKFE-SKL. In this work, we focus on
Key-Policy FE (KPFE) with secure key leasing. We start with the definition of
plain FE (without key leasing). An FE scheme FE counsists of four algorithms
(FE.Setup, FE.KG, FE.Enc, FE.Dec) and is associated with a function class F. Given
a security parameter, FE.Setup outputs a public key pk and a master secret key
msk. FE.KG takes as input msk and a function f € F and outputs a functional
decryption key sk tied to the function f. FE.Enc takes as input pk and a plaintext
x and outputs a ciphertext ct. The decryption result is f(z). For security, we
require that FE.Enc(pk,zo) should be computationally indistinguishable from
FE.Enc(pk, 1) as long as an adversary is only given functional decryption keys
for {f;}; such that f;(xg) = fi(x1) for all 4.

We define the notion of FE with secure key leasing (FE-SKL) by extending
the syntax of FE like ABE-SKL. The key generation algorithm is now quantum
and it outputs functional decryption key sk ; along with verification key vk. We
also introduce a verification algorithm that takes vk and a quantum state sk’
and outputs T if it judges that the functional decryption key corresponding to
vk is correctly returned and L otherwise.

In the security game of PKFE-SKL, the adversary can send a distinguishing
key query f such that f(xf) # f(x}) where (xf, z}) are the challenge plaintexts
as long as it returns a wvalid functional decryption key for f. We consider a
security game where the adversary can send unbounded polynomially many
distinguishing and non-distinguishing (that is, f(x8) = f(z%)) key queries and
tries to distinguish FE.Enc(pk, ) from FE.Enc(pk,z1).

We transform a (classical) PKFE scheme into a PKFE scheme with secure
key leasing by using the power of PKE-SKL. The basic idea is as follows. When
we generate a functional decryption key for function f, we generate a key triple
of PKE-SKL and a functional decryption key of the classical PKFE for a function
W that computes a PKE-SKL ciphertext of f(x). That is, we wrap f(z) by
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PKE-SKL encryption. A decryption key of PKE-SKL is appended to fe.skyy,
which is the functional decryption key for W. Hence, we can decrypt the PKE-
SKL ciphertext and obtain f(x). The PKE-SKL decryption key for f is useless
for another function g since we use different key triples of PKE-SKL for each
function.

More specifically, we generate PKE-SKL keys (skl.ek, skl.sk, skl.vk) and a
PKFE functional decryption key fe.skyy < FE.KG(fe.msk, W|f, skl.ek]), where
function W{f,skl.ek] takes as input z and outputs a PKE-SKL ciphertext
SKL.Enc(skl.ek, f(z)).19 A functional decryption key for f consists of (fe.sky, skl.sk).
A ciphertext of x is a (classical) PKFE ciphertext FE.Enc(fe.pk, x). If we return
skl.sk for f (verified by skl.vk) before we obtain FE.Enc(fe.pk, ), we cannot obtain
f(z) from SKL.Enc(skl.ek, f(x)) by the security of PKE-SKL.

We need to prove security against an adversary that obtains a functional
decryption key for f such that f(xzf) # f(z3) where (x§, 27) is a pair of challenge
plaintexts if the adversary returns the functional decryption key. To handle this
issue, we rely on IND-KLA security and need to embed a challenge ciphertext
of PKE-SKL into a PKFE ciphertext. We use the trapdoor method of FE
(a.k.a. Trojan method) [6,14] for this purpose. We embed an SKFE functional
decryption key and ciphertext in a PKFE functional decryption key and ciphertext,
respectively. We use these SKFE functional decryption key and ciphertext for the
trapdoor mode of PKFE. We gradually change SKFE ciphertexts and keys so that
we can embed a PKE-SKL challenge ciphertext by using the adaptively single-
ciphertext function privacy of SKFE. Once we succeed in embedding a PKE-SKL
challenge ciphertext, we can change a ciphertext of z§ into a ciphertext of 27 such
that f(z5) # f(21) as long as the functional decryption key sk ; = (fe.skyy, skl.sk)
for f is returned. This is because skl.sk is returned and we can use IND-KLA
security under skl.ek.

1.4 Other Related Work

Quantum Copy Protection. Aaronson [1] introduced the notion of quantum copy
protection and constructed a quantum copy protection scheme for arbitrary
unlearnable Boolean functions relative to a quantum oracle. He also provided
two heuristic copy-protection schemes for point functions in the standard model.
Coladangelo et al. [18] provided a quantum copy-protection scheme for a class of
evasive functions in the QROM. Subsequently, Aaronson et al. [3] constructed a
quantum copy protection scheme for unlearnable functions relative to classical
oracles. By instantiating the oracle with post-quantum candidate obfuscation
schemes, they obtained a heuristic construction of copy protection. Coladangelo
et al. [17] provided a copy-protection scheme for pseudorandom functions in the
plain model assuming iO, OWF and extractable witness encryption, or assuming
subexponential i0, subexponential OWF, LWE and a strong “monogamy property”
(which was was proven to be true in a follow-up work [19]). Ananth et al. [7,8]

10 We ignore the issue of encryption randomness here. In our construction, we use
(puncturable) PRFs to generate encryption randomness.

14



also constructed copy protection for point functions, which in turn can be
transformed into copy protection for compute-and-compare programs. Sattath
and Wyborski [33] studied unclonable decryptors, which are an extension of
SDE. Their unclonable decryptors scheme is secret key encryption and can be
instantiated with iO and OWF, or quantum oracles.

Secure software leasing. Secure software leasing (SSL) was introduced by
Ananth and La Placa [9], where they also provided the first SSL scheme supporting
a subclass of “evasive” functions by relying on the existence of public key quantum
money and the learning with errors assumption. Evasive functions is a class of
functions for which it is hard to find an accepting input given only black-box
access to the function. Their construction achieves a strong security notion called
infinite term security. They also demonstrate that there exists an unlearnable
function class such that it is impossible to achieve an SSL scheme for that function
class, even in the CRS model. Later, Coladangelo et al. [18] improved the security
notion achieved by [9] by relying on the QROM, for the same class of evasive
functions. Additionally, Kitagawa, Nishimaki and Yamakawa [29] provided a finite
term secure SSL scheme for pseudorandom functions (PRFs) in the CRS model
by assuming the hardness of the LWE problem against polynomial time quantum
adversaries. Additionally, this work achieves classical communication. Further,
Broadbent et al. [16] showed that SSL is achievable for the aforementioned evasive
circuits without any setup or computational assumptions that were required
by previous work, but with finite term security, quantum communication and
correctness based on a distribution. The notion of secure leasing for the powerful
primitive of functional encryption was studied by Kitagawa and Nishimaki [27],
who introduced the notion of secret key functional encryption (SKFE) with secure
key leasing and provided a transformation from standard SKFE into SKFE with
secure key leasing without relying on any additional assumptions.

Certified deletion. Broadbent and Islam [15] introduced the notion of quantum
encryption with certified deletion, where we can generate a (classical) certificate
to ensure that a ciphertext is deleted. They constructed a one-time SKE scheme
with certified deletion without computational assumptions. After that, many
works presented various quantum encryption primitives (PKE, ABE, FE and so
on) with certified deletion [24,31,10,25]. The root of quantum encryption with
certified deletion is revocable quantum time-released encryption by Unruh [34].
It is an extension of time-released encryption where a sender can revoke quantum
encrypted data before a pre-determined time. If the revocation succeeds, the
receiver cannot obtain the plaintext information.

2 Preliminaries

Notations and conventions. In this paper, standard math or sans serif font stands
for classical algorithms (e.g., C' or Gen) and classical variables (e.g., z or pk).
Calligraphic font stands for quantum algorithms (e.g., Gen) and calligraphic font
and/or the bracket notation for (mixed) quantum states (e.g., g or ).
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Let [£] denote the set of integers {1,--- , £}, A denote a security parameter,
and y := z denote that y is set, defined, or substituted by z. For a finite set X
and a distribution D, x <— X denotes selecting an element from X uniformly at
random, x < D denotes sampling an element z according to D. Let y < A(x)
and y < 4(x) denote assigning to y the output of a probabilistic or deterministic
algorithm A and a quantum algorithm 4 on an input x and x, respectively.
When we explicitly show that A uses randomness r, we write y < A(z; 7). PPT
and QPT algorithms stand for probabilistic polynomial-time algorithms and
polynomial-time quantum algorithms, respectively. Let negl denote a negligible
function. For strings =,y € {0,1}", x - y denotes ®i€[n] x;y; where z; and y;
denote the ith bit of x and y, respectively.

Standard cryptographic tools. We omit the definitions of standard cryptographic
tools including SKE, PKE, ABE, FE, puncturable PRFs, and garbling schemes.
See Section 2.1 of the full version for their definitions.

3 Public Key Encryption with Secure Key Leasing

We define PKE-SKL and its security notions and show a relationship between
them.

Definition 3.1 (PKE with Secure Key Leasing). A PKE-SKL scheme SKL
is a tuple of four algorithms (XG,Enc, Dec, Vify). Below, let X be the message
space of SKL.

%G (1Y) — (ek, dk,vk): The key generation algorithm takes a security parameter
12, and outputs an encryption key ek, a decryption key dk, and a verification
key vk.

Enc(ek,m) — ct: The encryption algorithm takes an encryption key ek and a
message m € X, and outputs a ciphertext ct.

Dec(dk, ct) — m: The decryption algorithm takes a decryption key dk and a
ciphertext ct, and outputs a value m.

Vrfy(vk, dk) — T/L: The verification algorithm takes a verification key vk and a

(possibly malformed) decryption key dk, and outputs T or L.
Decryption correctness: For every m € X, we have

(ek, dk,vk) < KG(11)

ct < Enc(ek, m) = 1= negl().

Pr |:Dec(sz_, ct) =m

Verification correctness: We have
Pr [Vify(vk, dk) = T | (ek, dk,vk) <= KG(1*) ] =1 — negl(A).

Remark 3.1. We can assume without loss of generality that a decryption key of
a PKE-SKL scheme is reusable, i.e., it can be reused to decrypt (polynomially)
many ciphertexts. In particular, we can asusme that for honestly generated ct
and dk, if we decrypt ct by using dk, the state of the decryption key after the
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decryption is negligibly close to that before the decryption in terms of trace
distance. This is because the output of the decryption is almost deterministic
by decryption correctness, and thus such an operation can be done without
almost disturbing the input state by the gentle measurement lemma [36]. A
similar remark applies to all variants of PKE-SKL (IBE, ABE, and FE with
SKL) defined in this paper.

Remark 3.2. Though we are the first to define PKE with secure key leasing, SKFE
with secure key leasing was already defined by Kitagawa and Nishimaki [27]. The
above definition is a natural adaptation of their definition with the important
difference that we do not require classical certificate of deletion.

We define two security definitions for PKE-SKIL, IND-KLA and OW-KLA
security.

Definition 3.2 (IND-KLA Security). We say that a PKE-SKL scheme SKL
with the message space X is IND-KLA secure, if it satisfies the following require-
ment, formalized from the experiment Exp%‘,ﬂ[lﬁ(l)‘,coin) between an adversary 4

and a challenger C:

1. C runs (ek, dk,vk) < KG(1*) and sends ek and dk to 4.
2. Throughout the experiment, 4 can access the following (stateful) verification
oracle Oy, where V' is initialized to be L:

Owyy(dk): It Tuns d < Vrfy(vk, dk) and returns d. If V.= L and d =T, it
updates V .= T.
3. 4 sends (m§,m;) € X% to C. If V.= L, C output 0 as the final output of this
experiment. Otherwise, C generates ct* <— Enc(ek, m¥;\) and sends ct* to 4.
4. A outputs a guess coin’ for coin. C outputs coin’ as the final output of the
experiment.

For any QPT A, it holds that
AdVESKE () = [Pr[Bxple2 (1%, 0) — 1] = Pr[Explt s (1, 1) = 1]] < negl(V).

We say that SKL is I-query IND-KLA secure if the above holds for any QPT A
that makes at most one query to Oyy,.

Remark 3.3. When we consider a 1-query adversary, we can assume that its query
is made before receiving the challenge ciphertext ct* without loss of generality.
This is because otherwise the experiment always outputs 0.

Remark 3.4. By a standard hybrid argument, one can show that IND-KLA
security implies multi-challenge IND-KLA security where the adversary is allowed
to request arbitrarily many challenge ciphertexts. Thus, if we have an IND-KLA
secure PKE-SKL scheme for single-bit messages, we can extend the plaintext
length to an arbitrary polynomial by bit-by-bit encryption.
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Definition 3.3 (OW-KLA Security). We say that a PKE-SKL scheme
SKL with the message space X is OW-KLA secure, if it satisfies the following
requirement, formalized from the experiment Expgﬁ[ﬂ;(ﬁ) between an adversary

4 and a challenger C:

1. C runs (ek, dk,vk) < XG(1*) and sends ek and dk to 4.

2. Throughout the experiment, 4 can access the following (stateful) verification
oracle Oqyy where V' is initialized to be L:

Oq/,j’y(/tfk/_): It runs d < Vrfy(vk,:{\é) and returns d. If V=1 andd =T, it
updates V = T.

3. 4 sends RequestChallenge to C. If V = L, C outputs 0 as the final output of
this experiment. Otherwise, C chooses m* <— X, generates ct* « Enc(ek, m*)
and sends ct* to 4.

4. A4 outputs m. C outputs 1 if m = m* and otherwise outputs 0 as the final
output of the experiment.

For any QPT 4, it holds that
AdVEE(A) = Pr[ExpB3(1%) — 1] < negl().

We say that SKL is 1-query OW-KLA secure if the above holds for any QPT A
that makes at most one query to Oyy,.

We show the following theorem.

Theorem 3.1. If there exists a 1-query OW-KLA secure PKE-SKL scheme,
there exists an IND-KLA secure PKE-SKL scheme.

Thus, it suffices to construct 1-query OW-KLA secure scheme for constructing
IND-KLA secure scheme. The proof is based on quantum Goldreich-Levin lemma
with quantum auxiliar inputs [4,17] and goes through an additional security
notion called one-more unreturnability (OMUR). See Section 3.2 of the full
version for the proof.

4 Public Key Encryption with ColC-KLA Security

We introduce a new security notion called ColC-KLA security for PKE, and
construct a PKE scheme that satisfies it based on any IND-CPA secure PKE
scheme. . Looking ahead, it is used as a building block of our construction of
PKE-SKL in Sec. 5.

4.1 Definition

Definition 4.1 (ColC-KLA Security). We say that a PKE scheme PKE with
the message space X is ColC-KLA secure, if it satisfies the following requirement,
formalized from the experiment Exp,cfkcE_"ga(l/\) between an adversary A and a

challenger C:
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1. C runs (ekg,dkg) < KG(1*) and (eki,dk;) < KG(1%), and generates dk :=
%(|O> |dko) 4 |1) |dk1)). C sends ekg, ek, and dk to A. 4 can get access to
the following oracle only once.

(’)(:{E): On input a possibly malformed decryption key :{E, it applies a binary-
outcome measurement (I — Ilvey, [vrry), where Iy is the projection to
the right decryption key, i.e.,

1 1
Moty = (ﬁ (10) [dko) + 1) dk1>>) (ﬁ ({0 {dko| + (1] <dk1|>) .

It returns the measurement outcome (indicating whether the state was
projected onto 114y or not).
2. 4 sends (m§,m}) € X2 to C. C generates a,b <+ {0,1} and generates ct} <
Enc(eko, m};) and ct] < Enc(eky, m} ;). C sends cty and ctj to 4.
3. 4 outputs a guess b’ for b. C outputs 1 if b=10" and 0 otherwise as the final
output of the experiment.

For any QPT 4, it holds that

AdVERER(N) =2

; 1
Pr [Expgﬁgﬁf(ﬂ) - 1] - 2‘ < negl(\).

4.2 Construction

We construct a ColC-KLA secure PKE PKE = (Gen, Enc, Dec) using a 1-key
CPFE scheme CPFE = (CPFE.Setup, CPFE.KG, CPFE.Enc, CPFE.Dec) as a build-
ing block.

Gen(1):

— Generate (MPK, MSK) < CPFE.Setup(1?).

— Generate z < {0,1}* and sk, + CPFE.KG(MSK, z).

— Output ek := MPK and dk := sk,.

Enc(ek, m):

— Parse ek = MPK.

— Let C[m] be a constant circuit that outputs m on any input. C' is padded
so that it has the same size as the circuit C* appeared in the security
proof.

— Output ct < CPFE.Enc(MPK, C[m]).

Dec(dk, ct):
— Parse dk = sk,.
— Output m’ + CPFE.Dec(sk,, ct).

The decryption correctness of PKE follows from that of CPFE. We show the
following theorem.

Theorem 4.1. If CPFE is 1-key secure, then PKE is ColC-KLA secure.
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In the full version, we actually prove that PKE satisfies a security notion
called strong ColC-KLA security, which implies ColC-KLA security. See Section
4.3 of the full version for the proof.

Since 1-key CPFE exists if IND-CPA secure PKE exists, the above theorem
implies the following theorem.

Theorem 4.2. If there is an IND-CPA secure PKE scheme, then there is a
ColC-KLA secure PKE scheme.

5 Construction of PKE-SKL

Let cPKE = (cPKE.KG, cPKE.Enc, cPKE.Dec) be a PKE scheme satisfying ColC-KLA
security with message space {0, 1} where £ = w(log \). Then, we construct a PKE-
SKL scheme (SKL.%gG, SKL.Enc, SKL.Dec, SKL.¥rfy) with message space {0, 1}

as follows.

SKL.%xG(1*):
— Generate (cPKE.ek; , cPKE.dk; ;) < cPKE.KG(1*) for i € [A] and b €
{0,1}.

— Output an encryption key

ek = {cPKE.ekip }ic[r] be{0,1}

a decryption key

1
dk. = (X) 7 (10) |cPKE.dk; o) + |1) [cPKE.dk; 1)),
€[]

and a verification key

vk = {CPKE.dki,b}ie[)\],be{oﬁl}'

SKL.Enc(ek, m):
— Parse ek = {cPKE.eki}ic[r)befo,1y and m = my||...[[my where m; €
{0,1}* for each i € [\].
— Generate cPKE.ct;;, < cPKE.Enc(cPKE.ek;, m;) for i € [A] and b €
{0,1}.
— Output ct := {CPKE-Cti,b}ie[A],be{o,l}~
SKL.Dec(dk, ct):
— Parse dk = @),y 4K, and ct = {cPKE.ctip }ie(n) pefo,1}-
— Let Ugee be a unitary such that for all cPKE.dk’, cPKE.ct), and cPKE.ct}:

|b) |cPKE.dK") |cPKE.ctf), cPKE.ct}) |0)
Yaee, 1) |cPKE.dk") [cPKE.ctf, cPKE.ct}) |cPKE.Dec(cPKE.dk', cPKE.ct;))

Note that such a unitary can be computed in quantum polynomial-time
since we assume that cPKE.Dec is a deterministic classical polynomial-
time algorithm.

20



— For all i € [\], generate
Usec (dk; @ |cPKE.ct; o, cPKE.ct; 1) (cPKE.ct; o, cPKE.ct; 1| @ [0) (0]) UL,

measure the rightmost register, and let m} be the measurement outcome.
— Output m’ :=m{||...||m}.
SKL.Vrfy(vk, dk ):
— Parse vk = {cPKE.dk; 5 }ic[x],be{0,1} -

— Apply a binary-outcome measurement (I — H\‘,";fy, H;";fy) on Zé where
H“,"r‘fy is the projection onto the right decryption key, i.e.,

1
I, = Q) (ﬂ (10) |cPKE.dk; o) + |1) |cPKE.dki71>)>
€[]

1
— (0] (cPKE.dk; o| + (1] (cPKE.dk; .
(75 (101 (cPKE ckial + (1] (PKEdkca ) )
If the measurement outcome is 1 (indicating that the state was projected

onto H“jl;fy), output T and otherwise output L.

The correctness of SKL easily follows from that of cPKE. Below, we show that
SKL is 1-query OW-KLA secure.

Theorem 5.1. If cPKE is ColC-KLA secure, then SKL is 1-query OW-KLA

Secure.

See Section 5 of the full version for the proof.
By combining Theorems 3.1, 4.2 and 5.1, we obtain the following theorem.

Theorem 5.2. If there is an IND-CPA secure PKE scheme, then there is an
IND-KLA secure PKE-SKL scheme.

6 Attribute-based Encryption with Secure Key Leasing

6.1 Definitions
The syntax of ABE-SKL and its security are defined as follows.

Definition 6.1 (ABE with Secure Key Leasing). An ABE-SKL scheme
ABE-SKL is a tuple of siz algorithms (Setup, XG, Enc, Dec, Cert, Vrfy). Below, let
X ={X}r, Y={II}r and R = {Ry : X\ x Y» — {0,1}}, be the ciphertext
space, the key attribute space, and the associated relation of ABE-SKL, respectively.

Setup(1*) — (pk, msk): The setup algorithm takes a security parameter 1%, and
outputs a public key pk and master secret key msk.

KG(msk,y) — (usk,vk): The key generation algorithm takes a master secret key
msk and a key attribute y € Y, and outputs a user secret key usk and a
verification key vk.
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Enc(pk, z,m) — ct: The encryption algorithm takes a public key pk, a ciphertext
attribute x € X, and a plaintext m, and outputs a ciphertext ct.

Dec(usk, x,ct) — z: The decryption algorithm takes a user secret key usk, a ci-
phertext attribute x, and a ciphertext ct and outputs a value z € {1} U{0,1}*.

Vrfy(vk, usk) — T/ L: The verification algorithm takes a verification key vk and
a quantum state usk', and outputs T or L.

Decryption correctness: For every x € X and y € Y satisfying R(z,y) =1,
we have

(pk, msk) «— Setup(1*)
Pr | Dec(usk, z,ct) =m | (usk,vk) < KG(msk,y) | =1 — negl(}).
ct <+ Enc(pk, z,m)
Verification correctness: For every y € Y, we have

(pk, msk) < Setup(1*)
(usk, vk) = &G (msk, )

Definition 6.2 (Adaptive/Selective Indistinguishability against Key
Leasing Attacks). We say that an ABE-SKL scheme ABE-SKL for relation R :
X x Y — {0,1} is secure against adaptive indistinguishability against key leasing
attacks (Ada-IND-KLA), if it satisfies the following requirement, formalized from

the experiment Expi{faA;nEd_;ﬂ?_(l)‘, coin) between an adversary 4 and a challenger:

Pr | Vify(vk,usk) =T =1 —negl(}\).

1. At the beginning, the challenger runs (pk, msk) < Setup(1*) and initialize
the list Lxg to be an empty set. Throughout the experiment, A can access the
following oracles.

Osxs(y): Given y, it finds an entry of the form (y,vk,V) from Lsg. If
there is such an entry, it returns L. Otherwise, it generates (usk,vk) <
KG(msk,y), sends usk to A, and adds (y,vk, L) to Lg.

Oy (y, usk'): Given (y, usk'), it finds an entry (y,vk, V) from Lxg. (If there
is no such entry, it returns L.) It then runs d = Vrfy(vk, usk') and returns
dtoAa. If V=1, it updates the entry into (y,vk,d).

2. When 4 sends (x*,mg, my) to the challenger, the challenger checks if for any
entry (y,vk, V) in Lgg such that R(xz*,y) =1, it holds that V = T. If so, the
challenger generates ct* < Enc(pk, z*, meoin) and sends ct* to 4. Otherwise,
the challenger outputs 0.

3. A4 continues to make queries to Ogxg(-) and Owyy(-,-). However, 4 is not
allowed to send a key attribute y such that R(xz*,y) =1 to Ogg.

4. A outputs a guess coin’ for coin. The challenger outputs coin’ as the final
output of the experiment.

For any QPT 4, it holds that
ADVEFESL (V) = | Pr[ExREESRT (17, 0) = 1] — Pr[ExpRieSe, (1 1) — 1|
< negl(\).

We say that ABE-SKL is secure against selective indistinguishability against key
leasing attacks (Sel-IND-KLA) if the above holds for all QPT adversaries that
declare =* at the beginning of the experiment.
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Remark 6.1. In Definition 6.2, the key generation oracle returns L if the same
y is queried more than once. To handle the situation where multiple keys for
the same attribute y are generated, we need to manage indices for y such as
(y, 1, vk1, V1), (y,2, vka, V3). Although we can reflect the index management in the
definition, it complicates the definition and prevents readers from understanding
the essential idea.Thus, we use the simplified definition above.

We also consider the following security notion where we introduce additional
restriction that the number of distinguishing keys that are issued (and eventually
returned) before ct* is generated is bounded by some predetermined parameter g.
Here, distinguishing key refers to a key that can decrypt the challenge ciphertext
if it is not returned.

Definition 6.3 (Bounded Distinguishing Key Ada-IND-KLA /
Sel-IND-KLA for ABE). For defining bounded distinguishing key Ada-IND-KLA
security, we consider the same security game as that for Ada-IND-KLA (i.e.,
Exp;lfzg%‘{gﬂ?_(l’\, coin) ) except that we change the step 2 in Definition 6.2 with

the following:

2’ When 4 sends (x*,mp, m1) to the challenger, the challenger checks if there
are at most q entries (y,vk, V') in Lgg such that R(xz*,y) = 1 and for all
these entries, V.= T. If so, the challenger generates ct* <— Enc(pk, z*, mcoin)
and sends ct* to 4. Otherwise, the challenger outputs 0.

We then define the advantage Aded§gigdgt!;7q(A) stmilarly to Advi\dg‘g‘_gd,g,ff;()\).
We say ABE-SKL is g-bounded distinguishing key Ada-IND-KLA secure if for
any QPT adversary A, AdvaAd§E_i_"SdP{||_‘!Z7q()\) is negligible. We also define g-bounded
distinguishing key Sel-IND-KLA security analogously by enforcing the adversary
to output its target x* at the beginning of the game.

We emphasize that while the number of distinguishing keys that the adversary
can obtain in the game is bounded by a fixed polynomial, the number of non-
distinguishing keys (i.e., keys for y with R(z*,y) = 0) can be unbounded.

6.2 1-Bounded Distinguishing Key Construction

We construct an ABE-SKL scheme 1ABE = (Setup, XG, Enc, Dec, Vrfy) for relation
R: XxY — {0, 1} with 1-bounded distinguishing key Ada-IND-KLA /Sel-IND-KLA
security whose message space is {0, 1} by using the following building blocks.

— IND-KLA secure PKE-SKL SKL.(XG, Enc, Dec, Vify). Without loss of gener-
ality, we assume that skl.ek € {0, 1} and the randomness space used by
SKL.Enc is {0, 1} for some fex(A) and £rang(A). We also assume that the
message space of SKL is {0, 1}.

— Adaptively/Selectively secure ABE ABE.(Setup, KG, Enc, Dec) for relation R
with message space {0, 1}*.

— A garbling scheme GC = (Grbl, GCEval). Without loss of generality, we assume
that the labels of GC are in {0, 1}*.
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Setup(1*):
— For i € [le] and b € {0,1}, run (abe.pk; ;, abe.msk; ;) < ABE.Setup(1*).
— Output (pk, msk) = ({abe.pk; ; }ic[ey],be{0,1}> {abe-msk; b }ic(rubef0,1})-
KG (msk, y):
— Generate (skl.ek, skl.dk, skl.vk) < SKL.xG(1%).

— Run abe.sk; «— ABE.KG(ABE.msk; g ck[i], ¥) for i € [lex], where skl.ek]i]
denotes the i-th bit of the binary string skl.ek.
— Output usk = ({abe.sk;};c(s,], skl.ek, skl.dk) and vk := skl.vk.
Enc(pk,z, m):
— Choose R + {0, 1},
— Construct circuit E[m,R], which is a circuit that takes as input an
encryption key skl.ek of SKL and outputs SKL.Enc(skl.ek, m; R).
— Compute ({labi,b}ie[&k],be{o,l}7E) — Grbl(l/\,E[m, R])
— Run abe.ct;;, <= ABE.Enc(abe.pk; ;,,lab; ) for i € [fe] and b € {0, 1}.
— Output ct == ({abe.cti7b}i6[[ek],56{071},E).
Dec(usk., x, ct): -
— Parse usk = ({abe.sk; } ¢, skl.ek,skl.dk) and ct = ({abe.ct; p }icjr,].bef0,1} E)-
— Compute lab; +— ABE.Dec(ABE.sk;, x, abe.ct; g ex[i]) for i € [fek].
— Compute skl.ct = GCEval(E, {lab; };er,)-
— Compute and output m’ <— SKL.Dec(skl.dk,, skl.ct).
Vify(vk, usk):
— Parse vk = skl.vk and usk’ = ({abe.sk; }icr,], skl.ek’, skl.4k).
— Compute and output SKL.Vrfy(skl.vk, skl.dk’).

We show that the scheme satisfies decryption correctness. To see this, we first
observe that the decryption algorithm correctly recovers labels of E corresponding
to the input skl.ek by the correctness of ABE. Therefore, skl.ct recovered by the
garbled circuit evaluation equals to SKL.Enc(skl.ek, m; R) by the correctness of
GC. Then, the message m is recovered in the last step by the correctness of SKL.
We can also see that the verification correctness follows from that of SKL.

Theorem 6.1. If ABE is adaptively (resp., selectively) secure, GC is secure,
and SKL is IND-KLA secure, then 1ABE above is 1-bounded distinguishing key
Ada-IND-KLA (resp., Sel-IND-KLA) secure.

See Section 6.2 of the full version for the proof.

6.3 Q-Bounded Distinguishing Key Construction

By using the technique of [26], we can upgrade 1-bounded distinguishing key
security to -bounded distinguishing key security for any polynomial @ = Q()\).
Then we obtain the following theorem.

Theorem 6.2. If there exists an adaptively (resp., selectively) secure an ABE
scheme for relation R, then for any polynomial Q = Q(X), there is a Q-bounded
distinguishing key Ada-IND-KLA (resp., Sel-IND-KLA) secure ABE scheme for
relation R.

See Section 6.3 of the full version for the proof. We remark that Theorem 6.2
preserves the relation R. Thus, this in particular gives a compiler that upgrades
(selectively or adaptively secure) normal IBE into IBE-SKL.
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7 Functional Encryption with Secure Key Leasing

7.1 Definitions

The syntax of FE-SKL is defined as follows.

Definition 7.1 (PKFE with Secure Key Leasing). A PKFE-SKL scheme
PKFE-SKL is a tuple of six algorithms (Setup, XG, Enc, Dec, Cert, Vrfy). Below,
let X, Y, and F be the plaintext, output, and function spaces of PKFE-SKL,
respectively.

Setup(1*) — (pk, msk): The setup algorithm takes a security parameter 1*, and
outputs a public key pk and master secret key msk.

KG(msk, f) — (fsk,vk): The key generation algorithm takes a master secret key
msk and a function f € F, and outputs a functional decryption key fsk and
a verification key vk.

Enc(pk,x) — ct: The encryption algorithm takes a public key pk and a plaintext
z € X, and outputs a ciphertext ct.

Dec(fsk,ct) — Z: The decryption algorithm takes a functional decryption key fsk.
and a ciphertext ct, and outputs a value Z.

Vrfy(vk, fsk') — T/ L: The verification algorithm takes a verification key vk and
a quantum state fsk', and outputs T or L.

Decryption correctness: For every x € X and f € F, we have

(pk, msk) <« Setup(1*)
Pr | Dec(fsk, ct) = f(z) | (fsk,vk) < KG(msk, f) | =1 — negl(X).
ct + Enc(pk, z)

Verification correctness: For every f € F, we have

(pk, msk) < Setup(1%)
(fsk,vk) < KG(msk, f)

Remark 7.1. Although Kitagawa and Nishimaki [27] require SKFE-SKL to have
classical certificate generation algorithm for deletion, we do not since it is op-
tional.If there exists a PKE-SKL scheme that has a classical certificate generation
algorithm, our PKFE-SKL scheme also has a classical certificate generation
algorithm.

Pr | Vrfy(vk, fsk) = T =1 — negl()).

Definition 7.2 (Adaptive Indistinguishability against Key Leasing At-
tacks). We say that a PKFE-SKL scheme PKFE-SKL for X,), and F is
an adaptively indistinguishable secure against key leasing attacks (Ada-IND-
KLA), if it satisfies the following requirement, formalized from the experiment
Expaﬂ‘fﬁﬂr,‘:dE__kSl%L(l)‘, coin) between an adversary 4 and a challenger:
1. At the beginning, the challenger runs (pk, msk) < Setup(1*). Throughout the
experiment, A can access the following oracles.
Oxs(f): Given f, it finds an entry (f,vk, V') from Lyg. If there is such an
entry, it returns L. Otherwise, it generates (fsk,vk) < KG(msk, f), sends
fsk to 4, and adds (f,vk, L) to Lsg.
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Oy, (f. f5K)): Given (f,fsK'), it finds an entry (f,vk,V) from Lgg. (If there
is no such entry, it returns 1.) It computes d < Vrfy(vk, s€') and sends
dtoAa. IfV =T, it does not update Lyg. Else if V = L, it updates the
entry by setting V = d.

2. When 4 sends (xf,x}) to the challenger, the challenger checks if for any
entry (f,vk,V) in Lag such that f(zf) # f(x7), it holds that V = T. If so,
the challenger generates ct* < Enc(pk, zZ;,) and sends ct* to 4. Otherwise,
the challenger outputs 0. Hereafter, 4 is not allowed to send a function f

such that f(x§) # f(x7) to Ogg.
3. 4 outputs a guess coin’ for coin. The challenger outputs coin’ as the final
output of the experiment.

For any QPT 4, it holds that
ADVEZFESE A(0) = | Pr[ExpBEFESeRA(12,0) — 1] - Pr[Expdlrrdi (1, 1) — 1|

< negl(\).

Remark 7.2. Definition 7.2 assumes that the adversary does not get more than
one decryption key for the same f for simplification as Remark 6.1.

7.2 Constructions

We describe our PKFE-SKL scheme in this section. We construct a PKFE-SKL
scheme PKFE-SKL = (Setup, XG, Enc, Dec, Vrfy) by using the following building
blocks.

IND-KLA secure PKE-SKL SKL = SKL.(XgG, Enc, Dec, Vify).

— Adaptively secure PKFE FE = FE.(Setup, KG, Enc, Dec).

— Adaptively single-ciphertext function private SKFE SKFE = SKFE.(Setup, KG, Enc, Dec).
— Pseudorandom-secure SKE SKE = SKE.(Enc, Dec).

— Puncturable PRF PRF = (PRF.Gen, F, Puncture).

We set lpaq = |skfe.ct| — x| and s = |ske.ct|, where |z| is the input length of
PKFE-SKL, |skfe.ct] is the ciphertext length of SKFE, and [ske.ct| is the ciphertext
length of SKE.

Setup(1*):
— Generate (fe.pk, fe.msk) «— FE.Setup(1?).
— Output (pk, msk) := (fe.pk, fe.msk).
KgG(msk, f):
— Generate (skl.ek, skl.s, skl.vk) < SKL. %G (1*).
Choose ske.ct « {0, 1}s«.
Construct a circuit W, skl.ek, ske.ct], which is described in Figure 1.
Generate fe.skyy <— FE.KG(fe.msk, W{f, skl.ek, ske.ct]).
— Output sk = (fe.skyy, skl.sk) and vk = skl.vk.
Enc(pk, z):
— Choose K «+ PRF.Gen(1%).
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— Compute fe.ct < FE.Enc(fe.pk, (x]|0%, 1, K)).

— Output ct := fe.ct.
Dec(fsk, ct):

— Parse fsk = (fe.sk, skl.sk) and ct = fe.ct.

— Compute skl.ct < FE.Dec(fe.sk, fe.ct).

— Compute and output y < SKL.Dec(skl.sk, skl.ct).
Vify(vk, oK)z

— Parse vk = skl.vk and £k’ = (fe.sk’, skl.sk”).

— Compute and output SKL.¥rfy(skl.vk, skl.sk).

Function W|f, skl.ek, ske.ct](z’, ske.sk, K)

Constants: Function f, PKE-SKL encryption key skl.ek, SKE ciphertext ske.ct.
Input: Plaintext 2’, SKE key ske.sk, PRF key K.

1. If ske.sk = L, do the following:

— Parse ' = z||T such that |T| = £pad.

— Compute and output skl.ct := SKL.Enc(skl.ek, f(z); Fk(skl.ek)).
2. If ske.sk # L, do the following:

— Compute skfe.sk <— SKE.Dec(ske.sk, ske.ct).

— Compute and output z := SKFE.Dec(skfe.sk, z').

Fig.1. The description of W|[f, skl.ek, ske.ct]

The decryption correctness of PKFE-SKL follows from the correctness of FE
and the decryption correctness of SKL. The verification correcntess of PKFE-SKL
follows from the verification correcntess of SKL. We prove the security of PKFE-SKL.

Theorem 7.1. If PKFE is adaptively secure, SKFE is adaptively single-ciphertext
function private, PRF is a secure punctured PRF, and SKE has the ciphertext
pseudorandomness, then PKFE-SKL above is Ada-IND-KLA.

Theorem 7.2. If PKFE is g-bounded adaptively secure, SKFE is adaptively
single-ciphertext function private, PRF is a secure punctured PRF, and SKE
has the ciphertext pseudorandomness, then PKFE-SKL above is g-bounded Ada-
IND-KLA.

The poofs are given in Section 7.3 of the full version.
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