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Abstract. In this work we give the first non-adaptive construction of
universal one-way hash functions (UOWHFs) from arbitrary one-way
functions. Our construction uses O(n9) calls to the one-way function,
has a key of length O(n10), and can be implemented in NC1 assuming
the underlying one-way function is in NC1.

Prior to this work, the best UOWHF construction used O(n13) adaptive
calls and a key of size O(n5) (Haitner, Holenstein, Reingold, Vadhan and
Wee [Eurocrypt ’10]). By the result of Applebaum, Ishai and Kushilevitz
[FOCS ’04], the above implies the existence of UOWHFs in NC0, given
the existence of one-way functions in NC1.

We also show that the PRG construction of Haitner, Reingold and Vad-
han (HRV, [STOC ’10]), with small modifications, yields a relaxed no-
tion of UOWHFs , which is a function family which can be (inefficiently)
converted to UOWHF by changing the functions on a negligible frac-
tion of the inputs. In order to analyze this construction, we introduce
the notion of next-bit unreachable entropy, which replaces the next-bit
pseudoentropy notion used by HRV.

Keywords: universal one-way hash function; one-way function; non-adaptive.

1 Introduction

A wide class of cryptographic primitives can be constructed from one-way func-
tions, which is the minimal assumption for cryptography. Two important such
primitives are pseudorandom generators (PRGs) [31, 11] and universal one-way
hash functions (UOWHFs) also known as, target-collision resistant (TCR) hash
functions [27]. PRGs and UOWHFs are useful for constructing even more pow-
erful primitives such as encryption, digital signatures and commitments. Yet,
the optimal efficiency of black-box constructions of PRGs and UOWHFs from
one-way functions is not fully understood. In this paper, we focus on con-
structions of UOWHF, a relaxation of collision-resistant hash function (CRHF)
introduced by Naor and Yung [27]. Informally, a keyed function family F =



{fk : {0, 1}n → {0, 1}m}k is a UOWHF if m < n, and, for every poly-time algo-
rithm A, and for every input x ∈ {0, 1}n, the following holds: with high proba-
bility over the choice of a uniformly random key k, A(k, x) cannot find a collision
x′ ̸= x with fk(x) = fk(x

′).

There are several important efficiency measures to account for when consid-
ering black-box constructions of UOWHFs and PRGs form one-way functions.
For PRG constructions, one aims to minimize the seed length and the number
of calls to the one-way function f . For UOWHF constructions, there is a need
to minimize the key length and the number of calls to f . Besides these two mea-
surements, another important parameter is the adaptivity of the calls. That is,
whether the invocations of the one-way function are independent of the output
of previous calls. A non-adaptive construction naturally gives rise to a, more ef-
ficient, parallel algorithm. By contrast, if the calls are adaptive, one must make
them sequentially.

The first UOWHF construction from arbitrary one-way functions is due to
Rompel [28] (see [23] for a full proof of Rompel’s construction). The efficiency
was then improved by Haitner, Holenstein, Reingold, Vadhan andWee (HHRVW
[16]), who give a construction of UOWHF using O(n13) adaptive calls, and with
a key of size O(n7), which can be improved easily to size O(n5 log n) (see
Observation 1.3). Notably, prior to the work presented here, there was no non-
adaptive UOWHF construction.

The above construction of HHRVW [16] uses ideas similar to the ones used
in the constructions of PRGs. Still, the best PRG constructions from arbitrary
one-way functions are more efficient. Currently, the state-of-the-art construction
of PRGs uses O(n4 log n) bits of random seed and O(n3 log n) non-adaptive
calls to the one-way function, or alternatively seed of size O(n3 log2 n) with

O(n3 log n) adaptive calls [18, 30]. Constructing a UOWHF using Õ(n3) calls to
the one-way function is still an interesting open question.

These efficiency gaps between UOWHFs and PRGs constructions are even
more surprising in the light of the similarities between the constructions. Spe-
cially, for more structured one-way functions such as permutations or regular
functions, there is essentially no efficiency gap between PRG and UOWHF con-
structions.3 Moreover, the constructions are very similar to each other and use
similar techniques. For example, the method of randomized iterate is used for the
constructions of both primitives from unknown-regular one-way functions [15,
32, 2]. Recently, Mazor and Zhang [26] introduced non-adaptive constructions
for both UOWHF and PRG from an unknown-regular one-way function. Their
constructions for both primitives have in common a similar structure and are
composed of the same building-block operations.

Example 1.1 (Similarity between black-box construction of PRGs and UOWHFs,
known-regular [20, 32]). For a concrete example, assume f : {0, 1}n → {0, 1}n is

3 f is called regular if for every n and x, x′ with |x| = |x′| = n it holds that∣∣f−1(f(x))
∣∣ =

∣∣f−1(f(x′))
∣∣. We say that the function is unknown-regular if the

regularity parameter,
∣∣f−1(f(x))

∣∣, may not be a computable function of n.
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a regular one-way function with regularity parameter r, such that no poly-time
algorithm can invert f with probability more than ϵ (for a negligible ϵ).

Then
G(h1, h2, x) = (h1, h2, h1(f(x)), h2(x))

is a PRG, where the functions h1 : {0, 1}n → {0, 1}n−r−Θ(log 1/ϵ)
and

h2 : {0, 1}n → {0, 1}r+Θ(log 1/ϵ)+logn
are hash functions from appropriate hash

families. Similarly, C = {Ck = G(z ⊕ k)}k is a UOWHF when taking h2 : {0, 1}n →
{0, 1}r+Θ(log 1/ϵ)−logn

, and using the same function G.

Example 1.2 (Similarity between black-box construction of PRGs and UOWHFs,
unknown regular [26]). Another example is the following. For an unknown-
regular one-way function f : {0, 1}n → {0, 1}n,

G(h, x1, . . . , xn) = h(f(x1), x2), h(f(x2), x3) . . . , h(xt−1, f(xn))

is a PRG for a hash function h : {0, 1}2n → {0, 1}n+logn
from a suitable family.

The following similar function

C(h, x1, . . . , xn) = f(x1), h(f(x1), x2), h(f(x2), x3) . . . , h(xt−1, f(xn)), xn,

can be converted into a UOWHF by taking the family C = {Ck = C(z ⊕ k)}k,
when taking h : {0, 1}2n → {0, 1}n−logn

.

Furthermore, the first constructions from (unstructured) arbitrary one-way
functions of PRGs, by Hastad, Impagliazzo, Levin and Luby [20], and the con-
structions of UOWHFs by Rompel [28] and HHRVW [16], shared a similar frame-
work. This framework includes first constructing a non-uniform version of the
desired primitive, and then eliminating the non-uniform (short) advice by enu-
merating over all possible advices, and combining the constructions together.
This enumeration and combining step has a significant efficiency cost for both
primitives.

By contrast, in their beautiful work, Haitner, Reingold and Vadhan (HRV
[18]) introduced a simpler and more efficient framework to construct PRGs
from arbitrary one-way functions. By introducing a notion called next-bit pseu-
doentropy, they give a very efficient and simple non-adaptive construction of
PRGs from one-way functions. This work starts by showing that the function
g(h, x) = (h, f(x), h(x)), where h is a hash function from some appropriate 2-
universal family, has non-trivial next-bit pseudoentropy. The work proceeds by
describing a procedure that extracts pseudorandomness from next-bit pseudoen-
tropy (see Figure 1 for a sketch of the construction). As stated above, this con-
struction has O(n4 log n) random seed size with O(n3 log n) calls, which is a sig-
nificant improvement over [20]. One main reason for this efficiency improvement
is that this framework no longer requires the non-uniformity elimination step.
Unfortunately, there is no analog to this construction for UOWHFs. Adapting
the framework of HRV [18] to improve the efficiency of UOWHF constructions
is still an interesting open question.
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1.1 Our Contribution

In this paper, we partially answer the last question above. Our first result is
(the first) non-adaptive construction of UOWHF from arbitrary one-way func-
tions. We achieve this by introducing a construction that does not have the non-
uniformity elimination step. By the result of Applebaum, Ishai and Kushilevitz
[4], the above implies the existence of UOWHFs in NC0, assuming the existence
of one-way functions in NC1.4 In addition, our construction reduces the call
complexity over HHRVW [16], and uses O(n9) calls to the one-way function
instead of O(n13). On the negative side, the key length of our construction is
O(n10), instead of O(n5).

Next, aiming to close the still remaining gap between PRG and UOWHF
constructions, we show that small modifications to the PRG construction of
HRV [18] yield a relaxed notion of UOWHF, which we call “almost-UOWHF”.
Informally, a function family is almost-UOWHF if by changing the functions on
a negligible fraction of the inputs, we can convert it into a (perfect) UOWHF.
To analyze the almost-UOWHF construction, we introduce the notion of next-bit
unreachable entropy, an analogue of next-bit pseudoentropy used in [18]. Similarly
to the PRG construction, our almost-UOWHF construction uses O(n3 log n)
non-adaptive calls to the one-way function and has a key of size O(n4 log n).
More details below.

Non-Adaptive UOWHF from One-Way Functions In their construction
of UOWHFs from one-way functions, HHRVW [16] define the notion of accessible
entropy.5 Informally, for a function g, the accessible entropy of g−1 is a bound on
the entropy of the output of every collision finder for g (i.e., of every poly-time
algorithm that, given an input x, always outputs a pre-image of g(x)).

HHRVW [16] show how a one-way function f : {0, 1}n → {0, 1}n can be used

to construct a function ρ : {0, 1}n
5

→ {0, 1}n
5

such that, for a uniformly chosen

input X ← {0, 1}n
5

, there is a gap between the entropy of X given ρ(X), and the
accessible entropy of ρ−1. Namely, there exists some ℓ ∈ N, such that for every
collision finder A for ρ, the following holds with all but a negligible probability:
the size of ρ−1(ρ(X)) is at least 2ℓ+ω(logn), while for every input X, the support
size of the output of A(X) is at most 2ℓ.6 When ℓ is known, it is not hard to
convert such a function to UOWHF, but here the parameter ℓ depends on f
and may be unknown. To overcome this obstacle, HHRVW construct UOWHF
candidates C1, .., Ct from ρ, one for each 1 ≤ ℓ ≤ t = n2/ log n, out of which

4 The result of Applebaum, Ishai and Kushilevitz [4] implies that, using a method
called randomized encoding, the existence of UOWHF in NC1 implies the existence
of UOWHF in NC0.

5 We use the term accessible entropy to denote accessible entropy of functions. Some-
what different notions of accessible entropy are used in other contexts, for example
to construct statistically-hiding commitments from one-way functions ([19]).

6 The actual definition of inaccessible entropy ignores some events that have a negli-
gible probability.
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at least one is an UOWHF. Then, for each ℓ, HHRVW feed the output of Cℓ

into itself repeatedly and obtain a new function C ′ℓ(x) which is also an UOWHF,
but is addidionally sufficiently compressing. Finally, the concatenation C(x) :=
C ′1(x), .., C

′
t(x) is a UOWHF if at least one of the Cℓ is. The transformation from

Cℓ to C ′ℓ introduces adaptivity into the constructions by HHRVW and Rompel,
and the combination of parallel and sequential composition increases the number
of calls to f by a factor of n9 in HHRVW, and increases the key length by a
factor of log n.

Observation 1.3 (The key-length in HHRVW [16]) The described above
step of removing non-uniformity in HHRVW actually increases the size of the
key by a n2 factor: while the transformation from Cℓ to C ′ℓ only increses the key
length by a factor of log n for each ℓ, HHRVW use a different key for each such
candidate, and the key of the final construction is the concatenation of the t keys.
Our observation is that it is possible to use the same key for all the candidates.
This reduces the key-length from O(n7) to O(n5 log n).

By viewing ℓ as an unknown regularity parameter of ρ, we replace the parallel
and sequntial composition in HHRVW by applying the recent construction of [26]
of non-adaptive UOWHF from (unknown) regular one-way functions. Namely,

for m = n5 hash functions h1, . . . , hm : {0, 1}2m → {0, 1}m−logn
from a universal

family H, and inputs z1, . . . , zm, let

C(h1, . . . , hm−1, z1, . . . , zm) =

h1, . . . , hm−1, ρ(z1), h1(z1, ρ(z2)), . . . , hm−1(zm−1, ρ(zm)), zm.

Following [26], we show that C is (length-decreasing) collision resistant on ran-
dom inputs, and can be easily be converted to UOWHF (see Section 2 for the
definition of collision resistant on random inputs and discussion). The above
gives rise to the following result.

Theorem 1.4 (Non-Adaptive UOWHF from OWF, informal). There
exists a black-box construction of UOWHF from any one-way function that uses
O(n9) non-adaptive calls to the one-way function. Moreover, the construction
has key length and output length of O(n10), and is computable in NC1 using
oracle calls to f .

We note that, since ρ is not a regular function (indeed, there is a negligible
fraction of inputs for which ρ may have fewer collisions), the use of [26] is not
straightforward, and the security proof requires a new analysis. An overview of
the proof is given in Section 2.1.

Next, using the result of Applebaum, Ishai and Kushilevitz [4], who construct
a UOWHF in NC0 based on a UOWHF in NC1 and randomized encodings, we
get the following corollary.

Corollary 1.5 (UOWHF in NC0, informal) Assuming that one-way func-
tions exist in NC1, there exists a UOWHF in NC0.
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Efficient Almost-UOWHF from One-Way Functions Our second con-
struction is inspired by the work of HRV [18] on PRG constructions from one-
way functions. We show that small modifications to the PRG of [18] yield an
almost-UOWHF. Informally, a shrinking, keyed function family

F = {fk : {0, 1}n → {0, 1}m}k

is an almost-UOWHF if, for every key k, there exists a negligible-sized set of
inputs Bk such that the following holds for every poly-time algorithm A, and
every input x ∈ {0, 1}n: With all but negligible probability over the choice of
a uniformly random key k, A(k, x) cannot find a collision x′ ̸= x with fk(x) =
fk(x

′), unless x′ ∈ Bk (see Definition 5.1 for the formal definition).
We note that, similarly to the above definition of almost-UOWHF, we can

also define an “almost-PRG”. However, unlike UOWHF, it is easy to see that
an almost-PRG is a (standard) PRG. Hence, viewing the HRV construction as
an “almost-PRG”, we believe that the UOWHF analog of the HRV construction
is essentially our almost-UOWHF. While we do not know if an almost-UOWHF
can be converted efficiently into a UOWHF, in our non-adaptive construction
we are able to remove the negligible-sized set Bk (due to which the construc-
tion is only almost-UOWHF) at the cost of more repetitions and calls to the
one-way function (see Section 2.1 for more details). Thus, the almost-UOWHF
construction emphasizes that this need of eliminating the negligible-sized set is
the main efficiency gap between the currently known constructions of PRGs and
UOWHFs.

We get the following theorem.

Theorem 1.6. [Almost-UOWHF from OWF, informal] There exists a black-
box construction of an almost-UOWHF with key length O(n4 log n) from one-way
functions with input length n. The construction makes O(n3 log n) non-adaptive
calls to the underlying one-way function.

Next-bit unreachable entropy. In their work, HRV [18] define the notion of next-
bit pseudoentropy. HRV first show how to construct a function with non-trivial
(i.e., larger than the input size) next-bit pseudoentropy. Then, using this func-
tion, HRV construct an efficient and simple PRG. To replace the notion of next-
bit pseudoentropy in our construction, we define the notion of next-bit unreach-
able entropy, a variant of inaccessible entropy, defined by HHRVW [16], that
allows us to achieve almost-UOWHF using a similar construction to the above
PRG. We discuss the definition and the motivation behind it in detail in Sec-
tion 2.2.

1.2 Additional Related Work

Next-block pseudoentropy and inaccessible entropy. A different variant of inac-
cessible entropy, for online generator, was defined and used by Haitner, Reingold,
Vadhan and Wee [19] to construct statistically hiding commitments. Chen Horel
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and Vadhan [1] pointed out that the HRVW [19] notion of accessible entropy and
next-block pseudoentropy are deeply related to each other. Recently, Haitner,
Mazor and Silbak [17] showed that incompressibility implies next-bit pseudoen-
tropy.

UOWHFs from regular one-way functions. Constructions of UOWHF from regu-
lar one-way functions are more efficient. Besides the mentioned above construc-
tions from unknown-rgular one-way functions [15, 32, 2, 26], Naor and Yung [27]
construct an UOWHF using 1 call to an 1-to-1 one-way functions, and [32] give
a construction from known-regular one-way functions, using ω(1) non-adaptive
calls.

Additionally, a few refinements of regularity were considered. Barhum and
Maurer [8] show an adaptive construction for UOWHF that uses O(ns6(n))
key-length under the assumption that

∣∣f−1(f(x))∣∣ is concentrated in an interval

of size 2s(n). Yu, Gu, Li and Weng [32] give adaptive constructions with key of
length O(n log n), for functions with polynomial fraction of inputs x such that∣∣f−1(f(x))∣∣ is maximal.

Lower bounds. The lower bounds for black-box UOWHF and PRG constructions
from one-way functions are relatively far from the upper bounds. Gennero,
Gertner, Katz and Trevisan [13] prove that any black-box PRG construction
G : {0, 1}m → {0, 1}m+s

from f must use Ω(s/ log n) calls to f . Similarly, any
black box UWOHF construction with input size m and output size m− s must
use Ω(s/ log n) calls. Holenstien and Sinha [21] prove that any black-box PRG
construction from a one-way function f must use Ω(n/ log n) calls to f , even
for 1-bit stretching. Barhum and Holenstein [7] give an analog lower bound of
Ω(n/ log n) calls 1-bit compressing UWOHF constructions. These lower bounds
hold even when the one-way function f is unknown-regular. In this case, these
bounds are known to be tight ([15, 32, 2, 26]).

(Multi)-collision resistant hash functions (CRHFs). UOWHF is a relaxation
of CRHF. In the latter, we require that for a random function from the family,
no adversary can find a collision (x, x′). Constructing a CRHF is a more chal-
lenging task, and its complexity is still not clear. Asharov and Segev [6] prove
that there is no black-box construction of CRHFs even from indistinguishable
obfuscation (iO) additionally to a one-way permutation. Holmgren and Lom-
bardi [22] show how to construct CRHF from exponentially secure OWF, under
an assumption on the probability to invert two independent one-way function
challenges. Recent works also study a relaxation of CRHF, called Multi-Collision
Resistant hash functions (MCRH)[24, 9, 10]. Rothblum and Vasudevan [29] show
a non-constructive transformation from MCRH to CRHF for some range of pa-
rameters.

Low-complexity cryptography. As described above, Applebaum, Ishai and Kushile-
vitz [4] develop a general method to construct cryptographic primitives in NC0
based on primitives in higher complexity classes. HRV [18] use this method
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in order to prove the existence of PRG in NC0, assuming one-way function in
NC1. Applebaum, Haramaty-Krasne, Ishai, Kushilevitz and Vaikuntanathan [3]
show the existence of CRHF with low algebric degree and linear shrinkage based
on a specific assumption. Based on the assumption that random local function
is a one-way function (Goldreich [14]), Applebaum and Moses [5] construct a
UOWHF with constant locality and linear shrinkage.

1.3 Paper Organisation

Section 2 gives a high-level description of our constructions and proof technique.
Section 3 gives formal definitions. The non-adaptive UOWHF construction and
its security reduction to one-way functions are in Section 4. Finally, Section 5
provides the formal definition of almost-UOWHF and next-bit unreachable en-
tropy, as well as the almost-UOWHF construction. The security reduction from
the almost-UOWHF construction to one-way functions is in the full version of
this paper [25].

2 Our Technique

In this section, we provide a detailed description of our constructions and proof
technique. In both of the proofs, we first construct a function that is collision
resistant on random inputs, and then use known techniques to convert it into
a UOWHF. Informally, a function C is collision resistant on random input if,
given a random input x, no adversary can find x′ ̸= x with C(x′) = C(x).

Definition 2.1 (Collision resistance on random inputs) Let n be a se-

curity parameter. A function f : {0, 1}m(n) → {0, 1}ℓ(n) is collision resistant on
random inputs if for every probabilistic polynomial-time adversary A, the proba-
bility that A succeeds in the following game is negligible in n:

1. Choose x← {0, 1}m(n)
.

2. Let x′ ← A(1n, x) ∈ {0, 1}m(n)
.

3. A succeeds if x ̸= x′ and f(x) = f(x′).

In contrast, the security requirement in the definition of UOWHF is called
target-collision resistance (see Definition 3.3), according to which the adversary
can choose x, but without knowing the randomly chosen key for the function.
It is well known that a collision resistant on random input function C that is
length-decreasing (i.e., ℓ < m) can be converted into a UOWHF defined by

C =
{
Ck : {0, 1}m → {0, 1}ℓ

}
k∈{0,1}m

,

for Ck(x) = C(k ⊕ x). The key length of the resulting UOWHF is the same
as the input length of C, and the complexity of the UOWHF is similar to the
complexity of C. It is not hard to see that the other direction also holds. That
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is, by adding the key to the input and output of the function, a UOWHF can
be converted into a (shrinking) collision resistant on random input function. A
similar notion and transformation can be defined also for the case of almost-
UOWHFs. Below, we show how to construct collision resistant on random input
functions.

2.1 Non-Adaptive UOWHF

We start with a high-level description of the constructions of [16] and [26].

UOWHF from Unknown-Regular One-Way Functions
Mazor and Zhang (MZ [26]) showed how to construct a non-adaptive UOWHF
from an unknown-regular one-way function f : {0, 1}n → {0, 1}n. For hash func-
tions
h1, . . . , hn−1 : {0, 1}2n → {0, 1}n−logn

from a hash family H, and n inputs
x1, . . . , xn ∈ {0, 1}n, MZ [26] show that, for the right choice of H, the func-

tion C : Hn × {0, 1}n
2

→ Hn × {0, 1}2n+(n−1)(n−logn)
, defined by

C(h1, . . . , hn, x1, . . . , xn)

= h1, . . . , hn, f(x1), h1(x1, f(x2)), . . . , hn−1(xn−1, f(xn)), xn

is collision resistant on random inputs. Since this function is also shrinking, it
can be converted into an UOWHF easily by a standard construction.7

Intuitively, for a regular function f and i.i.d uniform random variables X1,
X2 over {0, 1}n, given any fixing of f(X1), the entropy of the pair X1, f(X2)
is exactly n. To see the above, recall that for a regular f with an (unknown)
regularity parameter ∆, it holds that there are exactly ∆ possible values for X1

given f(X1), and exactly 2n/∆ possible values for f(X2). Thus, the regularity
parameter∆ “cancels out” when considering the number of possible values (given
f(X1)) of the pair X1, f(X2), as this number is ∆ · 2n/∆ = 2n. It follows that
the compression of the pair X1, f(X2) does not create too many collisions. This
fact can be used in order to reduce the problem of inverting f , into finding a
collision for C.

Inaccessible Entropy from One-Way Functions In order to construct
an UOWHF from an arbitrary one-way function, given a one-way function
f : {0, 1}n → {0, 1}n, HHRVW [16] first construct a function g, that takes as
input an index i ∈ [n], string x ∈ {0, 1}n and a description of a random hash func-
tion h from a 3-wise independent hash familyH, and outputs h, together with the
i first bits of h(f(x)). That is, g(i, x, h) = (h, h(f(x))≤i). HHRVW [16] showed
that for every collision finder algorithm A, there are sets {Lw}w∈([n]×{0,1}n×H),

such that, for a random input W ← ([n]× {0, 1}n ×H),
7 MZ actually show it is enough to use a single hash function. The number of repeti-
tions n is necessary only to make the function shrinking.
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1. Pr[A(W ) /∈ LW ] = neg(n), and,
2. H(W | g(W ))−E[log(|LW |)] ≥ log n/n,

where H is the entropy function. The above log n/n is a gap between the entropy
of W given g(W ), to its accessible average max entropy.

HHRVW [16] then showed, using standard concentration bounds, that for ρ =

gn
4

(i.e., ρ(w1, . . . , wn4) = g(w1), . . . , g(wn4), the concatenation of the outputs
of n4 independent invocations of g), both the entropy and the accessible entropy
are highly concentrated around their means. That is, there exist some ℓ ∈ N
and s = ω(log n) such that

∣∣ρ−1(ρ(z))∣∣ ≥ 2ℓ+s for all but negligible fraction of
z’s, and the following holds. For every collision finder A for ρ, there exist sets
{Lz}z∈Domain(ρ) such that (1) |{Lz}| ≤ 2ℓ for all but negligible fraction of z’s,

and (2), Pr[A(z) /∈ Lz] = neg(n) for every collision finder A for ρ.
We now proceed to describing our construction. In the following we view ρ

as a function from {0, 1}m to {0, 1}k, for m, k = O(n5) (using a proper encoding
of the input).

Our Construction Thinking of ℓ as the regularity parameter of the function
ρ, we use the MZ construction of in order to build a non-adaptive UOWHF.
That is, for hash functions h1, . . . , hm−1 : {0, 1}m×{0, 1}k → {0, 1}m−logn

from
a universal family H, and inputs z1, . . . , zm, let

C(h1, . . . , hm−1, z1, . . . , zm)

= h1, . . . , hm−1, ρ(z1), h1(z1, ρ(z2)), . . . , hm−1(zm−1, ρ(zm)), zm.

We show that C is collision resistant on random inputs. Indeed, assume that∣∣ρ−1(ρ(z))∣∣ ≥ 2ℓ+ω(logn) for every z ∈ {0, 1}m. Then the image size of ρ is at

most 2m · 2−ℓ−ω(logn). Thus, for Z1, Z2 ← {0, 1}m and H1 ← H, any poly-time
algorithm cannot find a collision for ρ(Z1), H1(Z1, ρ(Z2)), since it only has

|LZ1 | · |Image(ρ)| ≤ 2ℓ · (2m · 2−ℓ−ω(logn)) = 2m−ω(logn)

possible values to choose from, and the probability for each such value to collide
with Z1, ρ(Z2) on H1 is 2−m+logn. Thus, by the union bound, the probability
that there is a collision for Z1, Z2 inside the set LZ1 × Image(ρ) is negligible. By
a similar argument, the analysis shows that it is impossible to find a collision for
the entire function C.

However, there is an issue with the above idea. Note that the condition
concerning the pre-image size of an image of ρ holds only with overwhelming
probability, which may pose a problem. Indeed, let

B =
{
z ∈ {0, 1}m :

∣∣ρ−1(ρ(z))∣∣ < 2ℓ+ω(logn)
}

be the set of all untypical inputs. The size of ρ(B) can be much larger than 2m ·
2−ℓ−ω(logn), the number of “typical” images. Thus, by choosing X ′2 from this set,
the adversary might be able to find a collision (Z ′1, Z

′
2) for ρ(Z1), H1(Z1, ρ(Z2)).
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Fortunately, it turns out that this issue can be resolved by a more careful analysis,
which yields the following key insight: for every collision (z′1, . . . , z

′
m) for C found

by an efficient algorithm, it holds that if z′i ∈ B for some i, it must hold that
z′i+1 ∈ B as well. It follows from the above that in this case, z′m is also in B. Since
C outputs its last input zm, and with all but a negligible probability zm /∈ B,
we have that (z′1, . . . , z

′
m) is not a valid collision.

Remark 2.2 (Using a more shrinking hashing). The actual gap s between the
accessible and real entropy of ρ−1 is s ≈ n3. Thus, the first part of the argument
above will work even if the hash functions will output only m − n3 + ω(log n)
bits. In this case, however, we will not be able to show that it is infeasible to
find a collision inside B. The above suggests the following construction of an
almost-UOWHF : let t ≈ n2, and for h1, . . . , ht−1, z1, . . . , zt, consider

C(h1, . . . , ht−1, z1, . . . , zt)

= h1, . . . , ht−1, ρ(z1), h1(z1, ρ(z2), . . . , ht−1(zt−1, ρ(zt)), zt,

for hi : {0, 1}m+k → {0, 1}m−n
3/2

.
For large enough t, the above function is shrinking. For a random input

(h1, . . . , ht−1, z1, . . . , zt) it is hard to find a collision (z′1, . . . , z
′
t), such that z′i /∈ B

for every i. The latter implies that all the collisions that can be found by an
efficient algorithm come from a negligible-sized set. Such a function can easily
be converted into an almost-UOWHF, which yields a construction with O(n6)
non-adaptive calls, and key length of O(n7) bits. It turns out, see next section,
that there are better approaches for constructing almost-UOWHFs.

2.2 Next-bit unreachable entropy.

As mention above, HRV [18] defined the notion of next-bit pseudoentropy. Roughly,

a function g : {0, 1}m → {0, 1}ℓ has next-bit pseudoentropy k, if for random
X ← {0, 1}m and I ← [ℓ] the bit g(X)I has pseudoentropy k/ℓ given g(X)<I .

8

HRV [18] used a one-way function to construct a function g : {0, 1}m → {0, 1}ℓ
with non-trivial (i.e., larger than m) next-bit pseudoentropy. This function g
is then used to construct an efficient and simple PRG (see Section 2.3 for a
high-lvel description of the construction).

To replace the notion of next-bit pseudoentropy in our construction, we define
the notion of next-bit unreachable entropy, a variant of inaccessible entropy, de-
fined by HHRVW [16], that allows us to achieve almost-UOWHF using a similar
construction to the above PRG.

Remark 2.3 (Motivating the definition). Before presenting our definition, we
start with some intuition. As in the case of next-bit pseudoentropy, we would
like to say that a function g has non trivial “next-bit inaccessible entropy” if,

8 That is, g(X)I is indistinguishable from some random variable Z (jointly distributed
with X and I), such that H(Z | g(X)<I) ≥ k/ℓ. Here, H(Z | g(X)<I) is the
conditional Shannon entropy of Z given g(X)<I (see Section 3.5).
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for random X and I, the accessible entropy of g(X)I given g(X)<I is smaller
than its real entropy. That is, for any adversary that, given X and I, outputs
X ′ with g(X)<I = g(X ′)<I , it holds that the entropy of g(X ′)I is small (smaller
than H(g(X)I | g(X)<I)).

However, there is an issue with this definition: If for some fixing x, i of X, I,
the accessible entropy of g(X ′)I is noticeable, the adversary can make it to be
almost one. Indeed, assume that given i, x the adversary can find, with noticeable
probability, x̂ such that g(x̂)<i = g(x)<i and g(x̂) ̸= g(x). In this case, using
simple amplification, the adversary can set its output x′ to be equal to each
one of x or x̂ with probability 1/2. In this case, the entropy of g(X ′)I can be
arbitrarily close to 1. In particular, the entropy may be larger than the real
entropy

H(g(X)I | g(X)<I = g(x)<i)

(which is at most |g(X)I | = 1). For this reason, we only focus on inputs for
which the entropy of g(X ′)I is negligible (that is, no PPT adversary can find an
input X ′ such that g(X)<I = g(X ′)<I and g(X ′)I ̸= g(X)I).

Unfortunately, while the above gives a definition that is strong enough to
work with, we are not able to construct it from a one-way function. Thus, we
consider a weaker definition, in which we allow the above property to hold only
for a large fraction of the inputs. That is, we define the sets U = {Ui}i∈[ℓ] of
inputs which are unreachable to the adversary in the following sense. First, we
require that it is hard for every adversary to get inside Ui. That is, for every
x /∈ Ui, it is hard to find x ∈ Ui with g(x)<i = g(x′)<i. Secondly, we require
that the next-bit inaccessible entropy property will hold inside U . That is, for
every x ∈ Ui it is hard to find x′ inside Ui such that g(x)<i = g(x′)<i and
g(x′)i ̸= g(x)i. While it may be easy to find such an x′ outside of Ui, if the
size of Ui is large enough, the above promises that every such collision will be a
member of a (respectively) small set and will look (somewhat) untypical. This
property will be useful in the construction. We give more examples below the
definition.

We now define the notion of next-bit unreachable entropy. The formal defi-
nition is given in Definition 5.3.

Definition 2.4 (Unreachable entropy, informal) A function g : {0, 1}m →
{0, 1}ℓ has next-bit unreachable entropy v, if for every i ∈ [ℓ] there exists a set
Ui ⊆ {0, 1}m, such that

1. Ui are large:

Pr
x←{0,1}m,i←[ℓ]

[x /∈ Ui] ≤ (m− v)/ℓ.

2. Hard to get inside Ui: For every ppt A,

Pr
x←{0,1}m,

i←[ℓ],x′←A(x,i)

[((x′ ∈ Ui)) ∧ (g(x)<i = g(x′)<i) ∧ (x /∈ Ui)] = neg(n).

That is, for x /∈ Ui, it is hard to find a collision for g(x)<i inside Ui.
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3. The entropy inside Ui is unreachable: For every ppt A,

Pr
x←{0,1}m,

i←[ℓ],x′←A(x,i)

[((x′ ∈ Ui)) ∧ (g(x)<i = g(x′)<i) ∧ (g(x)i ̸= g(x′)i)] = neg(n).

That is, even if x ∈ Ui, it is hard to flip the i-th bit of g while staying inside
Ui.

For example, for every permutation p : {0, 1}m → {0, 1}m, the function

g : {0, 1}m → {0, 1}ℓ defined by g(x) = p(x)0ℓ−m has (trivial) next-bit unreach-
able entropy 0, as can been seen by setting Ui = {0, 1}m for every i > m, or the
empty set for i ≤ m. Note also that, without assuming computational hardness,
the above sets Ui are the maximal that respect the definition of unreachable
entropy.

More generally, for every injective function g : {0, 1}m → {0, 1}ℓ, we can
define Ui to be the set of all inputs x ∈ {0, 1}m, such that there is no x′ ∈ {0, 1}m
with g(x)<i = g(x′)<i while g(x)i ̸= g(x′)i.

9 In this case, it is not hard to see
that the probability that a random x is outside of Ui (for any fixed i) is at least
the entropy of g(X)i given g(X)<i (i.e., H(g(X)i | g(X)<i)).

10 Using the chain
rule of entropy, we get that for a random index I, the probability that X is
outside of UI is at least

1/ℓ ·
∑
i∈ℓ

H(g(X)i | g(X)<i) = 1/ℓ ·H(g(X)) = m/ℓ.

By the above observations, it follows that a function g has v > 0 next-bit un-
reachable entropy if the “reachable entropy” of g(X)I given g(X)<I is smaller
than its real entropy.11 In this sense, our definition is a dual version of the
next-bit pseudoentropy definition. We show that a very similar function to the
function g used by HRV [18] has non-trivial next-bit unreachable entropy. More
details on the constructions and the security proof are given below.

2.3 Almost-UOWHF

In this part, we show that small modifications to the PRG of HRV [18] yield an
almost-collision resistant on random inputs function.

Definition 2.5 (Almost collision resistance on random inputs) Let n

be a security parameter. A function f : {0, 1}m(n) → {0, 1}ℓ(n) is almost colli-

sion resistant on random inputs if there exists a set Bn ⊆ {0, 1}m(n)
, such that

9 If the function g is not injective, it is natural to consider g′(x) = (g(x), x). We use
a similar construction in Section 5.

10 Indeed, observe that H(g(X)i | g(X)<i = g(x)<i) is zero iff x ∈ Ui. Additionally,
H(g(X)i | g(X)<i = g(x)<i) ≤ 1 for every x. It follows that H(g(X)i | g(X)<i) =
Ex←{0,1}m [H(g(X)i | g(X)<i = g(x)<i)] ≤ Ex←{0,1}m [1x/∈Ui ] = Pr[X /∈ Ui].

11 We use the term “reachable entropy” to denote the difference between the real
entropy and the next-bit unreachable entropy of g(X).
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|Bn|/2m(n) = neg(n), and for every probabilistic polynomial-time adversary A,
the probability that A succeeds in the following game is negligible in n:

1. Choose x← {0, 1}m(n)
.

2. Let x′ ← A(1n, x) ∈ {0, 1}m(n)
.

3. A succeeds if x′ /∈ Bn, x ̸= x′ and f(x) = f(x′).

For a more formal definition, see Definition 2.5. As in the case of (perfect)
UOWHF, such a shrinking function can be converted into almost-UOWHF. We
start with a high-level description of the one-way function based pseudorandom
generator of HRV [18]. The main building block of the construction is a function

g : {0, 1}m → {0, 1}ℓ, with k > m next-bit pseudoentropy. On a given input,
their PRG starts by using g to construct the following matrix-like structure (see
Figure 1): the structure is composed of q ≈ m2 rows, where each row contains
t ≈ m independent copies of g(X), for X ← {0, 1}m, shifted by a random offset
between 0 to ℓ. Every fully populated column is then hashed by a hash function
h : {0, 1}q → {0, 1}a, for a ≈ q · k/ℓ > q ·m/ℓ. Finally, the output of the PRG
is the concatenation of the outputs of the hash function applied to every fully
populated column (the non-fully populated columns are not part of the output).

q rows

output bits

h : {0, 1}q → {0, 1}a

g(X1
1 ) g(X2

1 ) g(X3
1 ) . . . g(Xt−1

1 ) g(Xt
1)

g(X1
2 ) g(X2

2 ) g(X3
2 ) . . . g(Xt−1

2 ) g(Xt
2)

g(X1
3 ) g(X2

3 ) g(X3
3 ) . . . g(Xt−1

3 ) g(Xt
3)

...

g(X1
q ) g(X2

q ) g(X3
q ) . . . g(Xt−1

q ) g(Xt
q)

Fig. 1. The PRG construction of HRV [18], G : H× ({0, 1}m)t·q → H× ({0, 1}a)(t−1)ℓ.
There are q ≈ m2 rows, each row has t ≈ m i.i.d copies of g(X), shifted by a random
offset. Every fully populated column, marked in grey, is hashed by h ∈ H. The almost-
UOWHF construction also outputs the columns that are not fully populated.

We prove that slightly tweaking the above construction, and using a different
function g, yields a function that is almost collision-resistant on random inputs.
Specifically, the output of our construction contains not only the hashed fully
populated columns, but also all the columns that are not fully populated (with-
out hashing). Additionally, we choose the parameter a to be smaller than q ·n/m,
in order to make the function length-decreasing. The function g we are using in
our construction, is defined by

g(h1, h2, x) = (h1, h2, h1(f(x)), h2(x)),
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for hash functions h1, h2 : {0, 1}n → {0, 1}n from a 3-wise independent family.
We prove in Section 5.2 that if f is a one-way function, the above function g has
next-bit unreachable entropy log n.12

Remark 2.6 (Similarities between our constructions). We note that the function
ρ, defined in Section 2.1, is composed of n4 independent repetitions of a sim-
pler function with random shifts. Thus, our first construction of non-adaptive
UOWHF can be modified to be an instantiation of the second (almost-UOWHF)
construction, described above, where we apply the hash function on blocks of m
columns, instead of hashing every single column (and by taking the number of
rows to be larger). This equivalent construction is illustrated in Figure 2, and
its security can be proven using a similar proof to the one given in Section 4.

q rows

output bits

h : {0, 1}q·r → {0, 1}a

g(W 1
1 ) W 1

1 g(W 2
1 ) W 2

1
. . .

g(W 1
2 ) W 1

2 g(W 2
2 ) W 2

2
. . .

g(W 1
3 ) W 1

3 g(W 2
3 ) W 2

3
. . .

...

g(W 1
q ) W 1

q g(W 2
q ) W 2

q
. . .

Fig. 2. An equivalent construction to our non-adaptive UOWHF, where g(h, x) =
(h, h(f(x))). There are q ≈ n4 rows, each row has t ≈ n5 i.i.d copies of (g(W ),W ),
shifted by a random offset. Every fully populated block of r = |(g(W ),W )| columns,
marked in grey, is hashed by h ∈ H. The UOWHF construction also outputs the
columns that are not fully populated.

In the rest of this section we give some details on the security proof. Consider
the function σ induced by taking the first hashed column in our almost-UOWHF
construction (Figure 1) together with the columns to the left of it. That is,

σ(h, i1, . . . , iq, x1, . . . , xq) = h, (g(x1)<i1 , . . . , g(xq)<iq ), h(g(x1)i1 , . . . , g(xq)iq ),

for a hash function h : {0, 1}q → {0, 1}a from a universal family H.
Additionally, consider the function σ̂, defined similarly to σ, but without

applying the hash h on the column. That is,

σ̂(h, i1, . . . , iq, x1, . . . , xq) = h, (g(x1)<i1 , . . . , g(xq)<iq ), (g(x1)i1 , . . . , g(xq)iq ).

12 For the PRG construction, HRV [18] used g(h, x) = (h, f(x), h(x)) and Vadhan and
Zheng [30] used g(x) = (f(x), x). Observe that, since h1(f(x)) is also a one-way
function, our g can be used in the PRG construction.
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It turns out, see detail below, that the following holds for a right choice of the
parameter a and for some negligible-sized set of inputs B: for a random input,
every collision found by a collision finder to the function σ is either a collision
for σ̂, or it is inside the set B. That is, the function h does not make the task of
finding a collision (outside of B) easier.

To see that the above is enough to prove the security of the construction,
let C be the almost-UOWHF construction described above, and let Ĉ be the
function defined by the raw matrix-like structure (without applying the hash
function on every fully-populated column). Observe that since the function g is

(close to be) injective, the function Ĉ is (not shrinking) collision-resistant on
random inputs. A simple hybrid argument yields that every collision finder that,
given an input w for C, is able to find a collision w′ ̸= w for C that is not a
collision for Ĉ (namely, C(w) = C(w′) but Ĉ(w) ̸= Ĉ(w′)), can be used to find
a collision for σ which is not a collision for σ̂.13 Since the latter is hard to find,
and since Ĉ is collision-resistant, the above concludes the proof.

σ is (almost) as hard as σ̂. It thus left to prove that it is hard to find a collision
for σ which is not a collision for σ̂, outside of the negligible sized set B. let A be a
collision finder for σ, and let w′ = (h, i1, . . . , iq, x

′
1 . . . , x

′
q) be a collision found by

A(w), for some w = (h, i1, . . . , iq, x1 . . . , xq). We show that either σ̂(w) = σ̂(w′),
or w′ is a member of a small set B. To do so, we use the next-bit unreachable
entropy property of g.

Let {Ui}i∈[ℓ] be the sets guaranteed by the next-bit unreachable entropy of g

(these sets are independent from the choice of A). By the definition of next-bit
unreachable entropy it holds that:

1. for every j such that xj /∈ Uij , no collision finder can find x′j ∈ Uij such that
g(xj)<ij = g(x′j)<ij , and thus it must hold that x′j /∈ Uij .

2. Similarly, for every j with xj ∈ Uij , it holds that g(xj)ij = g(x′j)ij , unless
x′j /∈ Uij .

Let Jw be the set of indices for which xj is inside the set Uij . Formally,

Jw =
{
j ∈ [q] : xj ∈ Uij

}
.

By Item 1 above, it holds that Jw′ ⊆ Jw. Moreover, Item 2 implies that g(xj)ij =
g(x′j)ij for every j ∈ Jw′∩Jw. The above yields the key observation of the proof:

Claim 2.7 For any collision w′ = (h, i1, . . . , iq, x
′
1 . . . , x

′
q) found by a collision

finder A, unless |Jw′ | is smaller than |Jw|, there are |Jw| bits in
g(x′1)i1 , . . . , g(x

′
q)iq that get the exact same value as in g(x1)i1 , . . . , g(xq)iq

(namely, g(xj)ij = g(x′j)ij for every j ∈ Jw).

Observe that for large enough q, the size of Jw (for a random w) is concentrated
around its mean. Since g has log n next-bit unreachable entropy, its mean is at

13 Furthermore, the hybrid argument yields that w′ must be from a small set if the
collision for σ̂ is.
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least q ·(1−m−logn
ℓ ). In the following, assume for simplicity that the size of Jw is

equal to its mean, and that this mean is exactly q ·(1− m−logn
ℓ ). To conclude the

proof, let B be the negligible-sized set of all inputs w′ = (h, i1, . . . , iq, x
′
1 . . . , x

′
q)

for which |Jw′ | is (much) smaller than q · (1 − m−logn
ℓ ), and set the length

of the output of the hash function h to be a ≈ q · m−logn
ℓ < q · m/ℓ. It fol-

lows that the output of every collision finder for σ is either in B, or agrees with
g(x1)i1 , . . . , g(xq)iq on (almost) all the indices in Jw. However, with all but a neg-
ligible probability, there is no string y′ that agrees with y = (g(x1)i1 , . . . , g(xq)iq )

on q · (1 − m−logn
ℓ ) bits, for which h(y) = h(y′), unless y = y′. In other words,

any such collision for σ is also a collision for σ̂.

3 Preliminaries

3.1 Notations

We use calligraphic letters to denote sets, uppercase for random variables, and
lowercase for values and functions. For n ∈ N, let [n] := {1, . . . , n}. Given a
vector s ∈ {0, 1}n, let si denote its i-th entry, and s≤i denote its first i entries.
Define s<i, s>i and s≥i similarly.

The support of a distribution P over a finite set S is defined by Supp(P ) :=
{x ∈ S : P (x) > 0}. For a (discrete) distribution D let d← D denote that d was
sampled according to D. Similarly, for a set S, let s← S denote that s is drawn
uniformly from S. For an event W , we use W to denote the complement event.
For a function f : {0, 1}n → {0, 1}n, let Im(f) := {f(x) : x ∈ {0, 1}n} be the
image of f .

Let poly denote the set of all polynomials, and let ppt stand for probabilistic
polynomial time. A function µ : N→ [0, 1] is negligible, denoted µ(n) = neg(n), if
µ(n) < 1/p(n) for every p ∈ poly and large enough n. For a security parameter n,

a function f : {0, 1}m(n) → {0, 1}ℓ(n) is efficiently computable if it is computable
in polynomial time in n.

3.2 One-Way Functions

We now formally define basic cryptographic primitives. We start with the defi-
nition of one-way function.

Definition 3.1 (One-way function) A polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ is called a one-way function if for every probabilistic poly-
nomial time algorithm A, there is a negligible function µ : N → [0, 1] such that
for every n ∈ N

Pr
x←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

]
≤ µ(n)

For simplicity we assume that the one-way function f is length-preserving. That
is, |f(x)| = |x| for every x ∈ {0, 1}∗. This can be assumed without loss of
generality, and is not crucial for our constructions.
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Immediately from the definition of a one-way function, we get the following
simple observation.

Claim 3.2 For every one-way function f : {0, 1}n → {0, 1}n there exists a
negligible function µ(n) such that for every input x ∈ {0, 1}n it holds that∣∣f−1(f(x))∣∣ ≤ 2n · µ(n).

3.3 Universal One Way Hash Functions

We now formally define UOWHF.

Definition 3.3 (Universal one-way hash function) Let n be a security

parameter. A family of functions F =
{
fz : {0, 1}m(n) → {0, 1}ℓ(n)

}
z∈{0,1}k(n)

is

a family of universal one-way hash functions (UOWHFs) if it satisfies:

1. Efficiency: Given z ∈ {0, 1}k(n) and x ∈ {0, 1}m(n)
, fz(x) can be evaluated in

time poly(n).
2. Shrinking: ℓ(n) < m(n).
3. Target Collision Resistance: For every probabilistic polynomial-time adversary

A, the probability that A succeeds in the following game is negligible in n:

(a) Let (x, state)← A(1n) ∈ {0, 1}m(n) × {0, 1}∗.
(b) Choose z ← {0, 1}k(n).
(c) Let x′ ← A(state, z) ∈ {0, 1}m(n)

.
(d) A succeeds if x ̸= x′ and fz(x) = fz(x

′).

A relaxation of the target collision resistance property can be done by re-
quiring the function to be collision resistant only on random inputs (see Defini-
tion 2.1). The following lemma states that it is enough to construct a function
that is collision resistant on random inputs, in order to get UOWHF.

Lemma 3.4 (From random inputs to targets, folklore) Let n be a secu-

rity parameter. Let F : {0, 1}m(n) → {0, 1}ℓ(n) be an efficiently computable length-
decreasing function. Suppose F is collision-resistant on random inputs. Then{
Fy : {0, 1}m(n) → {0, 1}ℓ(n)

}
y∈{0,1}m(n)

, for Fy(x) := F (y⊕x), is an UOWHF.

3.4 Hash Families

2-universal and t-wise independent hash families are an important ingredient in
our constructions. In this section, we formally define this notion, together with
some useful properties of such families.

Definition 3.5 (2-universal and t-wise independent families)

A family of functions F =
{
f : {0, 1}n → {0, 1}ℓ

}
is 2-universal if for every x ̸=

x′ ∈ {0, 1}n it holds that Prf←F [f(x) = f(x′)] ≤ 2−ℓ. F is t-wise independent
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if for all x1 ̸= . . . ̸= xt ∈ {0, 1}n, the random variables F (x1), . . . , F (xt) for

F ← F are independent and uniformly distributed over {0, 1}ℓ.
A family is explicit if given a description of a function f ∈ F and x ∈ {0, 1}n,

f(x) can be computed in polynomial time (in n, ℓ). Such family is constructible if

it is explicit and there is a ppt algorithm that given x ∈ {0, 1}n and y ∈ {0, 1}ℓ
outputs a uniform f ∈ F , such that f(x) = y.

It is well-known that for every constant t, there are constructible families of
t-wise independent functions with description size O(t · (n + ℓ)) in NC1. The
next lemma, proven in the full version of this paper ([25]), will be useful in the
proof.

Lemma 3.6 Let f : {0, 1}n → {0, 1}n be a function, and
H = {h : {0, 1}n → {0, 1}n} a two-wise independent family. For every x ∈ {0, 1}n
and c ∈ N the following holds.

Pr
h←H

[
|{x′ : h(f(x′)) = h(f(x))}| ≥

∣∣f−1(f(x))∣∣+ n2c
]
≤ 2/nc.

3.5 Entropy and Accessible Entropy

The Shannon entropy of a random variable X is defined by

H(X) = −
∑

x∈Supp(X)

Pr[X = x] · log(Pr[X = x]).

The conditional entropy of a random variable X given Y , is defined as H(X |
Y ) = Ey←Y [H(X|Y=y)]. For a number p ∈ [0, 1], we will use H(p) to denote
the entropy of a random variable distributed according to Bernoulli(p). That is
H(p) = −p log p− (1− p) log(1− p).

The min entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]
,

and the max entropy of X is defined by H0(X) = log|Supp(X)|.
Lastly, for random variables X and Y , the sample entropy of x ∈ Supp(X)

(with respect to X) is defined by HX(x) = − logPr[X = x], and the sample en-
tropy of x given y ∈ Supp(Y ) is defined by HX|Y (x|y) = − logPr[X = x|Y = y].
The following equality is immediate from the definitions above.

H(X | Y ) = E
x←X,y←Y

[
HX|Y (x | y)

]
(1)

For a function g, we also use the following notation, defined in [16], for the
entropy of g−1.

Definition 3.7 (Real entropy) Let n be a security parameter and g : {0, 1}n →
{0, 1}m be a function.
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We say that g−1 has real Shannon entropy k if H(X|g(X)) = k, where X is
uniformly distributed on {0, 1}n.

We say that g−1 has real min-entropy at least k if there is a negligible function
ε = ε(n) such that Prx←X

[
HX|g(X)(x|g(x)) ≥ k

]
≥ 1− ε(n).

We say that g−1 has real max-entropy at most k if there is a negligible
function ε = ε(n) such that Prx←X

[
HX|g(X)(x|g(x)) ≤ k

]
≥ 1− ε(n).

[16] also introduced the notion of accessible max-entropy. A collision finder
for a function g is an algorithm that, given input x, always outputs x′ such that
g(x) = g(x′). g−1 has small accessible entropy, if the output of every collision
finder for g comes from a small set.

Definition 3.8 (Collision finder) For a function g : {0, 1}m(n) → {0, 1}ℓ(n),
an algorithm A is a g-collision finder if for every x ∈ {0, 1}m(n)

it holds that
Pr[g(A(1n, x)) = g(x)] = 1.

Definition 3.9 (accessible max-entropy) Let n be a security parameter and

g : {0, 1}m(n) → {0, 1}ℓ(n) be a function. We say that g−1 has accessible max-
entropy at most k if for every ppt g-collision finder A and for every n ∈ N,
there exists a family of sets {L(x)}x∈{0,1}m(n) each of size at most 2k(n) such

that x ∈ L(x) for all x, and Prx←{0,1}m(n) [A(1n, x) ∈ L(x)] ≥ 1− neg(n).

The next theorems are implicit in [16] and will be useful in our constructions.

Theorem 3.10 (Entropy gap, implicit in [16]). Let f : {0, 1}n → {0, 1}n
be a one-way function. Then there exists ℓ = ℓ(n), s = ω(log n) and an efficiently

computable function g : {0, 1}n
5

→ {0, 1}n
5

such that:

1. g−1 has real min-entropy at least ℓ+ s.

2. g−1 has accessible max-entropy at most ℓ.

3. g is computable in NC1 using O(n4) non-adaptive oracle calls to the one-way
function.

Theorem 3.11 (Implied by Claim 4.9, [16]). Let f : {0, 1}n → {0, 1}n
be a one-way function and let H = {h : {0, 1}n → {0, 1}n} be a family of con-
structible, three-wise independent hash functions.14 Then, for every ppt A, every
constant c > 0 and every i ∈ [n], it holds that:

Pr
h←H,

x←{0,1}n,
x′←A(1n,h,x,i)

[
(f(x′ )̸=f(x))∧(h(f(x))<i=h(f(x′))<i)

∧ i>n−(log|f−1(f(x′))|−c logn)

]
= neg(n).

14 Actually, the proof in [16] only requires two-wise independence.

20



3.6 Useful Facts

We will use the well known Chernoff bound in our proof.

Fact 3.12 (Chernoff bound) Let A1, ..., An be independent random variables

s.t. Ai ∈ {0, 1} and let Â = Σn
i=1Ai. For every ϵ ∈ [0, 1] It holds that:

Pr
[∣∣∣Â−E

[
Â
]∣∣∣ ≥ ϵ ·E

[
Â
]]
≤ 2 · e−ϵ

2·E[Â]/3.

4 Non-adaptive UOWHF From One-Way Functions

In this part we construct and prove the security of our non-adaptive UOWHF.
This is done by combining the construction of [16] with the non-adaptive con-
struction of UOWHF for unknown-regular one-way functions of [26].

We start with the construction. Let g : {0, 1}m(n) → {0, 1}k(n) be a function
with a sufficient gap between the real min-entropy and the max accessible en-

tropy of g−1. LetHn =
{
h : {0, 1}m(n)+k(n) → {0, 1}m(n)−logn

}
be a 2-universal

hash family. For every t ∈ N, define the function Ct : Ht−1
n × ({0, 1}m(n)

)t →
Ht−1

n × {0, 1}k(n) × ({0, 1}m(n)−logn
)t−1 × {0, 1}m(n)

, by

Ct(h1, . . . , ht−1, x1, . . . , xt) :=

h1, . . . , ht−1, g(x1), h1(x1, g(x2)), . . . ht−1(xt−1, g(xt)), xt.

Note that the above function is length decreasing when (t−1) log n > k(n). The
next theorem states that, for the right choice of parameters, Ct is also collision
resistant.

Theorem 4.1. Let ℓ = ℓ(n), s = ω(log n) and let g : {0, 1}m(n) → {0, 1}k(n) be
a function. Assume that g−1 has real min-entropy at least ℓ + s and accessible
max entropy at most ℓ. Then the function Ct is collision resistant on random
inputs, for every t ∈ poly.

Corollary 4.2 There exists a black-box construction of UOWHF from any one-
way function that uses O(n9) non-adaptive calls to the one-way function. More-
over, the construction has key length and output length of O(n10), and is com-
putable in NC1 using oracle calls to f .

Proof. Let k = m = n5 and t = k/ log n + 2. By Theorem 3.10, there is a
efficiently computable (using O(n4) non-adaptive calls to the one-way function

f) function g : {0, 1}m → {0, 1}k such that g−1 has real min-entropy at least
ℓ + s and accessible max-entropy at most ℓ. The proof is now immediate from
Theorem 4.1 and lemma 3.4, together with the fact that there is an explicit

2-universal family H =
{
h : {0, 1}m+k → {0, 1}m−logn

}
with description size

O(m+ k) in NC1.
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Using the general method of randomized encoding, Applebaum, Ishai and
Kushilevitz [4] showed how to compile CRHF in NC1 to a CRHF in NC0. By
observing their proof applies also for UOWHFs, we get the following corollary.

Corollary 4.3 Assuming that one-way functions exist in NC1, there exists a
UOWHF in NC0.

We now prove Theorem 4.1. Let m, k, ℓ, g and t be as in Theorem 4.1. We
will need the following two claims. The first, which is straight-forward from the
definition of accessible entropy, states that every collision for Ct comes from a
small set. The proof, which is a simple reduction, is given in the full version of
this paper ([25]).

Claim 4.4 For every collision-finder algorithm for Ct it holds that there exists
a family of sets {L(x)}x∈{0,1}m each of size at most 2ℓ such that

Pr
h:=(h1,...,ht−1)←Ht−1

n ,

x:=(x1,...,xt)←({0,1}m(n))t(n)

(h,(x′
1,...,x

′
t))←A(1n,h,x)

[∃i ∈ [t] s.t. g(x′i) = g(xi) ∧ x′i /∈ L(xi)] = neg(n).

For the second claim we will need the following definition. Let

Tn :=
{
x ∈ {0, 1}m(n)

: HX|g(X)(x|g(x)) ≥ ℓ+ s
}

=
{
x ∈ {0, 1}m :

∣∣g−1(g(x))∣∣ ≥ 2ℓ+s
}
.

That is, Tn is the set of all “typical” inputs x for g, for which HX|g(X)(x|g(x))
is large.

The second claim considers the function Cd for every d ∈ poly. It states that
for typical inputs, i.e., x1, . . . , xd ∈ T , there is no collision x′1, . . . , x

′
d for Cd such

that x′1 is from a small set G.

Claim 4.5 For every d, n ∈ N, set G ⊆ {0, 1}m(n)
of size at most 2ℓ(n) and

x = (x1, . . . , xd) ∈ T d
n it holds that

Pr
h=(h1,...,hd−1)←Hd−1

n

[
∃x′=(x′

1,...,x
′
d) s.t

x′
1∈G∧(x

′
1,g(x

′
2))̸=(x1,g(x2))∧Cd(h,x)=Cd(h,x

′)

]
≤ d · µ(n),

for some negligible function µ.

We prove Claim 4.5 below, but first we use them in order to prove Theo-
rem 4.1.

Proof (Proof of Theorem 4.1). Let A be a PPT collision-finder algorithm of Ct

such that

Pr
h=(h1,...,ht−1)←Ht−1

n ,

x=(x1,...,xt)←({0,1}m(n))t(n)

(h,x′)←A(1n,h,x)

[x ̸= x′ ∧ Ct(h, x) = Ct(h, x
′)] = α(n). (2)
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We will show that α must be negligible.

For n ∈ N, let {L(x)}x∈{0,1}m(n) be the family promised by Claim 4.4. Let

H = (H1, . . . ,Ht−1) ← Ht−1
n and X = (X1, . . . , Xt) ← ({0, 1}m(n)

)t(n) be
random variables, and let (·, X ′) ← A(1n, H,X) be the output of A. Let Wn

1

be the event that A found a valid collision. By construction, this event can be
written as follows: There exists i ∈ [t(n)], such that,

1. (X ′i, g(X
′
i+1)) ̸= (Xi, g(Xi+1)), and

2.
(g(Xi), Hi(Xi, g(Xi+1)), . . . ,Ht−1(Xt−1, g(Xt)), Xt)

= (g(X ′i), Hi(X
′
i, g(X

′
i+1)), . . . ,Ht−1(X

′
t−1, g(X

′
t)), X

′
t).

Observe that, by definition of the function C, the last condition is equivalent to
Ct−i+1(Hi,...,t−1, Xi,...,t) = Ct−i+1(Hi,...,t−1, X

′
i,...,t).

Additionally, we define the following two events. Let Wn
2 be the event that

exists i ∈ [t(n)] such that Xi /∈ Tn, and let Wn
3 be the event that there exists

i ∈ [t(n)] such that g(Xi) = g(X ′i) and X ′i /∈ L(Xi).

It holds that,

α ≤ Pr[Wn
2 ] +Pr[Wn

3 ] +Pr
[
Wn

1 ∧Wn
2 ∧Wn

3

]
.

Finally, observe that Pr[Wn
2 ] = neg(n) by the assumption that g−1 has min-

entropy at least ℓ+ s and the union bound, and Pr[Wn
3 ] = neg(n) by Claim 4.4.

Additionally, Pr
[
Wn

1 ∧Wn
2 ∧Wn

3

]
= neg(n) by Claim 4.5 and the union bound

(choosing G = L(Xi)).

4.1 Proving Claim 4.5

Fix n, and omit it from the notation. Let T = Tn and B := {0, 1}m \ T . Recall
that, by Theorem 3.10 and the definition of real min-entropy, it holds that |B| =
ε(n) · 2m for some ε ∈ neg(n). Let g(T ) := {g(x) : x ∈ T }. The next claim is
the main part of the proof of Claim 4.5. It states that for every small set G and
strings x1, x2, the following holds with overwhelming probability over h ∈ H.
For every x′1, x

′
2 such that x′1 ∈ G and h(x1, g(x2)) = h(x′1, g(x

′
2)) it holds that

x′2 is non-typical (that is, x′2 ∈ B). Moreover, the number of such collision is
small.

Claim 4.6 Let B := {0, 1}m \ T . Let x1, x2 ∈ {0, 1}m, and let G ⊆ {0, 1}m be a
set of size at most 2ℓ. For h ∈ H, let

Gh = {x′2 : ∃x′1 ∈ G s.t. (x′1, g(x
′
2)) ̸= (x1, g(x2)) ∧ h(x1, g(x2)) = h(x′1, g(x

′
2))}.

Then, Prh←H
[
Gh ⊆ B ∧ |Gh| ≤ 2ℓ

]
≥ 1− n(ε(n) + 2−s(n)).
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Proof (Proof of Claim 4.6). We start with showing that Prh←H[Gh ⊆ B] ≥ 1−
n · 2−s(n). Indeed,

Pr
h←H

[Gh ⊈ B]

= Pr
h←H

[
∃(x′

1,x
′
2)∈G×T s.t.

(x′
1,g(x

′
2)) ̸=(x1,g(x2))∧h(x1,g(x2))=h(x′

1,g(x
′
2))

]
= Pr

h←H
[∃(x′1, y′) ∈ G × g(T ) s.t. (x′1, y′) ̸= (x1, g(x2)) ∧ h(x1, g(x2)) = h(x′1, y

′)]

≤ n · 2−m · |G| · |g(T )|
≤ n · 2−m · 2ℓ · 2m/2ℓ+s

= n · 2−s(n)

where the first inequality holds since Prh←H[h(x1, g(x2)) = h(x′1, y
′)] ≤ n · 2−m

for every (x′1, y
′) ̸= (x1, g(x2)) together with the union bound. The second in-

equality holds since by definition of T it must hold that |g(T )| ≤ 2m/2ℓ+s.
We next show that Prh←H

[
|Gh ∩ B| ≥ 2ℓ

]
≤ n · ε(n), which concludes the

proof. We start with computing the expectation of |Gh ∩ B|:

E
h←H

[|Gh ∩ B|] ≤ n · 2−m · |G| · |B|

≤ n · 2−m · 2ℓ · ε(n) · 2m

≤ n · ε(n) · 2ℓ.

The claim now follows by Markov and the Union bound.

We are now ready to prove Claim 4.5 using Claim 4.6. Intuitively, Claim 4.6
shows that if x′1 is from a small set, x′2 is from a small set too. Thus, we can
continue by induction, to prove that also x′d is from the set B. It follows that,
x′d ̸= xd with overwhelming probability (as xd ∈ T ), which is enough since the
output of Cd includes xd.

Proof (Proof of Claim 4.5). Fix n ∈ N, x = (x1, . . . , xd) ∈ T d
n and a set G ⊆

{0, 1}m. For h = (h1, . . . , hd−1) ∈ Hd−1, let

COL(h, x) =
{
x′ = (x′1, . . . , x

′
d) ∈ G × ({0, 1}m)d−1 : (x1,g(x2)) ̸=(x′

1,g(x
′
2))

∧Cd(h,x)=Cd(h,x
′)

}
be the set containing all the possible collision of h, x with x′1 ∈ G and (x1, g(x2)) ̸=
(x′1, g(x

′
2)). Similarly, for every i ∈ {0, . . . , d− 1}, let

COLi(h1, . . . , hi, x) =
{
x′ ∈ G × ({0, 1}m)d−1 :

(x1,g(x2)) ̸=(x′
1,g(x

′
2))

∧∀j∈[i] hj(xj ,g(xj+1))=hj(x
′
j ,g(x

′
j+1))

}
That is, all inputs with x′1 ∈ G and (x1, g(x2)) ̸= (x′1, g(x

′
2)) that collide with i

blocks of Cd. It is clear that for every x and h,

COL(h, x) ⊆ COLd−1(h, x) ⊆ ... ⊆ COL0(x) (3)
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We want to show that with high probability over the choice of h, it holds
that COL(h, x) is empty.

For every i ∈ [d − 1], let Wi be the event (over the choice of h1, . . . hi−1 ←
Hi−1) that there exists a set Gi of size at most 2ℓ, such that for every x′ ∈
COLi−1(h1, . . . , hi−1, x), it holds that (x

′
i, g(x

′
i+1)) ̸= (xi, g(xi+1)) and x′i ∈ Gi.

For i ∈ [d], let Ŵi be the event that there exists a set Gi of size at most
2ℓ such that for every x′ ∈ COLi−1(h1, . . . , hi−1, x), it holds that x′i ̸= xi and
x′i ∈ Gi.

Observe that Pr
[
Wi | Ŵi

]
= 1. We will show that, for every 1 ≤ i < d, it

holds that

Pr
[
Ŵi+1 |W≤i

]
≥ 1− n(ε(n) + 2−s(n)) (4)

Furthermore, Pr[W1] = 1. Indeed, let G1 = G. By assumption x1 ∈ G and
(x′1, g(x

′
2)) ̸= (x1, g(x2)) for every x′1, x

′
2 ∈ COL0(x).

To see that Equation (4) holds, fix 1 ≤ i < d. Let H ′ ← Hd−1|W≤i
, and

observe that H ′i is uniformly distributed over H. By the definition of Wi, it holds
that for every x′ ∈ COLi−1(H

′
<i, x) it holds that (x′i, g(x

′
i+1)) ̸= (xi, g(xi+1))

and x′i ∈ Gi for some set Gi of size at most 2ℓ. Define

Gi+1 :=
{
x′i+1 :

∃x′
i∈Gi s.t.

(x′
i,g(x

′
i+1))̸=(xi,g(xi+1))∧H′

i(xi,g(xi+1))=H′
i(x

′
i,g(x

′
i+1))

}
.

By definition x′i+1 ∈ Gi+1 for every x′ ∈ COLi(H
′
≤i, x). Applying Claim 4.6 we

get that with all but n(ε(n) + 2−s(n)) probability over the choice of H ′i, it holds
that |Gi+1| ≤ 2ℓ. Moreover, with the same probability Gi+1 ⊆ B, which implies
that x′i+1 ̸= xi+1 (since by assumption, xi+1 ∈ Tn).

To conclude, we get that for every x′ ∈ COL(h, x) ⊆ COLd−1(h, x) it holds
that x′d ̸= xd with probability at least

Pr
[
Ŵd

]
≥ Pr

[
Ŵd |W<d

]
·

∏
1<i≤d−1

Pr[Wi |W<i]

≥ Pr
[
Ŵd |W<d

]
·

∏
1<i≤d−1

Pr
[
Wi, Ŵi |W<i

]
= Pr

[
Ŵd |W<d

]
·

∏
1<i≤d−1

(
Pr

[
Wi | Ŵi,W<i

]
·Pr

[
Ŵi |W<i

])
≥ (1− n(ε(n) + 2−s(n)))d

≥ 1− d · n(ε(n) + 2−s(n))

= 1− d · neg(n).

Where the penultimate inequality holds by Equation (4) and the fact that

Pr
[
Wi | Ŵi,W<i

]
= 1. Recall that Cd outputs xd. Thus, the above implies

that Cd(h, x) ̸= Cd(h, x
′), which implies that COL(h, x) = ∅ with the same

probability.
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5 Almost-UOWHF From One-Way Functions

In this section we formally define almost-UOWHF and next-bit unreachable
entropy, and show how to construct them from one-way functions.

5.1 Almost-UOWHF

In this part we formally define almost-UOWHF. The definition of almost-UOWHF
is similar to the definition of almost collision resistance on random input (Defi-
nition 2.5).

Definition 5.1 (Almost universal one-way hash function) Let n be a
security parameter. A family of functions

F =
{
fz : {0, 1}m(n) → {0, 1}ℓ(n)

}
z∈{0,1}k(n)

is a family of almost universal one-way hash functions ( almost-UOWHF) if it
satisfies:

1. Efficiency: Given z ∈ {0, 1}k(n) and x ∈ {0, 1}m(n)
, fz(x) can be evaluated in

time poly(n).
2. Shrinking: ℓ(k) < m(k).
3. Almost Target Collision Resistance: There exist sets {Bz}z∈{0,1}k(n) such that

|Bz|/2m(n) = neg(n), and for every probabilistic polynomial-time adversary A,
the probability that A succeeds in the following game is negligible in n:
(a) Let (x, state)← A(1n) ∈ {0, 1}m(n) × {0, 1}∗.
(b) Choose z ← {0, 1}k(n).
(c) Let x′ ← A(state, z) ∈ {0, 1}m(k)

.
(d) A succeeds if x′ /∈ Bz, x ̸= x′ and fz(x) = fz(x

′).

The proof of the next lemma is similar to the proof of Lemma 3.4.

Lemma 5.2 (From random inputs to targets, almost version) Let n be

a security parameter. Let F : {0, 1}m(n) → {0, 1}ℓ(n) be an efficiently computable
length-decreasing function. Suppose F is almost collision-resistant on random

inputs. Then
{
Fy : {0, 1}m(n) → {0, 1}ℓ(n)

}
y∈{0,1}m(n)

, for Fy(x) := F (y⊕x), is

an almost-UOWHF.

5.2 Next-Bit Unreachable Entropy

In this section we present the notion of next-bit unreachable entropy, and con-
struct a function with next-bit unreachable entropy from one-way functions.
Intuitively, we say that a function g : {0, 1}m → {0, 1}ℓ has next-bit unreach-
able entropy v if for every i ∈ [ℓ], there is a set Ui ⊆ {0, 1}m, such that, on
the average over x, each x is a member of (ℓ − m + v) such sets, and, given
x ∈ {0, 1}m, a poly-time algorithm cannot find x′ ∈ Ui with g(x)<i = g(x′)<i,
but g(x)i ̸= g(x′)i.
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Definition 5.3 A function g : {0, 1}m(n) → {0, 1}ℓ(n) has next-bit unreachable
entropy v, if the following holds. For every n ∈ N and i ∈ [ℓ(n)] there exists a

set Ui,n ⊆ {0, 1}m(n)
, such that

1. Ui,n are large: For every n ∈ N,

Pr
x←{0,1}m(n),i←[ℓ(n)]

[x /∈ Ui,n] ≤ (m(n)− v(n))/ℓ(n).

2. Hard to get inside Ui,n: For every ppt A,

Pr
x←{0,1}m(n),

i←[ℓ(n)],x′←A(1n,x,i)

[((x′ ∈ Ui,n)) ∧ (g(x)<i = g(x′)<i) ∧ (x /∈ Ui,n)] = neg(n).

3. The entropy inside Ui,n is unreachable: For every ppt A,

Pr
x←{0,1}m(n),

i←[ℓ(n)],
x′←A(1n,x,i)

[((x′ ∈ Ui,n)) ∧ (g(x)<i = g(x′)<i) ∧ (g(x)i ̸= g(x′)i)] = neg(n).

We stress that for x /∈ Ui, Item 2 is stronger compared to Item 3. While Item 2
implies that it is hard to flip the i-th bit of g with inputs from Ui, Item 2 requires
that it is hard to find (any) input from Ui that agrees with x on the i − 1 firs
bits.

The definition above is especially useful when the function g is close to be
injective. Formally,

Definition 5.4 A function g is almost-injective if

Pr
x←{0,1}m

[∣∣g−1(g(x))∣∣ > 1
]
= neg(n).

We use the above definition for the construction of almost-UOWHF in Sec-
tion 5.3. The following claim, proved in the full version of this paper ([25]), shows
how to construct a function with non-trivial next-bit unreachable entropy from
a one-way function.

Theorem 5.5. Let f : {0, 1}n → {0, 1}n be a one-way function and let H =
{h : {0, 1}n → {0, 1}n} be a family of constructible, three-wise independent hash

functions. Let g : H2 × {0, 1}n → H2 × {0, 1}2n be defined by g(h1, h2, x) =
(h1, h2, h1(f(x)), h2(x)). Then g is an almost-injective function with next-bit
unreachable entropy c log(n), for every constant c > 0.

Moreover, the input and output size of g are of length O(n).

5.3 Next-Bit Unreachable Entropy to Almost-UOWHF

The Construction We now describe our main construction. We start with
some notations.
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A position vector p ∈ [ℓ]q is just a vector of indexes from [ℓ]. For a function

g : {0, 1}m → {0, 1}ℓ, input vector w = (x1, . . . xq) ∈ ({0, 1}m)q and a position
vector p = (i1, . . . , iq) ∈ [ℓ]q, let gp(w) := g(x1)i1 , . . . , g(xq)iq . Similarly, define
g<p(w) := g(x1)<i1 , . . . , g(xq)<iq , and g≥p(w) analogously. For a number k ∈ N,
let p + k := (i1 + k, . . . , iq + k). For a number t, let gt : {0, 1}tm → {0, 1}tℓ be
the t-fold repetition of g, i.e., gt(x1, . . . , xt) = g(x1), . . . , g(xt).

We are now ready to present the construction (see Figure 1).

Construction 5.6 (Almost-UOWHF) Let n be a security parameter, and let

q = q(n), t = t(n) and k = k(n) be parameters. Let g : {0, 1}m(n) → {0, 1}ℓ(n)

be a function, and let Hn =
{
h : {0, 1}q(n) → {0, 1}k(n)

}
be a 2-universal hash

family. Define the function C : Hn × [ℓ(n)]q(n) × ({0, 1}m(n)·t(n)
)q(n) → Hn ×

[ℓ(n)]q(n) × {0, 1}ℓ(n)·q(n)+(t(n)−1)ℓ·k(n)
by

C(h, p, z) :=

h, p, g′<p(z), h(g
′
p(z)), h(g

′
p+1(z)), . . . , h(g

′
p+(t−1)ℓ−1(z)), g

′
≥p+(t−1)ℓ(z),

for g′ = gt.

The main theorem of this part is stated below and proven in the full version of
this paper ([25]). Informally, it states that when g is an almost-injective func-
tion with non-trivial next-bit unreachable entropy, and for the right choice of
parametrs, the above construction is almost-collision resistant on random inputs.

Theorem 5.7. Let g : {0, 1}m(n) → {0, 1}ℓ(n) be an efficient, almost-injective
function with next-bit unreachable entropy v(n) ∈ N. For every q ∈ poly and ε ∈
1/poly such that H(4ε(n)) ≤ 0.1v(n)/ℓ(n), q = ω

(
log n ·max

{
ℓ, ℓ

ε2(ℓ−m−v)

})
and for k = q(m − v/3)/ℓ, t = 3(ℓ −m)/v + 2 the function C as in Construc-
tion 5.6 is efficient, shrinking and almost collision resistant on random inputs.

This gives the following corollary.

Corollary 5.8 Let s = ω(1). Assuming that one-way functions exist, there ex-
ists an almost-UOWHF with key length O(n4 ·s). Moreover, the almost-UOWHF
construction makes O(n3 · s) non-adaptive calls to the underlying one-way func-
tion.
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