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Abstract. Recently, Aaronson et al. (arXiv:2009.07450) showed that de-
tecting interference between two orthogonal states is as hard as swapping
these states. While their original motivation was from quantum gravity,
we show its applications in quantum cryptography.

1. We construct the first public key encryption scheme from crypto-
graphic non-abelian group actions. Interestingly, the ciphertexts of
our scheme are quantum even if messages are classical. This resolves
an open question posed by Ji et al. (TCC ’19). We construct the
scheme through a new abstraction called swap-trapdoor function
pairs, which may be of independent interest.

2. We give a simple and efficient compiler that converts the flavor of
quantum bit commitments. More precisely, for any prefix X,Y €
{computationally,statistically,perfectly}, if the base scheme is X-
hiding and Y-binding, then the resulting scheme is Y-hiding and
X-binding. Our compiler calls the base scheme only once. Previously,
all known compilers call the base schemes polynomially many times
(Crépeau et al., Eurocrypt 01 and Yan, Asiacrypt ’22). For the secu-
rity proof of the conversion, we generalize the result of Aaronson et
al. by considering quantum auxiliary inputs.

1 Introduction

When can we efficiently distinguish a superposition of two orthogonal states
from their probabilistic mix? A folklore answer to this question was that we can
efficiently distinguish them whenever we can efficiently map one of the states to
the other. Recently, Aaronson, Atia and, Susskind [1] gave a complete answer
to the question. They confirmed that the folklore was almost correct but what
actually characterizes the distinguishability is the ability to swap the two states
rather than the ability to map one of the states to the other.?

We explain their result in more detail by using the example of Schrodinger’s
cat following [1]. Let |Alive) and |Dead) be orthogonal states, which can be

4 We remark that the meaning of “swap” here is different from that of the SWAP gate
as explained below.



understood as the states of alive and dead cats in Schrédinger’s cat experiment.
Then, the authors showed that one can efficiently swap |Alive) and |Dead) (i.e.,
there is an efficiently computable unitary U such that U |Dead) = |Alive) and
U |Alive) = |Dead)) if and only if there is an efficient distinguisher that distin-
. |Alive)+|Dead) |Alive) —|Dead)
guishes > and >

|Alive)+|Dead) |Alive) —|Dead)
72 and 72

with certainty. Note that distinguishing
|Alive)+|Dead)
s and

is equivalent to distinguishing
the uniform probabilistic mix of |Alive) and |Dead).” Moreover, they showed
that the equivalence is robust in the sense that a partial ability to swap |Alive)
and |Dead), i.e., | (Dead|U |Alive) + (Alive|U |Dead) | = I" for some I" > 0 is
equivalent to distinguishability of |Ahve>\j§|Dead> and |Ahve>\;§|Dead>

with advantage

A = I'/2. They gave an interpretation of their result that observing interfer-
ence between alive and dead cats is “necromancy-hard”, i.e., at least as hard as
bringing a dead cat back to life.

While their original motivation was from quantum gravity, we find their
result interesting from cryptographic perspective. Roughly speaking, the task of
swapping |Alive) and |Dead) can be thought of as a kind of search problem where
one is given |Alive) (resp. |Dead)) and asked to “search” for |Dead) (resp. |Alive)).
On the other hand, the task of distinguishing ‘A“"C%D%‘@ and |A“V°>\;§‘D°ad> is
apparently a decision problem. From this perspective, we can view their result as
a “search-to-decision” reduction. Search-to-decision reductions have been playing
the central role in cryptography, e.g., the celebrated Goldreich-Levin theorem [20].
Based on this observation, we tackle the following two problems in quantum
cryptography.©

Public key encryption from non-abelian group actions. Brassard and
Yung [8] initiated the study of cryptographic group actions. We say that a group
G acts on a set S by an action x : G x S — S if the following are satisfied:

1. For the identity element e € G and any s € S, we have e x s = s.
2. For any ¢g,h € G and any s € S, we have (gh) xs = g (hx s).

For a cryptographic purpose, we assume (at least) that the group action is
one-way, i.e., it is hard to find ¢’ such that ¢’ x s = g x s given s and g x s. The
work of [8] proposed instantiations of such cryptographic group actions based on
the hardness of discrete logarithm, factoring, or graph isomorphism problems.
Cryptographic group actions are recently gaining a renewed attention from
the perspective of post-quantum cryptography. Ji et al. [25] proposed new in-
stantiations based on general linear group actions on tensors. Alamati et al. [2]

® The distinguishing advantage is (necessarily) halved. This can be seen by the following
equality:

1
5 (|Alive) (Alive| + |Dead) (Dead|)

1 |Alive) + |Dead) (Alive| + (Dead| . |Alive) — |Dead) (Alive| — (Dead|
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5 It may be a priori unclear why these problems are related to [1]. This will become
clearer in the technical overview in Sec. 2.




proposed isogeny-based instantiations based on earlier works [13, 32, 10]. Both
of them are believed to be secure against quantum adversaries.

An important difference between the instantiations in [25] and [2] is that
the former considers non-abelian groups whereas the latter considers abelian
groups. Abelian group actions are particularly useful because they give rise to a
non-interactive key exchange protocol similar to Diffie-Hellman key exchange [15].
Namely, suppose that s € S is published as a public parameter, Alice publishes
ga *s as a public key while keeping g4 as her secret key, and Bob publishes gp * s
as a public key while keeping gp as his secret key. Then, they can establish a
shared key ga * (g9 * s) = gp * (ga x s). On the other hand, an eavesdropper
Eve cannot know the shared key since she cannot know g4 or gg by the one-
wayness of the group action.” This also naturally gives a public key encryption
(PKE) scheme similar to ElGamal encryption [17]. On the other hand, the above
construction does not work if G is a non-abelian group. Indeed, cryptographic
applications given in [25] are limited to Minicrypt primitives [24], i.e., those that
do not imply PKE in a black-box manner. Thus, [25] raised the following open
question:®

Question 1: Can we construct PKE from non-abelian group actions?

Flavor conversion for quantum bit commitments. Commitments are one
of the most important primitives in cryptography. It enables one to “commit”
to a (classical) bit” in such a way that the committed bit is hidden from other
parties before the committer reveals it, which is called the hiding property, and
the committer cannot change the committed bit after sending the commitment,
which is called the binding property. One can easily see that it is impossible for
classical commitments to achieve both hiding and binding properties against
unbounded-time adversaries. It is known to be impossible even with quantum
communication [26, 28]. Thus, it is a common practice in cryptography to relax
either of them to hold only against computationally bounded adversaries. We say
that a commitment scheme is computationally (resp. statistically) binding/hiding,
if it holds against (classical or quantum depending on the context) polynomial-
time (resp. unbounded-time) adversaries. Then, there are the following two flavors
of commitments: One is computationally hiding and statistically binding, and the

" For the actual security proof, we need a stronger assumption than the one-wayness.
This is similar to the necessity of decisional Diffie-Hellman assumption, which is
stronger than the mere hardness of the discrete logarithm problem, for proving
security of Diffie-Hellman key exchange.

The statement of the open problem in [25] is quoted as follows: “Finally, it is an
important open problem to build quantum-secure public-key encryption schemes based
on hard problems about GLAT or its close variations.” Here, GLAT stands for General
Linear Action on Tensors, which is their instantiation of non-abelian group action.
Thus, Question 1 is slightly more general than what they actually ask.

We can also consider commitments for multi-bit strings. But we focus on bit commit-
ments in this paper.

[



other is computationally binding and statistically hiding.'” In the following,
whenever we require statistical hiding or binding, the other one should be
understood as computational since it is impossible to statistically achieve both
of them as already explained.

In classical cryptography, though commitments of both flavors are known
to be equivalent to the existence of one-way functions [30, 23, 22], there is no
known direct conversion between them that preserves efficiency or the number of
interactions. Thus, their constructions have been studied separately.

Recently, Yan [35], based on an earlier work by Crépeau, Légaré, and Sal-
vail [14], showed that the situation is completely different for quantum bit
commitments, which rely on quantum communication between the sender and
receiver. First, he showed a round-collapsing theorem, which means that any
interactive quantum bit commitments can be converted into non-interactive ones.
Then he gave a conversion that converts the flavor of any non-interactive quantum
bit commitments using the round-collapsing theorem.

Though Yan’s conversion gives a beautiful equivalence theorem, a disadvantage
of the conversion is that it does not preserve the efficiency. Specifically, it calls
the base scheme polynomially many times (i.e., 2(\?) times for the security
parameter ). Then, it is natural to ask the following question:

Question 2: Is there an efficiency-preserving flavor conversion for quan-
tum bit commitments?

1.1 Owur Results

We answer both questions affirmatively using (a generalization of) the result
of [1].

For Question 1, we construct a PKE scheme with quantum ciphertexts based
on non-abelian group actions. This resolves the open problem posed by [25].11 Our
main construction only supports classical one-bit messages, but we can convert
it into one that supports quantum multi-qubit messages by hybrid encryption
with quantum one-time pad as showin in [9]. Interestingly, ciphertexts of our
scheme are quantum even if messages are classical. We show that our scheme
is IND-CPA secure if the group action satisfies pseudorandomness, which is a
stronger assumption than the one-wayness introduced in [25]. In addition, we
show a “win-win” result similar in spirit to [37]. We show that if the group
action is one-way, then our PKE scheme is IND-CPA secure or we can use
the group action to construct one-shot signatures [3].'? Note that constructing

10 Of course, we can also consider computationally hiding and computationally binding
one, which is weaker than both flavors.

1 The statement of their open problem (quoted in Footnote 8) does not specify if we
are allowed to use quantum ciphertexts. Thus, we claim to resolve the problem even
though we rely on quantum ciphertexts. If they mean post-quantum PKE (which has
classical ciphertexts), this is still open.

12 This is a simplified claim and some subtle issues about uniformness of the adversary
and “infinitely-often security” are omitted here. See Lemma 2 for the formal statement.



one-shot signatures has been thought to be a very difficult task. The only known
construction is relative to a classical oracle and there is no known construction
in the standard model. Even for its significantly weaker variant called tokenized
signatures [5], the only known construction in the standard model is based on
indistinguishability obfuscation [12]. Given the difficulty of constructing tokenized
signatures, let alone one-shot signatures, it is reasonable to conjecture that our
PKE scheme is IND-CPA secure if we built it on “natural” one-way group actions.
Our PKE scheme is constructed through an abstraction called swap-trapdoor
function pairs (STFs), which may be of independent interest.

For Question 2, We give a new conversion between the two flavors of quantum
commitments. That is, for X,Y € {computationally,statistically,perfectly}, if the
base scheme is X-hiding and Y-binding, then the resulting scheme is Y-hiding
and X-binding. Our conversion calls the base scheme only once in superposi-
tion. Specifically, if @ is the unitary applied by the sender when committing
to b € {0,1} in the base scheme, the committing procedure of the resulting
scheme consists of a single call to Qg or @1 controlled by an additional qubit
(i.e., application of a unitary such that |b)|¢) — [b) (Qp|9))) and additional
constant number of gates. For the security proof of our conversion, we develop a
generalization of the result of [1] where we consider auxiliary quantum inputs.

We show several applications of our conversion. We remark that our conversion
does not give any new feasibility results since similar conversions with worse
efficiency were already known [14, 35]. However, our conversion gives schemes
with better efficiency in terms of the number of calls to the building blocks.

2 Technical Overview

We give a technical overview of our results. In the overview, we assume that the
reader has read the informal explanation of the result of [1] at the beginning of
Sec. 1.

2.1 Part I: PKE from Group Actions

Suppose that a (not necessarily abelian) group G acts on a finite set S by a
group action x : G x S — S. Suppose that it is one-way, i.e., it is hard to find ¢’
such that ¢’ x s = g x s given s and g x s.'?

Our starting point is the observation made in [8] that one-way group actions
give claw-free function pairs as follows. Let sg and s1 := gxsg be public parameters
where sp € S and g € G are uniformly chosen. Then if we define a function
fo : G — S by fo(h) :=hxsyp for b € {0, 1}, the pair (fo, f1) is claw-free, i.e., it
is hard to find hy and hq such that fo(hg) = f1(h1). This is because if one can
find such hg and hq, then one can break the one-wayness of the group action by
outputting hflho, since fo(ho) = f1(h1) implies (hflho) * S0 = S1.

13 We will eventually need pseudorandomness, which is stronger than one-wayness, for
the security proof of our PKE scheme. We defer the introduction of pseudorandomness
for readability.



Unfortunately, claw-free function pairs are not known to imply PKE. The
reason of the difficulty of constructing PKE is that claw-free function pairs do
not have trapdoors. Indeed, it is unclear if there is a trapdoor that enables us
to invert fy and f; for the above group-action-based construction. Our first
observation is that the above construction actually has a weak form of a trapdoor:
If we know ¢ as a trapdoor, then we can find hy such that fo(ho) = f1(h1) from
ho by simply setting hy := hog~' and vice versa. Though this trapdoor g does
not give the power to invert fy or fi, this enables us to break claw-freeness in a
strong sense. We formalize such function pairs as swap-trapdoor function pairs
(STFs).'* For the details of STFs, see Sec. 4.1.

Next, we explain our construction of a PKE scheme with quantum ciphertexts.
Though it is a generic construction based on STFs with certain properties, we
here focus on the group-action-based instantiation for simplicity. (For the generic
construction based on STFs, see Sec. 4.2.) A public key of our PKE scheme
consists of sy and s; = g * s¢p and a secret key is g. For encrypting a bit b, the
ciphertext is set to be

= (O ) + 0P 15 ) )

for a random y € S.'° Here, |f;, ' (y)) is the uniform superposition over f;,'(y) =
{h € G : fyy(h) =y} for b’ € {0,1}. The above state can be generated by a
standard technique similar to [7, 27]. Specifically, we first prepare

%(\m DI s 3

heG

compute a group action by h in the second register on sy or s; controlled by the
first register to get

\/Q‘T(Zm ) [l so) + (=1)° 7 [1) [R) |h*sl>)

heG heG

and measure the third register to get y € S. At this point, the first and second
registers collapse to the state in Equation (1).'°® Decryption can be done as
follows. Given a ciphertext ct,, we apply a unitary |h) — |hg) on the second
register controlled on the first register. Observe that the unitary maps |f; 1(y)>
to |fo ' (y)). Then, the resulting state is = (10) /o' () + (=1)° 1) [fg " (v)))-
Thus, measuring the first register in the Hadamard basis results in message b.
Next, we discuss how to prove security. Our goal is to prove that the scheme
is IND-CPA secure, i.e., ctg and ct; are computationally indistinguishable. Here,
we rely on the result of [1]. According to their result, one can distinguish ctg
and ct; if and only if one can swap [0) |5 ' (y)) and [1) |f; ' (y)). Thus, it suffices

14 The intuition of the name is that one can “swap” ho and h; given a trapdoor.
15 Precisely, y is distributed as h x so for uniformly random h € G.
16 Note that |f; ' (y)| = |f; '(y)| for all y € S.



to prove the hardness of swapping |0)|f; *(y)) and |1)|f;*(y)) with a non-
negligible advantage.'” Unfortunately, we do not know how to prove this solely
assuming the claw-freeness of (fo, f1). Thus, we introduce a new assumption
called conversion hardness, which requires that one cannot find h; such that
fi(h1) = y given |f; (y)) with a non-negligible probability. Assuming it, the
required hardness of swapping follows straightforwardly since if one can swap
10) | f5 " (v)) and |1) | f{ *(y)), then one can break the conversion hardness by first
mapping [0) [f5 ' (y)) to [1) |f; (y)) and then measuring the second register.

The remaining issue is how to prove conversion hardness based on a reasonable
assumption on the group action. We show that pseudorandomness introduced
in [25] suffices for this purpose. Pseudorandomness requires the following two
properties:

1. The probability that there exists g € G such that g x sg = s1 is negligible
where sg, s1 € S are uniformly random.

2. The distribution of (sg, $1 := g x sg) where so € S and g € G are uniformly
random is computationally indistinguishable from the uniform distribution
over S2.

Note that we require Item 1 because otherwise Item 2 may unconditionally
hold, in which case there is no useful cryptographic application. We argue
that pseudorandomness implies conversion hardness as follows. By Item 2, the
attack against the conversion hardness should still succeed with almost the
same probability even if we replace s; with a uniformly random element of S.
However, then there should exist no solution by Item 1. Thus, the original success
probability should be negligible.

While [25] gave justification of pseudorandomness of their instantiation of
group actions, it is a stronger assumption than one-wayness. Thus, it is more
desirable to get PKE scheme solely from one-wayness. Toward this direction,
we show the following “win-win” result inspired by [37]. If (fo, f1) is claw-free
but not conversion hard, then we can construct a one-shot signatures. Roughly
one-shot signatures are a quantum primitive which enables us to generate a
classical verification key vk along with a quantum signing key sk in such a way
that one can use sk to generate a signature for whichever message of one’s
choice, but cannot generate signatures for different messages simultaneously. For
simplicity, suppose that (fo, f1) is claw-free but its conversion hardness is totally
broken. That is, we assume that we can efficiently find hy such that fi(h1) =y
given |f; ! (y)). Our idea is to set |f;'(y)) to be the secret key and y to be
the corresponding verification key. For signing to 0, the signer simply measures
Ifo 1 () to get hg € f3(y) and set hg to be the signature for the message 0.
For signing to 1, the signer runs the adversary against conversion hardness to get
hi such that f1(h1) =y and set h; to be the signature for the message 1. If one
can generate signatures to 0 and 1 simultaneously, we can break claw-freeness
since fo(ho) = f1(h1) = y. Thus, the above one-shot signature is secure if (fo, f1)
is claw-free. In the general case where the conversion hardness is not necessarily

17 See Theorem 1 for the precise meaning of the advantage for swapping.



completely broken, our idea is to amplify the probability of finding h; from
|fo L(y)) by a parallel repetition. Based on this result, we can see that if the
group action is one-way, then our PKE scheme is IND-CPA secure or we can
construct one-shot signatures.

2.2 Part II: Flavor Conversion for Commitments

Definition of quantum bit commitments. First, we recall the definition
of quantum bit commitments as formalized by Yan [35]. He (based on earlier
works [11, 36, 18]) showed that any (possibly interactive) quantum bit commitment
scheme can be written in the following (non-interactive) canonical form. A
canonical quantum bit commitment scheme is characterized by a pair of unitaries
(Qo, Q1) over two registers C (called the commitment register) and R (called the
reveal register) and works as follows.

Commit phase: For committing to a bit b € {0, 1}, the sender generates the
state Qp [0) g and sends C to the receiver while keeping R on its side.'®

Reveal phase: For revealing the committed bit, the sender sends R along with
the committed bit b to the receiver. Then, the receiver applies QZ to C and
R and measures both registers. If the measurement outcome is 0...0, the
receiver accepts and otherwise rejects.

We require a canonical quantum bit commitment scheme to satisfy the fol-
lowing hiding and binding properties. The hiding property is defined analogously
to that of classical commitments. That is, the computational (resp. statistical)
hiding property requires that quantum polynomial-time (resp. unbounded-time)
receiver (possibly with quantum advice) cannot distinguish commitments to 0
and 1 if only given C.

On the other hand, the binding property is formalized in a somewhat different
way from the classical case. The reason is that a canonical quantum commitment
scheme cannot satisfy the binding property in the classical sense. The classical
binding property roughly requires that a malicious sender can open a commitment
to either of 0 or 1 except for a negligible probability. On the other hand, in
canonical quantum bit commitment schemes, if the sender generates a uniform
superposition of commitments to 0 and 1, it can open the commitment to 0 and 1
with probability 1/2 for each.'” Thus, we require a weaker binding property called
the honest-binding property, which intuitively requires that it is difficult to map
an honestly generated commitment of 0 to that of 1 without touching C. More
formally, the computational (resp. statistical) honest-binding property requires
that for any polynomial-time computable (resp. unbounded-time computable)

18 We write |0) to mean |0...0) for simplicity.

19" A recent work by Bitansky and Brakerski [6] showed that a quantum commitment
scheme may satisfy the classical binding property if the receiver performs a measure-
ment in the commit phase. However, such a measurement is not allowed for canonical
quantum bit commitments.



unitary U over R and an additional register Z and an auxiliary state |7),, we
have

(@110 01 @D c.r(Uc @ Ur 2) (Qo10D)er 7)) | = negl(M).

One may think that honest-binding is too weak because it only considers honestly
generated commitments. However, somewhat surprisingly, [35] proved that it is
equivalent to another binding notion called the sum-binding [16].> The sum-
binding property requires that the sum of probabilities that any (quantum
polynomial-time, in the case of computational binding) malicious sender can
open a commitment to 0 and 1 is at most 1 + negl(A). In addition, it has been
shown that the honest-binding property is sufficient for cryptographic applications
including zero-knowledge proofs/arguments (of knowledge), oblivious transfers,
and multi-party computation [36, 18, 34, 29]. In this paper, we refer to honest-
binding if we simply write binding.

Our conversion. We propose an efficiency-preserving flavor conversion for
quantum bit commitments inspired by the result of [1]. Our key observation is
that the swapping ability and distinguishability look somewhat similar to breaking
binding and hiding of quantum commitments, respectively. The correspondence
between distinguishability and breaking hiding is easier to see: The hiding
property directly requires that distinguishing commitments to 0 and 1 is hard.
The correspondence between the swapping ability and breaking binding is less
clear, but one can find similarities by recalling the definition of (honest-)binding
for quantum commitments: Roughly, the binding property requires that it is
difficult to map the commitment to 0 to that to 1. Technically, a binding adversary
does not necessarily give the ability to swap commitments to 0 and 1 since it may
map the commitment to 1 to an arbitrary state instead of to the commitment
to 0. But ignoring this issue (which we revisit later), breaking binding property
somewhat corresponds to swapping.

However, an important difference between security notions of quantum com-
mitments and the setting of the theorem of [1] is that the former put some
restrictions on registers the adversary can touch: For hiding, the adversary cannot
touch the reveal register R, and for binding, the adversary cannot touch the
commitment register C. To deal with this issue, we make another key observation
that the equivalence between swapping and distinguishing shown in [1] preserves
locality. That is, if the swapping unitary does not touch some qubits of |Alive) or
|Dead), then the corresponding distinguisher does not touch those qubits either,
and vice versa.

The above observations suggest the following conversion. Let {Qo, @1} be a
canonical quantum bit commitment scheme. Then, we construct another scheme

{Qh, @1} as follows:

— The roles of commitment and reveal registers are swapped from {Qg, Q1} and
the commitment register is augmented by an additional one-qubit register.
That is, if C and R are the commitment and reveal registers of {Qq, @1}, then

20 The term “sum-binding” is taken from [33].



the commitment and reveal registers of {Qf, @)} are defined as C" := (R, D)
and R’ := C where D is a one-qubit register.
— For b € {0, 1}, the unitary @} is defined as follows:

QquRmm:=j%«Qumkume+w—n%QnmxnwwD% (2)

where (C’,R/) is rearranged as (C,R,D).%!

One can see that {Q[, @)} is almost as efficient as {Qo, @1 }: For generating,
@ 0)c g [0)p one can first prepare [0) g (|0) + (=1)%|1))p and then apply Qo
or @1 to (C,R) controlled by D. We prove that the hiding and binding properties
of {Qo, R1} imply binding and hiding properties of {Qf, Q) }, respectively. More-
over, the reduction preserves all three types of computational/statistical/perfect
security. Thus, this gives a conversion between different flavors of quantum bit
commitments.

Security proof. At an intuitive level, the theorem of [1] with the above “locality-
preserving” observation seems to easily give a reduction from security of {Qj, Q}}
to that of {Qo, Q1}: If we can break the hiding property of {Qf, @)}, then we can
distinguish @}, [0)¢ g [0)p Without touching R’ = C. Then, their theorem with
the above observation gives a swapping algorithm that swaps (Qo |0>C,R) 0)p
and (Q1|0)¢ g) [1)p without touching R = C, which clearly breaks the binding
property of {QO, Q1}. One may expect that the reduction from binding to hiding
works analogously. However, it is not as easy as one would expect due to the
following reasons.

1. An adversary that breaks the binding property is weaker than a “partial”
swapping unitary that swaps Q4 |0) o, g, and Q7 |0) o, g, needed for [1]. For ex-
ample, suppose that we have a unitary U such that UQ( [0) o g/ = Q1 |0) o g/
and UQ [0)or g» = —Q) |0) o g/ Clearly, this completely breaks the binding
property of {Qj, Q}}. However, this is not sufficient for applying [1] since
|(01Q4TUQ [0) + (0] Q5'UQS J0) | = 0.

2. For security of quantum bit commitments, we have to consider adversaries
with quantum advice, or at least those with ancilla qubits even for security
against uniform adversaries. However, the theorem of [1] does not consider
any ancilla qubits.

Both issues are already mentioned in [1]. In particular, Item 1 is an essen-
tial issue. They prove the existence of a pair of orthogonal states |Alive) and
|Dead) such that we can map |Alive) to |Dead) by an efficient unitary, but
| (Dead| U |Alive) 4+ (Alive| U |Dead) | = 0 for all efficient unitaries U [1, Theo-
rem 3|. For Item 2, they (with acknowledgment to Daniel Gottesman) observe
that the conversion from a distinguisher to a swapping unitary works even with
any quantum advice, but the other direction does not work if there are ancilla
qubits [1, Footnote 2].

21 We only present how Qj} works on |0)c g |0)p for simplicity. Its definition on general
states can be found in Theorem 7.

10



One can see that the above issues are actually not relevant to the reduction
from the hiding of {Qf, @} } to the binding of {Qo, @1 }. However, for the reduction
from the binding of {Qf, @)} to the hiding of {Qo, @1}, both issues are non-trivial.
Below, we show how to resolve those issues.

Solution to Item 1. By the result of [1, Theorem 3] as already explained, this
issue cannot be resolved if we think of Qf[0)o g, and Q) [0), g, as general
orthogonal states. Thus, we look into the actual form of them presénted in Equa-
tion (2). Then, we observe that an adversary against the binding property does not
touch D since that is part of the commitment register C’ of {Qy, @ }. Therefore,
he cannot cause any interference between (Qo |0))c.r |0)p and (Q110))c.r |1)p-
Therefore, if it maps

% ((Qo 0))cr 0)p + (@1 0))or 1)) — % ((Qo [0))c.r 0)p, — (@1 10))er 1))

then it should also map

% (QoI0)er 10 — (@1 10)er [1)p) - % ((Qo [0))cr [0)p + (@1 [0))er [1)p)-

Thus, the ability to map Qg [0)c g/ to @ [0)cs g/ is equivalent to swapping
them for this particular construction when one is not allowed to touch D. A
similar observation extends to the imperfect case as well. Therefore, Item 1 is
not an issue for the security proof of this construction.

Solution to Item 2. To better understand the issue, we review how the
conversion from a swapping unitary to a distinguisher works. For simplicity, we
focus on the perfect case here, i.e., we assume that there is a unitary U such

that U |Dead) = |Alive) and U |Alive) = |Dead) for orthogonal states |Alive) and

|Alive)+|Dead)
V2

as follows: Given a state |n), which is either of the above two

|Alive)+|Dead) . |Ahve>72|Dead> , it prepares w in an ancilla qubit, applies

|Dead). Then, we can construct a distinguisher A that distinguishes
and |Alive) —|Dead)

states

U controlled by the ancilla, and measures the ancilla in Hadamard basis. An
easy calculation shows that the measurement outcome is 1 with probability 1 if
) = [Alve)Dead) o) 4 0 with probability 1 if |n) = [Alivel—|Dead)
n = V2 P Yy n = 72 .

Then, let us consider what happens if the swapping unitary uses ancilla qubits.
That is, suppose that we have U |Dead) |7) = |Alive) |7') and U |Alive) |7) =
|Dead) |7") for some ancilla states |7) and |7/). When |7) and |7’) are orthogonal,
the above distinguisher does not work because there does not occur interference
between states with 0 and 1 in the control qubit. To resolve this issue, our idea
is to “uncompute” the ancilla state. A naive idea to do so is to apply UT, but
then this is meaningless since it just goes back to the original state. Instead, we

prepare a “dummy” register that is initialized to be w. Then, we add

an application of UT to the ancilla qubits and the dummy register controlled by
the control qubit. Then, the ancilla qubit goes back to |7) while the state in the
dummy register does not change because it is invariant under the swapping of
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|Alive) and |Dead). Then, we can see that this modified distinguisher distinguishes
|Alive)+|Dead) and |Alive) —|Dead)

with advantage 1.
Unfortunately, when the swapping ability is imperfect, the above distinguisher
does not work. However, we show that the following slight variant of the above

works: Instead of preparing w, it prepares ‘Ahve)l())\EDeadm). After

the controlled application of UT, it flips the rightmost register (i.e., apply Pauli

X to it). In the perfect case, this variant also works with advantage 1 since the
|Dead)|0)+|Alive)|1)
V2

after the application of
\Alive)\O)\;dDead)\l) by the

state in the dummy register becomes

the controlled U, which goes back to the original state
flip. Our calculation shows that this version is robust, i.e., it works even for the
imperfect case.

There are several caveats for the above. First, it requires the distinguisher
to take an additional quantum advice ‘AliveHO)\J/%IDeadHD

, which is not necessarily

efficiently generatable in general.?? Second, there occurs a quadratic reduction
loss unlike the original theorem in [1] without ancilla qubits. Nonetheless, they
are not a problem for our purpose.

3 Preliminaries

Notations used throughout the paper and definitions of basic cryptographic
primitives are given in the full version.

3.1 Canonical Quantum Bit Commitments
We define canonical quantum bit commitments as defined in [35].

Definition 1 (Canonical quantum bit commitments). A canonical quan-
tum bit commitment scheme is represented by a family {Qo(N\), @1(A)}ren of
polynomial-time computable unitaries over two registers C (called the commit-
ment register) and R (called the reveal register). In the rest of the paper, we
often omit A and simply write Qo and Q1 to mean Qo(A) and Q1(N).

Remark 1. Canonical quantum bit commitments are supposed to be used as
follows. In the commit phase, to commit to a bit b € {0, 1}, the sender generates
a state Qp |0>C,R and sends C to the receiver while keeping R. In the reveal
phase, the sender sends b and R to the receiver. The receiver projects the state
on (C,R) onto Qy \O)C’R, and accepts if it succeeds and otherwise rejects.

Definition 2 (Hiding). We say that a canonical quantum bit commitment
scheme {Qo, Q1} is computationally (rep. statistically) hiding if Trr (Qo(]0) <O|)01RQ$)
is computationally (resp. statistically) indistinguishable from Trr (Q1(|0) (0))c.rQ!).
We say that it is perfectly hiding if they are identical states.

22 We remark that they are efficiently generatable in our application where |Alive) and
|Dead) correspond to commitments to 0 and 1.
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Definition 3 (Binding). We say that a canonical quantum bit commitment
scheme {Qo, Q1} is computationally (rep. statistically) binding if for any polynomial-
time computable (resp. unbounded-time) unitary U over R and an additional
register Z and any polynomial-size state |T),, it holds that

(@110 01 QDo @ Ur ) (Qo10))er 7)) | = negl(2).

We say that it is perfectly binding if the LHS is 0 for all unbounded-time unitary
U.

3.2 Equivalence between Swapping and Distinguishing
The following theorem was proven in [1].
Theorem 1 ([1, Theorem 2]).

1. Let |z),|y) be orthogonal n-qubit states. Let U be a polynomial-time com-
putable unitary over n-qubit states and define I as

= [(y|Ulz) + (=[Uly)|.

Then, there exists a QPT distinguisher A that makes a single black-box
access to controlled-U and distinguishes |¢) = M% and |¢) = % with

advantage g Moreover, if U does not act on some qubits, then A also does
not act on those qubits.

2. Let [¥), |@) be orthogonal n-qubit states, and suppose that a QPT distinguisher
A distinguishes 1) and |¢) with advantage A without using any ancilla qubits.
Then, there exists a polynomial-time computable unitary U over n-qubit states
such that

| Y| Ulz) + ([ Uly) |

=A
2
where |x) = W and |y) = W Moreover, if A does not act on some

qubits, then U also does not act on those qubits.

Remark 2 (Descriptions of quantum circuits.). For the reader’s convenience, we
give the concrete descriptions of quantum circuits for the above theorem, which
are presented in [1].
For Item 1, let U := ¢”U for 6 such that
Re((y|U |z) + (z|U |y)) = [yl U |z) + (| U [y)].
Then, A is described in Figure 1.
For Item 2, let V4 be a unitary such that
Val$) = /pI1) 1) + /1= p0) [o)
Valg) = V1 —p+ Al0)[do) + vp— AlL) [¢1)

for some |t0g), [11), |¢0), and |@1). That is, V4 is the unitary part of A. Then, U
is described in Figure 2.
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10)
) or 16) 7]

Fig. 1. Quantum circuit for A in Item 1 of Theorem 1.

@) or ly) & | va | v

Fig. 2. Quantum circuit for U in Item 2 of Theorem 1.

Remark 3. Though the final requirement in both items (“Moreover,...”) is not
explicitly stated in [1, Theorem 2], it is easy to see from Figures 1 and 2. This
observation is important for our application to commitments and PKE.

4 Quantum-Ciphertext Public Key Encryption

In Sec. 4.1, we introduce a notion of swap-trapdoor function pairs, which can
be seen as a variant of trapdoor claw-free function pairs [21]. In Sec. 4.2, we
define quantum-ciphertext PKE and construct it based on STFs. In Sec. 4.3, we
construct STFs based on group actions.

4.1 Swap-Trapdoor Function Pairs

We introduce a notion of swap-trapdoor function pairs (STFs). Similarly to
trapdoor claw-free function pairs, a STF consists of two functions fg, f1 : X — ).
We require that there is a trapdoor which enables us to “swap” preimages under
fo and f1, i.e., given x3, we can find xpg; such that fre1(xpp1) = fo(xp). The
formal definition of STFs is given below.

Definition 4 (Swap-trapdoor function pair). A swap-trapdoor function
pair (STF) consists of algorithms (Setup, Eval, Swap).

Setup(1*) — (pp,td): This is a PPT algorithm that takes the security parameter
1* as input, and outputs a public parameter pp and a trapdoor td. The public
parameter pp specifies functions flfpp) : X = Y for each b € {0,1}. We often
omit the dependence on pp and simply write f, when it is clear from the
context.

Eval(pp, b, ) — y: This is a deterministic classical polynomial-time algorithm
that takes a public parameter pp, a bit b € {0,1}, and an element x € X as
input, and outputs y € Y.
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Swap(td, b, x) — 2': This is a deterministic classical polynomial-time algorithm
that takes a trapdoor td, a bit b € {0,1}, and an element x € X as input, and
outputs ' € X.

We require a STF to satisfy the following:

Evaluation correctness. For any (pp,td) < Setup(1*) , b € {0,1}, and x € X,
we have Eval(pp, b, z) = fp(x).

Swapping correctness. For any (pp,td) + Setup(1*), b € {0,1}, and x € X, if
we let ' + Swap(td, b, x), then we have frg1(x') = fp(x) and Swap(td, b®1,2') =
x. In particular, Swap(td, b, -) induces an efficiently computable and invertible
one-to-one mapping between f5 ' (y) and f{ ' (y) for anyy € V.

Efficient random sampling over X. There is a PPT algorithm that samples
an almost uniform element of X (i.e., the distribution of the sample is statistically
close to the uniform distribution).

Efficient superposition over X. There is a QPT algorithm that generates a

state whose trace distance from |X) = \/ﬁ > wex 1) is negl(A).

Remark 4 (A convention on “Efficient random sampling over X7 and “Efficient
superposition over X ” properties). In the rest of this paper, we assume that we
can sample elements from ezactly the uniform distribution of A'. Similarly, we
assume that we can eractly generate |X') in QPT. They are just for simplifying
the presentations of our results, and all the results hold with the above imperfect
version with additive negligible loss for security or correctness.

We define two security notions for STFs which we call claw-freeness and
conversion hardness. Looking ahead, what we need in our construction of quantum-
ciphertext PKE in Sec. 4.2 is only conversion hardness. However, since there are
interesting relations between them as we show later, we define both of them here.

Definition 5 (Claw-freeness). We say that a STF (Setup, Eval, Swap) satisfies
claw-freeness if for any non-uniform QPT algorithm A, we have

Pr{fo(zo) = fi(1) : (pp, td) < Setup(1*), (w0, 21) <= A(pp)] = negl(N).

Definition 6 (Conversion hardness). We say that a STF (Setup, Eval, Swap)
satisfies conversion hardness if for any non-uniform QPT algorithm A, we have

Pr(fi(z1) =y : (pp,td) = Setup(1*), 20 ¢ X,y = fo(zo), z1 + Alpp, |fo ' (1)))]
where we remind that | f3 ' (y)) = W Dnes iy 1)

Remark 5 (On asymmetry of fo and fi1.). Conversion hardness requires that it
is hard to find z; such that fi(x1) =y given |fy ' (y)). We could define it in the
other way, i.e., it is hard to find x¢ such that fo(zo) =y given |f; *(y)). These
two definitions do not seem to be equivalent. However, it is easy to see that if
there is a STF that satisfies one of them, then it can be modified to satisfy the
other one by just swapping the roles of fy and f;. In this sense, the choice of the
definition from these two versions is arbitrary.
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‘We show several lemmas on the relationship between claw-freeness and con-
version hardness.
First, we show that claw-freeness implies conversion hardness if fj is collapsing.

Lemma 1 (Claw-free and collapsing — Conversion hard). If fy is col-
lapsing, then claw-freeness implies conversion hardness.

We defer the proof to the full version.

As a special case of Lemma 1, claw-freeness implies conversion hardness when
fo is injective (in which case f; is also injective). This is because any injective
function is trivially collapsing.

We remark that a conversion hard STF is not necessarily claw-free, because a
claw can be augmented in STF without hurting the conversion hardness.

Next, we show a “win-win” result inspired from [37]. We roughly show that a
claw-free but non-conversion-hard STF can be used to construct one-shot signa-
tures [3]. Roughly one-shot signatures are a genuinely quantum primitive which
enables us to generate a classical verification key vk along with a quantum signing
key sk in such a way that one can use sk to generate a signature for whichever
message of one’s choice, but cannot generate signatures for different messages
simultaneously. The only known construction of one-shot signatures is relative to
a classical oracle and there is no known construction in the standard model. Even
for its weaker variant called tokenized signatures [5], the only known construction
in the standard model is based on indistinguishability obfuscation [12]. Given the
difficulty of constructing tokenized signatures, let alone one-shot signatures, it is
reasonable to conjecture that natural candidate constructions of STFs satisfy con-
version hardness if it satisfies claw-freeness. This is useful because claw-freeness
often follows from weaker assumptions than conversion hardness, which is indeed
the case for the group action-based construction in Sec. 4.3.

Before stating the lemma, we remark some subtlety about the lemma. Actually,
we need to assume a STF that is claw-free but not infinitely-often uniform
conversion hard. Here, “infinitely-often” means that it only requires the security
to hold for infinitely many security parameters rather than all security parameters.
(See [37, Sec. 4.1] for more explanations about infinitely-often security.) The
“uniform” means that security is required to hold only against uniform adversaries
as opposed to non-uniform ones. Alternatively, we can weaken the assumption to
a STF that is claw-free but not uniform conversion hard if we weaken the goal to
be infinitely-often one-shot signatures. We remark that similar limitations also
exist for the “win-win” result in [37].

Then, the lemma is given below.

Lemma 2 (Claw-free and non-conversion hard STF — One-shot signa-
tures). Let (Setup, Eval,Swap) be a STF that satisfies claw-freeness. Then, the
following statements hold:

1. If (Setup, Eval,Swap) is not infinitely-often uniform conversion hard, then we
can use it to construct one-shot signatures.

2. If (Setup, Eval, Swap) is not uniform conversion hard, then we can use it to
construct infinitely-often one-shot signatures.
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We defer the proof to the full version since the idea is already explained in
Sec. 2.1.

Instantiations. Our main instantiation of STFs is based on group actions, which
is given in Sec. 4.3.

A lattice-based instantiation is also possible if we relax the requirements
to allow some “noises” similarly to [7]. The noisy version is sufficient for our
construction of quantum-ciphertext PKE given in Sec. 4.2. However, since lattice-
based (classical) PKE schemes are already known [31, 19], we do not try to
capture lattice-based instantiations in the definition of STFs.

4.2 Quantum-Ciphertext Public Key Encryption

In this section, we define quantum-ciphertext PKE and construct it based on
STFs.

Definition. We define quantum-ciphertext PKE for one-bit messages for sim-
plicity. The multi-bit message version can be defined analogously, and a simple
parallel repetition works to expand the message length. Moreover, we can further
extend the message space to quantum states by a hybrid encryption with quantum
one-time pad as in [9], i.e., we encrypt a quantum message by a quantum one-time
pad, and then encrypt the key of the quantum one-time pad by quantum PKE
for classical messages.

Definition 7 (Quantum-ciphertext public key encryption). A quantum-
ciphertext public key encryption (quantum-ciphertext PKE) scheme (with single-
bit messages) consists of algorithms (KeyGen, Enc, Dec).

KeyGen(1*) — (pk,sk): This is a PPT algorithm that takes the security parameter
1* as input, and outputs a classical public key pk and a classical secret key
sk.

Enc(pk,b) — ct: This is a QPT algorithm that takes a public key pk and a message
b e {0,1} as input, and outputs a quantum ciphertext ct.

Dec(sk, ct) — b’/ L: This is a QPT algorithm that takes a secret key sk and a
ciphertext ct as input, and outputs a message b’ € {0,1} or L.

It must satisfy correctness as defined below:
Correctness. For any m € {0, 1}, we have

Pr[m’ = m : (pk,sk) < KeyGen(1*), ct < Enc(pk,m),m’ < Dec(sk, ct)] = 1 — negl(\).

We define IND-CPA security for quantum-ciphertext PKE similarly to that
for classical PKE as follows.

Definition 8 (IND-CPA security). We say that a quantum-ciphertext PKE
scheme (KeyGen, Enc, Dec) is IND-CPA secure if for any non-uniform QPT
adversary A, we have

|Pr [A(pk, cto) = 1] — Pr[A(pk, ct1) = 1]| = negl()),

where (pk, sk) «+ KeyGen(1?), cto < Enc(pk,0), and ct; < Enc(pk, 1).
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Construction. Let (Setup, Eval,Swap) be a STF. We construct a quantum-
ciphertext PKE scheme (KeyGen, Enc, Dec) as follows.

KeyGen(1*): Generate (pp,td) < Setup(1*) and output pk := pp and sk := td.
Enc(pk,b € {0,1}): Parse pk = pp. Prepare two registers D and X. Generate the
state

1 1
¥ qu +(=1) |1>)D;|x>x-

Prepare another register Y, coherently compute fy or fi into Y controlled
by D to get

(10) + (=1)" )b |X)x =

> ;(|O>D [2)x fo(a))y + (=1)° 1)p [2)x [ f1(2))y),
TEX 2|X|

and measure Y to get y € V. At this point, D and X collapse to the following
state:2?
1
V2

The above state is set to be ct.?*
Dec(sk, ct): Parse sk = td. Let Uy be a unitary over D and X such that?®

(10)p 1fo (w)x + (=1 [ [ (1))x)-

Uy |O>D |33>x = |O>D |33>x7
U |D)p |2)x = 1) [Swap(td, 1, 2))x -

Apply Uiy on the register (D, X) and measure D in the Hadamard basis and
output the measurement outcome b’ € {0,1}.
Correctness.
Theorem 2. (KeyGen, Enc, Dec) satisfies correctness.
Proof. An honestly generated ciphertext ct is of the form
1
V2

By the definition of Uy and the swapping correctness, it is easy to see that we
have

(10)p [fo (w)x + (=1)" [p [ (W))x)-

U 0)p [ fo " ())x = 10)p | £5 () x
U [Dp |f1_1(y)>x =[1p ‘fo_l(y»X'

23 Note that the swapping correctness implies that |f; ' (y)| = | f; *(y)| for any y € .
24 Remark that one does not need to include y in the ciphertext.
25 Note that the second operation is possible because Swap(td, 0, Swap(td, 1, z)) = =.
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Thus, applying Uy on ct results in the following state:

%0% i @) + (1) W 1o ())) = \%u% D Lp) ® 1o )

The measurement of D in the Hadamard basis therefore results in b. O

Security.

Theorem 3. If (Setup, Eval, Swap) satisfies conversion hardness, (KeyGen, Enc, Dec)
is IND-CPA secure.

We can prove Theorem 3 by using Item 2 of Theorem 1. We defer the proof
to the full version since the idea is already explained in Sec. 2.1.

4.3 Instantiation from Group Actions

We review basic definitions about cryptographic group actions and their one-
wayness and pseudorandomness following [25]. Then, we construct a STF based
on it.

Basic definitions.

Definition 9 (Group actions). Let G be a (not necessarily abelian) group, S
be a set, and x : G x S — S be a function where we write g * s to mean x(g, s).
We say that (G, S,*) is a group action if it satisfies the following:

1. For the identity element e € G and any s € S, we have e x s = s.
2. For any g,h € G and any s € S, we have (gh) xs = g (hx s).

To be useful for cryptography, we have to at least assume that basic opera-
tions about (G, S, *) have efficient algorithms. We require the following efficient
algorithms similarly to [25].

Definition 10 (Group actions with efficient algorithms). We say that a
group action (G, S, ) has efficient algorithms if it satisfies the following:*°

Unique representations: Fach element of G and S can be represented as a bit
string of length poly(\) in a unique manner. Thus, we identify these elements
and their representations.

Group operations: There are classical deterministic polynomial-time algo-
rithms that compute gh from g € G and h € G and g~* from g € G.

Group action: There is a classical deterministic polynomial-time algorithm
that computes gx s from g € G and s € S.

26 Strictly speaking, we have to consider a family {(Gx, Sx,*x)}ren of group actions
parameterized by the security parameter to meaningfully define the efficiency re-
quirements. We omit the dependence on X\ for notational simplicity throughout the
paper.
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Efficient recognizability: There are classical deterministic polynomial-time
algorithms that decide if a given bit string represents an element of G or S,
respectively.

Random sampling: There are PPT algorithms that sample almost uniform
elements of G or S (i.e., the distribution of the sample is statistically close
to the uniform distribution), respectively.

Superposition over G: There is a QPT algorithm that generates a state whose
trace distance from |G) is negl(\).

Remark 6 (A convention on “Random sampling” and “Superposition over G”
properties). In the rest of this paper, we assume that we can sample elements
from ezactly uniform distributions of G and S. Similarly, we assume that we
can ezactly generate |G) in QPT. They are just for simplifying the presentations
of our results, and all the results hold with the above imperfect version with
additive negligible loss for security or correctness.

The above requirements are identical to those in [25] except for the “superpo-
sition over G” property. We remark that all candidate constructions proposed in
[25] satisfy this property as explained later.

Assumptions. We define one-wayness and pseudorandomness following [25].

Definition 11 (One-wayness). We say that a group action (G,S,x) with
efficient algorithms is one-way if for any non-uniform QPT adversary A, we
have

Prig xs=g*s: s S,g G, g < A(s,g*s)] = negl()).

Definition 12 (Pseudorandomness). We say that a group action (G,S,x)
with efficient algorithms is pseudorandom if it satisfies the following:

1. We have
Pr[3g € G s.t. gxs=t:s,t + S] = negl(\).
2. For any non-uniform QPT adversary A, we have
|Pr{l < A(s,t): s+ S,g« G,t :=g*s] —Pr[l < A(s,t) : s,t + S]| = negl(A).

Remark 7 (On Item 1). We require Item 1 to make Item 2 non-trivial. For
example, if (G, S, *) is transitive, i.e., for any s,t € S, there is g € G such that
g*s=t, Item 2 trivially holds because the distributions of ¢ = g x s is uniformly
distributed over S for any fixed s and random g < G.

Remark 8 (Pseudorandom — One-way). We remark that the pseudorandomness
immediately implies the one-wayness as noted in [25].

Instantiations. Ji et al. [25] gave several candidate constructions of one-way
and pseudorandom group actions with efficient algorithms based on general linear
group actions on tensors. We briefly describe one of their candidates below. Let
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F be a finite field, and k&, dy, ds..., dy be positive integers (which are typically set
as k =3 and dy = dy = d3). We set G = H?:l GLg4,;(F), S = ®§:1 Fdi | and
define the group action by the matrix-vector multiplication as

k
(M;)jepg *T = [ Q) M; | T
j=1

for (M;)jem € Hle GL4;(F) and T € ®?:1 Fdi. See [25] for attempts of
cryptanalysis and justification of the one-wayness and pseudorandomness. We
remark that we introduced an additional requirement of the “superposition over
G” property in Definition 10, but their candidates satisfy this property. In their
candidates, the group G is a direct product of general linear groups over finite
fields (or symmetric groups for one of the candidates), and a uniformly random
matrix over finite fields is invertible with overwhelming probability for appropriate
parameters.

Construction of STF. We construct a STF based on group actions. Let (G, S, *)
be a group action with efficient algorithms (as defined in Definition 10). Then,
we construct a STF as follows.

Setup(1?): Generate so - S and g < G, set 51 == gx50, and output pp = (0, 51)
and td := g. For b € {0, 1}, we define f, : G — S by fy(h) = h* sp.

Eval(pp = (so, s1),b, h): Output fp(h) = h* sp.

Swap(td = g, b, h): If b = 0, output hg~!. If b = 1, output hg.

The evaluation correctness is trivial. The swapping correctness can be seen as
follows: For any h € G, fi(Swap(td,0,h)) = fi(hg™') = (hg™') xs1 = hx sg =
fo(h). Similarly, for any h € G, fo(Swap(td,1,h)) = fo(hg) = (hg) * so =
h sy = fi(h). For any h € G, Swap(td, 1, Swap(td, 0, h)) = Swap(td, 1,hg—!) =
(hg~')g = h.

The efficient sampling and efficient superposition properties directly follow
from the corresponding properties of the group action.

We prove the following theorem.

Theorem 4. The following hold:

1. If (G, S, *) is one-way, then (Setup, Eval,Swap) is claw-free.
2. If (G, S,*) is pseudorandom, then (Setup, Eval, Swap) is conversion hard.

We defer the proof to the full version because it is easy.
Quantum-ciphertext PKE from group actions. Recall that conversion
hard STFs suffice for constructing IND-CPA secure quantum ciphertext PKE
(Theorem 3). Then, by Lemmata 1 and 2 and Theorem 4, we obtain the following
corollaries.

Corollary 1. If there exists a pseudorandom group action with efficient algo-
rithms, there exists an IND-CPA secure quantum-ciphertext PKE.
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Remark 9 (Lossy encryption). Actually, we can show that the quantum-ciphertext
PKE constructed from a pseudorandom group action is lossy encryption [4], which
is stronger than IND-CPA secure one. We omit the detail since our focus is on
constructing IND-CPA secure schemes.

Corollary 2. If there exists a one-way group action with efficient algorithms
such that fy is collapsing,”” there exists a uniform IND-CPA secure quantum-
ciphertext PKE scheme.

Corollary 3. If there exists a one-way group action with efficient algorithms,
there exists a uniform IND-CPA secure quantum-ciphertext PKE scheme or
infinitely-often one-shot signatures.?®

5 Equivalence between Swapping and Distinguishing with
Auxiliary States

For our application to conversion for commitments, we need a generalization of
Theorem 1 that considers auxiliary quantum states. While it is straightforward
to generalize Item 2 to such a setting,?” a generalization of Item 1 is non-trivial.
The problems is that the unitary U may not preserve the auxiliary state when it
“swaps” |z) and |y).°" Intuitively, we overcome this issue by “uncomputing” the
auxiliary state in a certain sense.

Theorem 5 (Generalization of Theorem 1 with auxiliary states).

1. Let |z),|y) be orthogonal n-qubit states and |T) be an m-qubit state. Let U
be a polynomial-time computable unitary over (n + m)-qubit states and define
I as

I = ||y ® IP™)U [2) |7) + (2| @ IZ™)U |y) |7)]] -

Then, there exists a non-uniform QPT distinguisher A with advice |7') =
|7) ® w that distinguishes |¢) = % and |¢) = % with

advantage %2. Moreover, if U does not act on some qubits, then A also does
not act on those qubits.

2. Let |), |¢) be orthogonal n-qubit states, and suppose that a non-uniform
QPT distinguisher A with an m-qubit advice |T) distinguishes 1) and |¢)
with advantage A without using additional ancilla qubits besides |T). Then,

2T We currently have no candidate of such a one-way group action.

28 The uniform IND-CPA security is defined similarly to the IND-CPA security in
Definition 8 except that the adversary is restricted to be uniform QPT.

29 Indeed, such a generalization of Item 2 is already implicitly used in the proof of
Theorem 3.

30 This is also observed in [1, Footnote 2].
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there exists a polynomial-time computable unitary U over (n+m)-qubit states
such that

| l{r|Ulz) |7) + ([ (7| U |y) |7) |
2

=A

[¥)+18) _ [-lo)

75 and ly) 7 - Moreover, if A does not act on some
qubits, then U also does not act on those qubits.

where |z) =

Remark 10. We remark that Item 1 does not preserve the auxiliary state unlike
Item 2. Though this does not capture the intuition that “one can distinguish |4}
and |¢) whenever he can swap |z) and |y)”, this is good enough for our purpose.
We also remark that there is a quadratic reduction loss in Item 1. We do not
know if it is tight while both items of Theorem 1 is shown to be tight in [1].

Proof of Theorem 5. Item 2 directly follows from Item 2 of Theorem 1 by con-
sidering |x) |7) and |y} |7) as |x) and |y) in Theorem 1. We prove Item 1 below.

Proof of Item 1. Let A and A’ be n-qubit registers, Z be an m-qubit register,
and B be a 1-qubit register. We define a unitary U over (A, Z, A’ B) as follows:

U= XUk zUaz (3)

where Xg is the Pauli X operator on B and UL, 7 means the inverse of Ua’ z,
which works similarly to Ua z except that it acts on A’ instead of on A.
Then, we prove the following claim.

Claim 6. Let |z),|y),|r), and I" be as in Item 1 of Theorem 5, U be as defined
in Equation (3), and |o) 5, g be the state over (A',B) defined as follows:

[2)a [0)g +1¥)a Vg

|U>A/,B = /2 : (4)

Then, it holds that

~ ~ 72
(Yla (Tlz <U‘A’,B Ulr)p |T)z |U>Af,B +(2|a (TlZ <U|A/,B Uly)a )z ‘U>A’,B B

We first finish the proof of Item 1 assuming that Claim 6 is correct. By
Item 1 of Theorem 1, Claim 6 implies that there is a QPT distinguisher A that
distinguishes

(l2) +)alm)zlo)a B

V2

) =
and

~ () —lwalnizloa s

|6) = NG
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with advantage %2. Moreover, A does not act on qubits on which U does not act.
In particular, A does not act on qubits of A and Z on which Uy z does not act
since U acts on A and Z only through Ua 7z and Ujsu,z- Thus, by considering A as
a distinguisher A with advice |7') = [7), |0) 5, g that distinguishes [)) = %

and |¢) = %, Item 1 is proven. Below, we prove Claim 6.
Proof of Claim 6. For (a,b) € {(z,z), (x,v), (y,2), (y,y)}, we define

ITap)z = (bl @ I2)Ua z |a) o |T)7 -

Then, we have

I = |y + )| (5)

and

Uazlz)alm)z = |2)a [Toa)z + W) A 70y) 5 + [82TDAgE, ) 5 7 (6)

UA,Z |y>A |T>Z = |x>A |7-7;w>z + |y>A |7-7;y>z + |garbagey>AVZ (7)
where |garbage,) 5 5 and [garbage, ), , are (not necessarily normalized) states
such that

((z|5 ® Iz) |garbage,) 5 7 = ((y[a ® Iz) |garbage,) o z =0, (8)

(a]s ® Iz) [sarbage,)  , = ((yla © z) [garbage,), , =0.  (9)
Then,

(Yla (Tl <U|A/,B Ulz)a lT)z |‘7>A/,B
=(yla (7lz <U|A/,B XBUL,z(|x>A |Ta/tm>Z + 1Y) a ‘Tg/gy>z + |garbagez>A,Z) |U>A’,B
= <T|z <U‘A’,B XBU);',Z |Talcy>z |0>A/,B

(10)

where the first equality follows from Equation (6) and the second equality follows
from Equation (8) and the assumption that |z) and |y) are orthogonal. By
Equations (4), (6) and (7), it holds that

UazXB|T)z10)a B
., 10 (204 1Ds + 1)/ 0)5)
=Ua’z /o
(11)
1 (19)ar 172)z + 1) 172y + Igarbage,) a2 ) g
V2 \ 4 (12)as I70)y + [0 ar I70y), + lgarbage,) o, ) 10)
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Then, it holds that

(Tlg ‘7|A' XBUA' z| >z |0>A’,B
xLA/ Thelz + (Wla (7hyl + (garbage,|a ) (11g

x'A/ yw' <y‘A/ < yy VA <ga‘rbagey‘A/ ) <0|B

<zy\+<wl)z\ Yz
(12)

where the first equality follows from Equations (4) and (11) and the second
equality follows from Equations (8) and (9) and the assumption that |z) and |y)
are orthogonal.

By Equations (10) and (12), we have

(Wl (7l (01arm T 12)a 11210 s = 3(70 ) + (b2 lrt)y (1)

By a similar calculation, we have

_ 1
(#la (TIz (0la B Uly)a IT)z10) arm = 5(Tayl + (Tyal)z 75 5 (14)
By Equations (13) and (14), we have

(Yla(Tlz <U|A/,B U |Z)a 1T)z |‘7>A/,B + (@|a (Tl <0—|A/7B U YA lT)z |‘7>A/,B

1 / /! 2
25 H‘sz>z + |Ty1:>zH .

By combining the above with Equation (5), we complete the proof of Claim 6. [J

This completes the proof of Theorem 5. O

6 Our Conversion for Commitments

In this section, we give a conversion for canonical quantum bit commitments
that converts the flavors of security using Theorem 5.

Theorem 7 (Converting Flavors). Let {Qo, @1} be a canonical quantum
bit commitment scheme. Let {Qq, Q) } be a canonical quantum bit commitment
scheme described as follows:

— The roles of commitment and reveal registers are swapped from {Qo, @1} and
the commitment register is augmented by an additional one-qubit register.
That is, if C and R are the commitment and reveal registers of {Qo, @1}, then
the commitment and reveal registers of {Qf, Q% } are defined as C' := (R, D)
and R’ := C where D is a one-qubit register.
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— For b € {0,1}, the unitary Q, is defined as follows:
Q5 = (Qo ®10) (Op + Q1 @ 1) (1]p) (Ir,c ® Z)Hp)
where Zp and Hp denote the Pauli Z and the Hadamard operators on D.

Then, the following hold for X,Y € {computationally,statistically,perfectly}:

1. If {Qo, Q1} is X hiding, then {Qg, Q}} s X binding.
2. If {Qo,Q1} is Y binding, then {Qy, @1} is Y hiding.

Note that we have

Q10)c = % ((Q10))er 10)p + (-1)°(Q1 |0)cr [1)p)

for b € {0,1} where (C’,R’) is rearranged as (C,R, D).
We defer the proof of Theorem 7 to the full version since it easily follows from
Theorem 5 as explained in Sec. 2.2.

Applications. We give applications of Theorem 7 in the full version.
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