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Abstract. Arithmetic to Boolean masking (A2B) conversion is a cru-
cial technique in the masking of lattice-based post-quantum cryptogra-
phy. It is also a crucial part of building a masked comparison which is
one of the hardest to mask building blocks for active secure lattice-based
encryption. We first present a new method, called one-hot conversion,
to efficiently convert from higher-order arithmetic masking to Boolean
masking using a variant of the higher-order table-based conversion of
Coron et al. Secondly, we specialize our method to perform arithmetic
to 1-bit Boolean functions. Our one-hot function can be applied to mask-
ing lattice-based encryption building blocks such as masked comparison
or to determine the most significant bit of an arithmetically masked
variable. In our benchmarks on a Cortex M4 processor, a speedup of
15 times is achieved over state-of-the-art table-based A2B conversions,
bringing table-based A2B conversions within the performance range of
the Boolean circuit-based A2B conversions.

1 Introduction

A majority of public key cryptographic algorithms are based on factoring or the
discrete logarithm problem. These algorithms are no longer secure in the presence
of a large-scale quantum computer. The field of Post-Quantum Cryptography
(PQC) researches alternative cryptographic algorithms that remain secure in the
presence of quantum computers. To replace the soon-to-be-insecure public-key
standards, the National Institute of Standards and Technology (NIST) launched
a standardization effort in 2016 [30]. In July 2022, NIST announced three lattice-
based schemes to be standardized: Kyber [37], Dilithium [28] and Falcon [32].
One of the challenges in replacing the current standards with post-quantum
standards is protecting their implementations against side-channel attacks. Side-
channel attacks are attacks on a cryptographic implementation that use un-
wanted effects of computation leaking information, such as power usage, elec-
tromagnetic radiation and timing. Several side-channel attacks on lattice-based
cryptographic implementations have been demonstrated, including timing at-
tacks [38T9125] or power consumption and electromagnetic radiation



attacks [BI42I332I3443139]. These works illustrate the importance of protec-
tion mechanisms against side-channel attacks, and in its latest report NIST has
emphasized the importance of these protection mechanisms [I], including them
as a major evaluation criterion in the standardization process.

Masking is a popular tool to protect against side-channel attacks. The idea
of masking is to split a sensitive variable into two or more shares, in such a
way that an adversary that is able to see all but one share still can not infer
any information about the sensitive value. The ideas behind masking were in-
troduced by Chari et al. [9] and later extended by Barthe et al. [5] to include
the notions of Non-Inference (NI) and Strong Non-Inference (SNI), which allow
easier composition of building blocks.

To give an example of masking, a sensitive value z can be split into z(!) and
@ so that z = 2 ® 2(® where ©® is a mathematical operation that depends
on the type of masking. For Boolean masking ® is the XOR operation @&, while
arithmetic masking chooses ® to be addition modulo a predefined integer ¢. In
first-order masking, the sensitive value is split into 2 shares (i.e., an adversary
can probe at most 1 share without compromised security), while higher-order
masking splits the sensitive variable into more shares. One observation is that
some efficient techniques have been developed specifically for first-order masking,
which do not scale to higher masking orders.

Several masked implementations of lattice-based cryptographic schemes have
been presented. For signature schemes, a masked implementation of the GLP
signature scheme was presented by Barthe [6], followed by a Dilithium imple-
mentation by Migliore et al. [29]. Passively secure lattice-based encryption was
first masked in [35], followed by an active secure scheme by Oder et al. [3I] for
first-order and Bache et al. [4] for higher-order. Van Beirendonck et al. [40] pro-
vided a first-order masked implementation of the NIST PQC finalist Saber [I§],
and Coron et al. [16], and later Kundu et al. [27] discussed a higher-order imple-
mentation. Kyber was implemented at arbitrary order by Bos et al. [§] and for
first-order by Heinz et al. [26]. Fritzmann et al. [22] looked at making masked
implementations of Saber and Kyber more effective using instruction set exten-
sions. A masked NTRU implementation was proposed by Coron et al. [12].

A2B conversion One recurring property of most masked implementations of
lattice-based cryptography is that both Boolean masking and arithmetic masking
are used. To integrate both masking domains, arithmetic to Boolean (A2B)
and Boolean to arithmetic (B2A) conversions are needed. In this paper, we are
specifically interested in arithmetic to Boolean conversion. The first secure A2B
conversion was proposed by Goubin [24], which was later extended by Coron
et al. [I0]. Both methods are focused on first-order and are based on writing
the conversion as a Boolean circuit and implementing this Boolean circuit in a
secure fashion.

A different approach to first-order A2B conversion is table-based conversion,
where the Boolean result is stored in a table that is manipulated based on the
arithmetic input. Coron and Tchulkine [I4] were the first to propose such a
conversion. Debraize [2I] discovered a flaw in their algorithm and improved the



overall efficiency of the Coron and Tchulkine approach. Later, Van Beirendonck
et al. [41] discovered a security problem in one of the conversions of Debraize,
and proposed two new A2B conversions to circumvent this problem.

Higher-order conversions were proposed in [IIJI0] for arithmetic masking
modulo a power-of-two ¢ = 2¥. These techniques were extended for arbitrary
modulus by Barthe et al [6], which was later refined in [36]. Similar to the
first A2B conversion algorithm by Goubin [24], the above techniques rely on a
Boolean circuit methodology to perform the conversion.

Coron et al. [I6] adapted the first-order table-based approach for higher or-
ders both for A2B and B2A conversion. For large modulus ¢, the authors split
the inputs into different chunks which are converted individually using A2B
conversion, and the carries between the chunks are taken into account using
an additional arithmetic to arithmetic (A2A with different moduli) conversion.
While the B2A conversions in this work are generally efficient, the overall A2B
conversions are only efficient in specific applications.

The increased importance of these conversions due to the rise of lattice-based
cryptography is emphasized by the CHES 2021 Test of Time Award, which
was awarded to Goubin [24] for introducing the first A2B and B2A conversion
techniques.

Masked comparison One important application of A2B conversions is masked
comparison, which is a vital building block in actively secure implementations
of lattice-based cryptography. The goal of such a comparison is to validate an
input ciphertext by comparing it with a recomputed ciphertext as part of the
Fujisaki-Okamoto transformation [23].

For first-order masking, a hash-based approach was proposed by Oder et
al. [31]. The main idea of this approach is to check if a sensitive array is zero by
hashing both shares separately and checking the equality of the hash outputs.
For schemes that perform ciphertext compression, this comparison additionally
needs an arithmetic to arithmetic (A2A) conversion (i.e., a conversion between
two arithmetic masking domains with different modulus). Such an A2A conver-
sion can be implemented as a modified A2B conversion, where a table-based
conversion is most efficient for first-order. A problem in the security of the hash-
based method of [31] was discovered and fixed by Bhasin et al. [7].

Higher-order masked comparisons have to rely on different techniques, as
the hash-based method is limited to two shares. The state-of-the-art conversion
techniques to perform higher-order masked comparison first perform A2B con-
version and then do the comparison in the Boolean domain. The approaches
differ in pre- and postprocessing of the A2B conversion. Barthe et al. [6] per-
form a masked comparison by a simple approach: A2B conversion followed by
a masked bitwise comparison. Bache et al. [4] introduced a method based on
a random sum to reduce the number of coefficients. This method was broken
by Bhasin et al. [7], who introduced a variant random sum compression that is
secure but only applicable for cryptographic schemes without compression and
with prime order moduli.



D’Anvers et al. [I7] adapted the random sum method as a postprocessing
method to reduce the cost of the final Boolean circuit. Bos et al. [§] looked
at the preprocessing stage and proposed to decompress the input ciphertext
instead of compressing the masked recomputed ciphertext. This approach was
later adapted by Coron et al. [I5] by combining the decompression idea, the
random sum method, and some extra masked gadget into a new comparison.
These methods were compared and improved in a later work by D’Anvers et
al. [20], which we refer to to get an overview of higher-order masked comparison
algorithms.

1.1 Owur contributions

In this paper, we introduce a new strategy to perform arithmetic to Boolean
conversion. Although it is not exactly table-based, our method falls in the table-
based category and is indebted to the higher-order table-based A2B conversions
of [16], and more specifically to the register-based optimized arithmetic to 1-
bit Boolean conversion. We start with introducing an arithmetic to Boolean
conversion, and later introduce optimizations to more efficiently perform specific
masked operations used in lattice-based cryptography.

Our method works on a register (which can be seen as a table with 1-bit
entries). In contrast to previous table-based methods, where the table is used to
encode the output values, our register is used as a one-hot encoding of the input
values, with which we mean that a value x is represented with a register where
the x*® bit is 1 and all others are 0. The first advantage of a one-hot encoding is
that the register/table size does not grow with the output length, which would
be the case in a table-based approach where all possible outputs are stored in the
table. Secondly, the input has to be processed only once, and the result can be
used to determine both a carry value (as a result of the arithmetic masking) and
a Boolean masked output value. Thirdly, we introduce an efficient method to
propagate carries by using the properties of the one-hot encoding. An intuitive
introduction to these ideas is given in

In we formalize our arithmetic to Boolean conversion, followed by a
generalization of our method and a security proof. In we introduce an
arithmetic to 1-bit Boolean function calculation. This is a generalization of the
aforementioned register-based optimized arithmetic to 1-bit Boolean conversion
of [16] in two ways: we allow an arbitrarily large arithmetic masking modulus
(instead of 5 or 6 bits in previous works) and we allow multiple masked coef-
ficients to be the input of the function. One of the use-cases of this algorithm
is masked comparison, where multiple masked coefficients need to be compared
with publicly known reference values and only one bit is returned that indicates
whether all coefficients match their reference value(s).

details how to obtain a more efficient implementation and how
to achieve parallelism in our inherently sequential design at low cost. The re-
sulting A2B implementation is then compared to the state-of-the-art algorithms
in Our measurements show a speedup of approximately a factor of
15 compared to the state-of-the-art table-based A2B comparisons. This brings



higher-order table-based conversion to the performance range of Boolean circuit-
based A2B conversions, in some cases outperforming the latter with a cycle count
reduction of 27%. The implementations of our algorithms for Cortex M4 are
made available at https://github.com/KULeuven-COSIC/One-hot-masking,.

2 Preliminaries

2.1 Notation

Lists and matrices are denoted in bold text. These are indexed using a subscript,
where X; indicates the i*® element of the list X and where X;,; indicates the
element on the 7" row and j** column of a matrix X. We write | X| to denote the
number of coefficients in the list X. We denote with |z] a flooring of a number z
to the nearest integer less or equal to x, with [z] ceiling 2 to the nearest integer
greater or equal to x, and with |z] rounding to the nearest integer with ties
rounded upwards. These operations are extended coefficient-wise to lists.

Positive integers are represented in unsigned binary representation unless
stated otherwise, with the most significant bit (MSB) at the leftmost position
and the least significant bit (LSB) at the rightmost position. z[i] indicates the
it™ bit of the binary representation of x starting from the least significant bit
and |R| indicates the number of bits in the representation of R.

The concatenation operator zi||zo concatenates the bitstrings z; and .
This representation is extended for non-power-of-two p-ary numbers y1,y2 (i.e.,
numbers represented with an integer value between 0 and p — 1) as y = y1||yo-
More precisely, the value of y equals y; - p 4+ yo. In its most generalized sense we
can concatenate numbers with different representations: for a ps-ary number yo,
a pp-ary number y; and a pg-ary number yo, we write y = yo|ly1||yo to signify
y =1y (Po-p1)+y1-po+ Yo

We denote with:

x1 || o « m, (1)
~
by bo

splitting the binary representation of x in parts x; with bitsize b; and x¢ with
bitsize by so that © = x1]|zp. This is generalized for p-ary numbers as:

1 || w =, (2)
NGNS
pi-ary po-ary

where z is split into a pp-ary symbol xg and a p;-ary symbol z; so that x = z1||xg.
Note that this is a unique way of splitting a number .

We denote with x < i a shift of the binary representation of x to the left
with ¢ positions (which equals to z - 2*), and with > i a shift to the right with
i positions (which equals to |x/2"]). A circular shift to the left with ¢ positions

IR
is written as x < i, with |R| the number of bits involved in the shift. More
. IR| . )
specifically, << i = (z < i)||(z > (|R| — ).

Sampling a random value x from a distribution x is denoted = < . Further-

more, U(S) denotes the uniform distribution over a set S.


https://github.com/KULeuven-COSIC/One-hot-masking

2.2 Masking

In Boolean masking, a sensitive variable x is split into S shares (% to 2[5~ so
that the XOR of the shares results in the original variable z (i.e., x = @f:_olzc[i]).
We write 2 to denote the value of the i*" share of a masked variable z, and !’
to denote the value of x while explicitly making clear that x is shared. As such,
the value z['! will not be physically represented in a secure implementation and
is only implicitly present by combining the different shares.

One can perform Boolean operations on a Boolean masked variable: z[1 =
1@yl is calculated by an XOR on the corresponding shares as 2[4 = 2l @ ylil.
An AND with an unmasked variable zI1 = z[1 & m is calculated by applying m
to each share individually zl! = z[ & m. Similarly, shifts, rotations and con-
catenations on a Boolean masked variable are applied to each share individually.

Arithmetic masking splits a sensitive variable  in S shares z(®) to (51 so
that the sum of the shares modulo a given integer ¢ equals the sensitive value
() = 2O 4+ 2 mod ¢). As before we denote with z(*) the i*® share of a
masked variable, and with z() the value of = while stressing that this value is
not physically present in the implementation.

Arithmetic masking allows easy computation of arithmetic operations, where
a sum z() = () 4+ 4 can be calculated by summing y to the zero'® share of z(*)
(ie., 20 = 2 49 and 2D = 2 for other shares). Multiplication with an
unmasked constant is performed on each share individually (i.e., 20) = ¢z
can be calculated as z() = ¢ - x(i)). Concatenation, flooring and rounding are
calculated on each share individually. It is important to note that for arithmetic
masking |2() ] is not necessarily equal to |x] as the former is calculated on each
share individually, while the latter is calculated on the unmasked variable. This
is also true for rounding and concatenation.

3 Intuitive introduction to one-hot conversion

The goal of our algorithm is to perform arithmetic to Boolean conversion. More
specifically, the input is an arithmetically masked number D), with masking
modulus ¢. The output is a Boolean masked number Bl so that B! = DO).
For the sake of simplicity, we will assume that the arithmetic masking modulus
is a power of two unless stated otherwise. It is trivial to extend our method for
different masking moduli and we will later show how to extend the method to
non-power-of-two moduli.

We will first give an intuitive explanation of the algorithm before explaining
the details in The algorithm starts by preparing a Boolean masked
register Rl with value 1, i.e., with a one in the zero'" bit and zeros in all other
bits. The algorithm then iteratively processes parts of D), modifying the register

Rl in two steps: in the first step, the register is converted to a one-hot encoding
of the input coefficient DZ(-') (i.e., the value of DZ(-') is encoded by setting the
register bit at position DE') to 1, and all other bits to 0) and in the second step,
the relevant information is extracted from the register in a sharewise fashion.



A simple example: ¢ = |R| First, imagine that the modulus ¢ equals the number
of bits in the register |R|. The algorithm first rotates the register with >, D*)
positions using a variant of the secure rotation algorithm described in [16]. This
corresponds in practice to a rotation of the register with >, D®) mod |R| =
Yok D®) mod ¢ = D) positions, where the mod|R| operation is present due to
the limited size of the register and the resulting wraparound. The output of this
step can be seen as a one-hot encoding of the input D) (i.e., the 1 in the register
can be found on the DO position).

After this operation we effectively associated each position in the register
with one value of D) (i.e., if the 1 is in the ™™ position, then DO =t and
vice versa). We then process the shares of the register individually to obtain
the required result. For each share, we take the bit at position p (i.e., D¥[t])
and multiply it with ¢. The results are all XOR’ed together into a share of the
output. The output is thus calculated as:

|R[-1

B = P t- R, (3)
t=0

Now remembering that RI1[t] = 1 at position ¢ = D), but Rl1[u] = 0 at all
other positions u # t, we can see that:

S—1
Bl — @B[i] (4)
i=0

S—1 [|R|-1 |R|—1 S—1
=D Dt R =D+ (@ R”Ht}) (5)
=0 t=0 i=0

t=0
|R|-1
- @ ¢RI (6)
t=0
=D, (7)
Thus confirming that the output is indeed Bl! = D) as required. In terms

of masking security, the first operation can be instantiated as a variant of the
secure rotation of [I6], while the second operation is performed on each share
separately and is thus inherently secure in the masking framework.

This simple example is depicted in [figure I| where in the first step the register
is rotated with >, D®) mod |R| = 3 positions, and in the second step the output
is calculated following Note that it is possible to implement the
second operation as given in more efficiently as will be discussed in
lsection Ol

More complicated: ¢ > |R| The problem with the simple approach is that it is
typically not efficient to allow an arbitrarily large register size. Therefore, we
will adapt the previous algorithm to allow ¢ to be bigger than the register size.
We will do this by chopping the input coefficients D) with bitlength log,(q) in
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Fig. 1. Overview of the three steps in InnerLoop for DO =3 and ¢ = 16. In the first
step the register is rotated with DO =3 positions using the SecureRotate algorithm.
In the second step, all elements of the register are multiplied with their position and
the results are XOR’ed together to produce the output.
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several smaller chunks with bitlength log,(p), with p < |R| < ¢. These smaller
chunks are then processed iteratively, starting with the least significant chunk
Do), Note that these chunks are not independent as the arithmetic masking
entails that there are carries that need to be propagated from the less significant
chunks to the more significant chunks. We will have to take care of these carries
in our method.

First we choose the smaller power-of-two modulus p so that p-S < |R|,
with S the number of shares, and split the coefficients of D() in chunks bj()
of logy(p) bits. These chunks are then processed iteratively, starting with the
least significant chunk. A depiction of the processing of the first chunk is given
in [igure 3

To process a chunk ﬁy we perform the following three operations: first, we
rotate the register, then we compute the relevant output bits and finally we
prepare the carry for the next iteration.

In the first operation, the register is rotated with >, bj(-k) positions. Note

that in contrast to the previous method ), lA)j(k) mod |R| # DJ(-'), more specifi-
cally, the modulo operation is no longer relevant and can be ignored as long as
we choose p to be small enough to avoid any possible wrap-around of the 1 in
the register.

The position of the one in the register can now be described in function
of two components: the value of the chunk, ﬁj() = > 15§k) mod p, and the

carry ¢; = >, bj(k)/pj that needs to be propagated to the next chunk. These
two components are represented in the position as follows: the register can be
subdivided into multiple ‘carry parts’ of log,(p) bits as given inwith the
red lines. The carry is then encoded by the part containing the 1 (in



¢ = 2), while the chunk value is encoded as the relative position of the one in its

part (e 3 D) — 1)

In the second operation, the relevant output bits corresponding to the chunk

D§') are calculated. Similar to the above technique, we perform a sharewise
calculation, but this time multiplying with the value (¢ mod p):

|R|-1

Bl = @ (t mod p) - RUJt), (8)

t=0

where analogous to before we can check our method for the first chunk as:

A S—1 o |R|—1
By =P B = € (t mod p) - R[] 9)
=0 t=0
= bé') mod p, (10)

which means that the first log,(p) bits are converted correctly. However, for
subsequent iterations, we will have to take into account the carry c; that needs
to be propagated from chunk j to chunk j+1. This is done in the third operation.

The third operation propagates the carry and is again performed on each
share separately. At the end of the third operation, the register contains a one-
hot encoding of the carry c; that needs to be propagated. This register is then
used as the starting register in the next rotation. This means that the rotation

already has an initial rotation with c¢;, before the rotation with ), ZAJJ(TI is

applied. The total rotation is then ¢; + >, ﬁg»]_?p thus effectively taking the
carry into account.

The method to obtain the one-hot encoding of the carry can be best un-
derstood using For each share of the register, we xor together all bits
within the same carry bin ¢, and place it at position c¢ in the register. Or more
specifically, for each possible carry value ¢ and each share k we calculate:

R = @ RungMle-p-+ 0 (11)

m=0

The last iteration is slightly different, as the last chunk to be processed does
not need to take into account further propagation of the carries. This case can
thus be performed analogous to the simple example above (see and can
use any bitsize log,(pr) as long as pr, < |R| (assuming the register size is also a
power of two).

4 Arithmetic to Boolean conversion

In this section, we will go into detail on the arithmetic to Boolean conversion
technique, as well as generalize the technique and formulate a security proof.
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Fig. 2. Overview of an iteration of the A2B conversion for ﬁﬁ) = 1, with modulus

p=4,acarry valuec= Y, ﬁ§k)/pj = 2 and S = 4 shares. Note that all registers are
masked during execution and that the values depicted are the corresponding unmasked
values which should never be revealed during the computation. In the first step the
register is rotated with >, ﬁﬁk) = 9 positions. In the second step the partial output
is computed as in In the third step the carry is propagated by XORing the
values per carry and putting them in the relevant position of the output register. The
latter step already gives an initial rotation of the register with 2, which is equal to the

carry value and as such effectively propagates the carry to the next block.
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gives a generalized algorithm to perform A2B conversion using the
secure rotation method, which is given in Remember that opera-
tions on R[! are performed sharewise. A graphical overview of one iteration of
the loop is given in while the last iteration only performs the operations
in

For the parameter setting, we need to choose a register size |R|, which should
be an integer of size at least S?, with S the number of shares. For software imple-
mentations, one would typically choose |R| to be the bit width of the processor.
From |R|, we can derive the chunk modulus p as the largest power of two such
that p-S < |R|. The final chunk size p;, can be computed as the largest power
of two under the conditions that p;, < |R| and log,(pr) = logs(q) — L - log,(p)
for L a positive integer. In this case, L + 1 will be the number of chunks into
which a coefficient is split.

We will first provide a t-SNI security proof of our method, and then explain
how to generalize our method to non-powers of two, or to calculate arbitrary
functions. Our security proof extends the table-based conversion proofs of [I3I16].

Algorithm 1: A2B(D®"))
// Setup
1 R =1; Bl =0
2 fori=1,...,8§—1do R%=0; Bl =0

s DY) ...l DY || D5} « DO
~~ —~ =~
<logy |R| logy(p) loga(p)
// calculate
4 for j=0,...,L—1do
5 RtmpH = SecureRotate(R['], ZA)J())
6 | RII=0
7 forc =0toS—1do
8 ‘ Rl [ = @fn;:lo Rtmp['] [c-p+m]
9 Bimp!! = @771 (¢ mod p) - RU 4]
w0 | BY =By, 0Bl

11 Rimpll = SecureRotate(R[']7ﬁg))
12 Bimp!) = @IE ¢ RUJ

13 Bl = BtmpHHBH

14 return Bl

Theorem 1 ((S—1)-SNI of[Algorithm 1f). For any set of t. < S intermediate

variables and for any subset O € [1,n] where t. + |O] < S, we can perfectly
stmulate the output variables ROV and the t. intermediate values using the input
values DY for each i € I, with |I| < t..
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Algorithm 2: SecureRotate(R!!, D()

// Rotate + remask
1 for shp =0 toS—1do

2 | RO — ROV E peshn)

3 for shg =1 to S—1do

4 Rlshrl — glshrl & pesnn)
5 U« U@

6 Rlshrl — Rlshr] oU

7 RY =RYqU

Proof. Within this proof we will refer to line x of with 1x, and to
line z of with I,x. Before we delve into the details we choose which
input coefficients will be used to simulate the intermediate values. All operations
described in are performed sharewise, and so at most one share of
the registers Rl and Rtmp['] is involved; and at most one share of D() and ﬁ]()
is involved. For each probe during these lines, we will add the share number

shg of the involved share of Rl or Rtmp['] (if applicable) to the set SHR; and

similarly add the share number shp to the set SHD, if a share of D() or ﬁ]()
is involved. For the intermediate values in the rotation (Algorithm 2)) we make
the sets as described in [able 11

Variable: Action: add - - - Simulated by:

1.2/1,4: D(shp) shp to SHD Corresponding bits of: D(hD)
C .

1,2: R shp to SHD; 0to SHR ~ Rin® < D(hp)

-C A
L4: RE*R shp to SHD; shr to SHR Rin "R & D(hp)
1.5: UshD,shR shp to SHD; shr to SHR UshD,shR

-C A
1L6: RER) shp to SHD; shi to SHR (Rin "% & DEPD)Y & U hn
.C . X
1,7: RO shp to SHD; 0to SHR  (Rin©@ % DE"0)) @22 1,

Table 1. List of variables and their simulatability.

After building the sets SHD and SHR we know that |[SHD| < t. and
|SHR| < t., as each intermediate probe adds at most one item to each set. We
then choose the input set to simulate all probed values as D"?) for each share
shp € SHD. The set SHD then acts as the input set I and as such we have
the asked condition |I| < t.. Now rests to show that we can perfectly simulate
all probed values.

The general overview of our proof will proceed as follows: first, we will argue
that Rl and all other variables are simulatable during the setup of the algo-
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rithm, then we will argue that all asked intermediate values in the subblocks are
simulatable if the input R is simulatable, and finally, we will show that Rl at
the output of the block is simulatable if Rl! at the input of the block (further
denoted Rm(‘)) is simulatable.

Simulatability of variables during the setup of the algorithm (11 to 13): This
first step is easy, as Rl is deterministic and can thus be easily simulated by the
adversary. The probed lA)l(SJhD ) values can be simulated as sh p € SHD due to
our construction of SHD.

Simulatability of variables during SecureRotate: This part will perform in-
duction on the outer loop shp in SecureRotate. We will show that if we can
simulate the values at the start of one loop iteration, we can also simulate the
output variables of that loop iteration and all probed variables.

If shp ¢ SHD, then the adversary has no information on the Uspp, sh, and
as such the output will look uniformly random, thus rendering Rl simulatable
at the end of the iteration (i.e., it can be simulated by drawing from a uniformly
random distribution ¢/({0, 1}1%)).

If shp € SHD, then we can simulate any probed intermediate variable as
given in where Rm['] is the value at the start of that outer loop iteration.
For the latter two variables in the table, if the corresponding Uk, shy is Dot
probed we can replace it with a uniformly random value.

We have shown that if we can simulate the intermediate values at the start
of the first loop iteration, then we can also simulate the intermediate values in
the following loop iterations and therefore also at the end of the SecureRotate
operation.

Simulatability of variables after SecureRotate (16-110 and 112-13): Next we
will show that if the register Rtmp[‘] is simulatable at the end of the SecureRotate
then all variables at 16-110 and 112-13 are simulatable. Note that the operations
on these lines only work on one share at a time and are perfectly deterministic
if the input Rtmp['] is known. As such, if Rtmp['] can be simulated, then any
intermediate variable in these lines can be simulated.

To conclude, we have shown that Rl is simulatable at the start of the algo-
rithm, that it is simulatable at the end of each block if it is simulatable at the
start, and that all probed intermediate values can be simulated if Rl is simu-
latable at the start of the block. This means that both the probed intermediate
values and the probed output variables are simulatable.

4.1 Generalization

The algorithm presented above can be generalized to have broader applicability.
Firstly, the algorithm is not bound by calculating the identity function (i.e.,
A®) = BI1). Instead one can replace the multiplications with the value (¢ mod p)

in [Equation 8 which calculates a unity function, with any function f() as:
|R|-1

]M = @ f(t mod p) - Rl [t], (12)

t=0
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thus creating a more elaborate A2B conversion that allows calculating on the
data for free.

Secondly, the modulus does not need to be a power of two but can be any
positive integer ¢. In this case, we select different modulus p for each chunk. The
selection of the p; needs to fulfill the following conditions:

L
sz' =4q (13)
i=0

Viiopi-S <|R| (14)

Note that the latter condition can be relaxed for py,, as we don’t need to deter-
mine the carry location and can thus allow an overflow at positions that are a
multiple of pr. As such, a py, value is also valid if py, divides |R|.

Similar as before D;) is split into chunks. However, this time we represent
DO) as a series of p;-ary numbers:

DY ||...| DY || DS « D,0) (15)
~—~ N =
pL-ary pi-ary po-ary

This representation immediately gives us the different chunks, as each symbol
)

corresponds to a chunk ﬁj , with ﬁ(()') the least significant symbol.

5 Arithmetic to 1-bit Boolean

In this section, we will specialize our method toward calculating a function f()
that takes one or more arithmetically masked variables and outputs one Boolean
masked bit. Theoretically, our method can calculate any such function, however,
when the input modulo ¢ is split into smaller chunks modulo p (i.e. L > 0), only
functions that can be described as:

FON = (DY) & ... & fo(DY), (16)

are implementable. However, as we will show in this restriction
does not pose a problem for typical applications in lattice-based encryption, such
as masked comparison or extraction of the MSB.

Our method is similar to the arithmetic to Boolean conversion described
above, where the calculation of Bl is not performed. The main idea is that in
iteration ¢, if fl(lA)Z()) = 1, the register is propagated as before, while if fz(lA)Z()) =
0, a register with only zero is propagated. This can be achieved during a ‘compute
carry’ step, by only propagating positions ¢t where:

fi(t mod p) = 1. (17)

This means that if the 1 in the register is at a location where f;(¢ mod p) = 0,
the 1 in the register is not propagated and the register will have only 0’s for the
rest of the algorithm. At the end of the algorithm, we can check if the one is
still present in the algorithm, which is the case if and only if f(D()) = 1. Note
that the register remains masked throughout the algorithm and thus it is not
revealed if and during which iteration the one is discarded.
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5.1 Method description

More specifically, the input is a list of arithmetically masked numbers D), with
corresponding masking modulus g. The output is a boolean masked bit 1 if
Vi f(Dl(-')) =1, and 0 otherwise. The parameter setting (i.e., setting |R|, p, L
and pr) proceeds identical to the procedure explained in

The setup phase of the algorithm similarly consists of two steps: initializing
the Boolean masked register Rl to the value 1 and dividing each coefficient of
DO into chunks of log,(p) bits (with exception of the most significant chunk,
which has log,(pr) bits).

The algorithm then iterates over all coefficients, and for each coefficient over
all chunks starting with the least significant chunk. For each chunk first a se-
cure rotation [I6] is performed, as depicted in Then, instead of
propagating all positions as in the full A2B conversion, only positions ¢ where
fi(t mod p) = 1, are propagated to the output register in a step we will refer to
as bit selection. More specifically, for each possible carry value ¢ and each share
k we calculate:

RMlc= P RumpMc-p+1). (18)
t:f(t)=1

The bit selection operation performs two functions: first, for all values of
DE; mod p where f(DEg) =1, the 1 in the register is passed to the next iteration
(othwerwise, the 1 is not passed to the next iteration). Secondly, the value of

the carry (ie., c = [>, ﬁi,j(k)/pj) is represented in the fact that the 1, if still
present in the register, can be found at the ¢ position of the output register.

In the final iteration of a coefficient D;, L('), the carry is no longer relevant.
We thus map all allowed positions to the zerot® bit of Rl without distinguishing
between the different carry values. Then the algorithm proceeds with the next
coefficient in the input array. At the end of the algorithm, the zero®™™ bit of RI’
contains a Boolean masking of the output.

Side-Channel Security Our security proof proceeds similarly to the security
proof of the A2B conversion, as the secure-rotate function is still the only non-
sharewise component that needs special attention.

Theorem 2 ((S—1)-SNI of[Algorithm 3|). For any set of t. < S intermediate

variables and for any subset O € [1,n] where t. + |O] < S, we can perfectly
simulate the output variables ROV and the t, intermediate values using the input
values D@ for each i € I, with |I| < t,.

Proof. The t-SNI security proof of the Arithmetic to 1-bit Boolean function
method is similar to the proof of the Arithmetic to Boolean conversion. The
difference in both algorithms is only in the sharewise parts (18 to 110 and 112-
113), which can be simulated deterministically using the knowledge on Rtmp['].

As such one can essentially reuse the security proof of
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Algorithm 3: A — 1-bit B(D(), M)
// Setup

1 R =1

2 fori=1,...,5—1do R =0

3 fori =1toN—-1do

4 D{} |...| D} | DY) « D;®
~—~— —~— N~~~
<logy |R| logo(p) loga(p)

// calculate
5 fori=0,...,N—1 do

6 for j=0,...,L—1 do

7 Rtmp['] = SecureRotate(R['],]f)l(.;J).)
8 R =0

9 forc =0toS—1do

10 R[] = @ Rempc- p+1]

Vt:fi (t)=1
11 Rtmp['] = SecureRotate(R['],]ji;L)
12 R =0
13 | RU0] = @ Rimp - pr +1]
Vit: fi(t)=1
veelo,...,|R|/pL)

14 return R!

5.2 Generalization

As with the arithmetic to Boolean conversion, our method can be generalized.
First, the masking modulus ¢ is not required to be a power of two. This gen-
eralization is similar to the non-power-of-two modulus generalization in
and we refer to this section for an explanation on how to achieve this.

Secondly, the masking modulus ¢ does not have to be equal for all coefficients.
To allow different masking moduli g; associated with their respective coefficients
DZ-('), one performs the determination of the parameters p, L, p;, for each coef-
ficient separately. The rest of the algorithm then proceeds as usual, with each
coefficient using its specific set of p, L, py,.

5.3 Applications to Lattice-Based Encryption

The method presented above can be used as a building block for the mask-
ing of lattice-based encryption. In this section we will specifically look into two
building blocks for lattice-based encryption: comparison of the (uncompressed)
recomputed ciphertext with the input ciphertext in the Fujisaki-Okamoto trans-
formation, and A2B for extraction of the most significant bit(s) during decryp-
tion. We will show how both these functionalities can be achieved using our
methodology by choosing the appropriate input parameters.
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Comparison The comparison is an essential part of the Fujisaki-Okamoto
transformation. The goal of this comparison is to validate the input cipher-
text against a recomputed ciphertext. Several works have looked at optimizing
higher-order masked comparison [A7IT7IT6I20]. We will consider a recomputed
ciphertext that has not been compressed, as the compression is generally expen-
sive and we can include the compression in our solution at almost no cost. This
is the same setup as used in previous works.

In previous works, the comparison is typically done in at least two steps
containing an A2B conversion and the comparison itself. In this work, the com-
parison itself is already performed in the A2B conversion. Moreover, the adap-
tation of the A2B conversion even makes the A2B conversion more efficient as
the Boolean output is not calculated.

The first input to the comparison is the input ciphertext, which consists of
two arrays (B, C), with coefficients modulo ¢, and ¢. respectively. The second
input is an uncompressed recomputed masked ciphertext (B*('),C*('))7 both
with coefficients modulo gq. The comparison then should return true if and only
if:

Vi:|a/g-B;Y1 =B and Vi : [¢./q- C;V] = C; (19)

Power of two q For q, g, and q. powers of two, such a function can be instantiated
by calculating the list with coefficients D,

VIDi(O) :B;‘(O)+i—g~Bi : V:Di(j) :Bj(j) : (20)
€0,...,|B|-1 296 @ i€0,...,| B|-1
§>0
v DlHB‘() —c;+ L _Z.¢, and v DZHB‘(]) =9 (21)
i€0,...,|C|—1 2qc  qc i€0,...,|C|—1
J>0
where the E and 5~ terms are used to convert the rounding operation into

a flooring operatlon Note that this is the same input preparation as step 0 of
Algorithm 7 in [I7].

We furthermore prepare the functions fy, ..., fr as:
lLifix < (X —1)/p 11f:1:<(——1)/p
) — = \q . . _
Foi(®) {0 otherwise and:  fe(z) 0 othervvlse '

(22)
for the coefficients of B and C respectively.

Prime g For prime moduli conversion, we follow the approach of Fritzmann et
al. [22], where the compression is explicitly calculated for each share individually.
This would result in an infinitely long bitstring, but Fritzmann et al. showed

that it is sufficient to take into account a certain number of bits f > log,(S) +
log, ([qéﬂ 0.5)7 with S the number of shares. We end up with the following
inputs:

17



viD© = |2 g0 ; o B, v:D0— |2 g0

€0,...|B]-1 q i€0,...,|B|-1 q
530
(23)
. of .- 2f :
V:DH-IB\() L C’* ©) = _9f . C; and V: Dz+|B\() LLO;(J)J’
Ol g 2 i€0,...C|- q
3>0
(24)

and moduli ¢ - 27 and q. - 27 respectively. The functions are constructed as:

fralw) = {1 o< @D g fle) = {1 if: 2 < (2/ —1)/p'

0 otherwise 0 otherwise

)

(25)

Again note that this is the same input preparation as step 0 of Algorithm 7 in
[17].

A2B compression / MSB extraction Our arithmetic to 1-bit Boolean can
also be used to securely implement the A2B conversion in lattice-based encryp-
tion schemes. To be more precise, it can replace the A2B conversion where one
is only interested in the most significant bit, which is typically the case in the
decoding for schemes like Saber and Kyber. To find the most significant bit of a
number A®) in case of a power of two moduli, one inputs DO(‘) = A0 with the

modulus ¢ equal to the arithmetic sharing modulus. The functions fo(), ..., fr()
can be constructed as f;(x) = 1, with the exception of f,(), which equals:
_ 0if: x < pr/2
Foi(@) = {1 otherwise (26)

Note that the input D) is in this case an array with only one coefficient.

Again, for prime moduli, we can perform a similar technique. The goal is to
calculate the modulus switching function | 22| on a masked variable. To do this,
one also has the option to convert to power-of-two moduli using a trick similar
to D’Anvers et al. [20] inspired by the technique of Fritzmann et al. [22]. In this
case, we have:

of+1

Do = | P

BY + 39| (27)

with modulus 2/+1. The function is calculated similar to before as f;(z) = 1,
again with the exception of fr (), which equals:

Foi(2) = {0 if: x < p'L/Q (28)

1 otherwise
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The reason for the multiplication with 2/*! and addition of S is to preserve
correctness even in the presence of flooring errors. The division with ¢ creates
an infinitely long fractional part, which the subsequent operation floors down.
This means that an error in (—1,0] is introduced to all shares:

9f+1

Do) = BY 4+ 5-(1+e) (29)

To prove that this operation always gives the correct result, we investigate
the border cases B") = 0 and B") = |¢/2], which should result in Do) € [0,27);
and B = [¢/2] and B) = ¢ — 1, which should result in Do) € [2/,2/+1). If
these conditions are fulfilled the top bit is correct and the value of Do(') will be
valid. Note that since g is uneven we have |q/2| = (¢—1)/2 and [q/2] = (¢+1)/2.

The cases of B() =0 and B() = [¢/2] can only go wrong in negative wrap
around, and so the worst-case scenario is e = —1. This results in:

:2JL+1

D =8.-(1-1)>0 and D" p

+S5-1-1)>2" (30
which is always fulfilled.

The cases of B() = ¢ —1 and B") = lg/2] can only go wrong in positive
wrap around, and so the worst-case scenario is e = 0. This results in:

-1 . qg—1 .
D) =of+1 12 —+5< 21 and D0 =2f1 = —+5< 2/ (31)

which results in conditions S < Qf% and S < %, of which the latter is the most

restrictive. Therefore, as long as f > logy(S) + log,(g) we have a correct most
significant bit and thus a correct MSB extraction.

6 Implementation aspects

The algorithms given above are not necessarily the most efficient way to imple-
ment one-hot conversions on a variety of computing platforms. In this section, we
detail methods to speed up these conversion algorithms. We first look at possible
tweaks in software implementations and then look at parallelization possibilities,
which are typically more useful in hardware.

6.1 Software optimizations

The inner loop of our technique consists of two parts: secure rotation and bit
selection. The secure rotation itself consists of two main instructions: a rotation
and an XOR operation on the register. As such it is relatively easy to optimize
in both software and hardware. The bit selection warrants a more in-depth look,
and we will first look into the bit selection of the arithmetic to 1-bit Boolean
conversion, and then look into the A2B conversion.

19



Bit selection In this paragraph we will specifically look at the bit selection of
Rl (line 11, and line 14 in . In a hardware implementation, one
can implement these operations using a simple Boolean hardware circuit.

For software implementations, as we are working within a register, an efficient
implementation is more challenging. To get a feel for the cost we will describe the
cost of algorithms in the number of XOR that needs to be performed, taking this
measure because it is the main operation in the innermost loop in the code. We
will specifically look at the power-of-two ¢ case and a subfunction that considers
each bit individually, i.e. a function f;(x) that can be written as:

filx) = fio(x[0]) AND f7(z[1]) AND ... AND f7x (2[|X]-1]). (32)

(2

This is the case that covers the typical applications from
A straightforward approach would be to perform the XORs one by one, which

would lead to S? - (|f;| — 1) XOR operations, where |fi| denotes the number of
inputs to which the function f; returns 1. This can be brought back to less than
S2+4S-1og, (| f;|) XOR operations using two tricks: exploiting inherent parallelism
and a divide-and-conquer combination approach.

Firstly, the inherent parallelism comes from the fact that the XOR for posi-
tions in different carry bits but with the relative position can be calculated at
the same time, by exploiting the fact that the different carry bins are exactly p
positions separated. As such, when performing the XOR operation on the full
register on line 11 and line 14, one is not only calculating the result for carry
¢ = 0, but also for all other carries ¢, the result of which can be found c- p
positions further in the register.

Secondly, one can speed up the calculations using a divide-and-conquer strat-
egy. There are three possible instantiations for f}(z):

fi@) =z, [fi(z)=NOT(x), f[fi(z)=1 (33)
Note that f/(z) = 0 is not an option, as this would mean that f(z) = 0 which
is a useless function to implement. The number of positions that needs to be
propagated during bit selection in loop [ can be calculated as:

log, (p)—1

I 1f i (34)

=0

For the functions f*(x[i]) = = and f}(z[i]) = NOT'(z), | f(x[i])| is one and thus
the number of positions to be considered is not increased. However, for function
of the form f;(x) = 1, the number of positions is doubled. More specifically, for
each position that is propagated, a position exactly 2! further is also propagated.

We address such an instance by shifting the register Rl with 2¢ positions
and XORing it with the original register. This operation essentially combines the
scenario where z[i] = 0, with the scenario where x[i] = 1, and puts both options
at the position as if z[i] = 0. Thus, after this operation, the original function

f#(x) =1 needs to be replaced with f(x) = x to obtain the same result. Once
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all f*(x) = 1 are replaced by f7(z) = z, there is only one position left to be
considered, more specifically this is position F' = Ziozgg(p )= gi. £2(0)

gives a faster implementation of the bit selection, where in lines
1-6 the inherent parallelism and the divide-and-conquer combination are ex-
ploited. Line 7 is a cleanup where the XORed value for each carry c is placed at
the ¢ - p** position and all other positions are set to zero, after which lines 8-11
copy the carry bits to their final position c.

Postprocessing A2B The bit selection in the A2B conversion can be optimized in
the same ways as in the arithmetic to 1-bit Boolean conversion detailed above.
However, for the A2B conversion, there is an additional step to calculate Btmp[']
which can be optimized significantly. In this paragraph, we will discuss two
optimizations.

The first algorithm uses the same divide-and-conquer combination to combine
the different carry bins, after which the multiplication operation is calculated p
times. This algorithm is depicted in and is efficient as long as p is a
small value. It takes S-(p—1) multiplications and S (S+p—2) XOR operations.

The second algorithm is aimed at a higher value p. For this, we take a step
back at the bits of Btmp['], which are calculated as:

p—1 |R|/p—1
Bump! =@t | B Rimp'llc-pr+1] (35)
t=0 c=0

Note that the second term of the multiplication is a single bit with a value of 0
or 1. When looking at a specific bit of the output Btmp['] [i], this equation can
be further simplified:

Btmp[‘] [i] = @ Rtmp[.] [c-p+1] (36)
Vt=0,...,p—1:t[i]=1
c=0,...,|R|/pL—1
= parity(Rl & F;)  with: F; = @527, (37)
Vt=0,...,p—1:t[i]=1
c¢=0,...,|R|/pL—1
In essence, F; is a mask that selects all terms involved in the XOR operation.
For example, for ¢ = 0, F; = 0101...01 and for ¢ = 1, F; = 00110011 ...0011.
The resulting algorithm is depicted in
The cost of this second algorithm heavily depends on the instruction set of the
processor. If a parity instruction (or Hamming weight instruction) is present, the
algorithm takes S - log,(p) parity instructions. If this instruction is not present,
one can compute the parity with a divide-and-conquer strategy which would cost
[log,(S - p)| operations.

6.2 Parallelization

Our algorithm is inherently serial, as the output R[! of the previous chunk is
necessary to start the calculations on the next chunk. This might be a bottleneck
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Algorithm 4: Algorithm 5:
// Get valid positions 1 fori = 1 to log,(S —1) do
1 F=0 2 | RMe=RU>2.p
2 for i = 0 to log,(p) — 1 do 3 fori =1top—1do
3 | if f(z) =1 then 4 | RUe=i- R4
4 | R @= Rl > 2’
5 e‘lse if f/(z) = NOT(z) then Algorithm 6:
6 F=F+2 .
. 1 fori =0 to lo —1do
7 R = (R > F) & SIS -1gip 2 | BU :pargft(ng[.] & F)
// Set carries
8 for i = 1 to log,(S —1) do
o | RUe=RI> (p-1)-i
10 R = RI & (25 — 1)

for the masked comparison operation as used in lattice-based cryptography as
described in In such a scenario one has typically an input array
DO that has between 768 and 1280 coefficients that need to be validated. In
this section, we will show how to make a parallel implementation on n ‘cores’
with minimal overhead.

At the start, one divides the array D) in n arrays of approximately [D()|/n
elements. These sub-arrays are then validated separately on the n cores, which
results in n registers ROH to Rn,l['}. The LSB of each of these registers is a
Boolean masked bit representing the result of the comparison of the correspond-
ing sub-array (i.e., R;!’ [0] = 1 if the corresponding sub-array was valid, and 0 if
it was invalid).

To combine these registers, one can use the fact that one Boolean masked bit
is essentially an arithmetic masked bit modulo 2. To combine ROH and Ryl we
perform another iteration of the arithmetic to 1-bit Boolean with these inputs:
v, D® = R;[¥[0] with arithmetic masking modulus 2, Rl = Ryl and f(z) =
NOT(x). The output of this iteration is a register RI! that is 1 if both Ryl and
R were 1, and 0 otherwise.

Taking a step back we can see that the above paragraph uses the arithmetic
to 1-bit Boolean technique to construct a masked AND gate on Boolean masked
bits. By applying this AND gate on all ROH to Rp_111 we end up with one
register denoting the result of the masked comparison.

In a serial implementation, given |[D()| coefficients and L chunks for each co-
efficient, the masked comparison takes L-|D()| iterations (we count SecureRotate
and the bit selection as one iteration). In the parallelized method we additionally
have to perform n — 1 iterations to combine the sub-array Ri['], which increases
the cost only slightly to L - |D(')| + n — 1 iterations. For masked comparison of
Saber, where |D)| = 1024 and L = 4, performing the calculations in parallel on
4 cores would increase the cost from 4096 to 4099 iterations.

22



7 Validation

In this section, we compare the one-hot A2B conversion and masked compar-
ison to state-of-the-art alternatives. We benchmarked the algorithms on an
STM32F407 board with an ARM-Cortex M4F using arm-none-eabi-gcc ver-
sion 9.2.1 with -O3. The system clock was set to 24 Mhz and TRNG clock to 48
Mhz, following the popular benchmarking framework PQM4 [KRSS]. One impor-
tant factor in the benchmarking of these conversions is the limited throughput of
the TRNG available on our processor. Therefore, we provide both benchmarks
where the randomness cost is disregarded (i.e., it is sourced from a precomputed
array of random elements), and where the randomness is sampled from the on-
chip TRNG and its sampling cost is included in the cycle counts. Note that these
implementations are only for reference and are not side-channel secured, as such
implementations are outside the scope of this work but would be interesting for
future work.

7.1 A2B conversion

In [table 2] and [table 3] our one-hot A2B algorithm is compared with the state-
of-the-art table-based conversion by Coron et al. [I6], using their publicly avail-
able code. We also compare with the Boolean circuit-based A2B algorithm by
Coron et al. [I1], and additionally with the optimized bitsliced implementation
of D’Anvers et al. [I7]. The top results in the table give the cycle counts without
the waiting effect of the TRNG, while the bottom results include the TRNG
wait time.

bits 8-bit 16-bit 32-bit
order 2 3 2 3 2 3
Bool. circ. [11] 228.7 402.4 | 442.6 767.1 | 862.5 1484.7
Bool. circ. (optimized bitsliced) [ITII7]| 37.3  55.1 | 72.3 108.2| 142.6 214.6
Table-based [16] 4272 916.2 | 847.2 1806.6|1647.8 3514,8
One-hot [ours] 27.3 51.2 | 54.3 109.6 |103.3 206.4

When sampling the randomness from the on-chip TRNG generator:

Bool. circ. [11] 294.1 532.9 | 560.2 1002.0|1084.5 1928.6
Bool. circ. (optimized bitsliced) [IT/17]| 43.2 67.1 | 84.8 133.3|168.2 265.9
Table-based [16] 767.8 1617.4|1524.1 3213.0|3005,8 6338.3
One-hot [ours] 47.0 90.4 | 103.3 207.5 | 201.3 408.2

Table 2. Cost to perform 32 A2B conversions on Cortex M4 in 1000 cycles. The top
results ignore randomness sampling using the on-chip TRNG generator, the bottom
results include the randomness sampling.

We first compare our one-hot conversion to the state-of-the-art table-based
conversion, as they are in the same family. As you can see from our new
conversion improves the state-of-the-art table-based conversion with approxi-
mately a factor of 15. Similarly, the randomness usage is also reduced with a
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bits 8-bit 16-bit 32-bit

order 2 3 2 3 2 3
Bool. circ. [L1] 5,120 10,240 | 9,216 18,432 | 17,408 34,816
Bool. circ. (opt. bitsliced) [ITIT7]| 464 928 | 976 1,952 | 2,000 4,000
Table-based [10] 26,624 55,296 | 53,248 110,592| 106,496 221,184
One-hot [ours] 1,536 3,072 | 3,840 7,680 | 7,680 15,360

Table 3. Randomness cost to perform 32 A2B conversions in bytes.

factor of 15 in the one-hot encoding. From this, we can conclude that the one-hot
conversion is an improved version of the table-based conversion of Coron [16] in
both cycle count (x15) and randomness usage (x15), and as such it is the fastest
table-based full A2B conversion algorithm available at the momentﬂ

A comparison to the Boolean circuit method is more complex. First one
can notice that the optimized and bitsliced method significantly outperforms
a straightforward implementation of the Boolean circuit method. Note that in
contrast to the optimized bitsliced implementation, the one-hot implementation
provided in this paper is a proof of concept and not a fully optimized implemen-
tation, which we leave for future work.

Compared to the one-hot encoding, while reducing the randomness cost of
table-based methods by around a factor of 15, the randomness required for the
one-hot encoding is still approximately 4 times higher compared to the optimized
bitsliced Boolean circuit implementation. Further reducing this randomness cost
can thus be identified as an interesting focus for future work. Regarding the cycle
count, the one-hot encoding is in most situations slightly faster (up to 27%) than
the Boolean circuit method if the limited throughput of the TRNG is ignored.
If using the on-chip TRNG, the Boolean circuit method becomes (up to 35%)
faster.

The bitsliced optimized Boolean circuit implementation makes very efficient
use of the processor instructions available through the use of the bitslicing. Sim-
ilar optimizations are not implemented for the one-hot encoding. One example
of an operation that could be optimized using the appropriate hardware support
would be the sharewise operations. These operations are essentially a Boolean
circuit with mostly (unmasked) XOR gates, which would be much more efficient
in hardware or with the appropriate hardware support (e.g., a parity count or
hamming weight instruction as discussion in . It would be interesting
for future work to compare both techniques in a hardware implementation.

One advantage of the one-hot A2B over a Boolean circuit-based A2B is that
the security-critical non-linear part is fully contained in the small and elegant Se-
cureRotate function, as all other operations are linear and thus can be performed

! Note that the numbers given in [I6] (Table 6) depict algorithmic operation counts
and not cycles in an actual implementation. As there is no one-to-one match between
the algorithmic operation count and the cycle count (e.g., memory accesses might
be more expensive than local operations) one should be careful in comparing these
numbers.
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share-wise. As such, implementors have a more clear view of the security-critical
parts of the algorithm, which should make side-channel secure implementations
easier.

7.2 Masked Comparison

We compare our one-hot masked comparison with the state-of-the-art compari-
son techniques as identified in [20]. These implementations are optimized versions
of the comparison by Barthe et al. [6] optimized in [20] (simple optimized) and
Coron et al. [15] optimized in [20] (streamlined hybrid). gives an overview
of the cycle and randomness cost of the various comparison algorithm for usage
in Saber and Kyber. For these techniques we use the optimized bitsliced A2B
implementation of [I7]. The implementation of the one-hot comparison follows

the design of with the optimizations discussed in

Cycles Cycles Randomness
w/o TRNG with TRNG
Order 2 3 2 3 2 3

simple optimized [6120] Kyber| 2.56M  4.1M | 3.1M  5.3M 48K 100K
streamlined hybrid [I5120] Kyber| 2.4M  3.4M | 3.3M  4.4M 80K 95K

one-hot (ours) Kyber| 2.3M  4.3M 4.6M 8.9M 184K 369K
simple optimized [620] Saber | 1.3M  2.0M | 1.6M  2.6M 26K 53K
one-hot (ours) Saber | 1.0M  2.0M | 22M 42M | 92K 184K

Table 4. Cycle and randomness cost of the state-of-the-art higher-order comparison
methods

Due to the improvements of the one-hot conversion, masked comparison
based on table-based A2B now performs with similar performance to Boolean
circuit A2B based solutions. However, the randomness consumption is still a
factor 2 to 4 higher than the Boolean circuit A2B based conversions, which con-
firms the importance of future work on randomness reduction or reuse as stated
above.

One difference between the techniques is the code complexity. The one-hot
comparison only consists of one main loop that loops over all chunks and for each
chunk performs a secure rotation and a bit selection. As such this technique
has a low implementation complexity even compared to the simple optimized
method. Moreover, the bit selection is performed share-wise and should therefore
be relatively easy to implement securely. Therefore, the critical part for secure
implementations is mainly contained in the secure rotation and as such limits the
scope of critical code parts that need to be addressed for a secure implementation.

Additionally, the streamlined hybrid method is prone to a small collision
probability in which the comparison returns an incorrect result. This probabil-
ity can be made arbitrarily small at the cost of losing efficiency. The simple
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optimized and one-hot comparisons are always correct and thus do not suffer
from collisions.

8 Conclusions and Future work

In this paper, we introduced a new table-based arithmetic to Boolean conver-
sion. We also showed how to adapt our new method to efficiently perform masked
comparison or extraction of the most significant bit, operations which are im-
portant for the masking of lattice-based post-quantum schemes. Additionally,
an interesting property of our conversion is that one can perform a wide range
of functions on the masked data during the transformation at low to no cost,
which could be useful in future applications.

Our A2B method is 15 times faster than state-of-the-art table-based conver-
sions and reduces the randomness consumption by a factor of 15. The resulting
scheme still consumes approximately 4 times more randomness than the state-
of-the-art bitsliced optimized Boolean circuit based A2B, but can be (depending
on the throughput of the TRNG) up to 27% faster. Given that higher-order
A2B conversion algorithms using Boolean circuit-based A2B have been around
for longer and that they have undergone more optimizations both on an algo-
rithmic and implementation level, the relatively new higher-order table-based
A2B conversions might be able to bridge the remaining performance gap in the
future.

Future work could include looking at adaptations to make one-hot conver-
sions more efficient, or to apply them in different contexts and for different
types of conversions. Reduction of the randomness usage by the one-hot conver-
sion might be an interesting research topic. One could also look at algorithmic
or implementation optimizations. Note that possible optimizations to the algo-
rithm will be different on different platforms, for example in a microprocessor the
register size is typically fixed by the bitwidth of the processor, while hardware
implementation has more slack in choosing the size. For hardware implemen-
tations, the Boolean circuit nature of the sharewise operations might lead to
significant speedups. Implementing and lab verification of a practically secure
one-hot conversion might also be interesting future work.

Another point of interest could be specific first-order versions of the one-
hot conversion. In first-order table-based implementations, one can typically re-
use randomness over multiple encodings, and thus the randomness cost can be
reduced dramatically. As in this scenario the randomness is no longer a limiting
factor, this could possibly lead to very efficient designs for first-order.

In terms of extending the reach of the algorithm, one could look into applying
the one-hot conversion ideas to improve Boolean to arithmetic conversion or first-
order comparison methods. In the future, other more exotic functions might
be implementable using the technique (e.g., checking smallness of a vector). It
would also be interesting to integrate the one-hot conversion algorithms in post-
quantum schemes such as Kyber, Dilithium and Falcon.
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