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Abstract. The area of multi-party computation (MPC) has recently in-
creased in popularity and number of use cases. At the current state of the
art, Ciminion, a Farfalle-like cryptographic function, achieves the best
performance in MPC applications involving symmetric primitives. How-
ever, it has a critical weakness. Its security highly relies on the indepen-
dence of its subkeys, which is achieved by using an expensive key sched-
ule. Many MPC use cases involving symmetric pseudo-random functions
(PRFs) rely on secretly shared symmetric keys, and hence the expensive
key schedule must also be computed in MPC. As a result, Ciminion’s
performance is significantly reduced in these use cases.

In this paper we solve this problem. Following the approach introduced
by Ciminion’s designers, we present a novel primitive in symmetric cryp-
tography called Megafono. Megafono is a keyed extendable PRF,
expanding a fixed-length input to an arbitrary-length output. Similar to
Farfalle, an initial keyed permutation is applied to the input, followed by
an expansion layer, involving the parallel application of keyed ciphers.
The main novelty regards the expansion of the intermediate/internal
state for “free”, by appending the sum of the internal states of the first
permutation to its output. The combination of this and other modifica-
tions, together with the impossibility for the attacker to have access to
the input state of the expansion layer, make Megafono very efficient in
the target application.

As a concrete example, we present the PRF Hydra, an instance of
Megafono based on the Hades strategy and on generalized versions
of the Lai–Massey scheme. Based on an extensive security analysis, we
implement Hydra in an MPC framework. The results show that it out-
performs all MPC-friendly schemes currently published in the literature.
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1 Introduction

Secure multi-party computation (MPC) allows several parties to jointly and
securely compute a function on their combined private inputs. The correct output
is computed and given to all parties (or a subset) while hiding the private inputs
from other parties. In this work we focus on secret-sharing based MPC schemes,
such as the popular SPDZ protocol [24,23] or protocols based on Shamir’s secret
sharing [47]. In these protocols private data is shared among all parties, such that
each party receives a share which by itself does not contain any information about
the initial data. When combined, however, the parties are able to reproduce the
shared value. Further, the parties can use these shares to compute complex
functions on the data which in turn produce shares of the output.

MPC has been applied to many use cases, including privacy-preserving ma-
chine learning [46], private set intersection [40], truthful auctions [13], and revo-
cation in credential systems [38]. In the literature describing these use cases, data
is often directly entered from and delivered to the respective parties. However,
in practice this data often has to be transferred securely from/to third parties
before it can be used in the MPC protocol. Moreover, in some applications, in-
termediate results of an MPC computation may need to be stored securely in a
database. As described in [35], one can use MPC-friendly pseudo-random func-
tions (PRFs), i.e., PRFs designed to be efficient in MPC, to efficiently realize
this secure data storage and data transfer by directly encrypting the data using
a secret-shared symmetric key.

Besides being used to securely transmit data in given MPC computations,
these MPC-friendly PRFs can also be used as a building block to speed up
many MPC applications, such as secure database join via an MPC evaluation of
a PRF [44], distributed data storage [35], virtual hardware security modules7,
MPC-in-the-head based zero-knowledge proofs [39] and signatures [16], oblivious
TLS [1], and many more. In all these use cases, the symmetric encryption key is
shared among all participating parties. Consequently, if one has to apply a key
schedule for a given PRF, one has to compute this key schedule at least once in
MPC for every fresh symmetric key.

To be MPC-friendly, a PRF should minimize the number of multiplications
in the native field of the MPC protocol. At the current state of the art, Cimin-
ion [26] is one of the most competitive schemes for PRF applications. Proposed
at Eurocrypt’21, it is based on the Farfalle mode of operation [10]. However,
as we are going to discuss in detail, Ciminion has a serious drawback: Its secu-
rity heavily relies on the assumption that the subkeys are independent. For this
requirement, the subkeys are generated via a sponge hash function [11] instanti-
ated via an expensive permutation. As a result, in all (common) cases where the
key is shared among the parties, the key schedule cannot be computed locally
and needs to be evaluated in MPC. This leads to a significant increase in the
multiplicative complexity of Ciminion. In this paper, we approach this problem
in two steps. First, we propose Megafono, a new mode of operation inspired by

7 https://www.fintechfutures.com/files/2020/09/vHSM-Whitepaper-v3.pdf
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(b) The Ciminion PRF.

Fig. 1: Farfalle and Ciminion (notation adapted to the one used in this paper).

Farfalle and Ciminion.8 It is designed to be competitive in all MPC applications.
Secondly, we show how to instantiate it in an efficient way. The obtained PRF
Hydra is currently the most competitive MPC-friendly PRF in the literature.

1.1 Related Works: Ciminion and the MPC Protocols

Traditional PRFs (e.g., AES, Keccak) are not efficient in MPC settings. First,
MPC applications usually work over a prime field Fp for a large p (e.g., p ≈
2128), while traditional cryptographic schemes are usually bit-/byte-oriented.
Hence, a conversion between F2n and Fp must take place, which can impact the
performance. Secondly, traditional schemes are designed to minimize their plain
implementation cost, and therefore no particular focus is laid on minimizing
specifically the number of nonlinear operations (e.g., AND gates).

For these reasons, several MPC-friendly schemes over Ftq for q = ps and
t ≥ 1 have been proposed in the literature, including LowMC [4], MiMC [3],
GMiMC [2], HadesMiMC [32], and Rescue [5]. All those schemes are block ci-
phers – hence, invertible – and they are often used in counter (CTR) mode.
However, invertibility is not required in MPC applications, and a lower multi-
plicative complexity may be achieved by working with non-invertible functions,
as recently shown by in [26]. In the following, we briefly discuss the Farfalle
construction and the MPC-friendly primitive Ciminion based on it.

Farfalle. Farfalle [10] is an efficiently parallelizable permutation-based construc-
tion of arbitrary input and output length, taking as input a key. As shown in
Fig. 1a and recalled in Section 3, the Farfalle construction consists of a com-
pression layer followed by an expansion layer. The compression layer produces

8 “Megafono” is the Italian word for “megaphone”, a cone-shaped horn used to amplify
a sound and direct it towards a given direction. Our strategy resembles this goal.
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a single accumulator value from the input data. A permutation is potentially
applied to the obtained state. Then, the expansion layer transforms it into a
tuple of (truncated) output blocks. Both the compression and expansion lay-
ers involve the secret key, and they are instantiated via a set of permutations

(namely, P(c),P,P(e)) and rolling functions (R(c)
i ,R(e)

i ).

Ciminion. As shown with Ciminion in [26], a modified version of Farfalle based
on a Feistel scheme can be competitive for MPC protocols, an application which
Farfalle’s designers did not consider. Following Fig. 1b and Section 3,

(1) compared to Farfalle, the compression phase is missing, a final truncation is
applied, and the key addition is performed before P(e) is applied, and

(2) in contrast to MPC-friendly block ciphers, Ciminion is a non-invertible PRF.
For encryption it is used as a stream cipher, where the input is defined as
the concatenation of the secret key and a nonce.

The main reason why Ciminion is currently the most competitive scheme in
MPC protocols is related to one crucial feature of Farfalle, namely the possi-
bility to instantiate its internal permutations with a smaller number of rounds
compared to other design strategies. This is possible since the attacker does not
have access to the internal states of the Farfalle construction. Hence, while the
permutation P(c) is designed in order to behave like a pseudo-random permu-
tation (PRP), the number of rounds of the permutation P(e) can be minimized
and kept significantly lower for both security and good performance.

Besides minimizing the number of nonlinear operations, Ciminion’s designers
paid particular attention to the number of linear operations. Indeed, even though
the main cost in MPC applications depends on the number of multiplications,
other factors (e.g., the number of linear operations) affect efficiency as well.

1.2 The Megafono Design Strategy

The main drawback of Ciminion is the expensive key schedule to generate sub-
keys that can be considered independent. This implies that Ciminion only excels
in MPC applications where the key schedule can be precomputed for a given
shared key, or in the (non-common) scenarios where the key is not shared among
the parties. However, in the latter case, the party knowing the key can also com-
pute Ciminion’s keystream directly in plain (i.e., without MPC) if the nonce and
IV are public in a given use case (which is also true for any stream cipher).

Clearly, the easiest solution is the removal of the nonlinear key schedule.
However, by e.g. defining the subkey as an affine function of the master key, the
security analysis of Ciminion does not hold anymore. As we discuss in detail in
Section 4, this is a direct consequence of the Farfalle construction itself. Even if
the attacker does not have any information about the internal states of Farfalle,
they can exploit the fact that its outputs are generated from the same unknown
input (namely, the output of P(c) and/or P). Given these outputs and by ex-
ploiting the relations of the corresponding unknown inputs (which are related to
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the definition of the rolling function), the attacker can potentially find the key
and break the scheme. For example, this strategy is exploited in the attacks on
the Farfalle schemes Kravatte and Xoofff [15,19]. In Ciminion, this problem is
solved by including additions with independent secret subkeys in the application
of the rolling function. In this way, the mentioned relation is unknown due to the
presence of the key, and P(e) can be instantiated via an efficient permutation.

We make the following three crucial changes in the Farfalle design strategy.

1. First, we replace the permutation P(e) with a keyed permutation Ck.

2. Secondly, we expand the input of this keyed permutation. The second change
aims to frustrate algebraic attacks, whose cost is related to both the degree
and the number of variables of the nonlinear equation system representing
the attacked scheme. In order to create new independent variables for “free”
(i.e., without increasing the overall multiplicative complexity), we reuse the
computations needed to evaluate P. That is, we define the new variable as
the sum of all the internal state of P, and we conjecture that it is sufficiently
independent of its output (details are provided in the following).

3. Finally, we replace the truncation in Ciminion with a feed-forward operation,
for avoiding to discard any randomness without any impact on the security.

Our result is a new design strategy which we call Megafono.

1.3 The PRF Hydra

Given the mode of operation, we instantiate it with two distinct permutations,
one for the initial phase and one for the expansion phase. As in Ciminion, assum-
ing the first keyed permutation behaves like a PRP and since the attacker does
not know the internal states of Megafono, we choose a second permutation
that is cheaper to evaluate in the MPC setting. In particular, while the first per-
mutation is evaluated only once, the number of calls to the second permutation
(and so the overall cost) is proportional to the output size.

For minimizing the multiplicative complexity, we instantiate the round func-
tions of the keyed permutations Ck in the expansion part with quadratic func-
tions. However, since no quadratic function is invertible over Fp, we use them in
a mode of operation that guarantees invertibility. We opted for the generalized
Lai–Massey constructions similar to the ones recently proposed in [33]. Moreover,
we show that the approach of using of high-degree power maps with low-degree
inverses proposed in Rescue does not have any benefits in this scenario.

We instantiate the first permutation P via the Hades strategy [32], which
mixes rounds with full S-box layers and rounds with partial S-box layers. Similar
to Neptune [33], we use two different round functions, one for the internal part
and one for the external one. We decided to instantiate the internal rounds with
a Lai–Massey scheme, and the external ones with invertible power maps.

The obtained PRF scheme called Hydra is presented in Section 5 and Sec-
tion 6, and its security analysis is proposed in Section 7.
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1.4 MPC Performance and Comparison

The performance of any MPC calculation scales with the number of nonlinear
operations. In Figure 2 we compare the number of multiplications required to
evaluate different PRFs for various plaintext sizes t using secret shared keys. One
can observe that Hydra requires the smallest number of multiplications, with
the difference growing further for larger sizes. The only PRF that is competitive
to Hydra is Ciminion, but only if the key schedule does not have to be computed,
which happens if shared round keys can be reused from a previous computation.
However, this implies that the key schedule was already computed once in MPC,
requiring a significant amount of multiplications. Hydra, on the other hand,
does not require the computation of an expensive key schedule and also requires
fewer multiplications than Ciminion without a key schedule for larger state sizes.

In Section 8, we implement and compare the different PRFs in the MP-
SPDZ [41] library and confirm the results expected from Figure 2. Indeed,

(1) taking key schedules into account, Hydra is five times faster than Ciminion
for t = 8, which grows to a factor of 21 for t = 128,

(2) without key schedules, Ciminion is only slightly faster than Hydra for
smaller t, until it gets surpassed by Hydra for t > 16, showing that Hydra
is also competitive, even if the round keys are already present.

Compared to all other benchmarked PRFs, Hydra is significantly faster for any
state size t. Furthermore, Hydra requires the least amount of communication
between the parties due to its small number of multiplications, giving it an
advantage in low-bandwidth networks. As a result, we suggest to replace each of

6



the benchmarked PRFs with Hydra in all their use cases, especially if a large
number of words need to be encrypted.

1.5 Notation

Throughout the paper, we work over a finite field Fq, where q = ps for an odd
prime number p and an integer s ≥ 1 (when needed, we will also assume a fixed
vector space isomorphism Fps ∼= Fsp). We use Fnq , for n ≥ 1, to denote the n-
dimensional vector space over Fq, and we use the notation F?q to denote Fq strings
of arbitrary length. The · || · operator denotes the concatenation of two elements.
An element x ∈ Ftq is represented as x = (x0, x1, . . . , xt−1), where xi denotes its
i-th entry. Given a matrix M ∈ Ft×sq , we denote its entry in row r and column c
either as Mr,c or M [r, c]. We use the Fraktur font notation to denote a subspace
of Frq, while we sometimes use the calligraphic notation to emphasize functions.

Given integers a ≥ b ≥ 1, we define the truncation function Ta,b : Faq → Fbq as
Ta,b(x0, . . . , xa−1) = (x0, . . . , xb−1). Finally, for MPC, we describe that the value
x ∈ Fp is secret shared among all parties by [x].

2 Symmetric Primitives for MPC Applications

Here we elaborate on why expensive key schedules are not desirable in many
MPC use cases, and we discuss the cost metric in MPC protocols in more details.

2.1 MPC Use Cases and Key Schedules

To highlight that expensive key schedules are not suitable for many scenarios, we
describe the use cases discussed in [26] and [35] in greater detail. Concretely, we
discuss the data transfer into and out of the MPC protocol, as well as using sym-
metric PRFs to securely store intermediate results during an MPC evaluation.
In the latter case, the setting is the following: The parties want to suspend the
MPC evaluation and continue at a later point. As discussed in [35], the trivial
solution for this problem is that each party encrypts its share of the data with
a symmetric key and stores the encrypted share, e.g., at a cloud provider. The
total storage overhead of this approach is a factor n for n MPC parties, since
each party stores its encrypted shares of the data. Additionally, each party needs
to memorize its symmetric key. The solution to reduce the storage overhead is
to use a secret shared symmetric key (i.e., each party knows only a share of the
key and the real symmetric key remains hidden), which can directly be sampled
as part of the MPC protocol, and encrypt the data using MPC. The resulting
ciphertexts cannot be decrypted by any party since no one knows the symmetric
key, but can be used inside the MPC protocols at a later point to again create the
shares of the data. This approach avoids the storage overhead of the data, and
each party only has to memorize its share of the symmetric key which has the
same size as the symmetric key itself. However, if the used PRF involves a key
schedule, one also has to compute it in MPC for this use case. Other solutions
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either involve precomputing the round keys, or directly sampling random round
keys in MPC instead of sampling a random symmetric key. These approaches
require no storage overhead for the encrypted data, but each party needs to
memorize its shares of the round keys. In Ciminion, the size of the round keys
is equivalent to the size of the encrypted data (when using the same nonce for
encrypting the full dataset), hence the whole protocol would be more efficient
if each party would just memorize its shares of the dataset instead. Providing
fewer round keys and using multiple nonces instead requires the recomputation
of Ciminion’s initial permutation in MPC, decreasing its performance.

Similar considerations also apply if the MPC parties are different from the
actual data providers or if the output of the computation needs to be securely
transferred to an external party. The solutions to both problems involve storing
the dataset encrypted at some public place (e.g., in a cloud) alongside a public-
key encryption of the shares of the symmetric key, such that only the intended
recipient can get the shares. If the parties want to avoid expensive key sched-
ules in MPC, they either have to provide shares of the round keys (which have
the same size as the encrypted data in Ciminion), or provide fewer round keys
alongside multiple nonces, decreasing the performance in MPC.

Remark 1. In this paper, we focus on comparing MPC-friendly PRFs which are
optimized for similar use cases as the ones discussed in this section, i.e., use cases
which require fast MPC en-/decryption of large amounts of data. Hence, we do
not focus on PRFs not defined over Fp which are optimized for, e.g., Picnic-style
signatures, such as LowMC [4], Rain [27], or weakPRF [25].

2.2 Cost Metric for MPC Applications

Modern MPC protocols such as SPDZ [24,23] are usually split into a data-
independent offline phase and a data-dependent online phase. In the offline
phase, a bundle of shared correlated randomness is generated, most notably
Beaver triples [9] of the form ([a], [b], [a · b]). This bundle is then used in the
online phase to perform the actual computation on the private data.

Roughly speaking, the performance scales with the number of nonlinear op-
erations necessary to evaluate the symmetric primitives in the MPC protocol
(sometimes we use the term “multiplication” to refer to the nonlinear opera-
tion). This is motivated by the fact that each multiplication requires one Beaver
triple, which is computed in the offline phase, as well as one round of communica-
tion during the online phase (see [34, Appendix D]. In contrast, linear operations
do not require any offline computations and can directly be applied to the shares
without communication. Consequently, the number of multiplications is a decent
first estimation of the cost metric in MPC, and MPC-friendly PRFs usually try
to minimize this number. Whereas each multiplication requires communication
between the parties, the depth directly defines the required number of communi-
cation rounds, since parallel multiplications can be processed in the same round.
Thus, the depth should be low in high-latency networks. To summarize,
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– the cost of the offline phase of the MPC protocols directly scales with the
number of required Beaver triples (i.e., multiplications), and

– the cost of the online phase scales with both the number of multiplications
and the multiplicative depth.

As a concrete example, in many MPC-friendly PRFs, such as HadesMiMC,
MiMC, GMiMC, and Rescue, the nonlinear layer is instantiated with a power
map R(x) = xd for d ≥ 2 over Fq. Then, the cost per evaluation is

#triples = costd := hw(d) + blog2(d)c − 1 , depthonline = costd . (1)

Several algorithms to reduce the number of multiplications and communication
rounds were developed in the literature. Here we discuss those relevant for our
goals. They require random pairs [r], [r2], and [r], [r−1], which can be generated
from Beaver triples in the offline phase (see [34, Appendix D]).

Decreasing the Number of Online Communication Rounds. In the pre-
ferred case of d = 3, the cost is two Beaver triples and a depth of two. However,
in [35] the authors propose a method to reduce the multiplicative depth by del-
egating the cubing operation to a random value in the offline phase. Hence, all
cubings can be performed in parallel reducing the depth. This algorithm (see [34,
Appendix D]) requires two triples, but only one online communication round.

Special Case: R(x) = x1/d. Optimizations can also be applied for the case
R(x) = xd with very large d. In [5], the authors propose two different algorithms
to evaluate R (see [34, Appendix D]), in which the cost of evaluating R(x) = xd

can be reduced to the cost of evaluating R(x) = x1/d (plus an additional multi-
plication in the online phase) which requires significantly fewer multiplications
if 1/d is smaller than d. This is, for example, relevant when evaluating Rescue
with its high-degree power maps in MPC. The algorithm works by delegating
the 1/d power map evaluation to the offline phase, and evaluating the costly d
power map on a random value in plain. Furthermore, since the main MPC work
(i.e., 1/d) is evaluated in the input-independent offline phase, all communication
rounds can be parallelized, significantly reducing the multiplicative depth. Using
these algorithms and costd from Eq. (1), the cost of evaluating xd in MPC is
modified to the following, with a significantly smaller multiplicative depth and
a smaller number of multiplications for large d:

#triples = 2 + min
{
costd, cost1/d

}
, depthonline = 2.

3 Starting Points of Megafono: Farfalle and Ciminion

Here we recall Farfalle and Ciminion, which are starting points for Megafono.
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Farfalle and 1/2×Farfalle. Farfalle is a keyed PRF proposed in [10] with inputs
and outputs of arbitrary length. As shown in Fig. 1a, it has a compression layer
and an expansion layer, each involving the parallel application of a permutation.
For our goal, we focus only on the expansion phase, and introduce the term
1/2×Farfalle for a modified version of Farfalle that lacks the initial compression
phase and only accepts input messages of a fixed size n.

Let K ∈ Fκq be the secret key for κ ≥ 1. 1/2×Farfalle uses a key schedule
K : Fκq → (Fnq )? for the subkeys used in the expansion phase, two unkeyed

permutations P,P(e) : Fnq → Fnq , and a rolling function R : Fnq → Fnq .9 We
define Ri as Ri(y) = ρi + R ◦ Ri−1(y) for each i ≥ 1 and ρi ∈ Fnq , where we
assume R0 to be the identity function, i.e., R0(y) = y. Given an input x ∈ Fq,
1/2×Farfalle : Fnq → (Fnq )? operates as 1/2×Farfalle(x) = y0 || y1 || y2 || · · · || yj ||
· · · , where ∀i ≥ 0 : yi := ki+1 + P(e) (Ri (P(x+ k0))) ..

From 1/2×Farfalle to Ciminion. Ciminion [26] is based on a modified version
of 1/2×Farfalle over Fnq for a certain n ≥ 2. As shown in Fig. 1b, the main

difference with respect to 1/2×Farfalle is the definition of the function k + P(e).
In Farfalle/1/2×Farfalle, the key addition is the last operation. In Ciminion, k+
P(e)(x) is replaced by F (e)(x+k) for a non-invertible function F (e) instantiated
via a truncated permutation, i.e., F (e)(x+ k) := Tn,n′ ◦P(e)(x+ k) for a certain
1 ≤ n′ < n. Moving the key inside the scheme prevents its cancellation when
using the difference of two outputs.

In Ciminion, the key schedule K : Fκq → (Fnq )? uses a sponge function [11]
instantiated via the permutation P. We refer to [26, Section 2] for more details.

4 The Megafono Strategy for Hydra

Generating the subkeys of Ciminion via a sponge function and a strong per-
mutation is expensive in terms of multiplications. This makes it inefficient in
cases where the secret keys are shared among the parties, as discussed in Sec-
tion 2.1. Another weakness of Ciminion is the final truncation. While it prevents
an attacker from computing the inverse of the final permutations P(e), it is
wasteful as it lowers the output of each iteration. To fix these issues, here we
propose the Megafono strategy, based on the design strategy of Ciminion (and
1/2×Farfalle), but with some crucial modifications.

Definition of Megafono. Let n ≥ 1 be an integer and let Fq be a field, where
q = ps for a prime integer p ≥ 2 and a positive integer s ≥ 1. Let K ∈ Fκq be the
secret key for n ≥ κ ≥ 1. The ingredients of Megafono are

9 We mention that in [10], authors use the terms “masks” and “(compressing) rolling
function” instead of “subkeys” and “key schedule”. In Farfalle, the same subkey is
used in the expansion phase, that is, k1 = k2 = · · · = ki. Here, we consider the most
generic case in which the subkeys are not assumed to be equal.
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(1) a key schedule K : Fκq → (Fnq )? for generating the subkeys, that is, K(K) =
(k0, k1, . . . , ki, . . .) where ki ∈ Fnq for each i ≥ 0,

(2) an iterated unkeyed permutation P : Fnq → Fnq defined as

P(x) = Pr−1 ◦ . . . ◦ P1 ◦ P0(x) (2)

for round permutations P0,P1, . . . ,Pr−1 over Fnq ,
(3) a (sum) function S : Fnq → Fnq defined as

S(x) :=

r−1∑
i=0

Pi ◦ . . . ◦ P1 ◦ P0(x), (3)

(4) a function Fk : F2n
q → F2n

q defined as

Fk(x) := Ck(x) + x,

where Ck : F2n
q → F2n

q is a block cipher for a secret key k ∈ F2n
q , and

(5) a rolling function R : F2n
q → F2n

q . For y, z ∈ Fn, we further define

Ri(y, z) := ϕi +R ◦Ri−1(y, z)

for i ≥ 1, where ϕi ∈ F2n
q and R0(y, z) = (y, z).

MegafonoK : Fnq → (Fnq )? is a PRF that takes as input an element of Fnq and
returns an output of a desired length, defined as

MegafonoK(x) := Fk2(y, z) || Fk3(R1(y, z)) || · · · || Fki+2
(Ri(y, z)) || · · ·

for i ∈ N, where y, z ∈ Fnq are defined as

y := k1 + P(x+ k0) and z := S(x+ k0) .

Remark 2. The main goal of Megafono is a secure variant of Ciminion without
a heavy key schedule and without relying on independent subkeys (k0, k1, . . . ).
For this reason, we only consider the case k = n and K(K) = (K, . . . , K, . . . ) in
the following. Nevertheless, there may be applications in which a key schedule
is acceptable, and hence we propose Megafono in its more general form.

Remark 3. The function Fk is meant to play the role of P(e) (in the notation we
have used to describe Farfalle and Ciminion). We use this notation to emphasize
that the function is keyed and that we no longer require it to be a permutation.

4.1 Rationale of Megafono

Following its structure, Megafono shares several characteristics with Ciminion
and 1/2×Farfalle. Indeed, many attacks on Farfalle (and Ciminion, 1/2×Farfalle)
discussed in [10, Sect. 5] also apply to Megafono. Here we focus on the differ-
ences, by explaining and motivating the criteria for designing Megafono.
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Expansion Phase. We emphasize the following point which is crucial for under-
standing the design rationale of Megafono. As in 1/2×Farfalle and Ciminion,
the attacker has access to outputs wi = Fk (Ri(y, z)) for i ≥ 0 that depend on
a single common unknown input (y, z) (in addition to the key). By exploiting
the relation among several inputs of Fk and the knowledge of the corresponding
outputs, the attacker can break the entire scheme. Examples of such attacks can
be found in [15,19]. In this scenario, one attack consists of solving the system of
equations {wi − Fk (Ri(y, z)) = 0}i≥0 with Gröbner bases. We provide details
in Section 7.4 and point out that the cost depends on several factors, including
(i) the number of variables, (ii) the number of equations, (iii) the degree of the
equations, and (iv) the considered representative of the system of equations.

Even–Mansour Construction. In Ciminion, the keyed permutation P is cho-
sen in order to resemble a PRP. Indeed, since P is computed only once, it has
little impact on the overall cost. Further, if P resembles a PRP, it is unlikely
that an attacker can create texts with a special structure at the input of P(e).
This allows for a simplified security analysis of the expansion phase, as it rules
out attacks that require control of the inputs of P(e).

By performing a key addition before the expansion phase, the first part of
the scheme becomes an Even–Mansour construction [29] of the form x 7→ K +
P(x + K). As proven in [20,28], an Even–Mansour scheme is indistinguishable
from a random permutation up to qn/2 queries for K ∈ Fnq , assuming both the
facts that (i) the unkeyed permutation P behaves as a pseudo-random public
permutation, and that (ii) the attacker knows both the inputs and outputs of
the construction. Since n/2 · log2(q) is higher than our security level, this allows
us to make a security claim on a subcomponent of the entire scheme, and so to
further simplify the overall security analysis.

Keyed Permutation in the Expansion Phase. In Farfalle, the final key
addition is crucial against attacks inverting the final permutation P(e). However,
an attacker can cancel the influence of the key by using the differences of two
outputs if the key schedule is linear. For example, assume that the key schedule
for the expansion phase is the identity map (as in Farfalle), and let x be the input
of the expansion phase. Let yj = K + P(e)(Rj(x)) and yh = K + P(e)(Rh(x)) be
two outputs of the expansion phase. Any difference of the form

yj − yh = P(e)(Rj(x))− P(e)(Rh(x)) (4)

results in a system of equations that is independent of the key or, equivalently,
that depends only on the intermediate unknown state. This is an advantage
when trying to solve the associated polynomial system with Gröbner bases.

The key in Ciminion has been moved from the end of P(e) to the beginning,
with the goal of preventing its cancellation by considering differences of the
outputs. Inverting P(e) is instead prevented by introducing a final truncation,
which has the side effect of reducing the output size and thus the throughput.

12



Recently, in [8] the authors showed that moving the key inside of P(e) is
actually not sufficient by itself for preventing the construction of a system of
equations – similar to (Eq. (4)) – which is independent of the secret key. For this
reason, instead of working with a permutation-based non-invertible function, we
propose to instantiate the last permutation with a block cipher Ck, defined as an
iterated permutation with a key addition in each round. In this way, we achieve
the advantages of both 1/2×Farfalle and Ciminion. First, the output size of Ck is
equal to the input size and it is not possible to invert Ck without guessing the key
(as in 1/2×Farfalle). Secondly, a carefully chosen Ck will prevent the possibility
to set up a system of equations for the expansion part that is independent of the
key by considering differences of outputs (as in Ciminion).

Feed-Forward in Expansion Phase and Nonlinear Rolling Function.
The proposed changes in Megafono may allow new potential problems. Let
vj = Ck (Rj(y, z)) and vl = Ck (Rl(y, z)) be two outputs of the expansion phase
for a shared input (y, z) and letR′j−l denote the function satisfyingR′j−l◦Rl(·) =
Rj(·) for j > l. Since Ck(·) is invertible for each fixed k, we have that

∀j > l : Ck ◦ R′j−l ◦ C−1k (vl) = vj =⇒ R′j−l ◦ C−1k (vl) = C−1k (vj) .

That is, it is possible to set up a system of equations that depend on the keys
only (equivalently, that do not depend on the internal unknown state (y, z)). We
therefore apply the feed-forward technique on the expansion phase, i.e., we work
with (y, z) 7→ Fk(y, z) := Ck(y, z) + (y, z), which prevents this problem.

Assume moreover that the functions Ri, i ≥ 1 are linear. Given two outputs
wj = Fk (Rj(y, z)) and wl = Fk (Rl(y, z)),

R′j−l(wl)− wj = R′j−l (Fk (Rl(y, z)))−Fk (Rj(y, z))

= R′j−l (Rl(y, z) + Ck (Rl(y, z)))−Rj(y, z)− Ck (Rj(y, z))

= R′j−l (Rl(y, z)) +R′j−l (Ck (Rl(y, z)))−Rj(y, z)− Ck (Rj(y, z))

= R′j−l (Ck (Rl(y, z)))− Ck (Rj(y, z))

for each j, l with j > l. Similar equations can be derived for affine Ri. Even if we
are not aware of any attack that exploits such an equality, we suggest to work
with a nonlinear rolling function. We point out that using a nonlinear function
is also suggested by Farfalle’s designers in order to frustrate meet-in-the-middle
attacks in the expansion phase (see [10, Sect. 5] for more details).

Creating New Variables to Replace a Heavy Key Schedule. Due to the
structure of 1/2×Farfalle and Ciminion, and under the assumption that P behaves
like a PRP, an attacker cannot control the inputs and outputs of the expansion
phase. However, (meet-in-the-middle) attacks that require only the knowledge
of the outputs of such an expansion phase are possible, because multiple outputs
are created via a single common (unknown) input. The cost of such an attack
depends on the number of involved variables and on the degree of the equations.
We start by examining how Farfalle and Ciminion prevent such an attack.
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Farfalle has been proposed for achieving the best performances in software
and/or hardware implementations. For this reason, the field considered in ap-
plications is typically Fn2 , where n is large (at least equal to the security level
k). This implies that a large number of variables is needed to model the scheme
as a polynomial system, which prevents the attack previously described, even
when working with a low-degree permutation P(e). Depending on the details of
the permutation, the number of variables could be minimized by working over
an equivalent field Fm2l where n = m · l, without crucially affecting the overall
degree of the equations that describe the scheme. For instance, 16 variables, as
opposed to 128, are sufficient for describing AES, since all its internal opera-
tions (namely, the S-box, ShiftRows, and MixColumns) are naturally defined
over F16

28 . This is not the case for SHA-3/Keccak, for which only the nonlinear
layer (defined as the concatenation of χ functions) admits a natural description
over F5·l

25 . In general, this scenario can easily be prevented when working with
weak-arranged SPN schemes [17] and/or unaligned SPN schemes [14], for which
this equivalent representation that minimizes the number of variables comes at
the price of huge/prohibitive degrees of the corresponding functions.

Ciminion has, on the other hand, been proposed for minimizing the mul-
tiplicative complexity in the natural representation of the scheme over Fnq for
large/huge q and small n, namely, the opposite of Farfalle. Hence, in order to
work with low-degree permutations P(e), it is necessary to “artificially” increase
the number of variables to prevent attacks. By using a heavy key schedule, one
can guarantee that the algebraic relation between the keys k0, k1, k2, . . . is non-
trivial, i.e., described by dense algebraic functions of high degree. Such a complex
relation could not be exploited in an algebraic attack, and the attacker is then
forced to treat the subkeys as independent variables. To summarize,

– in Farfalle, the (MitM) attack on the expansion phase is prevented by work-
ing over a field Fnp for a small prime p and a large integer n, and

– in Ciminon, it is prevented by “artificially” increasing the number of vari-
ables, working with a heavy key schedule.

None of the two approaches is suitable for our goal, since we mainly target appli-
cations over a field Fnp for a huge prime p in which a heavy key schedule cannot
be computed efficiently. For this reason, we propose to increase the number of
variables “for free” by reusing the computation needed to evaluate P. Since P is
instantiated as an iterated permutation in practical use cases, we can fabricate
a new Fnq element by considering the sum of all internal states of P. This corre-
sponds to the definition of the function S in Eq. (3). In this way, we can double
the size of the internal state (and so, the number of variables) for free.

In more detail, for a given input x ∈ Fnq , let y ∈ Fnq be the output K+P(x+K),
and let z ∈ Fnq be the output S(x+ K). Then y and z are not independent, since
z = S(P−1(y − K)).10 However, for proper choices of P and S, the relation
between the two variables is too complex to be exploited in practice, exactly as

10 Note that it is not possible to define y as a function of z, since there is no way to
uniquely recover x given z.
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in the case of the keys k0, k1, k2, . . . in Ciminion. As a result, the attacker is
forced to consider both y and z as two independent variables, which is exactly
our goal.

Similar Techniques in the Literature. For completeness, we mention that the
idea of reusing internal states of an iterated function is not new in the literature.

E.g., let E
(r)
k be an iterated cipher of r ≥ 1 rounds. In [45], the authors set up

a PRF F as the sum of the output of the iterated cipher after r rounds and the

output after s rounds for s 6= r, that is, F (x) = E
(r)
k (x) + E

(s)
k (x). Later on, a

similar approach has been exploited in the Fork design strategy [6], which is an

expanding invertible function defined as x 7→ E
(r0)

k̂
(E

(s)
k (x))‖E(r1)

k̃
(E

(s)
k (x)).

4.2 Modes of Use of Megafono

As in the case of Farfalle and Ciminion, Megafono can be used for key deriva-
tion and key-stream generation. It allows amortizing the computation of the key
among different computations with the same initial master key K. Besides that,
other possible use cases of Megafono are a wide block cipher, in which Mega-
fono is used to instantiate the round function of a contracting Feistel scheme,
and a (session-supporting) authenticated encryption scheme. Since these appli-
cations were also proposed for Farfalle, we do not describe them here, but refer
to [10, Sect. 4] for further details.

We conclude by pointing out the following. Megafono is designed to be
competitive for applications that require a natural description over Fnq , where q is
a large prime of order at least 264. However, this does not mean that Megafono
cannot be efficiently used in other applications, e.g., for designing schemes that
aim to be competitive in software or hardware. From this point of view, the
main difference with respect to Farfalle and Ciminion is the fact that Megafono
requires two permutations with different domains, namely, Fnq and F2n

q . However,
this is not a problem when e.g. considering the family of the SHA-3/Keccak
permutations [12], defined over Fn2 for n = 25 · 2l for l ∈ {0, 1, . . . , 6}. In this
case it is possible to instantiate P and Ck with two unkeyed/keyed permutations
defined over domains whose size differs by a factor of two. The resulting PRF
based on Megafono would be similar to the PRF Kravatte based on Farfalle
proposed in [10, Sect. 7]. (Proposing concrete round numbers for this version is
beyond the scope of this paper. Rather, we leave the open problem to evaluate
and compare the performances of the two PRFs for future work.)

5 Specification of Hydra

5.1 The PRF Hydra

Let p > 263 (i.e., dlog2(p)e ≥ 64) and let t ≥ 4 be the size of the output. The
security level is denoted by κ, where 280 ≤ 2κ ≤ min{p2, 2256}, and K ∈ F4

p is
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Fig. 3: The Hydra PRF (where r := RI − 1 for aesthetic reasons).

the master key. We assume that the data available to an attacker is limited to
240 ≤ 2κ/2 ≤ min{p, 2128}. For a plaintext P ∈ Ftp, the ciphertext is defined by

C = Hydra([N || IV]) + P,

where Hydra : F4
p → Ftp is the Hydra PRF, IV ∈ F3

p is a fixed initial value and
N ∈ Fp is a nonce (e.g., a counter).

Hydra. An overview of Hydra11 is given in Fig. 3, where

(1) y := K+B([N || IV] + K) ∈ F4
p for a certain permutation B : F4

p → F4
p defined

in the following,
(2) z ∈ F4

p defined as z =: SK([N‖IV]) for the non-invertible function SK : F4
p →

F4
p which corresponds to the sum of the internal states of K+B([N‖IV] + K),

(3) HK : F8
p → F8

p is a keyed permutation defined in Section 5.4, and

(4) the functions Ri :
(
F4
p

)2 → F8
p are defined as

∀i ≥ 1 : Ri(y, z) := ϕi +R ◦Ri−1(y, z) , (5)

where R0(y, z) = (y, z), and where R :
(
F4
p

)2 → F8
p is the rolling function

defined in Section 5.3, and ϕi ∈ F8
p are random constants.

We give an algorithmic description of Hydra in [34, Appendix E].

11 The (Lernaean) Hydra is a mythological serpentine water monster with many heads.
In our case, we can see B as the body of the Hydra, and the multiple parallel
permutations HK as its multiple heads.
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5.2 The Body of the Hydra: The Permutation B
The permutation B : F4

p → F4
p is defined as

B(x) = E5 ◦ · · · ◦ E2︸ ︷︷ ︸
4 times

◦ IRI−1 ◦ · · · ◦ I0︸ ︷︷ ︸
RI times

◦ E1 ◦ E0︸ ︷︷ ︸
2 times

(ME × x), (6)

where the external and internal rounds Ei, Ij : F4
p → F4

p are defined as

Ei(·) = ϕ(E,i) +ME × SE(·), Ij(·) = ϕ(I,j) +MI × SI(·)

for i ∈ {0, 1, . . . , 5} and each j ∈ {0, 1, . . . , RI − 1}, where ϕ(E,i), ϕ(I,j) ∈ F4
p are

randomly chosen round constants (we refer to [34, Appendix E] for details on
how we generate the pseudo-random constants).

The Round Function E. Let d ≥ 3 be the smallest odd integer such that
gcd(d, p− 1) = 1. The nonlinear layer SE : F4

p → F4
p is defined as

SE(x0, x1, x2, x3) = (xd0, x
d
1, x

d
2, x

d
3) .

We require ME ∈ F4×4
p to be an MDS matrix and recommend an AES-like matrix

such as circ(2, 3, 1, 1) or circ(3, 2, 1, 1).

The Round Function I. The nonlinear layer SI : F4
p → F4

p is defined as
SI(x0, x1, x2, x3) = (y0, y1, y2, y3) where

yl = xl +

((
3∑
j=0

(−1)j · xj

)2

+

(
3∑
j=0

(−1)bj/2c · xj

))2

for 0 ≤ l ≤ 3 . (7)

Note that the two vectors λ(0) := (1,−1, 1,−1), λ(1) := (1, 1,−1,−1) ∈ F4
p, that

define the coefficients in the sums of (7), are linearly independent and their
entries sum to zero. This latter condition is needed to guarantee invertibility
by Proposition 1. MI ∈ F4×4

p is an invertible matrix that satisfies the following
conditions (which are justified in [34, Appendix G.2]):

(a) for each i ∈ {0, 1}:
∑3
j=0 λ

(i)
j ·

(∑3
l=0MI [j, l]

)
6= 0,

(b) for each i ∈ {0, 1} and each j ∈ {0, 1, . . . , 3} :
∑3
l=0 λ

(i)
l ·MI [l, j] 6= 0, and

(c) its minimal polynomial is of maximum degree and irreducible (for preventing
infinitely long subspace trails – see [34, Appendix H] for details).

In particular, we suggest using an invertible matrix of the form

MI =


µ
(I)
0,0 1 1 1

µ
(I)
1,0 µ

(I)
1,1 1 1

µ
(I)
2,0 1 µ

(I)
2,2 1

µ
(I)
3,0 1 1 µ

(I)
3,3

 , (8)

for which the conditions (a), (b), and (c) are satisfied (we suggest to use the tool
given in [34, Appendix H.1] in order to check that the condition (c) is satisfied).
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5.3 The Rolling Function

The rolling function R :
(
F4
p

)2 → F8
p is defined as R(y, z) = MR × SR(y, z),

where a round constant is included in the definition of Ri (Eq. (5)) and the
nonlinear layer SR is defined as

SR(y0, y1, y2, y3, z0, z1, z2, z3) = (y0 + v, . . . , y3 + v, z0 + w, . . . , z3 + w),

with v, w ∈ Fp defined as

v =

(
3∑

i=0

(−1)i · yi

)
·

(
3∑

i=0

(−1)b
i
2c · zi

)
, w =

(
3∑

i=0

(−1)i · zi

)
·

(
3∑

i=0

(−1)b
i
2c · yi

)
,

(9)
and the linear layer MR ∈ F8×8

p is defined as

MR = diag(MI ,MI) =

(
MI 04×4

04×4 MI

)
,

where MI ∈ F4×4
p is the matrix just defined for the body’s internal rounds.

5.4 The Heads of the Hydra: The Permutation HK

The keyed permutation HK : F8
p → F8

p is defined as

HK(y, z) = K′ + JRH−1 ◦ (K′ + JRH−2) ◦ . . . ◦ (K′ + J1) ◦ (K′ + J0)︸ ︷︷ ︸
RH times

(y, z),

where K′ = K || (ME × K) ∈ F8
p, and Jj : F8

p → F8
p is defined as

Ji(·) = ϕi +MJ × SJ (·),

where ϕi ∈ F8
p are random round constants for each i ∈ {0, 1, . . . , RH − 1}. The

nonlinear layer SJ (x0, x1, . . . , x7) = (y0, . . . , y7) is defined by

yl = xl +

(
7∑

h=0

(−1)b
h
4 c · xh

)2

for 0 ≤ l ≤ 7 .

As in (7), we note that the coefficients in the sum, (1, 1, 1, 1,−1,−1,−1,−1),
sums to zero. MJ ∈ F8×8

p is an invertible matrix that fulfills similar conditions to

(a), (b), and (c) described in Section 5.2, i.e., (a)
∑7
h=0(−1)h·

(∑7
l=0MJ [h, l]

)
6=

0, (b)
∑7
l=0(−1)l ·MJ [l, h] 6= 0, for h ∈ {0, . . . , 7}, and (c) the minimal poly-

nomial of MJ is of maximum degree and irreducible (as detailed in [34, Ap-
pendix H]). We recommend that MJ has a similar form to the matrix in Eq. (8)
for eight rows and columns.
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5.5 Number of Rounds

In order to provide κ bits of security and assuming a data limit of 2κ/2, the
number of rounds for the functions B and HK must be at least

RI =
⌈
1.125 ·

⌈
max

{κ
4
− log2(d) + 6, R̂I

}⌉⌉
, RH = d1.25 ·max {24, 2 +R∗H}e ,

where R̂I and R∗H are the minimum positive integers that satisfy [34, Ap-
pendix G.2] and Eq. (12), respectively. Note that we have added a security
margin of 12.5% for B and 25% for HK. In [34, Appendix A], we provide a script
that returns the number of rounds RI and RH for given p and κ. For instance,
with κ = 128, we get RI = 42 and RH = 39. A concrete instantiation of Hy-
dra’s matrices for p = 2127 + 45 is given in in [34, Appendix C].

About Related-Key Attacks. We do not claim security against related-key
attacks, since the keys are randomly sampled in each computation, without any
input or influence of a potential attacker. Thus, an attacker cannot know or
choose any occurring relations between different keys. Indeed, since we focus on
MPC protocols in a malicious setting with either honest or dishonest majority
(e.g., SPDZ [24,23]), any difference added to one shared key would be immedi-
ately detected by the other parties in the protocol. We also emphasize that the
same assumption has been made in previous related works [32,26].

6 Design Rationale of B, Ri and HK

6.1 The Body B

The Hades Design Strategy. For B, we aim to retain the advantages of
Hades [32], in particular the security arguments against statistical attacks and
the efficiency of the partial middle rounds. The Hades strategy is a way to design
SPN schemes over Ftq in which rounds with full S-box layers are mixed with
rounds with partial S-box layers. The external rounds with full S-box layers (t S-
boxes in each nonlinear layer) at the beginning and at the end of the construction
provide security against statistical attacks. The rounds with partial S-box layers
(t′ < t S-boxes and t−t′ identity functions) in the middle of the construction are
more efficient in settings such as MPC and help to prevent algebraic attacks. In
all rounds, the linear layer is defined via the multiplication of an MDS matrix.

This strategy has recently been pushed to its limit in Neptune [33], a mod-
ified version of the sponge hash function Poseidon [31]. In such a case, instead
of using the same matrix and the same S-box both for the external and the
internal rounds, Neptune’s designers propose to use two different S-boxes and
two different matrices for the external and internal rounds.
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The External Rounds of B. As in Hades, Poseidon, and Neptune, we use
the external rounds to provide security against statistical attacks. In the case of
Hades and Poseidon, this is achieved by instantiating the external full rounds
with power maps x 7→ xd for each of the t words. We recall that this nonlinear
layer requires t · (hw(d) + blog2(d)c− 1) multiplications (see e.g. [33] for details).

We adopt this approach for B, using 2 external rounds at the beginning and
2 + 2 = 4 external rounds at the end, where 2 rounds are included as a security
margin against statistical attacks (see [34, Appendix G.1] for more details). With
respect to Hades and Poseidon, we do not impose that the number of external
rounds at the beginning is equal to the number of external rounds at the end
(even if we try to have a balance between them). Instead, we choose the number
of external rounds to be even at each side in order to maximize the minimum
number of active S-boxes from the wide-trail design strategy [22] (the minimum
number of active S-boxes over two consecutive rounds is related to the branch
number of the matrix that defines the linear layer).

The Internal Rounds of B. To minimize our primary cost metric (the number
of multiplications over Fp), we opt for using maps with degree 2l ≥ 2 which cost
l ≥ 1 multiplications in the internal rounds. Indeed, let us compare the cost in
terms of Fp multiplications in order to reach a certain degree ∆ when using a
round instantiated with the quadratic map x 7→ x2, with one instantiated via
an invertible power map x 7→ xd with d ≥ 3, for odd d. Comparing the overall
number of Fp multiplications, the first option is the most competitive, since

dlog2(∆)e = dlogd(∆) · log2(d)e︸ ︷︷ ︸
using x7→x2

≤ dlogd(∆)e · (blog2(d)c+ hw(d)− 1)︸ ︷︷ ︸
using x 7→xd

,

where dlogd(∆) · log2(d)e ≤ dlogd(∆)e · dlog2(d)e and blog2(d)c + hw(d) − 1 ≥
blog2(d)c+1 = dlog2(d)e. For example, consider d = 3, ∆ = 2128. With quadratic
maps we need 128 Fp multiplications to reach degree ∆. In the second case, 162
Fp multiplications are needed, requiring 27% more multiplications in total.

Nonlinear Layer. However, x 7→ x2 is not invertible, which may affect the se-
curity. Therefore, we use the quadratic map in a mode that preserves the in-
vertibility, as in a Feistel or Lai–Massey construction [43]. The latter over F2

q

is defined as (x, y) 7→ (x + F (x − y), y + F (x − y)), where F : Fq → Fq. Gen-
eralizations over Fnp have recently been proposed [33], including one defined as

(x0, x1, . . . , xn−1) 7→ (y0, y1, . . . , yn−1), where yi = xi +F
(∑n−1

j=0 (−1)j · xj
)

for

i ∈ {0, 1, . . . , n− 1} and even n ≥ 3. This can be further generalized as follows.

Proposition 1. Let q = ps, where p ≥ 3 is a prime and s is a positive integer,

and let n ≥ 2. Given 1 ≤ l ≤ n − 1, let λ
(i)
0 , λ

(i)
1 , . . . , λ

(i)
n−1 ∈ Fq be such that∑n−1

j=0 λ
(i)
j = 0 for i ∈ {0, 1, . . . , l−1}. Let F : Flq → Fq. The Lai-Massey function
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F : Fnq → Fnq defined as F(x0, . . . , xn−1) = (y0, . . . , yn−1) is invertible when

yh = xh+F

n−1∑
j=0

λ
(0)
j · xj ,

n−1∑
j=0

λ
(1)
j · xj , . . . ,

n−1∑
j=0

λ
(l−1)
j · xj

 , for 0 ≤ h ≤ n−1 .

We provide the proof in [34, Appendix F.1]. No conditions are imposed on

F . Even if not strictly necessary, we choose {λ(0)j }
n−1
j=0 , . . . , {λ

(l−1)
j }n−1j=0 such that

they are linearly independent. Since we require
∑n−1
j=0 λ

(i)
j = 0 for i ∈ {0, . . . , l−

1}, there can be at most l = n− 1 linearly independent {λ(i)j }-vectors.
To reduce the number of rounds and matrix multiplications, we chose a gener-

alized Lai–Massey construction instantiated with a nonlinear function of degree
4 that can be computed with 2 multiplications only.

Linear Layer. The Lai–Massey construction allows for invariant subspaces [48].
Hence, it is crucial to choose the matrix MI in order to break them. For this
goal, in [34, Appendix H], we show how to adapt the analysis/tool proposed
in [36,37] for breaking arbitrarily long subspace trails for P-SPN schemes to the
case of the generalized Lai–Massey constructions. In particular, based on [36,
Proposition 13], we show that this result can be always achieved by choosing a
matrix for which the minimal polynomial is of maximum degree and irreducible.

Moreover, the interpolation polynomial must be dense. Therefore, we require

(a) for i ∈ {0, 1, . . . , l − 1} :
∑n−1
j=0 λ

(i)
j ·

(∑n−1
k=0 MI [j, k]

)
6= 0,

(b) for i ∈ {0, 1, . . . , l− 1} and j ∈ {0, 1, . . . , n− 1} :
∑n−1
k=0 λ

(i)
k ·MI [k, j] 6= 0.

We give further details on these two conditions in [34, Appendix G.2].

6.2 The Heads HK

As in Farfalle and Ciminion, the attacker knows the outputs of the expansion
phase of Megafono, but cannot choose them (to e.g. set up a chosen-ciphertext
attack). By designing B in order to resemble a PRP, the attacker cannot know
or choose the inputs of HK (i.e., the output of B). Further, it is not possible to
choose inputs of B which result in specific statistical/algebraic properties at the
inputs of HK. This severely limits the range of attacks that may work at the
expansion phase of Megafono, and so of Hydra.

As a result, we find that the possible attacks are largely algebraic in nature,
such as using Gröbner bases. The idea of this attack is to construct a system
of equations that links the inputs and the outputs of HK in order to find the
intermediate variables and the key. In our case, this corresponds to 12 variables:
eight to represent the input and four variables related to the key. With this
number of variables over such a large field (relative to the security level), we
will see in Section 7.4 that it will not be necessary for HK to reach its maximal
degree. Since HK is an iterated permutation, it is also possible to introduce new
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variables at the outputs of each round Ji in order to reduce the overall cost
of the Gröbner basis attack. In such a case, the cost of the attack depends on
min{deg(J−1),deg(J )}. Indeed, since we can work at round level, each round
function y = J (x) can be rewritten as J−1(y) = x, and the cost of the attack
depends on the minimum degree among these equivalent representations.

Therefore, we instantiate the round function of HK with a low-degree func-
tion, in particular a generalized Lai–Massey construction of degree 2 (where the
matrix that defines the linear layer satisfies analogous condition to the ones given
for MI). An alternative approach (used e.g. in Rescue) applies both high-degree
and low-degree nonlinear power maps (recalled in Section 2.2). It is efficient in
the MPC setting, and would prompt HK to quickly reach its maximal degree.
However, since reaching the maximal degree will not be a primary concern of
ours (due to the high number of variables), we opt for the former choice of round
functions, which allows Hydra to be fast in the plain setting as well.

6.3 The Rolling Functions Ri

Finally, we consider a nonlinear rolling function, as already done in Xoofff [21]
and Ciminion. This has multiple advantages, such as frustrating the meet-in-
the-middle attacks on the expansion phase described in [15,19] and previously
recalled in Section 4.1, and destroying possible relation between consecutive
outputs due to the feed-forward operation (see Section 4.1 for details).

We work with a rolling function that is different from what is used in the
heads, in order to break symmetry. The following (generalized) result ensures
the invertibility of the chosen rolling function.

Proposition 2. Let n = 2 · n′ ≥ 4, with n′ ≥ 2, and {λi, λ′i, ϕi, ϕ′i}0≤i≤n′−1 be

a set of constants in Fp \ {0} satisfying
∑n′−1
i=0 λi =

∑n′−1
i=0 λ′i =

∑n′−1
i=0 ϕ′i = 0.

Let furthermore G,H : Fp → Fp be any Fp functions. Then the function F over
Fnp defined as F(x0, . . . , xn−1) = (y0, . . . , yn−1) is invertible for

yi :=

xi +
(∑n−1

j=n′ ϕj−n′ · xj
)
·G
(∑n′−1

j=0 λj · xj
)

if i ∈ {0, . . . , n′ − 1},

xi +
(∑n′−1

j=0 ϕ′j · xj
)
·H
(∑n−1

j=n′ λ′j−n′ · xj
)

if i ∈ {n′, . . . , n− 1}.

The proof is given in [34, Appendix F.2]. We impose that (λ0, . . . , λn′−1),
(ϕ′0, . . . , ϕ

′
n′−1) ∈ Fn′

p and (ϕ0, . . . , ϕn′−1), (λ′0, . . . , λ
′
n′−1) ∈ Fn′

p are pairwise
linearly independent, in order to guarantee that the variables v and w in Eq. (9)
are independent (i.e., there is no ω ∈ Fp such that v = ω·w) with high probability.

As before, the matrix MR is chosen in order to break infinitely long invariant
subspace trails. Since the constants that defined the (generalized) Lai-Massey
functions (namely, (1,−1, 1,−1) and (1, 1,−1,−1) ∈ F4

p) are the same for the
rolling function and for the body’s internal rounds, we defined MR via MI .
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7 Security Analysis

Inspired by Ciminion, we choose the number of rounds such that x 7→ K+B(x+K)
behaves like a PRP (where an attacker is free to choose its inputs and outputs)
and no attack works on the expansion phase of Hydra. In the following, we
motivate this choice and justify the number of rounds given in Section 5.5.

7.1 Overview

Attacks on the Body. Attacks taking into account the relations between the
inputs and the outputs of Hydra are in general harder than the attacks taking
into account the relations between the inputs and the outputs of B. Hence, if an
attacker is not able to break x 7→ K + B(x+ K) if they have full control over the
inputs and outputs, they cannot break Hydra by exploiting the relation of its
inputs and outputs. Based on this fact, the chosen number of rounds guarantees
that x 7→ K + B(x + K) resembles a PRP against attacks with a computational
complexity of at most 2κ and with a data complexity of at most 2κ/2.

We point out that this approach results in a very conservative choice for
the number of rounds of B. Indeed, in a realistic attack scenario the outputs of
x 7→ K + B(x+ K) are hidden by HK, and the overall design will still be secure if
B is instantiated with a smaller number of rounds. However, B is computed only
once, and the overall cost grows linearly with the number of computed heads HK.
Hence, we find that the benefits of allowing us to simplify the security analysis
of the heads outweighs this modest increase in computational cost.

Attacks on the Heads. In order to be competitive in MPC, we design HK such
that Hydra is secure under the assumption that K+B(x+K) behaves like a PRP.
In particular, the attacker only knows the outputs of the HK calls, and cannot
choose any inputs with particular statistical or algebraic properties. Hence, the
only possibility is to exploit the relations among the outputs of consecutive HK

calls, which originate from the same (unknown) input y, z ∈ F4
p. This can be

used when constructing systems of polynomial equations from HK. Indeed, we
will later see that the most competitive attacks are Gröbner basis ones.

7.2 Security Analysis of B

Since B is heavily based on the Hades construction, its security analysis is also
similar. In particular, the external rounds of a Hades design provide security
against statistical attacks. Since this part of B is the same as in HadesMiMC,
the security analysis proposed in [32, Sect. 4.1 – 5.1] also applies here. The inter-
nal rounds of B are instantiated with a Lai–Massey scheme, while the internal
rounds of HadesMiMC are instantiated with a partial SPN scheme. However,
the security argument proposed for HadesMiMC in [32, Sect. 4.2 – 5.2] regarding
algebraic attacks can be easily adapted to the case of B.
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We refer to [34, Appendix G] for more details. We point out that x 7→ K +
B(x+K) is an Even–Mansour construction in which B is independent of the key,
while a key addition takes place among every round in HadesMiMC. This fact
is taken care of in the analysis proposed in [34, Appendix G], keeping in mind
that the Even–Mansour construction cannot guarantee more than 2 · log2(p) ≥ κ
bits of security [20,28] (this value is reached when B resembles a PRP).

Finally, in [34, Appendix H] we show how to choose the matrix that de-
fines the linear layer of the internal rounds of B in order to break the invariant
subspace trails of the Lai–Massey scheme, by modifying the strategy proposed
in [36] for the case of partial SPN schemes.

7.3 Statistical and Invariant Subspace Attacks on HK

It is infeasible for the attacker to choose inputs {xj}j for B such that the cor-
responding outputs {yj}j satisfy certain statistical/algebraic properties, which
makes it hard to mount statistical attacks on the heads HK. However, it is still
desirable that HK has good statistical properties.

To this end, the matrix MJ ∈ F8×8
p is chosen such that no (invariant) sub-

space trail and probability-1 truncated differential can cover more than 7 rounds
(see [34, Appendix H]). Hence, the probability of each differential characteristic
over RH rounds is at most p−bRH/8c, since the maximum differential probability
of SJ is p−1 (see [34, Appendix I.1]) and at least one SJ function is active every
8 rounds. By choosing RH ≥ 24, the probability of each differential characteristic
is at most p−3 ≤ 2−1.5κ, which we conjecture to be sufficient for preventing dif-
ferential and, more generally, other statistical attacks in the considered scenario.

7.4 Algebraic and Gröbner Basis Attacks on HK

It is not possible to mount an interpolation attack, since the input y, z is unknown
and the polynomials associated with the various heads differ for each i. Thus,
the remainder of this section will be devoted to Gröbner basis attacks.

Note that the variables y and z are clearly not independent, as they both
depend on x. Moreover, z can be written as a function of y (the converse does not
hold, since the function that outputs z is, in general, not invertible). However,
these functions would be dense and reach maximum degree, which implies that
the cost of an attack making use of them would be prohibitively expensive.
Hence, we will treat y and z as independent variables in the following.

Preliminaries: Gröbner Basis Attacks. The most efficient methods for solv-
ing multivariate systems over large finite fields involve computing a Gröbner basis
associated with the system. We refer to [18] for details on the underlying theory.

Computing a Gröbner basis (in the grevlex order) is, in general, only one
of the steps involved in solving a system of polynomials. In our setting, an
attacker is able to set up an overdetermined polynomial system where a unique
solution can be expected. In this case it is often possible to read the solution
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directly from the grevlex Gröbner basis, which is why we will solely focus on the
step of computing said basis. There are no general complexity estimates for the
running time of state-of-the-art Gröbner basis algorithms such as F4 [30]. There
is, however, an important class of polynomial systems, known as semi-regular
(see [7] for a definition), that is well understood. For a semi-regular system the
degree of the polynomials encountered in F4 is expected to reach the degree
of regularity Dreg, which in this case can be defined as the index of the first
non-positive coefficient in the series

H(z) =

∏ne

i=1(1− zdi)
(1− z)nv

, (10)

for ne polynomials in nv variables, where di is the degree of the i-th equation.
The estimated complexity of computing a grevlex Gröbner basis is then

O
((

Dreg + nv
nv

)ω)
, (11)

where 2 ≤ ω ≤ 3 is the linear algebra constant representing the cost of matrix
multiplication and Dreg the associated degree of regularity [7].

Gröbner Basis Attacks on HK. There are many possible ways to represent
a cryptographic construction as a system of multivariate polynomials, and this
choice impacts the performance of the Gröbner basis algorithm. Note that the
degree of HK(Ri(y, z)) increases with i, and it is therefore not possible to col-
lect enough polynomials for solving by direct linearization at a relatively small
degree, as discussed in [34, Appendix G.2]. Instead, we find that the most ef-
ficient attack includes only HK(y, z) and HK(R1(y, z)) in a representation that
introduces new variables and equations for each round. While this increases the
number of variables, it keeps the degree low, and allows exploitation of the small
number of multiplications in each round. We outline our findings in the following,
and we refer to [34, Appendix I.2] for more details on the underlying arguments.

The most promising intermediate modeling can be reduced to a system of
2RH + 2 quadratic equations in 2RH − 2 variables, where RH is the number of
rounds in HK. Further analysis shows that the tested systems are semi-regular,
and in particular that the degrees encountered in the F4 algorithm are well-
estimated by the series H(z) in Eq. (10). Solving times are also comparable to
that of solving randomly generated semi-regular systems with the same param-
eters. Still, the systems from HK are sparser than what can be expected from
randomly generated systems. To ensure that this cannot be exploited, we add
2 extra rounds on top of this baseline. Hence, for a security level κ we follow
Eq. (11) and define R∗H = R∗H(κ) to be the minimum positive integer such that(

2R∗H − 2 +Dreg

2R∗H − 2

)2

≥ 2κ , (12)

where Dreg is computed from Eq. (10) using ne = 2R∗H+2 and nv = 2R∗H−2. We
claim that R∗H(κ) + 2 is sufficient to provide κ-bit security against this attack.
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Table 1: Online and offline phase performance in MPC for several constructions
with state sizes t using a secret shared key. Prec is the number of precomputed
elements (multiplication triples, squares, inverses). Depth describes the number
of online communication rounds. The runtime is averaged over 200 runs.

Offline Online Combined
t Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

8

Hydra 6, 42, 39 171 39.99 3.86 131 6.81 5.37 46.80 3.87
Ciminion 90, 14 867 227.47 19.55 735 21.81 28.02 249.29 19.58
HadesMiMC 6, 71 238 52.66 5.37 79 17.58 5.99 70.24 5.38
Rescue 10 960 254.80 21.65 33 12.65 23.32 267.45 21.68

32

Hydra 6, 42, 39 294 72.67 6.63 134 13.36 9.69 86.03 6.64
Ciminion 90, 14 3207 910.11 72.30 2895 84.37 103.29 994.47 72.41
HadesMiMC 6, 71 526 137.49 11.87 79 225.86 13.29 363.35 11.88
Rescue 10 3840 1253.76 86.60 33 109.80 92.82 1363.56 86.70

64

Hydra 6, 42, 39 458 119.07 10.33 138 20.57 15.45 139.64 10.35
Ciminion 90, 14 6327 2262.55 142.64 5775 178.66 203.64 2441.21 142.84
HadesMiMC 6, 71 910 251.44 20.53 79 899.55 23.02 1150.99 20.55
Rescue 10 7680 2851.56 173.20 33 402.34 185.50 3253.90 173.39

128

Hydra 6, 42, 39 786 206.08 17.72 146 37.49 26.97 243.58 17.75
Ciminion 90, 14 12567 4854.43 283.32 11535 328.79 404.34 5183.22 283.72
HadesMiMC 6, 71 1678 463.59 37.85 79 4371.02 42.47 4834.61 37.89
Rescue 10 15360 5934.39 346.40 33 1549.16 370.84 7483.55 346.77

Concrete Example for κ = 128. In this case we get R∗H(128) = 29, which in
turn yields ne = 60 quadratic equations in nv = 56 variables. By expanding the
resulting series in Eq. (10), we get Dreg = 23 for this system, and the security

estimate
(
56+23

56

)2 ≈ 2130.8 follows. Thus, we claim that R∗H(128) + 2 = 31 is
sufficient to provide 128-bit security against Gröbner basis attacks.

8 Hydra in MPC Applications

In this section, we evaluate the performance of Hydra compared to other PRFs
in MPC use cases which assume a secret shared key. We implemented Hydra
and its competitors using the MP-SPDZ library [41]12 (version 0.2.8, files can
be found in [34, Appendix A]) and benchmark it using SPDZ [24,23] with the
MASCOT [42] offline phase protocol. Concretely, we benchmark a two-party
setting in a simulated LAN network (1 Gbit/s and � 1 ms average round-trip
time) using a Xeon E5-2669v4 CPU (2.6 GHz), where each party is assigned
only 1 core. SPDZ, and therefore all the PRFs, is instantiated using a 128-bit
prime p, with gcd(3, p− 1) = 1, thus ensuring that x 7→ x3 is a permutation, as
required by HadesMiMC, Rescue, MiMC, GMiMC, and Hydra. All PRFs are

12 https://github.com/data61/MP-SPDZ/
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instantiated with κ = 128. Hydra requires 4 ·RE · (hw(d) + blog2(d)c − 1) + 2 ·
RI + (RH + 2) ·

⌈
t
8

⌉
− 2 multiplications, hence 130 + 41 ·

⌈
t
8

⌉
in this setting.

We implemented all x3 evaluations using the technique from [35], which re-
quires one precomputed Beaver triple, one precomputed shared random square,
and one online communication round. Furthermore, we implemented x1/3 (as
used in Rescue) using the technique described in [5]. MP-SPDZ allows to precom-
pute squares and inverses from Beaver triples in an additional communication
round in the offline phase (see Section 2).

In Table 1, we compare the performance of Hydra to some competitors
when encrypting t plaintext words,13 for a comparison with more PRFs we refer
to [34, Appendix J]. We give concrete runtimes, as well as the amount of data
transmitted by each party during the evaluation of the offline and online phases.
Further, we give the combined number of triples, squares, and inverses which
need to be created during the offline phase, as well as the total number of com-
munication rounds (i.e., the depth of the PRF) in the online phase. In the offline
phase only the required number of triples, squares, and inverses is precomputed.

Table 1 shows that the offline phase dominates both the overall runtime
and the total communication between the parties. Hydra always requires less
precomputation than Ciminion, HadesMiMC, and Rescue, hence, it has a sig-
nificantly more efficient offline phase with the advantage growing with t. Looking
at the online phase, Hydra is faster and requires less communication than its
competitors, which is due to the smaller number of multiplications and the bet-
ter plain performance. While Ciminion is slow due to the expensive key schedule,
HadesMiMC requires many expensive MDS matrix multiplications (see [34, Ap-
pendix K]) and Rescue requires expensive x1/d evaluations.

For the sake of completeness, in Table 2 we also compare the performance
of Hydra to Ciminion and Rescue in the case in which the round keys are
already present. Comparing Hydra to Ciminion without a key schedule, one
can observe that Ciminion’s online phase is always faster. However, Hydra’s
number of multiplications scales significantly better than Ciminion’s, hence, for
larger state sizes (t ≥ 32) Hydra has a faster offline phase performance, as well
as less communication in the online phase.

To summarize, our experiments show that Hydra is the most efficient PRF
in both phases of the MPC protocols. Only if we discard the key schedules,
Ciminion is competitive for small state sizes t < 32. Thus, using Hydra leads
to a significant performance improvement in MPC use cases, especially in high-
throughput conditions. In applications, where the offline phase plays a minor
role, e.g., when triples are continuously precomputed and rarely consumed, Hy-
dra still leads to an performance advantage due to requiring less communication
between the parties, however, the advantage will be smaller.

13 The use cases discussed in this paper basically boil down to encrypting many plain-
text words using a secret-shared key. Hence, this benchmark is also representative
for the use cases from Section 2.1.
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Table 2: Online and offline phase performance in MPC for several constructions
with state sizes t using a secret shared key. Prec is the number of precomputed
elements (multiplication triples, squares, inverses). Depth describes the number
of online communication rounds. The runtime is averaged over 200 runs.

Offline Online Combined
t Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

8

Hydra 6, 42, 39 171 39.99 3.86 131 6.81 5.37 46.80 3.87
Ciminion (No KS)a 90, 14 148 35.64 3.34 107 3.98 5.02 39.62 3.35
Rescue (No KS)a 10 480 129.47 10.83 33 6.95 11.80 136.42 10.84

32

Hydra 6, 42, 39 294 72.67 6.63 134 13.36 9.69 86.03 6.64
Ciminion (No KS)a 90, 14 328 80.79 7.40 119 5.42 11.16 86.21 7.41
Rescue (No KS)a 10 1920 538.19 43.30 33 47.35 46.74 585.54 43.35

64

Hydra 6, 42, 39 458 119.07 10.33 138 20.57 15.45 139.64 10.35
Ciminion (No KS)a 90, 14 568 154.38 12.81 135 8.05 19.35 162.42 12.83
Rescue (No KS)a 10 3840 1226.39 86.60 33 144.14 93.34 1370.53 86.70

128

Hydra 6, 42, 39 786 206.08 17.72 146 37.49 26.97 243.58 17.75
Ciminion (No KS)a 90, 14 1048 274.90 23.63 167 10.70 35.74 285.60 23.67
Rescue (No KS)a 10 7680 2943.21 173.20 33 737.84 186.52 3681.05 173.39

a Assumes round keys are present, i.e., no key schedule computation in MPC.

The Effect of the Network. The performance of MPC applications depends
on the network speed. A lower bandwidth leads to a larger effect of the com-
munication between the parties on the overall performance. Moreover, a longer
round-trip time leads to larger contributions of the number of communication
rounds. In the offline phase only shared correlated randomness is created, thus
the network performance affects all PRFs in the same way. Consequently, if a
PRF has a faster offline phase in the LAN setting, it is also faster in a slower net-
work environment. The situation is different in the online phase: In fast networks,
the online phase performance is mostly determined by the plain runtime. In a
slower network, more time is spent waiting for the network to deliver packages.
Hydra has a small number of multiplications, hence a preferable offline phase
in all networks. Further, it requires little communication in the online phase,
making it suitable for low-bandwidth networks. However, it has a larger depth
compared to HadesMiMC and Rescue, leading to worse runtimes in high-delay
networks where runtime is dominated by round trip time× depth. Ciminion’s
key schedule has a large depth and requires lots of communication between the
parties (compare Data column in Table 1 and Table 2). Thus, Ciminion is only
competitive in slow networks if the key schedule does not need to be computed.
Overall, Hydra has a good balance between a small number of multiplications,
little communication, decent plain performance, and a reasonable depth, making
it the preferred PRF for MPC applications in most network environments.
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