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Abstract. QROM (quantum random oracle model), introduced by Boneh
et al. (Asiacrypt 2011), captures all generic algorithms. However, it fails
to describe non-uniform quantum algorithms with preprocessing power,
which receives a piece of bounded classical or quantum advice.
As non-uniform algorithms are largely believed to be the right model for
attackers, starting from the work by Nayebi, Aaronson, Belovs, and Tre-
visan (QIC 2015), a line of works investigates non-uniform security in the
random oracle model. Chung, Guo, Liu, and Qian (FOCS 2020) provide
a framework and establish non-uniform security for many cryptographic
applications. Although they achieve nearly optimal bounds for many ap-
plications with classical advice, their bounds for quantum advice are far
from tight.
In this work, we continue the study on quantum advice in the QROM. We
provide a new idea that generalizes the previous multi-instance frame-
work, which we believe is more quantum-friendly and should be the
quantum analog of multi-instance games. To this end, we match the bounds
with quantum advice to those with classical advice by Chung et al., showing
quantum advice is almost as good/bad as classical advice for many natu-
ral security games in the QROM.
Finally, we show that for some contrived games in the QROM, quantum
advice can be exponentially better than classical advice for some param-
eter regimes. To our best knowledge, it provides an evidence of a general
separation between quantum and classical advice relative to an unstruc-
tured oracle.

1 Introduction

Many practical cryptographic constructions are analyzed in idealized models,
for example, the random oracle model which treats an underlying hash func-
tion as a uniformly random oracle (ROM) [BR93]. On a high level, the random
oracle model captures all algorithms that use the underlying hash function in
a generic (black-box) way; often, the best attacks are generic. Whereas the ran-
dom oracle methodology guides the actual security of practical constructions,
it fails to describe non-uniform security: that is, an algorithm consists of two
parts, the offline and the online part; the offline part can take forever, and at the
end of the day, it produces a piece of bounded advice for its online part; the on-
line part given the advice, tries to attack cryptographic constructions efficiently.



Non-uniform algorithms are largely believed to be the right model for at-
tackers and usually show advantages over uniform algorithms [Unr07, CDGS18,
CDG18]. The famous non-uniform example is Hellman’s algorithm [Hel80] for
inverting permutations or functions. When a permutation of range and domain
size 𝑁 is given, Hellman’s algorithm can invert any image (with certainty) with
roughly advice size

√
𝑁 and running time

√
𝑁 . In contrast, uniform algorithms

require running time 𝑁 to achieve constant success probability. Another more
straightforward example is collision resistance. When non-uniform algorithms
are presented, no single fixed hash function is collision-resistant as an algorithm
can hardcode a pair of collisions in its advice.

Non-uniform security in idealized models has been studied extensively in
the literature. Let us take the two most simple yet fundamental security games
as examples: one search game and one decision game. The first one is one-way
function inversion (or OWFs) as mentioned above. The goal is to invert a ran-
dom image of the random oracle. The study was initialized by Yao [Yao90] and
later improved by a line of works [DTT10, Unr07, DGK17, CDGS18]. They show
that any 𝑇 -query algorithm with arbitrary 𝑆-bit advice, can win this game with
probability at most 𝑂̃(𝑆𝑇/𝑁), assuming the random oracle has equal domain
and range size. The other example is pseudorandom generators (or PRG). The
task is to distinguish between a random image 𝐻(𝑥) (𝑥 is uniformly at random
and 𝐻 is the hash function) or a random element 𝑦 in its range. Since it is a
decision game, some techniques for OWFs may not apply to PRGs, which we
will see later. Its non-uniform security is 𝑂(1/2+ 𝑇/𝑁 +

√︀
𝑆𝑇/𝑁) by Coretti et

al. [CDGS18], and later improved by Garvin et al. [GGKL21].
The quantum setting is very similar to the classical one, except an algorithm

can query the random oracle in superposition. Boneh et al. [BDF+11] justify the
ability to make superposition queries since a quantum computer can always
learn the description of a hash function and compute it coherently. Besides, ad-
vice can be either a sequence of bits or qubits. We should carefully distinguish
between the two different models. Indeed, we believe non-uniform quantum
algorithms with quantum advice are important to understand and should be
considered the “right” attacker model when full-scale quantum computers are
widely viable and quantum memory is affordable.

Nayebi, Aaronson, Belovs, and Trevisan [NABT14] initiated the study of
quantum non-uniform security with classical advice of OWFs and PRGs. Hhan,
Xagawa and Yamakawa [HXY19], Chung, Liao and Qian [CLQ19] extended the
study to quantum advice. Most recently, Chung, Guo, Liu and Qian [CGLQ20]
improved the bounds for both examples. For OWFs, their bounds are almost
optimal in terms of query complexity for both classical and quantum advice.
They show that to invert a random image with at least constant probability, ad-
vice size 𝑆 and the number of queries 𝑇 should satisfy 𝑆𝑇 + 𝑇 2 ≥ 𝛺̃(𝑁). How-
ever, a gap between classical and quantum advice appears when we choose
security parameters for practical hash functions against non-uniform attacks.
In practice, we ensure that an adversary with bounded resources (for exam-
ple, 𝑆 = 𝑇 = 2128) only has probability smaller than 2−128. The bounds in
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[CGLQ20] suggest that for OWF, the security parameter needs to be 𝑛 = 384
(and 𝑁 = 2384) for classical advice and 𝑛 = 640 for quantum advice, leaving
a big gap between two types of advice. Even worse, when it comes to PRGs,
the security parameters are 𝑛 = 640 for classical advice v.s. 𝑛 = 3200 for quan-
tum advice; not to mention a large gap between their query complexity, unlike
OWFs.

As understanding quantum advice is beneficial to both practical cryptog-
raphy efficiency and may inspire general computation theory (such as, 𝖰𝖬𝖠
v.s. 𝖰𝖢𝖬𝖠 [AK07, Aar21] and 𝖡𝖰𝖯/𝗉𝗈𝗅𝗒 v.s. 𝖡𝖰𝖯/𝗊𝗉𝗈𝗅𝗒 [Aar05]), we raise the
following natural question:

Can quantum advice outperform classical advice in the QROM?

In this work, we provide a new technique for analyzing quantum advice
in the QROM and show that for many games, the non-uniform security with
quantum advice matches the best-known security with classical advice, includ-
ing OWFs and PRGs. It gives strong evidence that for many cryptographic
games in the QROM, quantum advice provides no or little advantage over clas-
sical one.

So far, we have seen no advantage of quantum advice in the QROM for
common cryptographic games. We then ask the second question:

Is there any (contrived) game in the QROM, in which quantum advice is “ex-
ponentially better” than classical advice?

We give an affirmative answer to this question, for some parameters of 𝑆, 𝑇 .
We show that when algorithms can not make online queries (i.e., 𝑇 = 0), there
is an exponential separation between quantum and classical advice for certain
games. This result is inspired by the recent work by Yamakawa and Zhandry
[YZ22] on verifiable quantum advantages in the QROM. We elaborate on both
results now.

1.1 Our Results

Our first result is to give a quantum analog of “multi-instance games” via “al-
ternating measurement games” (introduced in Section 5) and develop a new
technique for analyzing non-uniform bounds with quantum advice. Our tech-
niques do not need to rewind a non-uniform quantum algorithm and com-
pletely avoid the rewinding issues/difficulties in the prior work [CGLQ20].

To show the power of our technique, we incorporate it into three important
applications: OWFs, PRGs, and salted cryptography. Note that our result below
is a non-exhaustive list of applications. With little effort, we can show improved
non-uniform security with quantum advice of Merkle-Damgård [GLLZ21], Yao’s
box [CGLQ20] and other games.
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One-Way Functions. In this application, a random oracle is interpreted as a one-
way function. A (non-uniform) algorithm needs to win the OWF security game
with the random oracle as a OWF. Formally, let 𝐻 : [𝑁 ] → [𝑀 ] be a random
oracle.

1. A challenger samples a uniformly random input 𝑥 ∈ [𝑁 ] and sends 𝑦 =
𝐻(𝑥) to the algorithm.

2. The algorithm returns 𝑥′ and it wins if and only if 𝐻(𝑥′) = 𝑦.

When both advice and queries are classical, the best lower bound is 𝑂̃(𝑆𝑇/𝛼)
by [CDGS18], where 𝛼 = min{𝑁,𝑀} and 𝑁 , 𝑀 are the domain and range size
of the random oracle. In other words, no algorithm with 𝑆 bits of advice and 𝑇

classical queries can win with probability more than 𝑂̃(𝑆𝑇/𝛼). There is a gap
between this lower bound and the upper bound≈ 𝑇/𝛼+(𝑆2𝑇/𝛼2)1/3 provided
by Hellman’s algorithm1. Later, Corrigan-Gibbs and Kogan [CGK19] study the
possible improvement on the lower bound and conclude that any improvement
will lead to improved results in circuit lower bounds. Thus, 𝑂̃(𝑆𝑇/𝛼) is the best
one can hope for in light of the barrier.

Chung et al. [CGLQ20] show that if 𝑆 bits of classical advice and 𝑇 quantum
queries are given, the maximum winning probability is bounded by 𝑂̃

(︁
𝑆𝑇+𝑇 2

𝛼

)︁
.

They further argue that this bound is almost optimal. Intuitively, one can think
of this as 𝑇 2/𝛼 comes from a brute-force Grover’s algorithm [Gro96], without
using any advice, and 𝑆𝑇/𝛼 comes from classical advice and hits the classical
barrier by [CGK19].

For quantum advice and quantum queries, they show the maximum suc-

cess probability is 𝑂̃
(︁

𝑆𝑇+𝑇 2

𝛼

)︁1/3
. As mentioned early, although the bound is

optimal regarding query complexity, the exponent seems non-tight. Thus, they
ask the following question:

... Can this loss (of the exponent) be avoided, or is there any speed up in terms
of 𝑆 and 𝑇 for sub-constant success probability?.

Our first result gives a positive answer to the above question and proves
that the loss on exponent can be avoided.

Theorem 1. Let 𝐻 be a random oracle [𝑁 ] → [𝑀 ] and 𝛼 = min{𝑁,𝑀}. One-
way function games in the QROM have security 𝑂

(︁
𝑆𝑇+𝑇 2

𝛼

)︁
against non-uniform

quantum algorithms with 𝑆-qubits of advice and 𝑇 quantum queries.

The theorem guides security parameter choices of hash functions to be se-
cure against non-uniform attacks. The security parameter 𝑛 should be 384 to
have security 2−128 against non-uniform quantum attacks with 𝑆 = 𝑇 = 2128.
Another direct implication of our theorem is that, when quantum advice 𝑆 =
𝑂(
√
𝛼), quantum advice is useless for speeding up function inversion. To put it

1 Hellman’s algorithm on functions does not behave as well as on permutations. Upper
and lower bounds meet at 𝑆𝑇/𝛼 only when we consider permutations.
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in another way, Grover’s algorithm can not be sped up and only has probability
𝑇 2/𝛼 to succeed even with quantum advice of size 𝑂(

√
𝛼), relative to a random

oracle. We list a comparison of best-known bounds and our result below.

Classical Advice in [CGLQ20] Quantum Advice in [CGLQ20] Quantum Advice in This Work

𝑂̃
(︁

𝑆𝑇+𝑇2

𝛼

)︁
𝑂̃
(︁

𝑆𝑇+𝑇2

𝛼

)︁1/3

𝑂
(︁

𝑆𝑇+𝑇2

𝛼

)︁
Table 1: Non-uniform security for OWFs with 𝑇 queries and 𝑆 bits (qubits) of advice,
where 𝛼 = min{𝑁,𝑀} and 𝑁 , 𝑀 are the domain and range size of the random oracle.
Our bound is a “big-𝑂” instead of “big-𝑂̃” as we also remove the dependence on log𝑁
and log𝑀 .

Pseudorandom Generators. Another important application we will focus on is
pseudorandom generators. One fundamental difference from one-way func-
tions is its being a decision game. We will later see that publicly verifiable
games such as one-way functions are easy to deal with in the previous work
[CGLQ20]. For games that can not be publicly verified, such as decision games,
[CGLQ20] often gives worse bounds.

In this game, an algorithm tries to distinguish between an image of a ran-
dom input, and a uniformly random element in the range. Let 𝐻 : [𝑁 ] → [𝑀 ]
be a random oracle.

– A challenger samples a uniformly random bit 𝑏. If 𝑏 = 0, it samples a uni-
formly random 𝑥 ∈ [𝑁 ] and outputs 𝑦 = 𝐻(𝑥); otherwise, it samples a
uniform 𝑦 ∈ [𝑀 ] and outputs 𝑦.

– The algorithm is given 𝑦 and returns 𝑏′. It wins if and only if 𝑏′ = 𝑏.

Our new technique demonstrates the following theorem about PRGs.

Theorem 2. Let 𝐻 be a random oracle [𝑁 ] → [𝑀 ]. PRG games in the QROM have

security 1/2+𝑂
(︁

𝑇 2

𝑁

)︁1/2
+𝑂

(︀
𝑆𝑇
𝑁

)︀1/3
against non-uniform quantum algorithms with

𝑆-qubits of advice and 𝑇 quantum queries.

“Salting Defeats Preprocessing”. Finally, instead of proving more concrete non-
uniform bounds like Merkle-Damgård [GLLZ21], we demonstrate that the generic
mechanism “salting” helps prevent quantum preprocessing attacks even with
quantum advice. Maybe the most illustrating example is collision-resistant hash
functions. As mentioned before, no single fixed hash function can be collision
resistant against non-uniform attacks. A typical solution is to add “salt” to the
hash function. A salt is a piece of random data that will be fed into a hash func-
tion as an additional input. To attack a salted collision resistant hash function,
an adversary gets a salt 𝑠 and is required to come out with two input 𝑚 ̸= 𝑚′

5



Classical Advice in [CGLQ20] Quantum Advice in [CGLQ20] Quantum Advice in This Work
1
2
+ 𝑂̃

(︁
𝑆𝑇+𝑇2

𝑁

)︁1/3
1
2
+ 𝑂̃

(︁
𝑆5𝑇+𝑆4𝑇2

𝑁

)︁1/19
1
2
+𝑂

(︁
𝑇2

𝑁

)︁1/2

+𝑂
(︀
𝑆𝑇
𝑁

)︀1/3
Table 2: Non-uniform security of PRGs with 𝑇 queries and 𝑆 bits (qubits) of advice. Our
bound also improves the previous result on classical advice by reducing the exponent
on 𝑇 2/𝑁 from 1/3 to 1/2; we note that the improvement on the exponent only follows
from a simple observation and can also be applied to the previous work as well.

such that the hash evaluation on (𝑠,𝑚) equals that of (𝑠,𝑚′). Intuitively, since
salt 𝑠 is chosen uniformly at random from a large space, advice is not long
enough to include collisions for every possible salt. Thus, salting is a mecha-
nism that compiles a game into another game, by adding a random extra input
𝑠 and restricting the execution of the game always under oracle access to 𝐻(𝑠, ·).

Chung et al. [CLMP13], and Coretti et al. [CDGS18] formally proved the
non-uniform security of salted collision-resistant hash in the classical ROM.
Chung et al. [CGLQ20] extended the statement in the quantum setting. For
quantum advice, their result roughly says that if an underlying game 𝐺 is pub-
licly verifiable or a decision game, then the salted version of 𝐺 is secure against
non-uniform attacks.

Our third results improve the prior ones in two different aspects. First, our
theorem works not only for publicly verifiable or decision games, but for any
types of games (see our definition of games Definition 2). Second, our theorem
is tighter and provides a more pictorial statement for “salting defeats prepro-
cessing”, elaborated below. Our bounds match those with classical advice in
[CGLQ20].

Theorem 3 (Informal, Theorem 10). For any game 𝐺 in the QROM, let 𝜈(𝑇 ) be
its uniform security in the QROM. Let 𝐺𝑆 be the salted game with salt space [𝐾]. Then
𝐺𝑆 has security 𝛿(𝑆, 𝑇 ) against non-uniform quantum adversaries with 𝑇 queries and
𝑆-qubits of advice,

1. 𝛿(𝑆, 𝑇 ) ≤ 4𝜈(𝑇 ) +𝑂(𝑆𝑇/𝐾);
2. If 𝐺𝑆 is a decision game, then 𝛿(𝑆, 𝑇 ) ≤ 𝜈(𝑇 ) +𝑂(𝑆𝑇/𝐾)1/3.

That is to say, the non-uniform security of 𝐺𝑆 and uniform security of 𝐺
only differs by a term of 𝑂(𝑆𝑇/𝐾) or 𝑂(𝑆𝑇/𝐾)1/3 depending on the type of
the game. When the game 𝐺 is a search game, 𝐺𝑆 has non-uniform security
4𝜈(𝑇 ) + 𝑂(𝑆𝑇/𝐾). We can choose 𝑆 to ensure 𝑆𝑇/𝐾 ≤ 𝜈(𝑇 ) so that the non-
uniform security of 𝐺𝑆 is in the same order of 𝐺’s security 𝜈(𝑇 ). For decision
games, we choose 𝑆 such that (𝑆𝑇/𝐾)1/3 is extremely small.

In [CGLQ20], they show that for publicly verifiable games, 𝛿 := 𝛿(𝑆, 𝑇 ) sat-
isfies 𝛿 ≤ 𝑂̃

(︀
𝜈(𝑇/𝛿) + 𝑆𝑇

𝐾𝛿

)︀
whereas ours works for any games and 𝛿(𝑆, 𝑇 ) ≤

4𝜈(𝑇 ) + 𝑂(𝑆𝑇/𝐾). For decision games, ours also significantly improves prior
results (see Table 3 and Theorem 7.6 in [CGLQ20] for a comparison). The de-
pendence in their theorems on uniform security 𝜈 is much more complicated
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and yields loose bounds. Most notably, for decision games, when the salt size
𝐾 → ∞, the bound in [CGLQ20] does not rule out the speed up from having
𝑆-qubits of advice (corresponding to the term 𝜈′(𝑆2𝑇/𝜖8)); whereas our bound
gives 𝜈(𝑇 ) — exactly the security in the uniform case, completely ruling out the
influence of quantum advice.

Quantum Advice in [CGLQ20] Quantum Advice in This Work
Any Games 𝛿 ≤ 𝑂̃ (𝜈(𝑇/𝛿) + 𝑆𝑇/(𝐾𝛿)) 𝛿 ≤ 4𝜈(𝑇 ) +𝑂(𝑆𝑇/𝐾)

Decision Games 𝛿 ≤ 1/2 + 𝜖
𝛿 ≤ 𝜈(𝑇 ) +𝑂(𝑆𝑇/𝐾)1/3

where 𝜖 ≤ 𝑂̃
(︁
𝜈′(𝑆2𝑇/𝜖8) +

√︀
𝑆5𝑇/(𝐾𝜖17)

)︁
and 𝜈′(𝑇 ) := 𝜈(𝑇 )− 1/2

Table 3: Salting “defeats” preprocessing.

Separation of Quantum and Classical Advice in the QROM. So far, we have seen
many examples that quantum advice is as good/bad as classical advice. Below,
we show that it is not always the case in the QROM: there exists a game in the
QROM such that quantum advice is exponentially better than classical advice.

Theorem 4 (Separation of Quantum and Classical Advice in the QROM). Let
𝐻 be a random oracle [2𝗉𝗈𝗅𝗒(𝑛)] → {0, 1}. There exists a game 𝐺 in the QROM such
that,

– 𝐺 has security 2−𝛺(𝑛) against non-uniform adversaries with 𝑆-bits of classical
advice and making no queries, for 𝑆 = 2𝑛

𝑐

/𝑛 and some constant 0 < 𝑐 < 1;
– There is a non-uniform adversary with 𝑆-qubits of quantum advice and making

no queries, that achieves winning probability 1− 𝗇𝖾𝗀𝗅(𝑛), for 𝑆 = 𝑂̃(𝑛).

Although the bound only works in the parameter regime 𝑇 = 0, to our
best knowledge, it is the first example of an exponential separation between
quantum and classical advice in the QROM (or for inputs without structures).

Remark 1. For the parameter regime 𝑇 = 0, the above separation can be al-
ternatively viewed as an exponential separation of quantum/classical one-way
communication complexity for some relation ℛ ⊆ 𝒳 × 𝒴 × 𝑍. In the context of
one-way communication complexity, there are two players, Alice and Bob. Alice
gets an input 𝑥 ∈ 𝒳 and Bob gets an input 𝑦 ∈ 𝒴; Alice sends one (classical or
quantum) message to Bob and Bob tries to output 𝑧 ∈ 𝒵 such that (𝑥, 𝑦, 𝑧) ∈ ℛ.
Our result in Theorem 4 is a separation of quantum/classical one-way commu-
nication complexity when 𝒳 = {0, 1}2𝗉𝗈𝗅𝗒(𝑛)

, 𝒴 = {0, 1}𝑛, 𝒵 = {0, 1}𝑛×𝗉𝗈𝗅𝗒(𝑛);
when the message is allow to be quantum, 𝑂̃(𝑛) qubits are sufficient; on the
other hand, the classical communication complexity is 𝛺(2𝑛

𝑐

/𝑛).
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Exponential separation of quantum/classical one-way communication com-
plexity is already known, starting from the work by [BYJK04] (later by [Gav08])
based on the so-called hidden matching problem. We believe the hidden match-
ing problem can be also turned into a separation of quantum/classical advice in
the parameter regime 𝑇 = 0, in the QROM. However, [BYJK04] only proved
average-case hardness against deterministic classical Bob. Therefore, we pick the
recent result by Zhandry and Yamakawa for simplicity of presentation.

1.2 Organization

The rest of the paper is organized as follows. In ??, we give an overview of our
main technical contribution and achieve non-uniform bounds for OWFs. Sec-
tion 2 and Section 3 recall the notations and backgrounds on quantum comput-
ing, random oracles models, non-uniform security and bit-fixing models. Sec-
tion 4 introduces decomposition of advice with respect to a game, which helps
the proof of our main theorem. Section 5 proves the main theorem whereas Sec-
tion 6 applies the main theorem to various applications. Finally in Section 7, we
give the separation of quantum and classical advice.
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2 Preliminaries

We assume readers are familiar with the basics of quantum information and
computation. All backgrounds on quantum information can be found in [NC10].

2.1 Quantum Random Oracle Model

In the quantum random oracle model, a hash function is modeled as a ran-
dom classical function 𝐻 . The function 𝐻 is sampled at the beginning of any
security game and then gets fixed. Oracle access to 𝐻 is defined by a unitary
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𝑈𝐻 : |𝑥, 𝑦⟩ → |𝑥, 𝑦 +𝐻(𝑥)⟩. A quantum oracle algorithm with oracle access to
𝐻 is then denoted by a sequence of unitary 𝑈1, 𝑈𝐻 , 𝑈2, 𝑈𝐻 , · · · , 𝑈𝑇 , 𝑈𝐻 , 𝑈𝑇+1

followed by a computational basis measurement, where 𝑈𝑖 is a local unitary
operating on the algorithm’s internal register. The number of queries, in this
case, is 𝑇 — the number of 𝑈𝐻 calls.

2.2 Other Useful Lemmas

We use the lemmas in this section to prove bounds in the alternating measure-
ment games (Section 5). Readers can safely skip and return to this section for
(Section 5.

We omit the proof for the following lemmas and refer readers to the ap-
pendix for more the proofs.

Lemma 1. Let 𝑁 be a positive integer and 𝑝1, · · · , 𝑝𝑁 ∈ ℝ≥0. Let 𝑐1, · · · , 𝑐𝑁 be a
distribution over [𝑁 ]. Assume

∑︀
𝑖∈[𝑁 ] 𝑐𝑖𝑝𝑖 > 0. Define 𝑆𝑘 for every integer 𝑘 ≥ 1:

𝑆𝑘 =

∑︀
𝑖∈[𝑁 ] 𝑐𝑖𝑝

𝑘
𝑖∑︀

𝑖∈[𝑁 ] 𝑐𝑖𝑝
𝑘−1
𝑖

.

Then {𝑆𝑘}𝑘≥1 is monotonically non-decreasing.

Lemma 2 (Jensen’s inequality). Let 𝑁, 𝑔 be two positive integers and 𝑝1, · · · , 𝑝𝑁 ∈
ℝ≥0. Let 𝑐1, · · · , 𝑐𝑁 be a distribution over [𝑁 ]. Assume

∑︀
𝑖∈[𝑁 ] 𝑐𝑖𝑝𝑖 > 0. If the fol-

lowing holds
∑︀

𝑖∈[𝑁 ] 𝑐𝑖𝑝
𝑔
𝑖 ≤ 𝛿𝑔 , then

∑︀
𝑖∈[𝑁 ] 𝑐𝑖𝑝𝑖 ≤ 𝛿.

3 (𝑺, 𝑻 ) Quantum Algorithms and Games in the QROM

In this work, we consider non-uniform algorithms against games in the QROM.
We start by defining (𝑆, 𝑇 ) non-uniform quantum algorithms with either 𝑆 clas-
sical bits of advice or 𝑆 qubits of advice. The definitions below more or less
follow definitions in [CGLQ20] but are adapted for our setting.

Definition 1 ((𝑆, 𝑇 ) Non-Uniform Quantum Algorithms in the QROM). A
(𝑆, 𝑇 ) non-uniform quantum algorithm with classical advice in the QROM is mod-
eled by a collection {𝑠𝐻}𝐻:[𝑁 ]→[𝑀 ] and {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉: for every function 𝐻 , 𝑠𝐻 is a piece
of 𝑆-bit advice and 𝑈𝐻

𝗂𝗇𝗉 is a unitary that calls the oracle 𝐻 at most 𝑇 times.
A (𝑆, 𝑇 ) non-uniform quantum algorithm with quantum advice in the QROM is

modeled by a collection {|𝜎𝐻⟩}𝐻 and {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉: for every function 𝐻 , |𝜎𝐻⟩ is a piece
of 𝑆-qubit advice and 𝑈𝐻

𝗂𝗇𝗉 is a unitary that calls the oracle 𝐻 at most 𝑇 times.
Similarly, we denote a uniform quantum algorithm by a collection of unitaries

{𝑈𝗂𝗇𝗉}𝗂𝗇𝗉: it is a non-uniform quantum algorithm satisfying |𝜎𝐻⟩ = |0𝑆⟩ for all 𝐻 .

When the algorithm is working with oracle access to 𝐻 , its initial state is |𝑠𝐻⟩ |0𝐿⟩
or |𝜎𝐻⟩ |0𝐿⟩, respectively. On input 𝗂𝗇𝗉, it applies 𝑈𝐻

𝗂𝗇𝗉 on the initial state and measures
its internal register in the computational basis.
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Since we are working in the idealized model, we require neither 𝐿 nor the
size of the unitary 𝑈𝗂𝗇𝗉 to be polynomially bounded. In the rest of the work,
we will focus on non-uniform algorithms with quantum advice as our new
reduction works for both cases. Therefore, ‘non-uniform algorithms’ denotes
‘non-uniform algorithms with quantum advice’.

Remark 2. We can assume quantum advice is a pure state. Due to convexity, the
optimal non-uniform algorithm can always have advice as a pure state. If the
advice is a mixed state and achieves a winning probability 𝑝, there always exists
a pure state that achieves a winning probability at least 𝑝.

Next, we define games in the QROM.

Definition 2 (Games in the QROM). A game 𝐺 in the QROM is specified by two
classical algorithms 𝖲𝖺𝗆𝗉𝐻 and 𝖵𝖾𝗋𝗂𝖿𝗒𝐻 :

– 𝖲𝖺𝗆𝗉𝐻(𝑟): it is a deterministic algorithm that takes uniformly random coins 𝑟 ∈
ℛ as input, and outputs a challenge 𝖼𝗁.

– 𝖵𝖾𝗋𝗂𝖿𝗒𝐻(𝑟, 𝖺𝗇𝗌): it is a deterministic algorithm that takes the same random coins
for generating a challenge and an alleged answer 𝖺𝗇𝗌, and outputs 𝑏 indicating
whether the game is won (𝑏 = 0 for winning).

Let 𝑇𝖲𝖺𝗆𝗉 be the number of queries made by 𝖲𝖺𝗆𝗉 and 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 be the number of queries
made by 𝖵𝖾𝗋𝗂𝖿𝗒.

For a fixed 𝐻 and a quantum algorithm 𝒜, the game 𝐺𝐻
𝒜 is executed as follows:

– A challenger 𝒞 samples 𝖼𝗁← 𝖲𝖺𝗆𝗉𝐻(𝑟) using uniformly random coins 𝑟.
– A (uniform or non-uniform) quantum algorithm𝒜 has oracle access to 𝐻 , takes 𝖼𝗁

as input and outputs 𝖺𝗇𝗌. We call 𝒜 an online adversary/algorithm.
– 𝑏← 𝖵𝖾𝗋𝗂𝖿𝗒𝐻(𝑟, 𝖺𝗇𝗌) is the game’s outcome.

Remark 3. In the above definition, a quantum algorithm makes at most 𝑇 oracle
queries to 𝐻. However, in some particular games, the algorithm can not get
access to 𝐻. One famous example is Yao’s box, in which an adversary is given a
challenge input 𝑥 and the goal is to output 𝐻(𝑥). The adversary can query 𝐻 on
any input except 𝑥 (otherwise, the game is trivial). The definition Definition 2
does not capture this case. Nonetheless, we will stick with the current definition.
For the special case when an algorithm has access to a different oracle 𝐻 ′, the
technique in this work extends as well. This extension requires a similar definition
of games (Definition 3.3) in [CGLQ20].

Let us warm up by having a close look at the following examples.

Example 1. The first example is function inversion (or OWFs) 𝐺𝖮𝖶𝖥. 𝑟 = 𝑥 ∈ [𝑁 ]
is a uniformly random pre-image and 𝖼𝗁 := 𝐻(𝑥). The goal is to find a pre-image
of 𝖼𝗁. The verification procedure takes 𝑟 = 𝑥 and 𝖺𝗇𝗌 = 𝑥′, it outputs 0 (winning)
if and only if 𝑥′ is a pre-image of 𝐻(𝑥).
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The other example 𝐺𝖯𝖱𝖦 is to distinguish images of PRG from a uniformly
random element. In this example, 𝑟 consists of (𝑏, 𝑥, 𝑦) where 𝑏 is a single bit,
𝑥 is a uniformly random pre-image in [𝑁 ] and 𝑦 is a uniformly random element
in [𝑀 ]. The challenge 𝖼𝗁 is 𝐻(𝑥) if 𝑏 = 0, otherwise 𝖼𝗁 = 𝑦. The goal is to
distinguish whether an image of a random input or a random element in the
range is given. The verification procedure takes 𝑟 = (𝑏, 𝑥, 𝑦) and 𝖺𝗇𝗌 = 𝑏′, it
outputs 0 if and only if 𝑏 = 𝑏′.

Definition 3. We say a game 𝐺 has 𝛿(𝑆, 𝑇 ) := 𝛿 maximum winning probability
(or has security 𝛿, for cryptographic games) against all (𝑆, 𝑇 ) non-uniform quantum
adversaries with classical or quantum advice if

max
𝒜

Pr
𝐻

[︀
𝐺𝐻

𝒜 = 1
]︀
≤ 𝛿,

where max is taken over all (𝑆, 𝑇 ) non-uniform quantum adversaries 𝒜 with classical
or quantum advice, respectively.

3.1 Quantum Bit-Fixing Model

Here we recall a different model called the quantum bit-fixing model. In the fol-
lowing sections, we will relate winning probability of a game 𝐺 against (𝑆, 𝑇 )
non-uniform quantum algorithms with that in the quantum bit-fixing model
(BF-QROM). Since the previous quantum non-uniform bounds require analyz-
ing the quantum bit-fixing model, winning probabilities in the bit-fixing model
are already known for many games, and our improved bounds only need a new
reduction. The following definitions are adapted from [GLLZ21].

Definition 4 (Games in the 𝑃 -BF-QROM). It is similar to games in the standard
QROM, except now 𝐻 has a different distribution.

– Before a game starts, a quantum algorithm 𝑓 (having no input) with at most 𝑃
queries to an oracle is picked and fixed by an adversary.

– Rejection Sampling Stage: A random oracle 𝐻 is picked uniformly at random,
then conditioned on 𝑓𝐻 outputs 0. In other words, the distribution of 𝐻 is defined
by a rejection sampling:
1. 𝐻 ← {𝑓 : [𝑁 ]→ [𝑀 ]}.
2. Run 𝑓𝐻 and obtain a binary outcome 𝑏 together with a quantum state 𝜏 2.
3. Restart from step 1 if 𝑏 ̸= 0.

– Online Stage: The game is then executed with oracle access to 𝐻 , and an algo-
rithm ℬ gets 𝜏 .

A (𝑃, 𝑇 ) algorithm in the 𝑃 -BF-QROM consists of 𝑓 for sampling the dis-
tribution and ℬ for playing the game, with 𝑓 making at most 𝑃 queries and ℬ
making at most 𝑇 queries. We also call ℬ an online algorithm/adversary.

We will also consider the following classical analog 𝑃 -BF-ROM only when
showing a separation between classical and quantum advice in Section 7.

2 In [GLLZ21], they do not need quantum or classical memory 𝜏 shared between 𝑓
and 𝒜. However, this is essential in our proof. Nonetheless, all security proofs in the
𝑃 -BR-QROM work in the stronger setting (with 𝜏 shared between stages).
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Definition 5 (Games in the 𝑃 -BF-ROM). It is similar to the above Definition 4,
except both 𝑓 and ℬ can only make classical queries.

Definition 6. We say a game 𝐺 has 𝜈(𝑃, 𝑇 ) := 𝜈 maximum winning probability (or
is 𝜈-secure, for cryptographic games) in the 𝑃 -BF-QROM if

max
𝑓,ℬ

Pr
𝐻

[︀
𝑓𝐻 = 0 ∧ 𝐺𝐻

ℬ = 1
]︀
≤ 𝜈,

where max is taken over all (𝑃, 𝑇 ) quantum adversaries (𝑓,ℬ) with 𝑓 making at most
𝑃 queries and ℬ making at most 𝑇 queries.

We know the following two lemmas from [CGLQ20, GLLZ21].

Lemma 3 (Function Inversion in the 𝑃 -BF-QROM). The OWF game has 𝜈(𝑃, 𝑇 ) =
(𝑃 + 𝑇 2)/min{𝑁,𝑀} in the 𝑃 -BF-QROM.

See the proof for Lemma 5.2 in [CGLQ20] and Lemma 10 in [GLLZ21].

Lemma 4 (PRGs in the 𝑃 -BF-QROM). The game PRG has 𝜈(𝑃, 𝑇 ) = 1/2 +√︀
(𝑃 + 𝑇 2)/𝑁 in the 𝑃 -BF-QROM.

See the proof for Lemma 5.13 in [CGLQ20].

4 Games, POVMs and Decomposition of Advice

In this section, we will formalize an quantum algorithm’s winning probability
against a game in terms of POVMs and its corresponding eigenvectors.

For any game 𝐺 and algorithm 𝒜, let 𝑉 𝐻
𝑟 be a projection that operates on

the register of 𝒜. 𝑉 𝐻
𝑟 project a quantum state into a subspace spanned by basis

states |𝖺𝗇𝗌⟩ |𝑧⟩ where 𝖵𝖾𝗋𝗂𝖿𝗒𝐻(𝑟, 𝖺𝗇𝗌) = 1 and 𝑧 be any aux input (depending on
the size of𝒜’s working register). As an example, for function inversion problem
and 𝑟 = 𝑥, 𝑉 𝐻

𝑟 is defined as
∑︀

𝑥′:𝐻(𝑥′)=𝐻(𝑥),𝑧 |𝑥′, 𝑧⟩ ⟨𝑥′, 𝑧|.
Then for any non-uniform quantum algorithm 𝒜 = ({|𝜎𝐻⟩}𝐻 , {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉), by

definition, its probability 𝜖𝒜 for winning the game 𝐺 with oracle access to 𝐻
can be then written as:

𝜖𝒜,𝐻 =
1

|ℛ|
∑︁
𝑟∈ℛ

⃦⃦⃦
𝑉 𝐻
𝑟 𝑈𝐻

𝖲𝖺𝗆𝗉𝐻(𝑟) |𝜎𝐻⟩ |0𝐿⟩
⃦⃦⃦2

.

We define the following projections 𝑃𝐻
𝑟 :=

(︁
𝑈𝐻
𝖲𝖺𝗆𝗉𝐻(𝑟)

)︁†
𝑉 𝐻
𝑟 𝑈𝐻

𝖲𝖺𝗆𝗉𝐻(𝑟)
. Let

𝑃𝐻 be a POVM: 𝑃𝐻 := 1
|ℛ|
∑︀

𝑟∈ℛ 𝑃𝐻
𝑟 . We can equivalently write 𝜖𝒜,𝐻 in terms

of this POVM: 𝜖𝒜,𝐻 = ⟨𝜎𝐻 , 0𝐿|𝑃𝐻 |𝜎𝐻 , 0𝐿⟩. This is due to:

𝜖𝒜,𝐻 =
1

|ℛ|
∑︁
𝑟∈ℛ

⃦⃦⃦
𝑉 𝐻
𝑟 𝑈𝐻

𝖲𝖺𝗆𝗉𝐻(𝑟) |𝜎𝐻⟩ |0𝐿⟩
⃦⃦⃦2

=
1

|ℛ|
∑︁
𝑟∈ℛ
⟨𝜎𝐻 | ⟨0𝐿|𝑃𝐻

𝑟 |𝜎𝐻⟩ |0𝐿⟩

=⟨𝜎𝐻 , 0𝐿|𝑃𝐻 |𝜎𝐻 , 0𝐿⟩.
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Since 𝑃𝐻 is a Hermitian matrix and 0 ⪯ 𝑃𝐻 ⪯ 𝐈, let {|𝜑𝐻,𝑗⟩}𝑗 be the set of
eigenbasis for 𝑃𝐻 with eigenvalues {𝑝𝐻,𝑗}𝑗 between 0 and 1. We can decompose
|𝜎𝐻⟩ |0𝐿⟩ under the eigenbasis:

|𝜎𝐻⟩ |0𝐿⟩ =
∑︁
𝑖

𝛼𝐻,𝑖 |𝜑𝐻,𝑖⟩ .

Therefore, 𝜖𝒜,𝐻 can be written in terms of 𝛼𝐻,𝑖 and 𝑝𝐻,𝑖: 𝜖𝒜,𝐻 =
∑︀

𝑖 |𝛼𝐻,𝑖|2 ·𝑝𝐻,𝑖.
This is because:

𝜖𝒜,𝐻 = ⟨𝜎𝐻 , 0𝐿|𝑃𝐻 |𝜎𝐻 , 0𝐿⟩ =
∑︁
𝑖

|𝛼𝐻,𝑖|2 · 𝑝𝐻,𝑖.

With all the above discussions, we conclude our lemma below.

Lemma 5. Let 𝐺 be a game and𝒜 = ({|𝜎𝐻⟩}𝐻 , {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉) be any non-uniform quan-
tum algorithm. Let 𝑃𝐻 be the corresponding POVMs for function 𝐻 . Let {|𝜑𝐻,𝑗⟩}𝑗 be
the set of eigenbasis for 𝑃𝐻 with eigenvalues {𝑝𝐻,𝑗}𝑗 .

For each 𝐻 , write |𝜎𝐻⟩ |0𝐿⟩ as
∑︀

𝑖 𝛼𝐻,𝑖 |𝜑𝐻,𝑖⟩. Let 𝜖𝒜 be the winning probability
of 𝒜, when 𝐻 is drawn uniformly at random. Then

𝜖𝒜 = 𝔼𝐻

[︃∑︁
𝑖

|𝛼𝐻,𝑖|2 · 𝑝𝐻,𝑖

]︃
=

1

𝑁𝑀

∑︁
𝐻

∑︁
𝑖

|𝛼𝐻,𝑖|2 · 𝑝𝐻,𝑖.

5 Non-Uniform Lower Bounds via Alternating Measurements

In this section, we prove the following theorem:

Theorem 5. Let 𝐺 be any game with 𝑇𝖲𝖺𝗆𝗉, 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 being the number of queries made
by 𝖲𝖺𝗆𝗉 and 𝖵𝖾𝗋𝗂𝖿𝗒. For any 𝑆, 𝑇 , let 𝑃 = 𝑆(𝑇 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 + 𝑇𝖲𝖺𝗆𝗉).

If 𝐺 has security 𝜈(𝑃, 𝑇 ) in the 𝑃 -BF-QROM, then it has security (maximum
winning probability) 𝛿(𝑆, 𝑇 ) ≤ 2 ·𝜈(𝑃, 𝑇 ) against (𝑆, 𝑇 ) non-uniform quantum algo-
rithms with quantum advice.

It also has security

𝛿(𝑆, 𝑇 ) ≤ min
𝛾>0
{𝜈(𝑃/𝛾, 𝑇 ) + 𝛾}

against (𝑆, 𝑇 ) non-uniform quantum algorithms with quantum advice.

As a special case of the second result, when 𝐺 is a decision game and is
𝜈(𝑃, 𝑇 ) = 1

2 + 𝜈′(𝑃, 𝑇 ) secure in the 𝑃 -BF-QROM, then it has security

1/2 + min
𝛾>0
{𝜈′(𝑃/𝛾, 𝑇 ) + 𝛾}

against (𝑆, 𝑇 ) non-uniform quantum algorithms with quantum advice.

The section is organized as follows: in the first subsection, we introduce a
new multi-instance game, via the so-called alternating measurement games, the
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idea of alternating measurement was used in witness preserving amplification
of QMA ([MW05]); in the next subsection, we elaborate on behaviors of any
non-uniform quantum algorithm in the alternating measurement game; then
we show that upper bounds (of success probabilities) in the bit-fixing model
give rise to the probability of uniform quantum algorithms in the alternating
measurement game; finally in the last subsection, we give the proof for our
main theorem.

5.1 Multi-Instance via Alternating Measurements

For a game 𝐺 and a quantum non-uniform algorithm 𝒜 = ({|𝜎𝐻⟩}𝐻 , {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉),
we start by recalling the following notations as in Section 4: 𝑃𝐻

𝑟 , 𝑃𝐻 , {|𝜑𝐻,𝑗⟩}𝑗
and {𝑝𝐻,𝑖}𝑗 . Let 𝐀 be the register that 𝒜 operates on. The following controlled
projection (as defined in [Zha20]) will be used heavily in this section.

Definition 7 (Controlled Projection). The controlled projection for a game 𝐺 and
a quantum algorithm 𝒜 is the following: for every 𝐻 , the controlled projection is the
measurement 𝖢𝖯𝐻 = (𝖢𝖯𝐻

0 ,𝖢𝖯𝐻
1 ):

𝖢𝖯𝐻
0 =

∑︁
𝑟∈ℛ
|𝑟⟩⟨𝑟|𝐑 ⊗ 𝑃𝐻

𝑟 and 𝖢𝖯𝐻
1 =

∑︁
𝑟∈ℛ
|𝑟⟩ ⟨𝑟|𝐑 ⊗ (𝐈𝐀 − 𝑃𝐻

𝑟 ).

Here 𝖢𝖯𝐻 operates on registers ℛ𝒜 where ℛ are registers storing random
coins and 𝒜 are 𝒜’s working registers.

Similarly, we define the following projection 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆 = (|1ℛ⟩ ⟨1ℛ|⊗𝐈𝐀, (𝐈𝐑−
|1ℛ⟩ ⟨1ℛ|)⊗ 𝐈𝐀) over the same register as 𝖢𝖯𝐻 where |1ℛ⟩ is a uniform super-
position overℛ: i.e., |1ℛ⟩ = 1

|ℛ|
∑︀

𝑟 |𝑟⟩. We denote |1ℛ⟩ ⟨1ℛ| ⊗ 𝐈𝐀 by 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0

and (𝐈− |1ℛ⟩ ⟨1ℛ| ⊗ 𝐈𝐀) by 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆1.

Now, We are ready to describe the new game via alternating measurements:

Definition 8 (Multi-Instances via Alternating Measurments). Fix a game 𝐺
and an integer 𝑘 ≥ 1. A uniformly random 𝐻 is sampled at the beginning. For a (po-
tentially non-uniform) quantum algorithm 𝒜, the multi-instance game 𝐺⊗𝑘 is defined
and executed as follows:

– A challenger 𝒞 initializes a new register |1ℛ⟩𝐑 and controls 𝒜’s register 𝐀.
– It repeats the following procedures 𝑘 times, for 𝑖 = 1, · · · , 𝑘:
∙ If the current stage 𝑖 is odd, 𝒞 applies 𝖢𝖯𝐻 on 𝐑𝐀 and obtains a measurement

outcome 𝑏𝑖.
∙ If the current stage 𝑖 is even, 𝒞 applies 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆 on 𝐑𝐀 and obtains a mea-

surement outcome 𝑏𝑖.
– The game is won if and only if 𝑏1 = 𝑏2 = · · · = 𝑏𝑘 = 0.

With this alternating measurement game, we describe the following theo-
rem that relates the winning probability of a (non-uniform) 𝒜 in the game 𝐺
and that of 𝒜 in the corresponding alternating measurement game 𝐺⊗𝑘.
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Theorem 6. Let 𝐺 be a game and 𝒜 = ({|𝜎𝐻⟩}𝐻 , {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉) be any non-uniform
quantum algorithm for 𝐺. Let 𝑃𝐻 be the corresponding POVMs for function 𝐻 . Let
{|𝜑𝐻,𝑗⟩}𝑗 be the set of eigenbasis for 𝑃𝐻 with eigenvalues {𝑝𝐻,𝑗}𝑗 .

For each 𝐻 , write |𝜎𝐻⟩ |0𝐿⟩ as
∑︀

𝑖 𝛼𝐻,𝑖 |𝜑𝐻,𝑖⟩. Let 𝜖⊗𝑘
𝒜 be the winning probabil-

ity of 𝒜 in the alternating measurement game 𝐺⊗𝑘, when 𝐻 is drawn uniformly at
random. Then

𝜖⊗𝑘
𝒜 =

1

𝑁𝑀

∑︁
𝐻

∑︁
𝑖

|𝛼𝐻,𝑖|2 · 𝑝𝑘𝐻,𝑖.

We leave the explanation of the theorem to the appendix (the proof of Lemma 11)
since it is similar to the analysis of QMA amplification [MW05] and quantum
traitor tracing [Zha20]. We do not considered the proof as our main contribu-
tion. Nonetheless, we believe that the proof inspires our analysis for 𝜖⊗𝑘

𝒜 , which
together with the new multi-instance reduction is considered the main contri-
bution of this work.

By Lemma 2, we can easily conclude that any upper bound on 𝒜’s success
probability in 𝐺⊗𝑘 yields an upper bound on its winning probability in 𝐺. The
proof of the following lemma easily follows from Lemma 2.

Lemma 6. Fix a game 𝐺 and an integer 𝑘 ≥ 1. Let 𝜖𝒜 be the success probability of
(uniform or non-uniform)𝒜 in 𝐺 and 𝜖⊗𝑘

𝒜 be that of𝒜 in the alternating measurement

game 𝐺⊗𝑘. Then 𝜖𝒜 ≤
(︀
𝜖⊗𝑘
𝒜
)︀1/𝑘

.

Thereby, to bound 𝜖𝒜, it is enough to bound 𝜖⊗𝑘
𝒜 for some appropriate posi-

tive integer 𝑘.

5.2 Advantages of Uniform Algorithms in Alternating Measurement
Games

In this section, we relate success probabilities of uniform quantum algorithms
in alternating measurements with probabilities in the corresponding bit-fixing
model. We will show the following theorem:

Theorem 7. Let 𝐺 be a game in the QROM and 𝒜 be any uniform quantum algo-
rithm for 𝐺 making 𝑇 oracle queries. Let 𝜈(𝑃, 𝑇 ) be the security of 𝐺 in the 𝑃 -BF-
QROM. For every 𝑘 > 0, every 𝑃 ≥ 𝑘 (𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒),

𝜖⊗𝑘
𝒜 ≤ 𝜈(𝑃, 𝑇 )𝑘.

Recall that 𝑇𝖲𝖺𝗆𝗉, 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 are the numbers of queries made by 𝖲𝖺𝗆𝗉 and 𝖵𝖾𝗋𝗂𝖿𝗒,
respectively.

To bound 𝜖⊗𝑘
𝒜 for any uniform quantum algorithm, it is sufficient to bound

the following conditional probability: 𝜖(𝑡)𝒜 for 𝑡 = 1, · · · , 𝑘.

Definition 9 (Conditional Probability for the 𝑡-th Outcome). 𝜖
(𝑡)
𝒜 is the con-

ditional probability Pr[𝑏𝑡 = 0 |𝐛<𝑡 = 𝟎], where 𝐛<𝑡 and 𝑏𝑡 are the first 𝑡 outcomes
produced by the game 𝐺⊗𝑘 with 𝒜, when 𝐻 is picked uniformly at random.
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Next, we characterize the conditional probability in terms of eigenvalues
{𝑝𝐻,𝑗}𝑗 and amplitudes under the corresponding eigenbasis {|𝜑𝐻,𝑗⟩}𝑗 .

Lemma 7. Let 𝐺 be a game and𝒜 = ({𝑈𝗂𝗇𝗉}𝗂𝗇𝗉) be any uniform quantum algorithm
for 𝐺. Let 𝑃𝐻 be the corresponding POVMs for function 𝐻 . Let {|𝜑𝐻,𝑗⟩}𝑗 be the set of
eigenbasis for 𝑃𝐻 with eigenvalues {𝑝𝐻,𝑗}𝑗 .

For each 𝐻 , write the starting state |0𝑆⟩ |0𝐿⟩ as
∑︀

𝑖 𝛼𝐻,𝑖 |𝜑𝐻,𝑖⟩. Let 𝜖(𝑡)𝒜 for 1 ≤
𝑡 ≤ 𝑘 be the conditional probability defined in Definition 9. Then

𝜖
(𝑡)
𝒜 =

∑︀
𝐻,𝑖 |𝛼𝐻,𝑖|2 · 𝑝𝑡𝐻,𝑖∑︀
𝐻,𝑖 |𝛼𝐻,𝑖|2 · 𝑝𝑡−1

𝐻,𝑖

.

Proof. By definition, 𝜖(𝑡)𝒜 = Pr[𝑏𝑡 = 0 |𝐛<𝑡 = 𝟎] = Pr[𝐛𝑡 = 𝟎]/Pr[𝐛𝑡−1 = 𝟎].
Since Pr[𝐛𝑘 = 𝟎] =

∑︀
𝐻,𝑖 |𝛼𝐻,𝑖|2 · 𝑝𝑘𝐻,𝑖, we conclude the lemma.

In order to bound 𝜖⊗𝑘
𝒜 , it is enough to bound 𝜖

(𝑡)
𝒜 for every 1 ≤ 𝑡 ≤ 𝑘 and

𝜖⊗𝑘
𝒜 =

∏︀
1≤𝑡≤𝑘 𝜖

(𝑡)
𝒜 . Indeed, with Lemma 1, we have the following straightfor-

ward corollary.

Corollary 1. For every game 𝐺 and uniform quantum algorithm 𝒜, {𝜖(𝑡)}𝑡≥1 is

monotonically non-decreasing. Therefore, 𝜖⊗𝑘
𝒜 ≤

(︁
𝜖
(𝑘*)
𝒜

)︁𝑘
for any 𝑘* ≥ 𝑘. In par-

ticular, 𝜖⊗𝑘
𝒜 ≤

(︀
𝜖𝑘𝒜
)︀𝑘.

Proof. The proof is direct by setting {𝑐𝑖}, {𝑝𝑖} in the statement of Lemma 1 as{︀
|𝛼𝐻,𝑖|2 · 𝑝𝑡𝐻,𝑖/𝑁

𝑀
}︀

and {𝑝𝐻,𝑖}.

Finally, we show a connection between 𝜖
(𝑘)
𝒜 and 𝜈(𝑃, 𝑇 ) of the game 𝐺 in the

𝑃 -BF-QROM for 𝑃 ≥ 𝑘 (𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒).

Lemma 8. For every game 𝐺 and uniform quantum 𝑇 -query algorithm 𝒜, every
odd 𝑘 > 0, every 𝑃 ≥ (𝑘 − 1) (𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒),

𝜖𝑘𝒜 ≤ 𝜈(𝑃, 𝑇 ).

As a direct corollary by the monotonicity of 𝜖(𝑡)𝒜 , for even 𝑘 > 0, every 𝑃 ≥
𝑘(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒),

𝜖𝑘𝒜 ≤ 𝜖
(𝑘+1)
𝒜 ≤ 𝜈(𝑃, 𝑇 ).

Together with Corollary 1, we conclude the main theorem (Theorem 7) in
this subsection.

Proof for Lemma 8. We only need to prove the lemma for odd 𝑘 (or even (𝑘−1)).
Recall in Definition 4, we need to specify a 𝑃 -query quantum algorithm 𝑓

and a 𝑇 -query algorithm ℬ to describe an algorithm in the 𝑃 -BF-QROM. The
game is executed if and only if 𝑓𝐻 outputs 0. We define 𝑓,ℬ as follows (Fig-
ure 1).
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𝑃 -query quantum algorithm 𝑓 :
– Initialize |1ℛ⟩𝐑 |0

𝑆 , 0𝐿⟩𝐀.
– Run the alternating measurement game for (𝑘 − 1)-rounds (Defi-

nition 8). Let 𝜏 be the leftover state.
– Let a boolean variable 𝑏 = 0 if and only if all outcomes in (𝑘 − 1)-

rounds are 0s.
– Output 𝑏 and 𝜏𝐑𝐀.

𝑇 -query online algorithm ℬ:
– Take 𝜏𝐑𝐀 as input.
– On an online challenge 𝖼𝗁← 𝖲𝖺𝗆𝗉𝐻(𝑟), it runs𝒜 on internal state

𝜏 [𝐀] and outputs the answer produced by 𝒜.

Fig. 1: Turn 𝒜 into an algorithm in the 𝑃 -BF-QROM.

First, we show that (𝑓,ℬ) is a (𝑃, 𝑇 ) algorithm in the 𝑃 -BR-QROM. It is easy
to see that ℬ makes at most 𝑇 queries as 𝒜 makes at most that many queries.
The number of queries made by 𝑓 is equal to that made in the alternating mea-
surement game:

– In odd rounds, one needs to apply 𝖢𝖯𝐻 , which takes 2(𝑇 + 𝑇𝖲𝖺𝗆𝗉) + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒

queries; here 2(𝑇 +𝑇𝖲𝖺𝗆𝗉) is for both 𝑈𝐻
𝖲𝖺𝗆𝗉𝐻(𝑟)

and its inverse
(︁
𝑈𝐻
𝖲𝖺𝗆𝗉𝐻(𝑟)

)︁†
and 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 is for applying the projection 𝑉 𝐻

𝑟 (recall the definitions in Sec-
tion 4).

– In even rounds, no queries are needed.

Thus, when (𝑘 − 1) is even, the total number of queries is at most (𝑘 − 1)(𝑇 +
𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒).

Next we prove that (𝑓,ℬ) succeeds with probability 𝜖
(𝑘)
𝒜 . Thus by the defini-

tion of 𝜈(𝑃, 𝑇 ), 𝜖(𝑘)𝒜 is at most 𝜈(𝑃, 𝑇 ), concluding the lemma.
For a fixed hash function 𝐻 and even (𝑘 − 1) (or equivalently, odd 𝑘), con-

ditioned on 𝑓𝐻 outputting 0, the leftover state 𝜏𝐑𝐀 is (by Lemma 11):

𝜏𝐑𝐀 ∝
∑︁
𝑖

𝛼𝑖𝑝
(𝑘−1)/2
𝑖 |𝑣0𝑖 ⟩𝐑𝐀 = |1ℛ⟩𝐑 ⊗

∑︁
𝑖

𝛼𝑖𝑝
(𝑘−1)/2
𝑖 |𝜑𝑖⟩𝐀 .

Here we ignore 𝐻 for subscripts or superscripts.
Therefore, 𝜏 [𝐀] = 𝑐

∑︀
𝑖 𝛼𝑖𝑝

(𝑘−1)/2
𝑖 |𝜑𝑖⟩𝐀 where 𝑐 is a normalization factor

such that 1/𝑐2 =
∑︀

𝑖 |𝛼𝑖|2𝑝𝑘−1
𝑖 . The winning probability of ℬ for this fixed 𝐻 is

𝔼𝑟

[︂⃒⃒⃒
𝑉 𝐻
𝑟 𝑈𝐻

𝖲𝖺𝗆𝗉𝐻(𝑟)𝜏 [𝐀]
⃒⃒⃒2]︂

= 𝑐2
∑︁
𝑖

|𝛼𝑖|2𝑝(𝑘−1)
𝑖 ⟨𝜑𝑖|𝑃𝐻 |𝜑𝑖⟩

= 𝑐2
∑︁
𝑖

|𝛼𝑖|2𝑝𝑘𝑖 ,
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By taking the weighted sum of the winning probability for each 𝐻 , the win-
ning probability of ℬ is ∑︀

𝐻,𝑖 |𝛼𝐻,𝑖|2𝑝𝑘𝐻,𝑖∑︀
𝐻,𝑖 |𝛼𝐻,𝑖|2𝑝𝑘−1

𝐻,𝑖

= 𝜖
(𝑘)
𝒜 .

Finally, since 𝐺 is 𝜈(𝑃, 𝑇 ) secure in the 𝑃 -BF-QROM, 𝜖(𝑘)𝒜 ≤ 𝜈(𝑃, 𝑇 ) for every 𝑇
query quantum algorithm 𝒜 and 𝑃 ≥ (𝑘 − 1)(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒).

Lastly, we prove Theorem 7.

Proof for Theorem 7. It follows easily by combining Corollary 1 and Lemma 8.

5.3 Proof of Main Theorem

In this section, we prove our main theorem, Theorem 5.
We start by proving the first part of the theorem.

Proof for the first part. Let 𝐺 be any game. For any 𝑆, 𝑇 , let 𝑘 = 𝑆 and 𝑃 = 𝑘(𝑇 +
𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒) = 𝑆(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒). 𝐺 is 𝜈(𝑃, 𝑇 ) secure in the 𝑃 -BF-QROM.

By Theorem 7, for any uniform 𝑇 -query quantum algorithm and 𝑘 = 𝑆,
its winning probability in the alternating measurement game 𝐺⊗𝑘 is at most
𝜈(𝑃, 𝑇 )𝑘.

Therefore, for any (𝑆, 𝑇 ) non-uniform quantum algorithm 𝒜, its success
probability 𝜖⊗𝑘

𝒜 is at most 2𝑆𝜈(𝑃, 𝑇 )𝑘 = (2𝜈(𝑃, 𝑇 ))𝑆 . This is because for any
non-uniform algorithm of winning probability 𝑝 with advice being an 𝑆-bit
advice |𝜎𝐻⟩, we can turn it into a uniform quantum algorithm with winning
probability at least 2−𝑆𝑝 as follows ([Aar05]):

As the uniform algorithm does not know |𝜎𝐻⟩, it samples an 𝑆-qubit maxi-
mally mixed state and runs the non-uniform algorithm on the maximally
mixed state.

Since an 𝑆-qubit maximally mixed state can be written as 1/2𝑆 |𝜎𝐻⟩ ⟨𝜎𝐻 |+(1−
1/2𝑆)𝜎′, the uniform algorithm has success probability at least 𝑝/2𝑆 .

Finally, due to Lemma 6, any non-uniform algorithm 𝒜 is at most 2𝜈(𝑃, 𝑇 )
secure in 𝐺 for 𝑃 = 𝑆(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒).

The proof for the second part is similar but more laborious. Since we are
dealing with decision games, we need to carefully deal with the factor 2−𝑆 in
the previous proof.

Proof for the second part. The theorem trivially holds when 𝛾 ≥ 1. We prove it
for 𝛾 ∈ (0, 1].

Let 𝐺 be a decision game. For any 𝑃, 𝑇 , 𝐺 is 𝜈(𝑃, 𝑇 ) secure in the 𝑃 -BF-
QROM.
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Similarly by Theorem 7, for any uniform 𝑇 -query quantum algorithm and 𝑘,
its security in the alternating measurement game 𝐺⊗𝑘 is at most 𝜈(𝑃, 𝑇 )𝑘 where
𝑃 = 𝑘(𝑇+𝑇𝖲𝖺𝗆𝗉+𝑇𝖵𝖾𝗋𝗂𝖿𝗒). Thus, for any (𝑆, 𝑇 ) non-uniform quantum algorithm
𝒜, 𝜖⊗𝑘

𝒜 is at most 2𝑆𝜈(𝑃, 𝑇 )𝑘.
Since for any 𝛾 ∈ (0, 1], 2 ≤ (1 + 𝛾)1/𝛾 . By setting 𝑘 = 𝑆/𝛾, we have:

𝜖⊗𝑘
𝒜 ≤ 2𝑆𝜈(𝑃, 𝑇 )𝑘 ≤ ((1 + 𝛾)𝜈(𝑃, 𝑇 ))

𝑘 ≤
(︂
1

2
+ 𝜈′(𝑃, 𝑇 ) + 𝛾

)︂𝑘

.

The last inequality follows the union bound and 𝜈(𝑃, 𝑇 ) = 1/2 + 𝜈′(𝑃, 𝑇 ).
Since the above inequality holds for all 𝛾 ∈ (0, 1], we conclude the second

part of our theorem, following Lemma 6.

6 Applications

We show several applications of our main theorem (Theorem 5) in this section.
We first apply our theorem to OWF and PRG games and achieve improved
lower bounds for both games. The former ones are publicly verifiable, and the
latter games are decision games and thus not publicly verifiable. The appli-
cations for both types of games show our main theorem is general and achieve
pretty good bounds for almost all kinds of security games in the QROM against
quantum/classical advice, as long as we can analyze their security in the 𝑃 -BF-
QROM.

Finally, we show that “salting defeats preprocessing” in the QROM, which
extends the classical theorem by Coretti et al. [CDGS18] and improved the re-
sult by Guo et al. [CGLQ20].

OWF. Recall the definition of 𝐺𝖮𝖶𝖥 in Example 1. It is shown that 𝐺𝖮𝖶𝖥 has the
following security in the in the 𝑃 -BF-QROM, 𝜈(𝑃, 𝑇 ) = 𝑂

(︀
(𝑃 + 𝑇 2)/min{𝑁,𝑀}

)︀
,

where 𝑁 and 𝑀 are the sizes of the domain and range of the random oracle, by
Lemma 1.5 in [CGLQ20].

By our main theorem Theorem 5, we have the following theorem.

Theorem 8. 𝐺𝖮𝖶𝖥 has security 𝛿(𝑆, 𝑇 ) = 𝑂
(︁

𝑆𝑇+𝑇 2

min{𝑁,𝑀}

)︁
against (𝑆, 𝑇 ) non-uniform

quantum adversaries, even with quantum advice.

The above theorem improves the bound for quantum advice, which was

shown to be 𝑂̃
(︁

𝑆𝑇+𝑇 2

min{𝑁,𝑀}

)︁1/3
in [CGLQ20].

PRG. Recall 𝐺𝖯𝖱𝖦 is defined in Example 1. 𝐺𝖯𝖱𝖦 has security 𝜈(𝑃, 𝑇 ) = 1/2 +

𝑂
(︁

𝑃+𝑇 2

𝑁

)︁1/2
where 𝑁 is the size of the domain, by Lemma 1.6 in [CGLQ20].

Again by our main theorem Theorem 5, we have the following theorem.
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Theorem 9. 𝐺𝖯𝖱𝖦 has security 𝛿(𝑆, 𝑇 ) = 1/2 + 𝑂
(︁

𝑇 2

𝑁

)︁1/2
+ 𝑂

(︀
𝑆𝑇
𝑁

)︀1/3
against

(𝑆, 𝑇 ) non-uniform quantum adversaries, even with quantum advice.

This improves the previous result on 𝐺𝖯𝖱𝖦 with quantum advice [CGLQ20],

which was 1/2 + 𝑂̃
(︁

𝑆5𝑇+𝑆4𝑇 2

𝑁

)︁1/19
.

6.1 Salting Defeats Quantum Advice

We start by defining the cryptographic mechanism called “salting”.

Definition 10 (Salted Games in the QROM). Let 𝐺 be a game in the QROM as
defined in Definition 2, with respect to a random oracle 𝐻 : [𝑁 ] → [𝑀 ]. It consists of
two deterministic algorithms 𝖲𝖺𝗆𝗉𝐻 and 𝖵𝖾𝗋𝗂𝖿𝗒𝐻 and both algorithms make 𝑇𝖲𝖺𝗆𝗉 (or
𝑇𝖵𝖾𝗋𝗂𝖿𝗒) queries, respectively.

A salted game 𝐺𝑆 with salt space [𝐾] is defined as the following: 𝐺𝑆 consists of
two deterministic algorithms 𝖲𝖺𝗆𝗉𝑆 and 𝖵𝖾𝗋𝗂𝖿𝗒𝑆 :

– 𝖲𝖺𝗆𝗉𝐻𝑆 : on input 𝑠, 𝑟, it returns (𝑠,𝖲𝖺𝗆𝗉𝐻𝑠(𝑟)). Here 𝐻𝑠 denotes oracle access to
the oracle 𝐻(𝑠, ·).

– 𝖵𝖾𝗋𝗂𝖿𝗒𝐻𝑆 : on input 𝑠, 𝑟, 𝖺𝗇𝗌, it returns 𝖵𝖾𝗋𝗂𝖿𝗒𝐻𝑠(𝑟, 𝖺𝗇𝗌).

In other words, for a fixed 𝐻 : [𝐾]× [𝑁 ]→ [𝑀 ] and a quantum algorithm 𝒜, the
game 𝐺𝐻

𝑆,𝒜 is executed as follows:

– A challenger 𝒞 samples a uniformly random salt 𝑠 ← [𝐾] and 𝖼𝗁 ← 𝖲𝖺𝗆𝗉𝐻𝑠(𝑟)
using uniformly random coins 𝑟.

– A (uniform or non-uniform) quantum algorithm 𝒜 has oracle access to 𝐻 , takes
(𝑠, 𝖼𝗁) as input and outputs 𝖺𝗇𝗌.

– 𝑏← 𝖵𝖾𝗋𝗂𝖿𝗒𝐻𝑠(𝑟, 𝖺𝗇𝗌) is the outcome of the game.

Lemma 9 (Salted Games in the 𝑃 -BF-QROM, Lemma 7.2 in [CGLQ20]).
Let 𝐺 be a game in the QROM, with security 𝜈(𝑇 ) against 𝑇 -query quantum

adversaries. Then for any 𝑃 ,

– 𝐺 has security 𝜈(𝑃, 𝑇 ) ≤ 2𝜈(𝑇 ) +𝑂(𝑃/𝐾) in the 𝑃 -BF-QROM;
– 𝐺 has security 𝜈(𝑃, 𝑇 ) ≤ 𝜈(𝑇 ) +𝑂(

√︀
𝑃/𝐾) in the 𝑃 -BF-QROM.

The second bullet point is better than the first one, when 𝐺 is a decision
game.

Proof. The proof is subsumed by the proof for Lemma 7.2 [CGLQ20]. Although
Lemma 7.2 shows the multi-instance security of 𝐺𝑆 , its 𝑃 -BF-QROM security is
an intermediate step.

Combining with Theorem 5, we have the following results about salting in
the QROM.
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Theorem 10. For any game 𝐺 (as defined in Definition 2) in the QROM, let 𝜈(𝑇 ) be
its security in the QROM. Let 𝐺𝑆 be the salted game with salt space [𝐾]. Then 𝐺𝑆

has security 𝛿(𝑆, 𝑇 ) against (𝑆, 𝑇 ) non-uniform quantum adversaries with quantum
advice,

– 𝛿(𝑆, 𝑇 ) ≤ 4𝜈(𝑇 ) +𝑂(𝑆(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒)/𝐾);
– If 𝐺𝑆 is a decision game, then 𝛿(𝑆, 𝑇 ) ≤ 𝜈(𝑇 )+𝑂(𝑆(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒)/𝐾)1/3.

Proof. We only show the second bullet point. The first one is similar and more
straightforward.

By Theorem 5, 𝛿(𝑆, 𝑇 ) ≤ min𝛾>0 {𝛾 + 𝜈(𝑃/𝛾, 𝑇 )}where 𝑃 = 𝑆(𝑇 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 +

𝑇𝖲𝖺𝗆𝗉). Since 𝜈(𝑃/𝛾, 𝑇 ) ≤ 𝜈(𝑇 ) + 𝑂(
√︀

𝑃/(𝐾𝛾)) by Lemma 9, 𝛿(𝑆, 𝑇 ) takes its
minimum when 𝛾 = 𝑂(𝑃/𝐾)1/3. Our second result follows.

7 Advantages of Quantum Advice in the QROM

This section demonstrates a game in which non-uniform quantum algorithms
with quantum advice have an exponential advantage over those with classical
advice for some parameter regime 𝑆, 𝑇 . Although the advantage only applies to
some 𝑆, 𝑇 ranges 3, we believe it is the first step toward understanding a game
in which quantum advice has an exponential advantage over classical advice
for a wider range of 𝑆, 𝑇 .

The game is based on the recent work by Yamakawa and Zhandry [YZ22].
We start by explaining and recalling the basic ideas in their work.

Definition 11 ( [YZ22], YZ Functions). Let 𝑛 be a positive integer, 𝛴 be an expo-
nentially (in 𝑛) sized alphabet and 𝐶 ⊆ 𝛴𝑛 be an error correcting code over 𝛴. Let
𝐻 : [𝑛] × 𝛴 → {0, 1} be a random oracle. The following function is called a YZ
function with respect to 𝐶 and 𝛴:

𝑓𝐻
𝐶 : 𝐶 → {0, 1}𝑛

𝑓𝐻
𝐶 (𝑐1, 𝑐2, · · · , 𝑐𝑛) = 𝐻(1, 𝑐1)||𝐻(2, 𝑐2)|| · · · ||𝐻(𝑛, 𝑐𝑛)

We will consider the following game, which we call 𝐺𝖸𝖹. The game is to in-
vert a uniformly random image with respect to the YZ function. More formally,

Definition 12 (Inverting YZ Functions). The game 𝐺𝖸𝖹 is specified by two classical
algorithms:

– 𝖲𝖺𝗆𝗉𝐻(𝑟): it samples a uniformly random image 𝑦 = 𝑟 ∈ {0, 1}𝑛;
– 𝖵𝖾𝗋𝗂𝖿𝗒𝐻(𝑟, 𝖺𝗇𝗌): it checks whether 𝖺𝗇𝗌 is a code in 𝐶 and 𝑓𝐻

𝐶 (𝖺𝗇𝗌) = 𝑟.

The queries made by each algorithm satisfy 𝑇𝖲𝖺𝗆𝗉 = 0 and 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 = 𝑛.

3 Specifically, we require 𝑇 = 0, i.e., no online query.
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Their idea is that, if we want to find a pre-image in 𝛴𝑛 of any 𝑦 ∈ {0, 1}𝑛, it
is easy: simply inverting each 𝐻(𝑖, 𝑦𝑖). Nevertheless, to find a pre-image in 𝐶,
this entry-by-entry brute-force no longer works. In their work, Yamakawa and
Zhandry show that for some appropriate 𝐶, the above function is classically
one-way and quantumly easy to invert.

Theorem 11 (Theorem 6.1, Lemma 6.3 and 6.9 in [YZ22]). There exists some
appropriate 𝐶, such that

– The game 𝐺𝖸𝖹 has security 2−𝛺(𝑛) against 2𝑛
𝑐

-query classical adversaries for some
constant 0 < 𝑐 < 1;

– There is a 𝑂̃(𝑛)-query quantum algorithm that wins the game 𝐺𝖸𝖹 with probability
1− 𝗇𝖾𝗀𝗅(𝑛). Here 𝑂̃ hides a polylog factor.

Moreover, we observe that the quantum algorithm makes non-adaptive queries
and the queries are independent of the challenge. Upon a challenge 𝑦 is re-
ceived, the quantum algorithm does post-processing on the quantum queries
without making further queries 4.

We show our separation result below.

Theorem 12 (Separation of classical and quantum advice in the QROM). There
exists some appropriate 𝐶 (the same in [YZ22]) such that,

– 𝐺𝖸𝖹 has security 2−𝛺(𝑛) against (𝑆, 𝑇 = 0) non-uniform adversaries with clas-
sical advice, for 𝑆 = 2𝑛

𝑐

/𝑛 and some constant 0 < 𝑐 < 1;
– There is an (𝑆, 𝑇 = 0) non-uniform adversary with quantum advice that achieves

success probability 1− 𝗇𝖾𝗀𝗅(𝑛), for 𝑆 = 𝑂̃(𝑛).

We refer readers to a detailed proof in the appendix.
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A Proofs for the Useful Lemmas

Lemma 10. Let 𝑁 be a positive integer and 𝑝1, · · · , 𝑝𝑁 ∈ ℝ≥0. Let 𝛼1, · · · , 𝛼𝑁 be a
distribution over [𝑁 ]: i.e., 𝛼𝑖 ∈ [0, 1] and

∑︀
𝑖∈[𝑁 ] 𝛼𝑖 = 1.

Assume 𝜇 :=
∑︀

𝑖∈[𝑁 ] 𝛼𝑖𝑝𝑖 > 0. Let 𝛽1, · · · , 𝛽𝑁 be another distribution over [𝑁 ]:
𝛽𝑖 := 𝛼𝑖𝑝𝑖/𝜇. The following holds:

∑︁
𝑖∈[𝑁 ]

𝛽𝑖𝑝𝑖 ≥
∑︁
𝑖∈[𝑁 ]

𝛼𝑖𝑝𝑖.

Proof. Let 𝐗 be a random variable that takes value 𝑝𝑖 w.p. 𝛼𝑖. It is easy to see
that 𝔼[𝐗] =

∑︀
𝑖 𝛼𝑖𝑝𝑖 and 𝔼[𝐗2] =

∑︀
𝑖 𝛼𝑖𝑝

2
𝑖 .

Since we assume 𝜇 = 𝔼[𝐗] > 0, we rewrite the inequality as follows:

∑︁
𝑖

𝛼𝑖𝑝
2
𝑖 ≥

(︃∑︁
𝑖

𝛼𝑖𝑝𝑖

)︃2

.

The lemma holds by observing that L.H.S. is 𝔼[𝐗2], R.H.S. is 𝔼[𝐗]2 and the fact
that 𝐕𝐚𝐫[𝐗] := 𝔼[𝐗2]− 𝔼[𝐗]2 ≥ 0.

Proof for Lemma 1. We fix any integer 𝑘 ≥ 1. Let 𝛼𝑖 = 𝑐𝑖𝑝
𝑘−1
𝑖 /(

∑︀
𝑖 𝑐𝑖𝑝

𝑘−1
𝑖 ). It it

easy to see that 𝑆𝑘 =
∑︀

𝑖 𝛼𝑖𝑝𝑖.
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Let 𝛽𝑖 = 𝛼𝑖𝑝𝑖/𝜇 where 𝜇 =
∑︀

𝑖 𝛼𝑖𝑝𝑖. We have

𝛽𝑖 = 𝛼𝑖𝑝𝑖/𝜇

=
𝑐𝑖𝑝

𝑘
𝑖∑︀

𝑖 𝑐𝑖𝑝
𝑘−1
𝑖 · 𝜇

=
𝑐𝑖𝑝

𝑘
𝑖∑︀

𝑖 𝑐𝑖𝑝
𝑘−1
𝑖 ·

(︀∑︀
𝑖 𝑐𝑖𝑝

𝑘
𝑖 /(
∑︀

𝑖 𝑐𝑖𝑝
𝑘−1
𝑖 )

)︀
=

𝑐𝑖𝑝
𝑘
𝑖∑︀

𝑖 𝑐𝑖𝑝
𝑘
𝑖

.

Therefore, 𝑆𝑘+1 =
∑︀

𝑖 𝛽𝑖𝑝𝑖. By Lemma 10, 𝑆𝑘+1 =
∑︀

𝑖 𝛽𝑖𝑝𝑖 ≥
∑︀

𝑖 𝛼𝑖𝑝𝑖 = 𝑆𝑘.

B Characterization of Alternating Measurements and Proof of
Theorem 6

Fixing a function 𝐻 , the intial internal register 𝐀 of𝒜 is |𝜎𝐻⟩ |0𝐿⟩ =
∑︀

𝑖 𝛼𝐻,𝑖 |𝜑𝐻,𝑖⟩.
Let us define the following states |𝑣0𝐻,𝑖⟩ , |𝑣1𝐻,𝑖⟩ , |𝑤0

𝐻,𝑖⟩ , |𝑤1
𝐻,𝑖⟩ (for convenience,

we ignore 𝐻 in the subscripts in the analysis below). We will also ignore 𝐻
for other notations like 𝑃𝐻

𝑟 , |𝜑𝐻,𝑖⟩ , 𝑝𝐻,𝑖 as our analysis does not depend on 𝐻
and the final conclusion follows by taking expectation over uniformly random
functions 𝐻 . Instead, we are using 𝑃𝑟 := 𝑃𝐻

𝑟 , |𝜑𝑖⟩ := |𝜑𝐻,𝑖⟩ , 𝑝𝑖 := 𝑝𝐻,𝑖 in the
analysis.

1. |𝑤0
𝑖 ⟩ = 1√

𝑝𝑖|ℛ|

∑︀
𝑟 |𝑟⟩𝑃𝑟 |𝜑𝑖⟩.

It is easy to verify that it has norm 1:

⟨𝑤0
𝑖 |𝑤0

𝑖 ⟩ =
1

𝑝𝑖|ℛ|
∑︁
𝑟

⟨𝜑𝑖|𝑃𝑟|𝜑𝑖⟩ =
1

𝑝𝑖|ℛ|
⟨𝜑𝑖|(

∑︁
𝑟

𝑃𝑟)|𝜑𝑖⟩ =
𝑝𝑖|ℛ|
𝑝𝑖|ℛ|

= 1.

𝖢𝖯𝐻
0 |𝑤0

𝑖 ⟩ = |𝑤0
𝑖 ⟩ and 𝖢𝖯𝐻

1 |𝑤0
𝑖 ⟩ = 0.

After seeing the definition of |𝑣0𝑖 ⟩ and |𝑣1𝑖 ⟩ below, we also observe that
|𝑤0

𝑖 ⟩ =
√
𝑝𝑖 |𝑣0𝑖 ⟩+

√
1− 𝑝𝑖 |𝑣1𝑖 ⟩.

2. |𝑤1
𝑖 ⟩ = 1√

(1−𝑝𝑖)|ℛ|

∑︀
𝑟 |𝑟⟩ (𝐈𝐀 − 𝑃𝑟) |𝜑𝑖⟩.

Similarly, it has norm 1, 𝖢𝖯𝐻
1 |𝑤1

𝑖 ⟩ = |𝑤1
𝑖 ⟩ and 𝖢𝖯𝐻

0 |𝑤1
𝑖 ⟩ = 0.

3. |𝑣0𝑖 ⟩ = |1⟩ℛ |𝜑𝑖⟩ =
√
𝑝𝑖 |𝑤0

𝑖 ⟩+
√
1− 𝑝𝑖 |𝑤1

𝑖 ⟩.
By the description of the game 𝐺⊗𝑘 (Definition 8), the overall register 𝐑𝐀
at the beginning of the game can be written as

∑︀
𝑖 𝛼𝑖 |𝑣0𝑖 ⟩ (which we will

prove below).
The state has norm 1, 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0 |𝑣0𝑖 ⟩ = |𝑣0𝑖 ⟩ and 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆1 |𝑣0𝑖 ⟩ = 0.

4. |𝑣1𝑖 ⟩ =
√
1− 𝑝𝑖 |𝑤0

𝑖 ⟩ −
√
𝑝𝑖 |𝑤1

𝑖 ⟩.
We will not use the property of |𝑣1𝑖 ⟩ in the proof and we thus omit all the
details here.
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Lemma 11. For any fixed 𝐻 , for any non-negative integer 𝑘, the leftover state over
𝐑𝐀 conditioned on all outcomes in the first 𝑘 rounds being 0s is in proportion to:

∑︁
𝑖

𝛼𝑖𝑝
𝑘/2
𝑖

{︃
|𝑣0𝑖 ⟩ if 𝑘 is even,
|𝑤0

𝑖 ⟩ if 𝑘 is odd.

The probability of all outcomes being 0s is
∑︀

𝑖 |𝛼𝑖|2𝑝𝑘𝑖 .

The proof follows the proof of Claim 6.3 in [Zha20]. We reprove this claim
for completeness.

Proof. This lemma holds for 𝑘 = 0, when no measurement is applied. This is
the state is ∑︁

𝑖

𝛼𝑖 |𝑣0𝑖 ⟩ =
∑︁
𝑖

𝛼𝑖 |1ℛ⟩𝐑 |𝜑𝑖⟩𝐀 = |1ℛ⟩𝐑 |𝜎𝐻 , 0𝐿⟩𝐀 .

We now prove by induction. Assume the lemma holds up to some even 𝑘. We
prove it holds for odd 𝑘 + 1.

The leftover state after the first 𝑘 rounds is 𝑐
∑︀

𝑖 𝛼𝑖𝑝
𝑘/2
𝑖 |𝑣0𝑖 ⟩ for some normal-

ization 𝑐. Note that |𝑣0𝑖 ⟩ =
√
𝑝𝑖 |𝑤0

𝑖 ⟩ +
√
1− 𝑝𝑖 |𝑤1

𝑖 ⟩. The state can be rewritten
as

𝑐
∑︁
𝑖

𝛼𝑖𝑝
𝑘/2
𝑖

(︁√
𝑝𝑖 |𝑤0

𝑖 ⟩+
√︀

1− 𝑝𝑖 |𝑤1
𝑖 ⟩
)︁
.

In the (𝑘 + 1)-th round, the challenger measures the state under 𝖢𝖯𝐻 . Note
that 𝖢𝖯𝐻

0 |𝑤0
𝑖 ⟩ = |𝑤0

𝑖 ⟩ and 𝖢𝖯𝐻
0 |𝑤1

𝑖 ⟩ = 0. Thus, conditioned on the (𝑘 + 1)-th
outcome being 0, the state is in proportion to

∑︀
𝑖 𝛼𝑖𝑝

(𝑘+1)/2
𝑖 |𝑤0

𝑖 ⟩. We complete
the induction for 𝑘 being even.

For odd 𝑘, the analysis is almost identical, by observing |𝑤0
𝑖 ⟩ =

√
𝑝𝑖 |𝑣0𝑖 ⟩ +√

1− 𝑝𝑖 |𝑣1𝑖 ⟩ and also following from the fact that 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0 |𝑣0𝑖 ⟩ = |𝑣0𝑖 ⟩ and
𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆1 |𝑣0𝑖 ⟩ = 0.

Finally, the probability can be bounded by looking at the un-normalized
states above.

Theorem 6 follows from summing over all functions 𝐻 and Lemma 11.

C Classical Version of Our Main Theorem

The following theorem is a classical version of our main theorem (Theorem 5),
improved from Theorem 1 in [GLLZ21].

Theorem 13. Let 𝐺 be any game with 𝑇𝖲𝖺𝗆𝗉, 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 being the number of queries made
by 𝖲𝖺𝗆𝗉 and 𝖵𝖾𝗋𝗂𝖿𝗒. For any 𝑆, 𝑇 , let 𝑃 = 𝑆(𝑇 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 + 𝑇𝖲𝖺𝗆𝗉).

If 𝐺 has security 𝜈(𝑃, 𝑇 ) in the 𝑃 -BF-ROM, then it has security 𝛿(𝑆, 𝑇 ) ≤ 2 ·
𝜈(𝑃, 𝑇 ) against (𝑆, 𝑇 ) non-uniform classical algorithms with classical advice.
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In Theorem 1 in [GLLZ21], 𝑃 = (𝑆 + log 𝛾−1)(𝑇 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 + 𝑇𝖲𝖺𝗆𝗉) and there
is an extra additive term 𝛾 for 𝛿(𝑆, 𝑇 ).

Theorem 14 (Theorem 1 in [GLLZ21]). Let 𝐺 be any game with 𝑇𝖲𝖺𝗆𝗉, 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 being
the number of queries made by 𝖲𝖺𝗆𝗉 and 𝖵𝖾𝗋𝗂𝖿𝗒. For any 𝑆, 𝑇, 𝛾 > 0, let 𝑃 = (𝑆 +
log 𝛾−1)(𝑇 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 + 𝑇𝖲𝖺𝗆𝗉).

If 𝐺 has security 𝜈(𝑃, 𝑇 ) in the 𝑃 -BF-ROM, then it has security 𝛿(𝑆, 𝑇 ) ≤ 2 ·
𝜈(𝑃, 𝑇 ) + 𝛾 against (𝑆, 𝑇 ) non-uniform classical algorithms with classical advice.

D Proof for the separation result

Proof. We first show the second bullet point. Let the quantum algorithm in The-
orem 11 be ℬ. In the non-uniform quantum adversary, quantum advice is the
non-adaptive queries made by ℬ and the online stage is the post-processing
by ℬ. It is straightforward that the non-uniform algorithm achieves the same
probability as ℬ, which is 1− 𝗇𝖾𝗀𝗅(𝑛). Since each query has 𝑂(log 𝑛) qubits and
ℬ makes 𝑂̃(𝑛) queries, the total size of the quantum advice is still 𝑂̃(𝑛).

Next, we show the first bullet point. In the first bullet point of this theorem,
we do not distinguish between non-uniform quantum adversaries with classi-
cal advice and non-uniform classical adversaries. The reason is that the online
algorithm does not make any query, i.e., 𝑇 = 0. These two types of algorithms
are equivalent when 𝑇 = 0.

Thus, we consider success probabilities of non-uniform classical adversaries.
By a classical analog of our main theorem Theorem 5 (Theorem 13), we only
need to show its success probability in the 𝑃 -BF-ROM (Definition 5) where
𝑃 = 𝑆(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒) = 𝑆𝑇𝖵𝖾𝗋𝗂𝖿𝗒 = 2𝑛

𝑐

.
Assume a random oracle is lazily sampled. In other words, an outcome of

the random oracle on 𝑥 is sampled only if the outcome is queried by an algo-
rithm; otherwise, the outcome is marked as “not sampled”. Conditioned on any
𝑃 -query 𝑓 outputs 0, the random oracle is only fixed on 𝑃 positions and the rest
of its outputs are still not sampled. The error correcting code 𝐶 used in [YZ22]
satisfies a property called (𝜁, ℓ, 𝐿) list recoverability:

– For any subset 𝑆𝑖 ⊆ 𝛴 such that |𝑆𝑖| ≤ ℓ for every 𝑖 ∈ [𝑛], we have

|𝖦𝗈𝗈𝖽| = |{(𝑥1, · · · , 𝑥𝑛) ∈ 𝐶 : |{𝑖 ∈ [𝑛] : 𝑥𝑖 ∈ 𝑆𝑖}| ≥ (1− 𝜁)𝑛}| ≤ 𝐿.

In other words, the total number of codewords in 𝐶 with hamming distance
to 𝑆1×𝑆2×· · ·×𝑆𝑛 smaller than 𝜁𝑛 is bounded by 𝐿. Here hamming distance
to 𝑆1 × 𝑆2 × · · · × 𝑆𝑛 is defined as the number of coordinates 𝑖 whose 𝑥𝑖 is
not in the corresponding 𝑆𝑖.
We call this set of codewords 𝖦𝗈𝗈𝖽.

– 𝑃 = 2𝑛
𝑐

< ℓ, 𝜁 = 𝛺(1) and 𝐿 = 2𝑛
𝑐′

for some 0 < 𝑐′ < 1.

In 𝐺𝖸𝖹, when a challenge 𝑦 is sampled uniformly at random from {0, 1}𝑛,
there are two cases:
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– Case 1: there exists a codeword 𝑐 in 𝖦𝗈𝗈𝖽, such that 𝑦 = 𝑓𝐻
𝐶 (𝑐). This case

happens with probability at most |𝖦𝗈𝗈𝖽|/2𝑛 ≤ 𝐿/2𝑛.
– Case 2: complement of Case 1. In this case, an adversary wins only if it

outputs a codeword that is not in 𝖦𝗈𝗈𝖽.
For every codeword 𝑐 = (𝑥1, 𝑥2, · · · , 𝑥𝑛) ̸∈ 𝖦𝗈𝗈𝖽, there are at least 𝜁𝑛 coor-
dinates whose random oracle outputs (i.e., 𝐻(𝑖, 𝑥𝑖)) have not been sampled
yet in the lazily sampled random oracle. For any 𝑐 ̸∈ 𝖦𝗈𝗈𝖽, Pr[𝑓𝐻

𝐶 (𝑐) = 𝑦] ≤
2−𝜁𝑛. Therefore, regardless of the algorithm’s output, the success probabil-
ity is at most 2−𝜁𝑛.

The overall winning probability is bounded by 𝐿/2𝑛 + 2−𝜁𝑛 = 2−𝛺(𝑛). We
conclude the first bullet point of the theorem.
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