
Almost Tight Multi-User Security under Adaptive
Corruptions & Leakages in the Standard Model

Shuai Han1,2 , Shengli Liu1,2,3(�) , and Dawu Gu1

1 School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{dalen17,slliu,dwgu}@sjtu.edu.cn
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

3 Westone Cryptologic Research Center, Beijing 100070, China

Abstract. In this paper, we consider tight multi-user security under
adaptive corruptions, where the adversary can adaptively corrupt some
users and obtain their secret keys. We propose generic constructions for
a bunch of primitives, and the instantiations from the matrix decisional
Diffie-Hellman (MDDH) assumptions yield the following schemes:
(1) the first digital signature (SIG) scheme achieving almost tight strong

EUF-CMA security in the multi-user setting with adaptive corrup-
tions in the standard model;

(2) the first public-key encryption (PKE) scheme achieving almost tight
IND-CCA security in the multi-user multi-challenge setting with
adaptive corruptions in the standard model;

(3) the first signcryption (SC) scheme achieving almost tight privacy and
authenticity under CCA attacks in the multi-user multi-challenge
setting with adaptive corruptions in the standard model.

As byproducts, our SIG and SC naturally derive the first strongly se-
cure message authentication code (MAC) and the first authenticated
encryption (AE) schemes achieving almost tight multi-user security un-
der adaptive corruptions in the standard model. We further optimize
constructions of SC, MAC and AE to admit better efficiency.

Furthermore, we consider key leakages besides corruptions, as a natu-
ral strengthening of tight multi-user security under adaptive corruptions.
This security considers a more natural and more complete “all-or-part-
or-nothing” setting, where secret keys of users are either fully exposed
to adversary (“all”), or completely hidden to adversary (“nothing”), or
partially leaked to adversary (“part”), and it protects the uncorrupted
users even with bounded key leakages. All our schemes additionally sup-
port bounded key leakages and enjoy full compactness. This yields the
first SIG, PKE, SC, MAC, AE schemes achieving almost tight multi-user
security under both adaptive corruptions and leakages.

1 Introduction

Cryptography aims to provide two fundamental security guarantees: privacy
and authenticity. Centered around privacy and authenticity, a variety of crypto-
graphic primitives are developed, including public-key encryption (PKE), sym-
metric encryption (SE), digital signature (SIG), message authentication code

https://orcid.org/0000-0002-8156-7089
https://orcid.org/0000-0003-1366-8256
https://orcid.org/0000-0002-0504-9538

(MAC), signcryption (SC), authenticated encryption (AE), etc. To rigorously
define security notions for these primitives, proper security models have to be
set up according to their working environments and the adversaries’ attacking
abilities. Along the path of proving security, PKE and SE are defined with in-
distinguishability under chosen plaintext/ciphertext attacks (IND-CPA/CCA),
SIG and MAC are defined with existential unforgeability under chosen message
attacks (EUF-CMA), and SC and AE with both privacy (Priv) and authenticity
(Auth). To prove a specific primitive construction achieves the security goals,
the most important technique is security reduction. Roughly speaking, a secu-
rity reduction establishes a link from an adversary A against the security of a
primitive to another adversary B solving a well-studied computationally hard
problem, such as the decisional Diffie-Hellman (DDH) and learning with errors
(LWE) problems, with approximately the same running time. The ratio of A’s
advantage εA to B’s advantage εB is defined as the loss factor ` := εA/εB, which
measures the quality of the security reduction.1 If ` is a small constant, we call the
reduction tight. Tight security is more desirable than non-tight one, since it en-
ables a theoretically-sound instantiation without the need to compensate a secu-
rity loss by increasing key lengths or group sizes, and allows universal key-length
recommendations for applications. Many works (e.g., [10, 15, 16, 22, 26, 18]) also
consider the tightness notion called almost tight, where ` depends at most lin-
early (or even better, logarithmically) on the security parameter λ. For ease of
exposition, we will use the term “tight” to denote “(almost) tight” as conven-
tionally did [15, 16, 22, 26, 18], but we will detail the security loss in the security
theorems and scheme comparisons to reflect almost tightness.

Tight Multi-User Security under Adaptive Corruptions (MUc). Cryp-
tographic primitives are usually deployed in multi-user settings. But most of the
security models for the primitives only consider single user. This is acceptable,
since single-user security generally implies multi-user security via a security re-
duction called hybrid argument. But the price is a large loss factor ` at least
nQ, where n is the number of users and Q the number of instances per user [6].
Considering billions of users and trillions of running instances over Internet, the
security loss ` can be as large as 260. Such a large loss factor does hurt and has to
be taken into account in the security parameter configuration during the deploy-
ment of primitives over Internet. To avoid a large loss factor that varies with the
number of users and/or the number of target instances, many works [21, 15, 16]
(to name a few) focus on primitive design with tight multi-user security.

Compared with a single-user setting, a multi-user environment becomes more
involved and leaves more opportunities to adversaries implementing new attacks.
An important attack is key corruption in that the adversary takes full control
of some users and of course their keys. This happens since some adversary may

1 Strictly speaking, the loss factor is defined as ` := (εA/εB) · (T(B)/T(A)), where
T(A) and T(B) denote the running time of A and B, respectively. For reductions
where T(A) and T(B) are approximately the same (as in many related works and
also in this work), the loss factor can be simplified to εA/εB.

2

snatch secrets from some user by system hacking or from key exposure due to
the user’s bad key management. Therefore, it is reasonable for us to consider
Multi-User security under corruptions, which we denote MUc or more precisely
MUc-XX with notion XX depending on the primitive.2 The existing works on
MUc indicates that pursuing tight MUc security is not easy, as shown below.

Technical Difficulties in Achieving Tight MUc Security. As pointed out
in [12, 18], there is a seemingly paradoxical technical problem needing to be
addressed for proving tight MUc-CMA security of SIG. On the one hand, the
security reduction algorithm has to know the signing keys of all users so that it
can successfully answer adversary’s adaptive corruption query without resorting
to a guessing strategy. On the other hand, the reduction algorithm should also be
able to extract an answer to the underlying computationally hard problem from
the adversary’s forged signature. However, if the reduction knows all the signing
keys, it should be able to forge a signature by itself without the adversary.

There exist similar technical problems in achieving tight MUc security for
other primitives. For example, to achieve tight MUc-CPA/CCA security for PKE,
the security reduction algorithm has to know the secret keys of all users to avoid
the loss factor incurred by a guessing strategy. On the other hand, it should also
be able to extract an answer from the adversary’s guessing of challenge bit. This
seems to lead to a similar paradox since the reduction can decrypt the challenge
ciphertexts to learn the challenge bit by itself if it knows all the secret keys.

Impossibility Results on Tight MUc Security. In fact, there is a line of
research which showed impossibility results on tight MUc security for a class of
PKE, SIG, MAC and AE schemes that meet certain conditions.

– PKE. Bader et al. [5] proved that there exists no tight security reduction
from MUc-CPA/CCA security of PKE to non-interactive assumptions, if the
relation between public key and secret key is “unique” or “re-randomizable”.

– SIG. The above impossibility result for PKE also applies to MUc-CMA
security of SIG, except that the relation is defined for the verification key
and signing key [5]. Alternatively, if the signing algorithm is a deterministic
one, there exists no tight security reduction from MUc-CMA security of SIG
to bounded-round assumptions [30].

– MAC. Morgan et al. [30] showed that if MAC is a deterministic one, then
there exists no tight security reduction from MUc-CMA security of MAC to
bounded-round assumptions.

– AE. Jager et al. [23] proved that if AE satisfies a minimal key uniqueness,
any reasonable reduction from MUc to single-user security is not tight.

These impossibility results indicate that it is not an easy job to obtain tight
MUc Security. However, it does not eliminate all hopes as long as we can find
ways bypassing the conditions leading to the impossibility results.

2 For primitives like PKE, SC, AE, we also consider Multi-User Multi-Challenge secu-
rity under corruptions to capture multiple challenge ciphertexts, denoted by MUMCc.

3

Possibility Results on Tight MUc Security. There are very few construc-
tions in the literature proved to have tight MUc security, even in the Random
Oracle (RO) model.

– PKE. To the best of our knowledge, only one PKE scheme in [27] is proved
to be tightly multi-user multi-challenge CCA secure under adaptive corrup-
tions (MUMCc-CCA). Its security proof relies on the RO model.

– SIG. Gjøsteen and Jager [17] and Pan and Wagner [33] proposed tightly
MUc-CMA secure SIG schemes in the RO model. Bader et al. [4] constructed
a tightly MUc-CMA secure SIG scheme in the standard model. Its tree-based
component makes the signature non-compact. Recently, Han et al. [18] de-
signed a new MUc-CMA secure SIG in the standard model. Their scheme
enjoys compact signature while having non-compact public parameters (con-
sisting of over a thousand group elements).

It is more desirable to pursue strong MUc-CMA security of SIG, which even
guarantees the hardness for adversary to forge a new signature for an already
signed message, thus additionally ensuring “non-malleablility” of signatures.
Strongly MUc-CMA secure SIG has important applications in building more
complex primitives such as SC [3] and authenticated key exchange (AKE)
[12], where it can help SC to achieve ciphertext integrity (authenticity) [7]
and AKE to achieve strong notion of “matching conversations” security [8]
(see more discussions in [12]). One may want to resort to the Generalized
Boneh-Shen-Waters (GBSW) transform [35] to convert a (non-strongly) se-
cure SIG scheme to a strongly secure one, with the help of chameleon hash
functions. However, the GBSW transform was originally proposed in the
single-user setting, and was recently extended to the multi-user setting in
[28], but without the consideration of corruptions. As noted in [28], it seems
difficult to show that the GBSW transform also works under corruptions
and preserves the tightness, i.e., converting a tightly MUc-CMA secure SIG
scheme to a tightly and strongly MUc-CMA secure one. The reason is, the
resulting SIG scheme contains the trapdoor of chameleon hash in its secret
key, thus corruption of secret key means revealing of trapdoor, which is not
supported by the security of chameleon hash [28].

Up to now, only one SIG scheme in a recent work [12] is proved to have
tight strong MUc-CMA security, based on the RO model.

– SignCryption(SC). In [9], Bellare and Stepanovs defined multi-user secu-
rity for SC to cover both insider and outsider security. Their security notions
are essentially multi-user CCA security under adaptive corruptions which
considers both privacy (MUMCc-Priv) and authenticity (MUMCc-Auth). They
also designed a SC scheme with security proved in the RO model.

– MAC and AE. Note that SIG naturally implies a MAC scheme and SC
implies an AE scheme. As far as we know there is no approach to tight MUc-
CMA security other than derived from SIG. Similar statement holds for AE.

Up to now, there exists no PKE scheme achieving tight MUMCc-CCA security,
no SIG and MAC achieving tight strong MUc-CMA security, and no SC and AE
achieving tight MUMCc-Priv&Auth in the standard model. The challenges are:

4

Can we fill the aforementioned blanks on tight MUc security in the standard
model? Can we step even forward by considering tight multi-user security under
not only adaptive corruptions but also key leakages?

1.1 Our Contributions

We propose generic constructions for a bunch of primitives and prove their tight
multi-user security under adaptive corruptions and key leakages.

• We propose generic constructions of SIG, PKE, SC, MAC, AE and prove
their MUc security with tight security reductions. The instantiations yield
the following concrete schemes from the matrix DDH (MDDH) assumptions
[14] (which corresponds to the standard DDH, k-Linear assumptions under
different parameters) over asymmetric pairing groups in the standard model:

– the first PKE scheme achieving almost tight MUMCc-CCA security;

– the first SIG scheme achieving almost tight strong MUc-CMA security;

– the first SC scheme achieving almost tight MUMCc-Priv&Auth security;

– the first MAC scheme achieving almost tight strong MUc-CMVA security;

– the first AE scheme achieving almost tight MUMCc-Priv&Auth security.

Moreover, all our schemes are fully compact, i.e., all the parameters, keys,
signatures, ciphertexts consist of only a constant number of group elements.

• We formalize stronger multi-user security notions for the primitives under
not only adaptive corruptions but also key leakages, denoted by MUc&l. In
addition to MUc, the MUc&l security protects the uncorrupted users even if
adversary also obtains bounded leakage information on their secret keys.

Key leakage [2, 32] is closely related to corruption, especially in the multi-
user setting, and MUc&l is a natural strengthening of MUc. The reason is as
follows. Existing MUc security considers an “all-or-nothing” setting, where
secret keys of users are either fully exposed to adversary (“all”) or completely
hidden to adversary (“nothing”), and it protects the uncorrupted users. In
realistic environments, there would naturally be users whose secret keys are
only partially leaked to adversary (“part”). These users sit in a situation that
is neither “all” nor “nothing”. The new MUc&l security additionally takes into
account the security of these users. Hence the new MUc&l security considers
a more natural and more complete setting of “all-or-part-or-nothing”.

Thanks to the leakage resilience property of the building blocks, the
almost tight MUc security of all our SIG, PKE, SC, MAC, AE schemes can
be further strengthened to support key leakage, thus achieving almost tight
MUc&l security.

• At the heart of our constructions is new technical tool called Publicly-
Verifiable Quasi-Adaptive Hash Proof System and a set of new properties
for it. These, together with our novel tight proof strategies for handling cor-
ruptions, help us circumvent the seemingly paradoxical technical problems.

5

We refer to Table 1 and Table 2 for comparisons of our SIG and PKE with
known schemes, respectively.

In summary, our work shows that almost tight MUc security (and even to-
gether with full compactness) for SIG, PKE, SC, MAC and AE are achievable in
the standard model. Moreover, our MDDH-based schemes support bounded key
leakages as well, thus our work also provides the first schemes achieving almost
tight MUc&l security, no matter in the standard model or RO model.

Table 1. Comparison of signature (SIG) schemes that have (almost) tight MU-CMA
security under adaptive corruptions (MUc-CMA). The column Standard Model shows
whether the security is proved in the standard model. The column Strong Security
shows whether the scheme is proved strongly existentially unforgeable. The column
Corruption? asks whether the security is proved in the presence of adaptive corrup-
tions. The column Leakage? asks whether the security is proved additionally in the
presence of key leakages, and if so, a leakage rate (defined as the ratio of leakage amount
to secret key size) is presented. The column Full Compactness shows whether the
scheme is fully compact (i.e., all the public parameters pp, verification key vk, signing
key sk and signature σ consist of only a constant number of group elements or lattice
vectors), and if not, the non-compact part is presented. The column Security Loss
shows the security loss factor of the reductions, where λ denotes the security parameter.
The column Assumption shows the computational assumption on which the security
is based.

SIG Scheme
Standard

Model
Strong

Security
Corruption? Leakage? Full Compactness

Security
Loss

Assumption

BHJKL [4, 21] X – X – × (non-compact σ) O(1) MDDH

GJ [17] × – X – X O(1) DDH

DGJL [12] × X X – X O(1) DDH or φ-Hiding

HJKLPRS [18] X × X – × (non-compact pp) O(λ) MDDH

PW [33] × – X – × (non-compact vk) O(1) LWE

Our SIGMDDH X X X X (1
6 − o(1)) X O(log λ) MDDH

Table 2. Comparison of public-key encryption (PKE) schemes that have (almost) tight
MUMC-CCA security under adaptive corruptions (MUMCc-CCA) or key leakages. The
columns have similar meanings as those in Table 1.

PKE Scheme
Standard

Model
Corruption? Leakage? Full Compactness

Security
Loss

Assumption

HLLG [20] X – X (1
18 − o(1)) X O(log λ) MDDH

LLP [27] × X – X O(1) CDH

Our PKEMDDH X X X (1
3 − o(1)) X O(log λ) MDDH

2 Technical Overview

In this section, we provide a technical overview of our results. We show the main
ideas in our generic constructions of SIG and PKE, and give a high-level overview
of their tight MUc security proofs in Subsect. 2.1 and Subsect. 2.2, respectively.

6

We describe our SC, MAC and AE constructions and how to optimize them
in Subsect. 2.3. Then in Subsect. 2.4, we explain the instantiations from the
MDDH assumptions and explain why our aforementioned constructions support
key leakage and achieve tight MUc&l security. Finally, in Subsect. 2.5, we compare
our technique with existing techniques for tight MUc security.

2.1 Our SIG: Technical Overview

Our starting point is a useful tool called Quasi-Adaptive Hash Proof System
(QA-HPS), which was proposed by Han et al. [20] for achieving tight leakage
resilient security of PKE. QA-HPS generalizes HPS [11] with a collection L =
{Lρ}ρ of NP-languages (Lρ ⊆ X) and a family of projection functions α(·). The
projection key is determined by pk := αρ(sk), hence depends on language Lρ.
Meanwhile, QA-HPS has two ways of computing the hash value Λsk(x): the
public evaluation Pub(pk, x, w) for the instance x ∈ Lρ with witness w, and the
private evaluation Priv(sk, x) for x ∈ X . Its correctness requires Pub(pk, x, w) =
Priv(sk, x) = Λsk(x) for x ∈ Lρ. Moreover, the subset membership problem
(SMP) asks the computational indistinguishability of x←$ Lρ and x ←$ X .

Another technical tool is Quasi-Adaptive Non-Interactive Zero-Knowledge
argument (QA-NIZK) proposed by Jutla and Roy [24], where the common refer-
ence string crs depends on language Lρ. For tag-based QA-NIZK [25], there are
two ways of generating a proof π for x ∈ Lρ w.r.t. tag τ : Prove(crs, τ, x, w) using
a witness w for x ∈ Lρ, and the simulator Sim(crs, tdcrs, τ, x) using a trapdoor
tdcrs. With VrfyNIZK(crs, τ, x, π), one can verify whether π is a valid proof. Perfect
zero-knowledge requires that the proofs generated by Prove and Sim are iden-
tically distributed. Besides, unbounded simulation-soundness (USS) [34, 22, 1]
stipulates that a PPT adversary cannot prove a false statement x /∈ Lρ, even if
it can obtain multiple simulated proofs for instances not necessarily in Lρ.

QA-HPS and HPS have found wide applications in designing PKE [11], MAC
[13], etc. However, there are rarely applications in building SIG schemes, mainly
because the designated-verifier style inherent in (QA)HPS is insufficient to sup-
port public verification of SIG. To fill the gap, we propose a new tool.

Publicly-Verifiable QA-HPS. The core technical tool underlying our SIG
construction is a Publicly-Verifiable variant of QA-HPS, or PV-QA-HPS in short,
which enables public verification of hash values with an extra verification key.
We introduce a verification key generation function ν(·) to compute verification
key vk := ν(sk), and a verification algorithm VrfyHPS(vk, x, hv) to check whether
an element hv equals the hash value Λsk(x) of x with the help of vk.

We also define two important properties for PV-QA-HPS, which play essen-
tial roles in the tight security reduction of our SIG.

• Verification soundness. It is a computational property requiring that,
given all secret/verification key pairs {(ski, vki)}i∈[n], it is hard for any PPT
adversary to come up with an index i∗ ∈ [n], an instance x∗ ∈ X and a hash

7

value hv∗ which is false but passes the verification w.r.t. key pair (ski∗ , vki∗),
i.e., hv∗ 6= Λski∗ (x∗) but VrfyHPS(vki∗ , x

∗, hv∗) = 1.

• 〈L0,L 〉-One-Time(OT)-extracting. It is a statistical property param-
eterized by two language collections L0 = {Lρ0}ρ0 and L = {Lρ}ρ. It
demands that the hash value Λsk(x∗) for any x∗ ∈ Lρ ∈ L retains a large
enough min-entropy, even conditioned on the verification key vk = ν(sk)
and the projection key pkρ0 = αρ0(sk) w.r.t. language Lρ0 ∈ L0. This min-
entropy makes sure that any (unbounded) adversary is unable to guess the
correct hash value Λsk(x∗), except with a negligible probability.

Our SIG from PV-QA-HPS and QA-NIZK. The building blocks for our
SIG construction consists of a PV-QA-HPS scheme PVQAHPS = (α(·), ν(·),Pub,
Priv,VrfyHPS) for both language Lρ ∈ L and language Lρ0 ∈ L0

3, a tag-based
QANIZK = (Prove,VrfyNIZK,Sim) for Lρ and a collision-resistant hash function
H. The signing and verification keys of SIG are just the secret key sk and
verification key vk = ν(sk) of PVQAHPS. The signature for message m is

σ := (x ←$ Lρ, d := Priv(sk, x), π := Prove(crs, τ, x, w))4, with τ := H(vk,m).

The verification of SIG checks VrfyHPS(vk, x, d) = 1 and VrfyNIZK(crs, τ, x, π) = 1.
In the strong MUc-CMA security model, adversary A adaptively issues user-

message pairs (i,m) to the signing oracle and obtains valid signatures σ. It can
also issue corruption queries and get the corresponding signing keys. A tries to
output a fresh and valid forgery (i∗,m∗, σ∗) /∈ {(i,m, σ)} for an uncorrupted
user i∗.

Our tight strong MUc-CMA security proof goes with three steps. See also Fig.
1 for a graphical high-level overview.

Step 1. Switch language from Lρ to Lρ0 for signing queries. Through sign-
ing queries, A obtains a bunch of tuples (i,m, σ = (x, d, π)), where σ is a
valid signature of m under ski.

• According to the perfect zero-knowledge of QANIZK, the computation of
π by Prove can be replaced by Sim without any witness of x ∈ Lρ.

• By the hardness of (multi-fold) SMP, the samplings of all x can be
changed from x ←$ Lρ to x←$ Lρ0 .

• For x ∈ Lρ0 with witness w, d := Priv(ski, x) = Pub(αρ0(ski), x, w). So

σ =
(
x ←$ Lρ0 , d := Pub(αρ0(ski), x, w), π := Sim(crs, tdcrs, τ, x)

)
.

Now αρ0(ski) (out of the whole ski) suffices for generating σ.

3 This means that PVQAHPS works correctly both for x ∈ Lρ with pk = αρ(sk) and
x ∈ Lρ0 with pk = αρ0(sk).

4 Here ρ is part of the public parameters of SIG and is chosen from the language
collection L by the setup algorithm of SIG, while w is a witness for x ∈ Lρ and is
picked along with x ←$ Lρ by the signing algorithm of SIG.

8

Step 1: SMP

Step 2: USS Step 3: OT-Extracting

<latexit sha1_base64="D5VsYXburkfVfKoBTqp7Eg3ubbA=">AAACF3icbVC7TsMwFHXKq7Q8AixILBYFialKGICxgoWBoUj0ITVV5LhOa9VxItupqKLwH+ysMLIyICFWRv6AH4AZp+1AW450paNz79G993gRo1JZ1qeRW1hcWl7JrxaKa+sbm+bWdl2GscCkhkMWiqaHJGGUk5qiipFmJAgKPEYaXv8i6zcGREga8hs1jEg7QF1OfYqR0pJr7t5Ch3LoBEj1MGLJVeomjuiFqWuWrLI1Apwn9oSUKgffz6+D4k/VNb+cTojjgHCFGZKyZVuRaidIKIoZSQtOLEmEcB91SUtTjgIi28nogxQeaqUD/VDo4gqO1L+OBAVSDgNPT2aXytleJk6tSDJFSF/+52jFyj9rJ5RHsSIcj9f7MYMqhFlIsEMFwYoNNUFYUP0BxD0kEFY6yoKOxp4NYp7Uj8v2Sdm61hmdgzHyYA/sgyNgg1NQAZegCmoAgzvwAB7Bk3FvvBhvxvt4NGdMPDtgCsbHL0hUpKk=</latexit>

x 2 L⇢

<latexit sha1_base64="HflX5RlZZPGAJoBSTFTWTKiECM0=">AAACGXicbVC7TsMwFHXKq7Q8AmywWBQkpiphAMYKFgaGItGH1FSR4zqtVceJbKeiiiLxH+ysMLEjFsTKxB/wAzDjtB1oy5GudHTuPbr3Hi9iVCrL+jRyC4tLyyv51UJxbX1j09zarsswFpjUcMhC0fSQJIxyUlNUMdKMBEGBx0jD619k/caACElDfqOGEWkHqMupTzFSWnLN3VvoUA6dAKkeRiy5St3EEb3QtVLXLFllawQ4T+wJKVUOvp9fB8Wfqmt+OZ0QxwHhCjMkZcu2ItVOkFAUM5IWnFiSCOE+6pKWphwFRLaT0Q8pPNRKB/qh0MUVHKl/HQkKpBwGnp7MbpWzvUycWpFkipC+/M/RipV/1k4oj2JFOB6v92MGVQizmGCHCoIVG2qCsKD6A4h7SCCsdJgFHY09G8Q8qR+X7ZOyda0zOgdj5MEe2AdHwAanoAIuQRXUAAZ34AE8gifj3ngx3oz38WjOmHh2wBSMj1+Kr6VM</latexit>

x 2 L⇢0

<latexit sha1_base64="lz/8SdsaSP5yBXPogGf+gz/OtRg=">AAACGXicbVC7TsMwFHXKq7Q8CmywWBQkxFAlDMBYwcLAUCT6kJoQOa7TWnWcyHYqqqgS/8HOChM7YkGsTPwBPwAzTtuBthzpSkfn3qN77/EiRqUyzU8jMze/sLiUXc7lV1bX1gsbmzUZxgKTKg5ZKBoekoRRTqqKKkYakSAo8Bipe93ztF/vESFpyK9VPyJOgNqc+hQjpSW3sH17cwhtyqEdINXBiCWXAzexRSccuIWiWTKHgLPEGpNiee/7+bWX/6m4hS+7FeI4IFxhhqRsWmaknAQJRTEjg5wdSxIh3EVt0tSUo4BIJxn+MID7WmlBPxS6uIJD9a8jQYGU/cDTk+mlcrqXihMrklQR0pf/OZqx8k+dhPIoVoTj0Xo/ZlCFMI0JtqggWLG+JggLqj+AuIMEwkqHmdPRWNNBzJLaUck6LplXOqMzMEIW7IBdcAAscALK4AJUQBVgcAcewCN4Mu6NF+PNeB+NZoyxZwtMwPj4BXpJpUU=</latexit>

x⇤ 2 L⇢
<latexit sha1_base64="FzUqGbPnM/1TtgzSe1n5yP2uCgQ=">AAACEnicbVC7TsNAEFzzDOFlSElzIkJCFJFNAXRE0FAGiTykxETnyzk55Xy27s6IyMpf0NPCL9AhWn6AP+AX6Dg7KUjCSCuNZne0u+PHnCntOF/W0vLK6tp6YaO4ubW9s2vv7TdUlEhC6yTikWz5WFHOBK1rpjltxZLi0Oe06Q+vs37zgUrFInGnRzH1QtwXLGAEayN17dLj/QnqMIE6IdYDgnnaGnftslNxcqBF4k5J+fInyFHr2t+dXkSSkApNOFaq7Tqx9lIsNSOcjoudRNEYkyHu07ahAodUeWl+/BgdGaWHgkiaEhrl6l9HikOlRqFvJrMT1XwvE2dWpJkiVaD+c7QTHVx4KRNxoqkgk/VBwpGOUJYP6jFJieYjQzCRzHyAyABLTLRJsWiiceeDWCSN04p7VnFunXL1CiYowAEcwjG4cA5VuIEa1IHACJ7hBV6tJ+vNerc+JqNL1tRTghlYn7+SV6Fi</latexit>

x⇤ 2 X

<latexit sha1_base64="Qnj+FG03+vzTQLh4Z+mThxzOw1g=">AAACMHicdVDLSgMxFM34tr6qLt0Eq6CbMinS1p3oxmUF+4BOGTJpxgnNPEgyQgnzHf6HC3euBP0FXYk7ca9rM62CFT0QOJxzby7neAlnUtn2kzU1PTM7N7+wWFhaXlldK65vtGScCkKbJOax6HhYUs4i2lRMcdpJBMWhx2nbG5zkfvuSCsni6FwNE9oL8UXEfEawMpJbRI52AplgQjVKVOZgngTY1Y4I4mxPDlzNsv2JgcwtluyybdsIIZgTVKvahhwe1iuoDlFuGZSOdt5v7i6XPhpu8dXpxyQNaaQIx1J2kZ2onsZCMcJpVnBSSc3/A3xBu4ZGOKSyp0fRMrhrlD70Y2FepOBI/bmhcSjlMPTMZIhVIH97uThxQueKkL78a6ObKr/e0yxKUkUjMj7vpxyqGObtwT4TlCg+NAQTwUwCSAIsMFGm44Kp5js//J+0KmVULR+cmY6OwRgLYAtsgz2AQA0cgVPQAE1AwBW4Bffgwbq2Hq1n62U8OmV97WyCCVhvn0QIsDM=</latexit>

{↵⇢(ski)}
<latexit sha1_base64="BFJEK+LE6OVY3M5P63Ky3sFZKrE=">AAACMnicdVDLSgMxFM34tr6qLt0EH6CbkqjYuhPduFSwVeiUIZNmnNDMgyRTKGE+xP8Qty7c6CfoTty4cKtrM62CFT0QOJxzby7n+KngSiP06IyMjo1PTE5Nl2Zm5+YXyotLDZVkkrI6TUQiL3yimOAxq2uuBbtIJSORL9i53zkq/PMuk4on8ZnupawVkcuYB5wSbSWvvOMaN1QpoczgVOcuEWlIPOPKMPFQvqk6nuH51tBI7pXXUAUhhDGGBcHVPWTJ/n5tG9cgLiyLtYP195u77szHiVd+ddsJzSIWayqIUk2MUt0yRGpOBctLbqaY/b9DLlnT0phETLVMP1wON6zShkEi7Ys17Ks/NwyJlOpFvp2MiA7Vb68Qh06YQpEqUH9tNDMd1FqGx2mmWUwH54NMQJ3Aoj/Y5pJRLXqWECq5TQBpSCSh2rZcstV854f/k8Z2Be9Vdk9tR4dggCmwAlbBJsCgCg7AMTgBdUDBFbgF9+DBuXaenGfnZTA64nztLIMhOG+flnOw1g==</latexit>

{↵⇢0(ski)}

<latexit sha1_base64="qigaDChGu5OaniTV89y6Ks8PRno=">AAACMHicdVDLSgMxFM3UV62vqks3oUWoVcqkSFsXYtGNywpWhU5bMmmmDc08SDJiGeYvBP/DvVv9BbsSd+JXmGkVVPRA4HDOvbmcYwecSWWaYyM1Mzs3v5BezCwtr6yuZdc3LqQfCkKbxOe+uLKxpJx5tKmY4vQqEBS7NqeX9vAk8S+vqZDM987VKKBtF/c95jCClZa6WdTrFOEhtFysBtKJGoJdxwU57EasU4z34E2nuAOtgQwwoREKVAyPutm8WTJNEyEEE4KqFVOTg4NaGdUgSiyNfD1n7d6O66NGN/tm9XwSutRThGMpW8gMVDvCQjHCaZyxQkn1/0Pcpy1NPexS2Y4m0WK4rZUedHyhn6fgRP2+EWFXypFr68lJhN9eIv44ESWKkI78a6MVKqfWjpgXhIp6ZHreCTlUPkzagz0mKFF8pAkmgukEkAywwETpjjO6mq/88H9yUS6hSmn/THd0DKZIgy2QAwWAQBXUwSlogCYg4A48gEfwZNwbz8aL8TodTRmfO5vgB4z3D+X0rEI=</latexit>

d⇤ = Priv(ski⇤ , x
⇤)?

<latexit sha1_base64="jVH2O2qgav+3NjpMzCvUFQPAoAw=">AAACQnicdVDLSgMxFM34tr6qLt0ERdAqZSKidSEW3bisaKvQaYdMmrGhmQdJRhzC/IU/4X+4d2v/QNyJWxdmWgUVvRA4OfeeeznHizmTyrb71sjo2PjE5NR0YWZ2bn6huLjUkFEiCK2TiEfiysOSchbSumKK06tYUBx4nF56vZO8f3lDhWRReKHSmLYCfB0ynxGsDOUWT5wAq670dUP4aebqr+9p7TzLNm56rmbtUrYNb9ulbdhplzbhIUTQ6coYE6pRrDJ45BbX7LJt2wghmAO0v2cbcHBQ2UEViPKWqbXqqrN116+mNbf47HQikgQ0VIRjKZvIjlVLY6EY4TQrOImkZn8PX9OmgSEOqGzpgdkMrhumA/1ImBcqOGC/KzQOpEwDz0wOvPzu5eSPEzpnhPTlX4pmovxKS7MwThQNyfC8n3CoIpjnCTtMUKJ4agAmghkHkHSxwESZ1Asmmi//8H/Q2CmjvfLumcnoGAxrCqyAVbABENgHVXAKaqAOCLgHj+AJ9K0H68V6td6GoyPWp2YZ/Cjr/QPRfbOV</latexit>

VrfyHPS(vki⇤ , x
⇤, d⇤) = 1?

<latexit sha1_base64="xCVerZKaiUWYCZokUPtY5gkMVaU=">AAACL3icdVDLSgMxFM34rPVVdekmVARFKImItguh6MZlBauFzlAyaaYNzWSGJCOUYf5C/A/3bvUXpBtxqX9hplWwohcuHM65l8M5fiy4NgiNnJnZufmFxcJScXlldW29tLF5raNEUdakkYhUyyeaCS5Z03AjWCtWjIS+YDf+4DzXb26Z0jySV2YYMy8kPckDTomxVKeE3BS6fR0TylIcmwzeDjocnkJXJnvawv1p1c06pR1UQQhhjGEO8MkxsqBWqx7iKsS5ZGenXnYP7kb1YaNTene7EU1CJg0VROs2RrHxUqIMp4JlRTfRzBoMSI+1LZQkZNpLx8kyuGuZLgwiZVcaOGZ/fqQk1HoY+vYyJKavf2s5OWWR5ozSgf7ro52YoOqlXMaJYZJO7INEQBPBvDzY5YpRI4YWEKq4TQBpnyhCja24aKv5zg//B9eHFXxcObq0HZ2ByRTANiiDPYDBCaiDC9AATUDBPXgET+DZeXBenFfnbXI643z9bIGpcT4+AS+SrH4=</latexit>{vki = ⌫(ski)}

Step 2: Verification Soundness

Forgery

Signing Queries

Verification Keys

Forgery fails since

Corruption Queries
<latexit sha1_base64="gVIeRZ/pGanLtUnW1cs/jU0tKd0=">AAACpnicdZHNahsxEMfl7UfS7ZfTHnsRCYFAjZFCSZybaS49lRTqOOBdXK121haWtIukTWLEPkGveZFe2yfJ21Rrt1C37oDgz39+w2hmskoK6wi570QPHj56vLP7JH767PmLl929V5e2rA2HES9laa4yZkEKDSMnnISrygBTmYRxtjhv8+NrMFaU+rNbVpAqNtOiEJy5YE27h4nHydxWjIOnlWuwXUzFppM08bR7QPqEEEopbgU9PSFBnJ0NjukA0zYV4mC4n7y9ux8uL6Z7HZHkJa8VaMcls3ZCSeVSz4wTXEITJ7WF0GLBZjAJUjMFNvWreRp8GJwcF6UJTzu8cv+s8ExZu1RZIBVzc/t3rjU3WvjWMbaw2yomtSsGqRe6qh1ovm5f1BK7Ercrw7kwwJ1cBsG4EWECzOfMMO7CYuM40XDDS6WYzn1iIG+wTxzcutW3J2aWpZ72SI80zSY6M7AFJT36L5rJeisa4KYJx/l9Afx/cXncpyf9d5/Cld6jdeyiN2gfHSGKTtEQfUAXaIQ4+oq+oe/oR3QUfYxG0XiNRp1fNa/RRkRffgIgHNZf</latexit>{ski }

<latexit sha1_base64="3qq+WosDGve3Y5UHeXvj5lTcL1Y=">AAACpnicdZHNbhMxEMed5aMlfKVw5GK1qhRCFNkVatNbBBdOKEikqZTdBK93NrXi9W5tb2lk7RNw5UV6LU/St8GbgEQgjGTpr//8RjOeiQspjCXkrhHcu//g4c7uo+bjJ0+fPW/tvTgzeak5jHguc30eMwNSKBhZYSWcFxpYFksYx4v3dX58BdqIXH22ywKijM2VSAVn1luz1mEy7eBQwSUOM2YvTOqGWlxVbbOYOTHtVF18Pe28nrUOSI8QQinFtaAnx8SL09P+Ee1jWqd8HAz2wzff7wbL4WyvIcIk52UGynLJjJlQUtjIMW0Fl1A1w9JAwfiCzWHipWIZmMit/lPhQ+8kOM21f8rilftnhWOZMcss9uRq6L9ztbnRwtWONqnZVjEpbdqPnFBFaUHxdfu0lNjmuF4ZToQGbuXSC8a18D/A/IJpxq1fbLPpt/eV51nGVOJCDUmFXWjh2q7Gnuh5HDnaJV1SVZvoXMMWlHTpv2gsy62oh6vKH+f3BfD/xdlRjx733n7yV3qH1rGLXqF91EYUnaAB+oCGaIQ4+oZu0C36EbSDj8EoGK/RoPGr5iXaiODLT9/Z1cw=</latexit>

d⇤ 6= Priv(ski⇤ , x
⇤)

Fig. 1. The high-level overview of our proof strategy for tight strong MUc-CMA security
of SIG. The black arrows illustrate language switches, and the blue arrows as well as
the blue brace show the applications of quasi-adaptive properties.

Step 2. Restrict language from X to Lρ in the forgery. A’s forgery (i∗,m∗,
σ∗ = (x∗, d∗, π∗)) is successful if it is fresh and passes the validity check
VrfyHPS(vki∗ , x

∗, d∗) = 1∧VrfyNIZK(crs, τ∗, x∗, π∗) = 1 with τ∗ := H(vki∗ ,m
∗).

• By the verification soundness of PVQAHPS, the check of VrfyHPS(vki∗ , x
∗,

d∗) = 1 can be replaced by d∗ = Priv(ski∗ , x
∗).

• The USS property of QANIZK makes sure that x∗ ∈ Lρ in the forgery,
except with a negligible probability.

Strategy for corruptions in reductions. Note that in the above two steps,
when reducing to SMP or QANIZK, the reduction algorithms can choose all
users’ signing keys themselves. As for the verification soundness of PVQAHPS,
the reduction algorithm gets all users’ signing keys from its own challenger.
Therefore, all of them are able to handle A’s adaptive corruption queries.

Step 3. A’s forgery fails due to the 〈L0,L 〉-OT-extracting property.
Now all information about ski∗ that A learns from the signing queries is
limited to the projection key αρ0(ski∗) on language Lρ0 . On the other hand,
x∗ in A’s forgery is restricted in Lρ and A wins only if d∗ = Priv(ski∗ , x

∗).
By the 〈L0,L 〉-OT-extracting property of PVQAHPS, A hardly succeeds.

How we circumvent the seemingly paradoxical technical problem. Now
we conclude how we circumvent the paradoxical technical problem for achieving
tight strong MUc-CMA security of SIG: our proof goes with a constant number
of computationally indistinguishable changes to arrive at a final game where the
technical problem has turned into a statistical one.

(1) All the reduction algorithms to computational properties or problems possess
the signing keys of all users to handle adaptive corruption queries.

(2) After arriving at a statistical problem (〈L0,L 〉-OT-extracting property), it
is hard for the adversary to forge valid signature information-theoretically.

How we circumvent the existing impossibility results. Below we explain
how we circumvent the impossibility results on tight MUc security. Recall that

9

the impossibility results apply to a SIG scheme when the relation between the
verification key and the signing key is “unique” or “re-randomizable” [5], or the
signing algorithm is a deterministic one [30].

Firstly, the signing algorithm of our SIG is not a deterministic one since it
samples a random element x from Lρ with witness w.

Next, we show that the relation between the verification key vk = ν(sk) and
the signing key sk of our SIG is neither “unique” nor “re-randomizable”, by the
properties we defined for PV-QA-HPS.

– The relation is not “unique” due to the statistical 〈L0,L 〉-OT-extracting
property of PV-QA-HPS. Suppose, towards a contradiction, that the relation
is unique, then an (unbounded) adversary can uniquely determine sk from
ν(sk), and thus break the property easily by computing hv∗ = Λsk(x∗) for
any x∗ ∈ Lρ.

– The relation is not “re-randomizable” due to the verification soundness prop-
erty of PV-QA-HPS. Suppose, towards a contradiction, that the relation is
re-randomizable, then for any user i∗ ∈ [n], an adversary can resample an-
other sk′i∗ from vki∗ and ski∗ , such that vki∗ = ν(ski∗) = ν(sk′i∗). Then the
adversary picks x∗ from X uniformly, computes hv∗ = Λsk′

i∗
(x∗) using sk′i∗ ,

and outputs (i∗, x∗, hv∗). On the one hand, since vki∗ is also the verification
key of sk′i∗ , i.e., vki∗ = ν(sk′i∗), hv

∗ passes the verification w.r.t. vki∗ , i.e.,
VrfyHPS(vki∗ , x

∗, hv∗) = 1. On the other hand, we have sk′i∗ 6= ski∗ with
high probability (≥ 1/2, by the fact that the relation between vk and sk is
not unique, as shown above), thus hv∗ = Λsk′

i∗
(x∗) 6= Λski∗ (x∗) with high

probability. Consequently, the adversary breaks the verification soundness
with high probability.

Of course, being neither “unique” nor “re-randomizable” nor “deterministic”
is only a necessary condition for tight MUc security. To achieve tight MUc secu-
rity, the cooperation of PV-QA-HPS and QA-NIZK in the design of our SIG as
well as the nice properties of PV-QA-HPS play the most important roles.

2.2 Our PKE: Technical Overview

Our PKE is built upon the recent work [20], where the concept of QA-HPS
was proposed to construct PKE with tight leakage resilient security. That tight
security heavily relies on two statistical properties of QA-HPS: key-switching
and universal. Intuitively, 〈L ,L0〉-key-switching requires that conditioned on a
projection key αρ(sk) w.r.t. language Lρ ∈ L , the projection key αρ0(sk) w.r.t.
language Lρ0 ∈ L0 can be switched to αρ0(sk′) for an independent key sk′.

The PKE in [20] makes use of three QA-HPS schemes, one for masking the
message and the other two for proving the well-formedness of ciphertext. As
far as we understand, it is hard to prove the tight security of their PKE under
adaptive corruptions, since their proof strategy that increases the entropy in
secret keys gradually does not work in the presence of corruptions.

10

To support corruptions in the tight security, (1) we define new properties for
QA-HPS, (2) we use another approach: QA-HPS with new properties to mask
the message and QA-NIZK to prove the well-formedness of ciphertext, and (3)
we develop a new proof strategy to achieve tight MUMCc-CCA security.

QA-HPS with New Properties. We define two new properties for QA-HPS.

• Multi-language multi-fold SMP. This new type of SMP asks the compu-
tational indistinguishability of (xi,j ←$ Lρ)i∈[n],j∈[Q] and (xi,j ←$ L

ρ
(i)
0

)i∈[n],j∈[Q],

where Lρ ∈ L , and L
ρ
(1)
0
, ...,L

ρ
(n)
0
∈ L0 are n independent languages chosen

from L0. Jumping ahead, this new SMP enables us to switch the language
Lρ to different languages {L

ρ
(i)
0
}i∈[n] for different users in our tight proof.

• L0-Multi-key multi-extracting. It demands the pseudorandomness of
multiple hash values {Λski(xj)}i∈[n],j∈[Q] of multiple instances x1, ..., xQ ∈
Lρ0 under uniformly and independently chosen keys sk1, ..., skn.

Our PKE from QA-HPS with New Properties and QA-NIZK. The
secret and public keys of PKE are just the secret key sk and projection key
pk = αρ(sk) of QA-HPS for language Lρ. The ciphertext for plaintext m is

c := (x ←$ Lρ, d := Pub(pk, x, w) +m, π := Prove(crs, τ, x, w)), with τ := H(pk, d).

The decryption of c = (x, d, π) checks whether VrfyNIZK(crs, τ, x, π) = 1 and
recovers m := d− Priv(sk, x) after a successful check.

It is interesting to note that our PKE shares a similar design with our SIG.
However, their tight proofs are quite different.

In the MUMCc-CCA security model, adversary A adaptively issues encryption
queries (i∗,m0,m1) to encryption oracle and obtains challenge ciphertexts c∗ =
(x∗, d∗, π∗) that encrypts mβ under pki∗ , where β ←$ {0, 1} is the challenge bit.
It can issue corruption queries and get the corresponding secret keys, and issue
decryption queries (i, c = (x, d, π)) and obtain the decryption of c under ski.
Finally A outputs a guessing bit β′ and wins if β′ = β.

Our tight MUMCc-CCA security proof goes with five steps. See also Fig. 2 for
a graphical high-level overview.

Step 1. Switch language from Lρ to {L
ρ
(i∗)
0
}i∗∈[n] for encryption queries.

Through encryption queries (i∗,m0,m1), A obtains multiple challenge ci-
phertexts c∗ = (x∗, d∗, π∗).
• According to the perfect zero-knowledge of QANIZK, the computation of
π∗ by Prove can be replaced by Sim without any witness of x∗ ∈ Lρ.

• By the correctness of QAHPS, the computation of d∗ by Pub can be
replaced by d∗ := Priv(ski∗ , x

∗) +mβ , without any witness of x∗ ∈ Lρ.
• By the new multi-language multi-fold SMP, for each user i∗, the sam-

plings of all x∗ can be changed from x∗ ←$ Lρ to x∗ ←$ L
ρ
(i∗)
0

.

• For each user i∗, since x∗ ∈ L
ρ
(i∗)
0

with witness w∗, we have d∗ :=

Priv(ski∗ , x
∗) +mβ = Pub(α

ρ
(i∗)
0

(ski∗), x
∗, w∗) +mβ . Hence

11

Step 5: Multi-Key
Multi-Extracting

Step 3:
Key switching

Decryption Queries

Encryption Queries

Public Keys

Plaintexts are
hidden by

<latexit sha1_base64="UBic+B0a7iK8g4U/Optcf8BFZWA=">AAACOXicdVBNSwMxFMzW7/pV9egl+AF6KYmIVkEQvXhUsLbQLUs2zXZDs7shyQpl2f/ir/DiUfCqV4/exKvo2axVsKIDD4Z58xje+FJwbRB6dEojo2PjE5NT5emZ2bn5ysLihU5SRVmdJiJRTZ9oJnjM6oYbwZpSMRL5gjX83nGxb1wypXkSn5u+ZO2IdGMecEqMlbzKvptBN9SSUJZhaXIoex6HB9AlQobEy1wVJvmGtuLmsM/NvcoqqiKEMMawIHh3B1myt1fbwjWIi5XF6uHa2/Xt5fT7qVd5djsJTSMWGyqI1i2MpGlnRBlOBcvLbqqZDeiRLmtZGpOI6Xb2+WMO163SgUGi7MQGfqo/LzISad2PfOuMiAn1710hDkVkhaJ0oP+6aKUmqLUzHsvUsJgO4oNUQJPAokbY4YpRI/qWEKq4/QDSkChCjS27bKv5/h/+Ty62qninun1mOzoCA0yCZbACNgAGu+AQnIBTUAcUXIE7cA8enBvnyXl2XgbWkvN1swSG4Lx+AMH5sjU=</latexit>

{pki = ↵⇢(ski)}

Step 1:
Multi-language
multi-fold SMP Step 4: SMP

<latexit sha1_base64="8V8IzPa39LSan3FFwUosArnDHOo=">AAACNnicdVC7SgNBFJ2NrxhfUUubwQeoRdgRMUkXtLFUMFHIxmV2MpsdMvtgZjYQhv0Uf0PsbfUDbOxESxutnU0UVPTAhcO553K4x0s4k8q2H6zCxOTU9ExxtjQ3v7C4VF5eack4FYQ2ScxjceFhSTmLaFMxxelFIigOPU7Pvf5Rvj8fUCFZHJ2pYUI7Ie5FzGcEKyO55aqjoRPIBBOqUaIy6GCeBNjVjgjibFv2Xc0ud7OdX6bMLW/YFdu2EUIwJ6h6YBtSr9f2UA2ifGWw0dh8u74dzL2fuOUXpxuTNKSRIhxL2UZ2ojoaC8UIp1nJSSU1AX3co21DIxxS2dGjBzO4ZZQu9GNhJlJwpH6/0DiUchh6xhliFcjfu1z8EaFzRUhf/nXRTpVf62gWJamiERnH+ymHKoZ5h7DLBCWKDw3BRDDzASQBFpgo03TJVPP1P/yftPYq6KCyf2o6OgRjFMEaWAfbAIEqaIBjcAKagIArcAvuwL11Yz1aT9bz2FqwPm9WwQ9Yrx8lh7F3</latexit>

{↵⇢(ski⇤)}

<latexit sha1_base64="wp/qEbF4QtBHYzThyJo1NiiWDYE=">AAACHHicdVDLSgMxFM34rPU16lKEYBHqpiQitt0V3bisYKvQqUMmzdjQzIMkI5RhVn6HbsVt/QVxI24F/8Cdv2DGKqjogQuHc+7hco8XC640Qi/WxOTU9MxsYa44v7C4tGyvrLZVlEjKWjQSkTz1iGKCh6yluRbsNJaMBJ5gJ97gIPdPLphUPAqP9TBm3YCch9znlGgjufaGQ0TcJ27qyH7korO0jLezrKwGboqzbdcuoQpCCGMMc4Kre8iQer22g2sQ55ZBqVEtPdy8XY2arv3q9CKaBCzUVBClOhjFupsSqTkVLCs6iWIxoQNyzjqGhiRgqpt+vJHBLaP0oB9JM6GGH+r3REoCpYaBZzYDovvqt5eLP06kuSKVr/5KdBLt17opD+NEs5COz/uJgDqCeVOwxyWjWgwNIVRy8wGkfSIJ1abPoqnm63/4P2nvVPBeZffIdLQPxiiAdbAJygCDKmiAQ9AELUDBJbgFI3BnXVv31qP1NF6dsD4za+AHrOd3Rm6mLA==</latexit>

↵
⇢
(1)
0

(sk1)

<latexit sha1_base64="dH66LPyk4Zc6LaKNr5QY2N4MOLk=">AAACHHicdVDLSgMxFM34rPVVdSlCsAjtpiRF2roT3bhUsCq0dcikmTY0kxmSjFCGWfkduhW39RfEjbgV/AN3/oIZq6CiBy4czrmHyz1eJLg2CL04E5NT0zOzubn8/MLi0nJhZfVEh7GirElDEaozj2gmuGRNw41gZ5FiJPAEO/UG+5l/esGU5qE8NsOIdQLSk9znlBgruYWNNhFRn7hJW/VDF50nJVlO05IeuIlMy26hiCoIIYwxzAiu15AlOzuNKm5AnFkWxd168eHm7Wp06BZe292QxgGThgqidQujyHQSogyngqX5dqxZROiA9FjLUkkCpjvJxxsp3LJKF/qhsiMN/FC/JxISaD0MPLsZENPXv71M/HEiyRSlff1XohUbv9FJuIxiwyQdn/djAU0Is6ZglytGjRhaQqji9gNI+0QRamyfeVvN1//wf3JSreBaZfvIdrQHxsiBdbAJSgCDOtgFB+AQNAEFl+AWjMCdc+3cO4/O03h1wvnMrIEfcJ7fAQz6pqY=</latexit>

↵
⇢
(n)
0

(skn)
<latexit sha1_base64="76wYLpV62qHFBmMiSQtlyR6ZU1I=">AAACpXicdZHdihMxFMfT8WutX1299CZYZbtQSrLItnu36I03wgrb7kJnHDKZ0zY0kxmSjFpCXsB38Npb8U4fwHfwKXwFM62C1Xog8Od/foeTc05WSWEsId9b0ZWr167f2LvZvnX7zt17nf37E1PWmsOYl7LUlxkzIIWCsRVWwmWlgRWZhIts+bzJX7wBbUSpzu2qgqRgcyVmgjMbrLTzOGayWrDUxXpRpuS166lD73uxhtyZZeqUP/CHaadLBoQQSiluBB0ekyBOTkZHdIRpkwrRPR12v3388eHzWbrfEnFe8roAZblkxkwpqWzimLaCS/DtuDZQMb5kc5gGqVgBJnHrcTx+Epwcz0odnrJ47f5Z4VhhzKrIAlkwuzB/5xpzq4VrHG1mZlfFtLazUeKEqmoLim/az2qJbYmbjeFcaOBWroJgXIswAeYLphm3Ya/tdqzgLS+LgqncNWvz2MUW3tn1t6d6niWO9kmfeL+NzjXsQEmf/otmst6JBtj7cJzfF8D/F5OjAT0ePH0VrvQMbWIPPUSPUA9RNESn6AU6Q2PE0Xv0CX1BX6OD6GV0Hk02aNT6VfMAbUWU/gRv0ted</latexit>

↵
⇢
(n)
0

(sk0
n)

<latexit sha1_base64="GDSk+omIDy56kLBSi3/sbKfw+7E=">AAACpXicdZHdihMxFMfT8WutX1299CZYZbtQSrLItnu36I03wgrb7kJnHDKZ0zY0kxmSjFpCXsB38Npb8U4fwHfwKXwFM62C1Xog8Od/foeTc05WSWEsId9b0ZWr167f2LvZvnX7zt17nf37E1PWmsOYl7LUlxkzIIWCsRVWwmWlgRWZhIts+bzJX7wBbUSpzu2qgqRgcyVmgjMbrLTzOGayWrDUxXpRpuS169FD73uxhtyZZeqoP/CHaadLBoQQSiluBB0ekyBOTkZHdIRpkwrRPR12v3388eHzWbrfEnFe8roAZblkxkwpqWzimLaCS/DtuDZQMb5kc5gGqVgBJnHrcTx+Epwcz0odnrJ47f5Z4VhhzKrIAlkwuzB/5xpzq4VrHG1mZlfFtLazUeKEqmoLim/az2qJbYmbjeFcaOBWroJgXIswAeYLphm3Ya/tdqzgLS+LgqncNWvz2MUW3tn1t6d6niWO9kmfeL+NzjXsQEmf/otmst6JBtj7cJzfF8D/F5OjAT0ePH0VrvQMbWIPPUSPUA9RNESn6AU6Q2PE0Xv0CX1BX6OD6GV0Hk02aNT6VfMAbUWU/gRpLdcj</latexit>

↵
⇢
(1)
0

(sk0
1)

<latexit sha1_base64="dECWKua70rxhtpT1EM6jYHYWnOs=">AAACwnicdZFLbxMxEMed5VW2PFI4crEoiIKiyK5Qm97K48CxSKStlF1WXu9s1sT7wPYWIuPPwzfgC3DmCuKDwBlvAhIpYSRLf/3nNxrPTNpIoQ0h33vBhYuXLl/ZuBpuXrt+42Z/69axrlvFYcxrWavTlGmQooKxEUbCaaOAlamEk3T2rMufnIHSoq5emXkDccmmlcgFZ8ZbSf9JZHFU6IZxsLQxDkdMNgVLbKSKOiFuJ1KQWT1LrHj9yD1wD8/RLkz622RICKGU4k7Q/T3ixcHBaJeOMO1SPrYP7/349Pls8+dRstUTUVbztoTKcMm0nlDSmNgyZQSX4MKo1eBbzNgUJl5WrAQd28WsDt/3TobzWvlXGbxw/66wrNR6XqaeLJkp9PlcZ660sJ2jdK7XVUxak49iK6qmNVDxZfu8ldjUuFsnzoQCbuTcC8aV8BNgXjDFuPFLD8Oogne8LktWZbbbpMM2MvDeLL49UdM0tnRABsS5VXSqYA1KBvRfNJXtWtTDzvnj/LkA/r843h3SveHjl/5KT9EyNtAddBftIIr20SF6gY7QGHH0EX1BX9G34HnwJngb6CUa9H7X3EYrEXz4Bc9I4yU=</latexit>

{↵⇢0(sk
0
i⇤)}

<latexit sha1_base64="N3iKY1HL7Gm5xqgtaotxm1ocdY8=">AAACo3icbZHLbhMxFIad4VbCLYUlG6tRpYKiyFMhyrKCDRIsCmraSpnpyOM5k1j1ZWR7oJE1e16CNTsWbOAJeAeeglfAM+mCNDmSpV+/v6NzyyvBrSPkTy+6cfPW7Ttbd/v37j94+Giw/fjE6towmDAttDnLqQXBFUwcdwLOKgNU5gJO84s37f/pJzCWa3XsFhWkks4ULzmjLljZYOfy/DlOuMKJpG7OqPDvm8wnZq4zcu734mdNkw2GZEy6wOsivhLDw4Ph729/v/44yrZ7PCk0qyUoxwS1dhqTyqWeGseZgKaf1BYqyi7oDKZBKirBpr4bpsG7wSlwqU14yuHO/T/DU2ntQuaBbFu21/9ac6WEbx1jS7spY1q78lXquapqB4oty5e1wE7jdl+44AaYE4sgKDM8TIDZnBrKXNhqv58o+My0lFQVYWtQNNgnDi5d1/bUzPLUxyMyIk2zis4MbEDJKF5Hc1FvRAPcHSe+fop1cbI/jl+OX3wIV3qNlrGFnqIdtIdidIAO0Vt0hCaIoS/oO/qJfkW70bvoY3S8RKPeVc4TtBJR+g+wb9X3</latexit>

x⇤ 2 L
⇢
(1)
0

<latexit sha1_base64="srrRtSIDihC82Ew94D3XHZGdvgA=">AAACo3icbZHLbhMxFIad4VbCLYUlG6tRpYKiyFMhyrKCDRIsCmraSpnpyOM5k1j1ZWR7oJE1e16CNTsWbOAJeAeeglfAM+mCNDmSpV+/v6NzyyvBrSPkTy+6cfPW7Ttbd/v37j94+Giw/fjE6towmDAttDnLqQXBFUwcdwLOKgNU5gJO84s37f/pJzCWa3XsFhWkks4ULzmjLljZYOfy/DlOuMKJpG7OqPDvm8wnZq4zcu731LOmyQZDMiZd4HURX4nh4cHw97e/X38cZds9nhSa1RKUY4JaO41J5VJPjeNMQNNPagsVZRd0BtMgFZVgU98N0+Dd4BS41CY85XDn/p/hqbR2IfNAti3b63+tuVLCt46xpd2UMa1d+Sr1XFW1A8WW5ctaYKdxuy9ccAPMiUUQlBkeJsBsTg1lLmy1308UfGZaSqqKsDUoGuwTB5eua3tqZnnq4xEZkaZZRWcGNqBkFK+juag3ogHujhNfP8W6ONkfxy/HLz6EK71Gy9hCT9EO2kMxOkCH6C06QhPE0Bf0Hf1Ev6Ld6F30MTpeolHvKucJWoko/Qcx4dY0</latexit>

x⇤ 2 L
⇢
(n)
0

<latexit sha1_base64="saOCg37AqPLhskTpKXOU0piivTY=">AAACnXicbZHdahNBFMcnWz9qqjatlwoOVkEkhFkR28tSEbwoUsE0hey6zM6eTYbOxzIz2zYMe+PTeKsXvoBP4YPotbNJL0yTAwN//vM7nK+8Etw6Qn53oo1bt+/c3bzX3br/4OF2b2f31OraMBgyLbQ5y6kFwRUMHXcCzioDVOYCRvn5u/Z/dAHGcq0+u1kFqaQTxUvOqAtW1nty9eUVTrjCiaRuyqjwx03mEzPVGWmy3h4ZkHngVRFfi73D539+/rrY+nuS7XR4UmhWS1COCWrtOCaVSz01jjMBTTepLVSUndMJjINUVIJN/XyMBr8IToFLbcJTDs/d/zM8ldbOZB7Itll78681l0r41jG2tOsyxrUrD1LPVVU7UGxRvqwFdhq3m8IFN8CcmAVBmeFhAsym1FDmwj673UTBJdNSUlWEfUHRYJ84uHLztsdmkqc+7pM+aZpldGJgDUr68Sqai3otGuCmPU588xSr4vT1IH47ePMpXOkILWITPUbP0EsUo310iD6gEzREDH1F39B39CN6Gr2PjqOPCzTqXOc8QksRjf4BsO3T5w==</latexit>

x⇤ 2 L⇢0

<latexit sha1_base64="EWQXBzKu6Lu0bt0MdSTmZ220Zh8=">AAACm3icbZHdahNBFMcn61dN1ab1ThEGqyASwq6I7WWxNyK9qGDaQnYNs7Nnk6HzscycbRuGBZ/GW73yBXwKH0SvnU16YZocGPjzn9/hfOWVFA7j+HcnunX7zt17G/e7mw8ePtrqbe+cOFNbDkNupLFnOXMghYYhCpRwVllgKpdwmp8ftv+nF2CdMPozzirIFJtoUQrOMFjj3pOrL69pKjRNFcMpZ9IfNWOf2qlpxr3deBDPg66K5FrsHrz48/PXxebf4/F2R6SF4bUCjVwy50ZJXGHmmUXBJTTdtHZQMX7OJjAKUjMFLvPzIRr6MjgFLY0NTyOdu/9neKacm6k8kG2r7uZfay6V8K1jXenWZYxqLPczL3RVI2i+KF/WkqKh7Z5oISxwlLMgGLciTED5lFnGMWyz2001XHKjFNNF2BYUDfUpwhXO2x7ZSZ75pB/346ZZRicW1qBxP1lFc1mvRQPctMdJbp5iVZy8GSTvBm8/hSu9J4vYIE/Jc/KKJGSPHJAP5JgMCSdfyTfynfyInkWH0cfoaIFGneucx2QpouE/I9jTRA==</latexit>

x⇤ 2 L⇢ …

Step 2: USS

<latexit sha1_base64="dEBMW6GHmoC5hvLTkxgI5XfJMWk=">AAACt3icdZHNbhMxEMed5aNlCzSFIxeLglSkKLIrlCa3Ci4ci0TaStnVyuudzVrxfmB7WyLLb8Jz8ABwhBfgQeCMNwGJlDCSpb/+8xuNZyZtpNCGkO+94NbtO3d3du+Fe/cfPNzvHzw613WrOEx5LWt1mTINUlQwNcJIuGwUsDKVcJEuXnf5iytQWtTVO7NsIC7ZvBK54Mx4K+mPIoujQjeMg6WNcThisilYYiNV1O5ILxIr3IsbiAuT/iEZEkIopbgT9GREvJhMxsd0jGmX8nF4+uzHpy9Xez/PkoOeiLKatyVUhkum9YySxsSWKSO4BBdGrQbfYsHmMPOyYiXo2K4GdPi5dzKc18q/yuCV+3eFZaXWyzL1ZMlMoW/mOnOjhe0cpXO9rWLWmnwcW1E1rYGKr9vnrcSmxt0OcSYUcCOXXjCuhJ8A84Ipxo3fdBhGFVzzuixZlfk1QuawjQx8MKtvz9Q8jS0dkAFxbhOdK9iCkgH9F01luxX1sHP+OH8ugP8vzo+HdDR8+dZf6RVaxy56gp6iI0TRCTpFb9AZmiKOPqLP6Cv6FkyCJMiDYo0Gvd81j9FGBO9/ATgi3uo=</latexit>

{↵⇢(ski)}
<latexit sha1_base64="gVIeRZ/pGanLtUnW1cs/jU0tKd0=">AAACpnicdZHNahsxEMfl7UfS7ZfTHnsRCYFAjZFCSZybaS49lRTqOOBdXK121haWtIukTWLEPkGveZFe2yfJ21Rrt1C37oDgz39+w2hmskoK6wi570QPHj56vLP7JH767PmLl929V5e2rA2HES9laa4yZkEKDSMnnISrygBTmYRxtjhv8+NrMFaU+rNbVpAqNtOiEJy5YE27h4nHydxWjIOnlWuwXUzFppM08bR7QPqEEEopbgU9PSFBnJ0NjukA0zYV4mC4n7y9ux8uL6Z7HZHkJa8VaMcls3ZCSeVSz4wTXEITJ7WF0GLBZjAJUjMFNvWreRp8GJwcF6UJTzu8cv+s8ExZu1RZIBVzc/t3rjU3WvjWMbaw2yomtSsGqRe6qh1ovm5f1BK7Ercrw7kwwJ1cBsG4EWECzOfMMO7CYuM40XDDS6WYzn1iIG+wTxzcutW3J2aWpZ72SI80zSY6M7AFJT36L5rJeisa4KYJx/l9Afx/cXncpyf9d5/Cld6jdeyiN2gfHSGKTtEQfUAXaIQ4+oq+oe/oR3QUfYxG0XiNRp1fNa/RRkRffgIgHNZf</latexit>{ski }

<latexit sha1_base64="bcQN4lhTZSNZmBD2oPv2SuUMAnc=">AAACknicbVFNbxMxEHWWrxK+EsqNi0WExCGKvBUCxIWWXjhwKBJpI2VXkdc7m1q1vSt7ljay9qdwLb+pP4Ub3k0PpMmTLD29eaN5nskqJR0ydtOL7t1/8PDR3uP+k6fPnr8YDF+eurK2AqaiVKWdZdyBkgamKFHBrLLAdabgLLs4butnv8A6WZqfuKog1XxpZCEFxyAtBsMrmkhDE83xXHDlZ81iMGIT1oFuk/iWjL78LTqcLIY9meSlqDUYFIo7N49ZhannFqVQ0PST2kHFxQVfwjxQwzW41HfZG/o2KDktShueQdqp/3d4rp1b6Sw424zubq0VN0b4VrGucLs65jUWn1IvTVUjGLEeX9SKYknb9dBcWhCoVoFwYWX4ARXn3HKBYYn9fmLgUpRac5P7xELeUJ8gXGEXe26XWerjMRuzptm0Li3ssLJxvG3NVL3TGsxNe5z47im2yenBJP4wef+DjQ6/kjX2yGvyhrwjMflIDsk3ckKmRJBL8ptckz/Rq+hzdBQdr61R77Znn2wg+v4P7jzOxQ==</latexit>

x 2 X
<latexit sha1_base64="qsXqSeTqICDZoPTRiMf+KAkHBYE=">AAACmXicbZHLbhMxFIad4dKScknLBqkbi4LEIopmUNWybGFTIRZFkLZSZhR5PGcSq76M7DOlkTU8DVtY8gI8BQ8CazxJF6TJkSz9+v0dnVteSeEwjn93ojt3793f2HzQ3Xr46PGT3vbOmTO15TDkRhp7kTMHUmgYokAJF5UFpnIJ5/nlu/b//AqsE0Z/xlkFmWITLUrBGQZr3Ht2TVOhaaoYTjmT/kMz9qmdmmbc24sH8TzoqkhuxN7Riz8/f11t/T0db3dEWhheK9DIJXNulMQVZp5ZFFxC001rBxXjl2wCoyA1U+AyPx+hoS+DU9DS2PA00rn7f4ZnyrmZygPZtupu/7XmUgnfOtaVbl3GqMbyTeaFrmoEzRfly1pSNLTdEi2EBY5yFgTjVoQJKJ8yyziGXXa7qYYv3CjFdBG2BUVDfYpwjfO2R3aSZz7px/24aZbRiYU1aNxPVtFc1mvRADftcZLbp1gVZ68HycFg/2O40luyiE2yS56TVyQhh+SInJBTMiScfCXfyHfyI9qNjqOT6P0CjTo3OU/JUkSf/gGrwNKo</latexit>

x 2 L⇢

<latexit sha1_base64="N3iKY1HL7Gm5xqgtaotxm1ocdY8=">AAACo3icbZHLbhMxFIad4VbCLYUlG6tRpYKiyFMhyrKCDRIsCmraSpnpyOM5k1j1ZWR7oJE1e16CNTsWbOAJeAeeglfAM+mCNDmSpV+/v6NzyyvBrSPkTy+6cfPW7Ttbd/v37j94+Giw/fjE6towmDAttDnLqQXBFUwcdwLOKgNU5gJO84s37f/pJzCWa3XsFhWkks4ULzmjLljZYOfy/DlOuMKJpG7OqPDvm8wnZq4zcu734mdNkw2GZEy6wOsivhLDw4Ph729/v/44yrZ7PCk0qyUoxwS1dhqTyqWeGseZgKaf1BYqyi7oDKZBKirBpr4bpsG7wSlwqU14yuHO/T/DU2ntQuaBbFu21/9ac6WEbx1jS7spY1q78lXquapqB4oty5e1wE7jdl+44AaYE4sgKDM8TIDZnBrKXNhqv58o+My0lFQVYWtQNNgnDi5d1/bUzPLUxyMyIk2zis4MbEDJKF5Hc1FvRAPcHSe+fop1cbI/jl+OX3wIV3qNlrGFnqIdtIdidIAO0Vt0hCaIoS/oO/qJfkW70bvoY3S8RKPeVc4TtBJR+g+wb9X3</latexit>

x⇤ 2 L
⇢
(1)
0

<latexit sha1_base64="srrRtSIDihC82Ew94D3XHZGdvgA=">AAACo3icbZHLbhMxFIad4VbCLYUlG6tRpYKiyFMhyrKCDRIsCmraSpnpyOM5k1j1ZWR7oJE1e16CNTsWbOAJeAeeglfAM+mCNDmSpV+/v6NzyyvBrSPkTy+6cfPW7Ttbd/v37j94+Giw/fjE6towmDAttDnLqQXBFUwcdwLOKgNU5gJO84s37f/pJzCWa3XsFhWkks4ULzmjLljZYOfy/DlOuMKJpG7OqPDvm8wnZq4zcu731LOmyQZDMiZd4HURX4nh4cHw97e/X38cZds9nhSa1RKUY4JaO41J5VJPjeNMQNNPagsVZRd0BtMgFZVgU98N0+Dd4BS41CY85XDn/p/hqbR2IfNAti3b63+tuVLCt46xpd2UMa1d+Sr1XFW1A8WW5ctaYKdxuy9ccAPMiUUQlBkeJsBsTg1lLmy1308UfGZaSqqKsDUoGuwTB5eua3tqZnnq4xEZkaZZRWcGNqBkFK+juag3ogHujhNfP8W6ONkfxy/HLz6EK71Gy9hCT9EO2kMxOkCH6C06QhPE0Bf0Hf1Ev6Ld6F30MTpeolHvKucJWoko/Qcx4dY0</latexit>

x⇤ 2 L
⇢
(n)
0

……

<latexit sha1_base64="dmgdT1WZZqfJvBtCEqExt4iLFiE=">AAACyXicdVFNbxMxEHWWrxI+msKRi0WLKFUU2RVK01sFl0pwKBJpK2W3K693NrGy693a3pJg+QL/h1/DhQOc+Q2c8CYgEQgjWXp6896MZyapcqENIV9awbXrN27e2rjdvnP33v3NztaDU13WisOQl3mpzhOmIRcShkaYHM4rBaxIcjhLpi+b/NkVKC1K+dbMK4gKNpYiE5wZT8Wd49DicKIrxsHSyjgcQlFN7E742tdI2Y6LbaggtXoaW3Gx5546tzu72Hu2asKhizvbpEcIoZTiBtCDPvHg8HCwTweYNikf20e0/+PDd9c9ibdaIkxLXhcgDc+Z1iNKKhNZpozgObh2WGvwLaZsDCMPJStAR3YxssNPPJPirFT+SYMX7J8Oywqt50XilQUzE/13riFXWtiGUTrT6xyj2mSDyApZ1QYkX7bP6hybEjdbxalQwE0+94BxJfwEmE+YYtz43bfboYR3vCwKJtPFOh22oYGZWXx7pMZJZGmXdIlzq9KxgjVS0qX/SpO8Xiv1Ytcc5/cF8P/B6X6P9nvP3/grvUDL2ECP0GO0iyg6QEfoGJ2gIeLoE/qMvqJvwavgMpgF75fSoPXL8xCtRPDxJ2s45Tk=</latexit>{⇤sk0
i⇤

(x⇤)}

Corruption Queries

<latexit sha1_base64="gVIeRZ/pGanLtUnW1cs/jU0tKd0=">AAACpnicdZHNahsxEMfl7UfS7ZfTHnsRCYFAjZFCSZybaS49lRTqOOBdXK121haWtIukTWLEPkGveZFe2yfJ21Rrt1C37oDgz39+w2hmskoK6wi570QPHj56vLP7JH767PmLl929V5e2rA2HES9laa4yZkEKDSMnnISrygBTmYRxtjhv8+NrMFaU+rNbVpAqNtOiEJy5YE27h4nHydxWjIOnlWuwXUzFppM08bR7QPqEEEopbgU9PSFBnJ0NjukA0zYV4mC4n7y9ux8uL6Z7HZHkJa8VaMcls3ZCSeVSz4wTXEITJ7WF0GLBZjAJUjMFNvWreRp8GJwcF6UJTzu8cv+s8ExZu1RZIBVzc/t3rjU3WvjWMbaw2yomtSsGqRe6qh1ovm5f1BK7Ercrw7kwwJ1cBsG4EWECzOfMMO7CYuM40XDDS6WYzn1iIG+wTxzcutW3J2aWpZ72SI80zSY6M7AFJT36L5rJeisa4KYJx/l9Afx/cXncpyf9d5/Cld6jdeyiN2gfHSGKTtEQfUAXaIQ4+oq+oe/oR3QUfYxG0XiNRp1fNa/RRkRffgIgHNZf</latexit>{ski }

Fig. 2. The high-level overview of our proof strategy for tight MUMCc-CCA security
of PKE. The black arrows illustrate language switches, and the blue arrows as well as
the blue brace show the applications of quasi-adaptive properties.

c∗ :=
(
x∗ ←$ L

ρ
(i∗)
0

, d∗ := Pub(α
ρ
(i∗)
0

(ski∗), x
∗, w∗) +mβ , π

∗ := Sim(crs, tdcrs, τ
∗, x∗)

)
.

Now {α
ρ
(i∗)
0

(ski∗)}i∗∈[n] (out of whole {ski∗}i∗∈[n]) suffices for generating c∗.

Step 2. Restrict language from X to Lρ for decryption queries. For query
(i, c = (x, d, π)), A obtains m := d− Priv(ski, x) if VrfyNIZK(crs, τ, x, π) = 1.
• The USS property of QANIZK makes sure that A obtains m only if
x ∈ Lρ in the decryption query, except with a negligible probability.

HenceA learns only {αρ(ski)}i∈[n] (out of {ski}i∈[n]) from decryption queries.

Step 3. Switch {ski∗}i∗∈[n] to new keys {sk′i∗}i∗∈[n] for encryption queries.
Note that to avoid trivial attacks, A is not allowed to corrupt those users
i∗ for which A issues encryption queries. Thus for such users i∗, after the
first two steps, A’s information about ski∗ can be summarized by αρ(ski∗)
(involved in public keys and decryption oracle) and α

ρ
(i∗)
0

(ski∗) (involved in

encryption oracle).
• According to the 〈L ,L0〉-key-switching property of QAHPS, α

ρ
(i∗)
0

(ski∗)

can be switched to α
ρ
(i∗)
0

(sk′i∗) to compute d∗ for encryption queries, with

sk′i∗ uniformly and independently chosen.
Though there are n switches, it does not lead to a loose security reduction,
since key-switching is a statistical property of QAHPS.
As a result, new independent secret keys {sk′i∗}i∗∈[n] are split from the orig-
inal {ski∗}i∗∈[n], and are only used for answering encryption queries.

Step 4. Switch languages {L
ρ
(i∗)
0
}i∗∈[n] to Lρ0 for encryption queries.

The argument is similar to step 1. As a result, the computation of d∗ :=
Pub(α

ρ
(i∗)
0

(sk′i∗), x
∗, w∗) + mβ is changed to d∗ := Pub(αρ0(sk′i∗), x

∗, w∗) +

mβ , which is equivalent to d∗ := Λsk′
i∗

(x∗) +mβ .

Step 5. Plaintexts mβ are perfectly hidden due to the L0-multi-key-
multi-extracting property. Note that the new keys {sk′i∗}i∗∈[n] are uni-
form and only used for computing d∗ := Λsk′

i∗
(x∗) +mβ .

12

• By the L0-multi-key-multi-extracting of QAHPS, the hash values Λsk′
i∗

(x∗)
are pseudorandom, so all the d∗’s can be replaced by random elements.

Hence d∗ perfectly hides mβ , and A has no advantage in guessing β.

Strategy for corruptions in reductions. Similar to the security reductions
for SIG, the reduction algorithms in steps 1, 2, 4, 5 can handle A’s adaptive
corruption queries by choosing all users’ secret keys themselves.

In particular, in step 5, new keys {sk′i∗}i∗∈[n] (for answering encryption
queries) have been split from {ski∗}i∗∈[n] (for answering adaptive corrup-
tions, decryption queries and generation of public keys). Thus the reduction
algorithm to the L0-multi-key-multi-extracting property of QAHPS is able
to implicitly set {sk′i∗}i∗∈[n] as the keys chosen by its own challenger, but
choose {ski∗}i∗∈[n] itself to deal with A’s adaptive corruption queries.

How we circumvent the seemingly paradoxical technical problem. Now
we conclude how we circumvent the paradoxical technical problem for achieving
tight MUMCc-CCA security of PKE: our proof goes with a constant number of
computationally indistinguishable changes, as well as n statistical changes, to
arrive at a final game where the challenge ciphertexts are no longer generated
by the users’ real secret keys.

(1) All the reduction algorithms to computational properties or problems possess
the secret keys of all users to handle adaptive corruption queries.

(2) With n statistical changes (〈L ,L0〉-key-switching), new and independent
secret keys (for generating challenge ciphertexts) have been split from real
secret keys (for corruption and other queries), ready for the final game.

(3) In the final game, the reduction algorithm (for L0-multi-key-multi-extracting)
can embed its challenge instances in the new secret keys to randomize chal-
lenge ciphertexts, and sample the real secret keys itself to handle adaptive
corruption queries from the adversary.

How we circumvent the existing impossibility results. Recall that the
impossibility results apply to a PKE scheme when the relation between the
public key and the secret key is “unique” or “re-randomizable” [5]. For reasons
similar to our SIG (as shown in Subsect. 2.1), we can show that the relation
between the public key pk = αρ(sk) and the secret key sk of our PKE is neither
“unique” nor “re-randomizable”, by the new properties we defined for QA-HPS.

2.3 Our SC, MAC and AE: Technical Overview

Our SC. There are a variety of constructions for building SignCryption (SC)
from SIG and PKE, encompassing “Encrypt-then-Sign”, “Sign-then-Encrypt”,
“Encrypt-and-Sign”, etc. [3, 9]. However, there is no SC available with tight
MUMCc-Priv&Auth (multi-user multi-challenge CCA privacy and authenticity
under corruptions) in the standard model. As far as we see, this is mainly due
to the missing of tightly strongly MUc secure SIG and tightly MUc secure PKE.

Our SIG and PKE constructions fill the blank and immediately lead to tightly
MUMCc-Priv&Auth secure SC.

13

Moreover, we can optimize the SC construction by taking advantage of the
similar structures and compatible underlying building blocks of our SIG and
PKE. In our optimized construction of SC, we integrate the ciphertext of PKE
and signature of SIG in a more efficient way of reusing the instance x ∈ Lρ and
the proof π of QANIZK, and the signcryption of message m is now given by

c := (x ←$ Lρ, d := Pub(pkr, x, w) +m, d̃ := Priv(s̃ks, x), π := Prove(crs, τ, x, w)),

where τ := H(ṽks, pkr, d, d̃), pkr is receiver’s public (encryption) key and s̃ks
sender’s secret (signing) key. The tight MUMCc-Priv&Auth security of our SC
can be proved similar to the tight MUc security of PKE and SIG.

Our MAC and AE. A SIG scheme is itself a MAC scheme and a SC scheme is
an AE scheme, when taking the secret key as the symmetric key. Therefore, our
SIG and SC constructions immediately lead to a strongly MUc-CMA secure MAC
and MUMCc-Priv&Auth secure AE. However, we can do more about MAC since
it does not need public verification. We provide a more efficient MAC following
our SIG construction but replacing the building block PVQAHPS by QAHPS
with new properties. Furthermore, the security of MAC can also be improved
to an even stronger notion, namely strong MUc-CMVA security, which considers
chosen verification attacks as well [13] in addition to strong MUc-CMA.

2.4 Instantiations from MDDH Assumptions and Leakage Resilience

Instantiations. We instantiate PV-QA-HPS and QA-HPS with new properties
from the MDDH assumptions. The associated language collections L and L0 are
independently generated linear subspaces [25]. The instantiations stem from the
DDH-based HPS proposed by Cramer and Shoup [11], and rely on pairing groups
to accomplish public verifiability of PV-QA-HPS, inspired by [25]. We provide
tight security proofs for the properties of PV-QA-HPS and QA-HPS based on
MDDH. Below we give a high-level overview of our PV-QA-HPS instantiation.
We rely on an asymmetric pairing group (G1,G2,GT , e) of prime order p with e :
G1×G2 −→ GT . We use implicit representation of group elements [14], namely,
using [·]1, [·]2, [·]T to denote component-wise exponentiations in respective groups
G1,G2,GT .

• Let us start with the Cramer-Shoup HPS [11]. We describe the MDDH-
based generalized version with k ≥ 1 the MDDH parameter (k = 1 cor-
responds to the original DDH-based version). The hashing key is sk = K ∈
Z(k+1)×(2k+1)
p and the projection key is pk = [KA]1 on a linear subspace

language Lρ = Span([A]1) =
{

[c]1
∣∣∃ w ∈ Zkp, s.t. [c]1 = [Aw]1

}
with

ρ = [A]1 ∈ G(2k+1)×k
1 . For an instance [c]1 = [Aw]1 ∈ Lρ, the HPS hash

value is given by [hv]1 =

(private evaluation) K · [c]1 = [KA]1 ·w (public evaluation).

14

• To support public verification, we resort to pairing technique, inspired by
the Kiltz-Wee QA-NIZK [25]. We use vk = [K>B]2 as the verification key

with matrix [B]2 ∈ G(k+1)×k
2 defined by the MDDH assumption. Then, the

correctness of hash value [hv]1
?
= [Kc]1 can be verified publicly via pairing:

e([hv>]1, [B]2)
?
= e([c>]1, [K

>B]2) (= [(Kc)>B]T).

Verification soundness. This is tightly implied by the Kernal Matrix DH
(KerMDH) assumption [31], which in turn is implied by the MDDH assump-
tion [31]. If the adversary is able to produce an incorrect hash value [hv]1 6=
[Kc]1 but passes the public verification e([hv>]1, [B]2) = e([c>]1, [K

>B]2),
then [hv−Kc]1 is a non-zero element such that e([(hv−Kc)>]1, [B]2) = [0]T ,
resulting in a solution to the KerMDH problem defined by [B]2.

〈L0,L 〉-OT-extracting. This holds information-theoretically, where Lρ0 =

Span([A0]1) ∈ L0 and Lρ = Span([A]1) ∈ L with ρ0 = [A0]1 ∈ G(2k+1)×k
1

chosen independently of ρ = [A]1. Note that A0 is (2k+1) by k, B is (k+1)
by k, and sk = K is (k + 1) by (2k + 1) matrices. Given the projection key
pkρ0 = [KA0]1 w.r.t. Lρ0 and vk = [K>B]2, the hashing key sk = K reserves
entropy in its projection on the kernel of A0 and B. Then for any (non-zero)
instance [c]1 ∈ Lρ = Span([A]1), [c]1 is outside Lρ0 = Span([A0]1), thus
the reserved entropy of sk = K is transmitted to the hash value [Kc]1 so
that the adversary can hardly guess [Kc]1 correctly. This holds even if some
extra (bounded) information of sk = K is leaked to the adversary.

The instantiation of tag-based QA-NIZK can be adapted from the QA-NIZK
scheme proposed by Abe et al. [1], which has tight USS based on MDDH.

According to our generic constructions, the instantiations of PV-QA-HPS,
QA-HPS and tag-based QA-NIZK result in concrete SIG, PKE, SC, MAC, AE
schemes with tight MUc security from MDDH in the standard model.

Leakage resilience. Note that HPS is intrinsically leakage resilient [32]. The
leakage resilience can naturally extend to QA-HPS [20], and also to PV-QA-HPS.
More precisely, we define leakage-resilient-〈L0,L 〉-OT-extracting property for
PV-QA-HPS (cf. Sect. 4) and adopt the leakage-resilient-〈L ,L0〉-key-switching
for QA-HPS defined in [20], which are met by our MDDH-based instantiations.
This shows that all our SIG, PKE, SC, MAC, AE schemes not only have tight
MUc security but also support key leakage, thus achieving tight MUc&l security.

The tight MUc&l security protects our schemes from key leakages on the un-
corrupted users besides adaptive corruptions. When used in the construction of
more advanced protocols, the applications of our tightly MUc&l secure primitives
may also improve the security of the protocols to be leakage resilient ones. For
instance, we can always make a drop-in replacement of the tightly MUc secure
SIG with our tightly MUc&l secure SIG in the construction of tightly secure au-
thenticated key exchange (AKE) protocols [4, 29, 18] where the signing key of
SIG serves as the long-term secret key of AKE, and the resulting AKEs readily
augment their tight security with leakage-resilience.

15

Moreover, our tightly MUMCc&l-CCA secure PKE scheme has essential im-
provements in terms of leakage resilience beyond corruptions, compared with
the tightly leakage-resilient CCA-secure PKE scheme in [20]. See Table 2. Con-
cretely, (1) our leakage rate is 1

3−o(1) while theirs is 1
18−o(1); (2) our multi-user

leakage model is stronger than theirs, since their model [20, Appendix A.1] does
not allow any leakage queries to any user after the very first encryption query
to any user, while our model allows leakage queries for any particular user until
the first encryption query to that user (cf. Def. 16 in Subsect. 6.1). Informally
speaking, our PKE achieves the stronger multi-user leakage resilience mainly due
to the introduction of multi-language multi-fold SMP, which helps to switch Lρ
to different and independently chosen languages {L

ρ
(i)
0
} for different users, thus

the leakages w.r.t. different users can be handled independently.

2.5 Comparison with Existing Techniques for Tight MUc Security

Most existing works on tight MUc security [4, 17, 27, 12] designed their schemes in
a “double encryption/signing” fashion (the only exception is [18]), and the secret
key of their schemes consists of only one key (say sk0) out of two possible keys
(say sk0, sk1). For example, in [4, 27], their PKE encrypts plaintext by running
a “sub-encryption procedure” twice (possibly in a correlated way), resulting in
a ciphertext containing two “sub-ciphertexts” of the plaintext, and there are
two decryption ways according to which possible key (sk0 or sk1) is used. In
their tight MUc security proofs, the reduction algorithms always possess the real
secret keys (sk0) of all users, while embed the challenges in the other possible
keys (sk1). With this strategy, their reductions can handle adaptive corruptions.

In contrast, all our constructions are different from the “double encryp-
tion/signing” design. For example, it is hard to split the ciphertext of our PKE
to two “sub-ciphertexts”. So the proof strategy in [4, 17, 27, 12] does not apply.

We develop two different novel proof strategies for tight strong MUc-CMA
security of SIG and tight MUMCc-CCA security of PKE (cf. Fig. 1 and Fig. 2),
respectively. At a high level, we do not “double” the secret key by construction,
but “split” the key during our tight proofs, which can be summarized as first
“switch the languages for different oracles” then “apply quasi-adaptive prop-
erties” (such as 〈L0,L 〉-OT-extracting, 〈L ,L0〉-Key-switching, L0-Multi-key
multi-extracting).

3 Preliminaries

Notations. Let λ ∈ N denote the security parameter throughout the paper,
and all algorithms, distributions, functions and adversaries take 1λ as an implicit
input. Let ∅ denote the empty set. If x is defined by y or the value of y is
assigned to x, we write x := y. For n ∈ N, define [n] := {1, 2, ..., n}. For a set X ,
denote by x ←$ X the procedure of sampling x from X uniformly at random.
If D is distribution, x ←$ D means that x is sampled according to D. All our
algorithms are probabilistic unless stated otherwise. We use y ←$ A(x) to define

16

the random variable y obtained by executing algorithm A on input x. We use
y ∈ A(x) to indicate that y lies in the support of A(x). If A is deterministic
we write y ← A(x). We also use y ← A(x; r) to make explicit the random
coins r used in the probabilistic computation. Denote by T(A) the running time
of A. “PPT” abbreviates probabilistic polynomial-time. Denote by poly some
polynomial function and negl some negligible function.

The syntax of signature (SIG), public-key encryption (PKE) and the defini-
tion of collision-resistant hash functions are presented in the full version [19].

3.1 Language Distribution

We formalize a collection of NP-languages as a language distribution.

Definition 1 (Language Distribution). A language distribution L is a
probability distribution that outputs a language parameter ρ as well as a trapdoor
td in polynomial time. The language parameter ρ publicly defines an NP-language
Lρ ⊆ Xρ. For simplicity, we assume that the universe Xρ is the same for all pa-
rameters ρ output by all distributions L , and denoted by X . The trapdoor td
is required to contain enough information for efficiently deciding whether an in-
stance x ∈ X is in Lρ. We require that there are PPT algorithms for sampling
x←$ Lρ uniformly together with a witness w and sampling x ←$ X uniformly.

A language distribution is associated with a subset membership problem
(SMP), which asks whether an element is uniformly chosen from Lρ or X . SMP
can be extended to multi-fold SMP by considering multiple elements.

Definition 2 (SMP). The subset membership problem (SMP) related to a
language distribution L is hard, if for any PPT adversary A, it holds that
Advsmp

L ,A(λ) := |Pr[A(ρ, x) = 1] − Pr[A(ρ, x′) = 1]| ≤ negl(λ), where the proba-
bility is over (ρ, td) ←$ L , x←$ Lρ and x′ ←$ X .

Definition 3 (Multi-fold SMP). The multi-fold SMP related to a language
distribution L is hard, if for any PPT adversary A and any polynomial Q =
poly(λ), it holds that Advmsmp

L ,A,Q(λ) := |Pr[A(ρ, {xj}j∈[Q]) = 1]−Pr[A(ρ, {x′j}j∈[Q])
= 1]| ≤ negl(λ), where (ρ, td)←$ L , x1, ..., xQ ←$ Lρ and x′1, ..., x

′
Q ←$ X .

3.2 Quasi-Adaptive Hash Proof System

Hash proof system (HPS) was proposed by Cramer and Shoup [11], and turned
out to be a powerful tool in a wide range of applications. Han et al. [20] general-
ized HPS in a quasi-adaptive setting, termed as Quasi-Adaptive HPS (QA-HPS),
by allowing the projection key to depend on the specific language Lρ for which
hash values are computed. We give the definition of QA-HPS according to [20].

Definition 4 (QA-HPS). A quasi-adaptive hash proof system (QA-HPS) scheme
QAHPS = (SetupHPS, α(·),Pub,Priv) for a language distribution L consists of
four PPT algorithms:

17

– ppHPS ←$ SetupHPS: The setup algorithm outputs a public parameter ppHPS,
which implicitly defines a hashing key space SK, a hash value space HV,
and a family of hash functions Λ(·) : X −→ HV indexed by hashing keys
sk ∈ SK, where X is the universe for languages output by L .

We require that Λ(·) is efficiently computable and there are PPT algorithms
for sampling sk ←$ SK uniformly and sampling hv ←$ HV uniformly. We
require ppHPS to be an implicit input of other algorithms.

– pkρ ← αρ(sk): Taking as input a hashing key sk ∈ SK, the projection algo-
rithm indexed by language parameter ρ outputs a projection key pkρ.

– hv ← Pub(pkρ, x, w): Taking as input a projection key pkρ = αρ(sk) specified
by ρ, an instance x ∈ Lρ and a witness w for x ∈ Lρ, the public evaluation
algorithm outputs a hash value hv = Λsk(x) ∈ HV.

– hv ← Priv(sk, x): Taking as input a hashing key sk and an instance x ∈ X ,
the private evaluation algorithm outputs a hash value hv = Λsk(x) ∈ HV.

Correctness requires that for all (ρ, td) ∈ L , ppHPS ∈ SetupHPS, sk ∈ SK, x ∈ Lρ
with witness w, pkρ := αρ(sk), it holds that Pub(pkρ, x, w) =Λsk(x) =Priv(sk, x).

We can naturally define QA-HPS for two language distributions L and L0,
by requiring correctness to hold not only for language parameters ρ output by
L , but also for language parameters ρ0 output by L0.

We recall a statistical property of QA-HPS from [20], parameterized by κ ∈ N
and two language distributions L , L0, called κ-leakage-resilient(LR)-〈L ,L0〉-
key-switching. Informally speaking, it stipulates that in the presence of a pro-
jection key αρ(sk) w.r.t. a language parameter ρ output by L and given κ bits
leakage information about sk, the projection key αρ0(sk) w.r.t. another language
parameter ρ0 output by L0 can be switched to αρ0(sk′) for an independent sk′.

Definition 5 (κ-LR-〈L ,L0〉-Key-Switching of QA-HPS). Let κ = κ(λ) ∈
N, and let L and L0 be a pair of language distributions. A QA-HPS scheme
QAHPS for L supports κ-LR-〈L ,L0〉-key-switching, if for any (possibly un-

bounded) adversary A, it holds that ε
lr-〈L,L0〉-ks
QAHPS,A,κ (λ) :=

∣∣Pr[Exp
lr-〈L,L0〉-ks
QAHPS,A,κ ⇒

1]− 1
2

∣∣ ≤ negl(λ), where the experiment Exp
lr-〈L,L0〉-ks
QAHPS,A,κ is specified in Fig. 3.

3.3 Tag-based Quasi-Adaptive Non-Interactive Zero-Knowledge

Quasi-Adaptive Non-Interactive Zero-Knowledge argument (QA-NIZK) was pro-
posed by Jutla and Roy [24], where the common reference string (CRS) may
depend on the specific language Lρ for which proofs are generated. We present
the formal definition of QA-NIZK in its tag-based variant following [25].

Definition 6 (Tag-based QA-NIZK). A tag-based quasi-adaptive non-interactive
zero-knowledge scheme QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for
a language distribution L with tag space T consists of five PPT algorithms:

18

Exp
lr-〈L,L0〉-ks
QAHPS,A,κ :

ppHPS ←$ SetupHPS, (ρ, td) ←$ L , (ρ0, td0) ←$ L0

sk, sk′ ←$ SK
b ←$ {0, 1} �Challenge bit

chal := false

b′ ←$ AOLeak(·),OChal()(ppHPS, ρ, αρ(sk))

If b′ = b: Return 1; Else: Return 0

OLeak(L): �at most κ leakage bits in total

If chal = true: Return ⊥
Return L(sk)

OChal(): �one query

chal := true

If b = 0: Return (ρ0, αρ0(sk));

Else b = 1: Return (ρ0, αρ0(sk′))

Fig. 3. The κ-LR-〈L ,L0〉-Key-Switching experiment Exp
lr-〈L,L0〉-ks
QAHPS,A,κ for QAHPS.

– ppNIZK ←$ SetupNIZK: The setup algorithm outputs a public parameter ppNIZK,
which serves as an implicit input of other algorithms.

– (crs, tdcrs)←$ CRSGen(ρ): Taking as input a language parameter ρ, the CRS
generation algorithm outputs a common reference string (CRS) crs and a
simulation trapdoor tdcrs.

– π ←$ Prove(crs, τ, x, w): Taking as input crs, a tag τ ∈ T , x ∈ Lρ and a
witness w for x ∈ Lρ, the proof generation algorithm outputs a proof π.

– 0/1 ← VrfyNIZK(crs, τ, x, π): Taking as input crs, a tag τ ∈ T , x ∈ X and
a proof π, the deterministic verification algorithm outputs a bit indicating
whether π is a valid proof.

– π ←$ Sim(crs, tdcrs, τ, x): Taking as input crs, a simulation trapdoor tdcrs, a
tag τ ∈ T and x ∈ X , the simulation algorithm outputs a simulated proof π.

Perfect completeness requires that for all (ρ, td) ∈ L , ppNIZK ∈ SetupNIZK,
(crs, tdcrs) ∈ CRSGen(ρ), τ ∈ T , x ∈ Lρ with witness w, π ∈ Prove(crs, τ, x, w),
it holds that VrfyNIZK(crs, τ, x, π) = 1.

Perfect zero-knowledge requires that for all (ρ, td) ∈ L , ppNIZK ∈ SetupNIZK,
(crs, tdcrs) ∈ CRSGen(ρ), τ ∈ T , x ∈ Lρ with witness w, the outputs of Prove(crs,
τ, x, w) and Sim(crs, tdcrs, τ, x) are identically distributed, where the probability
is over the inner coin tosses of Prove and Sim.

Below we define Unbounded Simulation-Soundness (USS) according to [22, 1].

Definition 7 (USS of Tag-based QA-NIZK). A tag-based QA-NIZK scheme
QANIZK for L has unbounded simulation-soundness (USS), if for any PPT ad-
versary A, it holds that AdvussQANIZK,A(λ) := Pr[ExpussQANIZK,A ⇒ 1] ≤ negl(λ),
where the experiment ExpussQANIZK,A is defined in Fig. 4.

We note that the above USS definition for tag-based QA-NIZK is stronger
than the usual one in [25, 15] in two aspects.

– Firstly, A is given the trapdoor td of the language parameter ρ. Recall that
td contains enough information for efficiently deciding whether or not an
instance x is in Lρ. This is stronger than the usual USS, but weaker than
the USS for witness-sampleable distributions defined in [22, 1], where A es-
sentially samples (ρ, td) itself and provides (ρ, td) to the experiment.

19

ExpussQANIZK,A:

(ρ, td) ←$ L . ppNIZK ←$ SetupNIZK. (crs, tdcrs) ←$ CRSGen(ρ)

QSim := ∅ �Record the simulation queries

(τ∗, x∗, π∗) ←$ AOSim(·,·)(ρ, td, ppNIZK, crs)

If (x∗ /∈ Lρ) ∧ ((τ∗, x∗, π∗) /∈ QSim) ∧ (VrfyNIZK(crs, τ∗, x∗, π∗) = 1): Return 1;

Else: Return 0

OSim(τ, x):

π ←$ Sim(crs, tdcrs, τ, x)

QSim := QSim ∪ {(τ, x, π)}
Return π

Fig. 4. The Unbounded Simulation-Soundness experiment ExpussQANIZK,A for QANIZK.

– Secondly, A is allowed to output a forgery with a reused tag.

In [1], Abe et al. proposed a QA-NIZK scheme with tight USS for witness-
sampleable distributions based on the MDDH assumptions. As noted in [1, Sub-
sect. 3.2], their scheme can be easily extended to a tag-based QA-NIZK scheme
with tight USS, by using collision-resistant hash functions.

4 Publicly-Verifiable QA-HPS and New Properties

In this section, we propose a new variant of QA-HPS, called Publicly-Verifiable
QA-HPS (PV-QA-HPS), which additionally enables public verification of hash
values with an extra verification key. Then we formalize a set of computational
and statistical properties for PV-QA-HPS and QA-HPS serving different appli-
cations in subsequent sections.

– For PV-QA-HPS, we define a computational verification soundness and sta-
tistical properties including leakage-resilient one-time-extracting (LR-OT-
extracting) and verification key diversity (VK-diversity). PV-QA-HPS will
be an important building block for SIG in Sect. 5 and these properties help
SIG to achieve tight multi-user security under corruptions and leakages.

– For QA-HPS, we define a computational multi-key-multi-extracting and a
statistical projection key diversity (PK-diversity). We also define a multi-
language multi-fold SMP for language distributions. QA-HPS will be an im-
portant building block for PKE in Sect. 6, and these new properties help
PKE to achieve tight multi-user security under corruptions and leakages.

Jumping ahead, we will give instantiations of PV-QA-HPS and QA-HPS based
on the matrix DDH (MDDH) assumptions in Sect. 7 and the full version [19].

Firstly, we present the syntax of PV-QA-HPS.

Definition 8 (PV-QA-HPS). A publicly-verifiable QA-HPS (PV-QA-HPS)
scheme PVQAHPS = (SetupHPS, α(·), ν,Pub,Priv,VrfyHPS) for a language distri-
bution L consists of six PPT algorithms:

– (SetupHPS, α(·),Pub,Priv) is a QA-HPS scheme for L as per Definition 4.

20

– ppHPS ←$ SetupHPS: It outputs a public parameter ppHPS, which also defines
a verification key space VK besides (SK,HV, Λ(·)) as per Definition 4.

– vk ← ν(sk): Taking as input a hashing key sk ∈ SK, the verification key
generation algorithm outputs a verification key vk ∈ VK.

– 0/1 ← VrfyHPS(vk, x, hv): Taking as input a verification key vk = ν(sk) ∈
VK, an instance x ∈ X and a hash value hv ∈ HV, the deterministic verifi-
cation algorithm outputs a bit indicating whether hv = Λsk(x) or not.

Verification completeness requires that for all (ρ, td) ∈ L , ppHPS ∈ SetupHPS,
sk ∈ SK, x ∈ X , vk := ν(sk) and hv := Λsk(x), it holds VrfyHPS(vk, x, hv) = 1.

Remark 1 (Relations between PV-QA-HPS and QA-NIZK). PV-QA-
HPS can be viewed as a special kind of Designated-Prover (DP) QA-NIZK [1],
but with different properties. The pkρ of PV-QA-HPS can be viewed as the prov-
ing key of DP-QA-NIZK, sk as the simulation trapdoor and vk as the common
reference string (used for verification). With pkρ, the prover can prove x ∈ Lρ
with the help of a witness w via hv ← Pub(pkρ, x, w), where the hash value hv
can be viewed as a proof for x ∈ Lρ . With vk, the verifier can check whether hv is
a valid proof for x ∈ Lρ via VrfyHPS(vk, x, hv). Moreover, with sk, the simulator
can generate a proof for x without knowing a witness via hv ← Priv(sk, x).

Verification completeness of PV-QA-HPS corresponds to the perfect com-
pleteness of DP-QA-NIZK. Correctness of (PV-)QA-HPS guarantees Pub(pkρ, x,
w) = Priv(sk, x) for all x ∈ Lρ with witness w, thus corresponding to the perfect
zero-knowledge of DP-QA-NIZK.

On the other hand, PV-QA-HPS has its own features. Firstly, it has a projec-
tion function αρ(·) (which is inherent to HPS) and a verification key generation
function ν(·). Secondly, a set of properties of PV-QA-HPS and QA-HPS are built
upon functions αρ(·) and/or ν(·). For instance, the κ-LR-〈L ,L0〉-Key-Switching
(cf. Def. 5 in Subsect. 3.2) is closely associated with αρ(·).

Next we define a computational verification soundness for PV-QA-HPS in
the setting of multiple keys. Intuitively, it requires that for any (sk, vk) among
the multiple key pairs, a PPT adversary cannot find a tuple (x∗ ∈ X , hv∗) such
that hv∗ 6= Λsk(x∗) but VrfyHPS(vk, x∗, hv∗) = 1, even given all the key pairs.

Definition 9 (Verification Soundness of PV-QA-HPS). A PV-QA-HPS
scheme PVQAHPS for L has verification soundness, if for any PPT adver-
sary A and any polynomial n = poly(λ), it holds that Advvrfy-sndPVQAHPS,A,n(λ) :=

Pr[Expvrfy-sndPVQAHPS,A,n ⇒ 1] ≤ negl(λ), where Expvrfy-sndPVQAHPS,A,n is defined in Fig. 5.

We formalize a statistical extracting property for (PV-)QA-HPS, param-
eterized by κ ∈ N and two language distributions L0, L , called κ-leakage-
resilient(LR)-〈L0,L 〉-one-time(OT)-extracting. Informally speaking, it demands
high min-entropy of Λsk(x) for any x ∈ Lρ with ρ output by L , when sk is uni-
formly chosen from SK, even in the presence of a projection key αρ0(sk) w.r.t. ρ0
output by L0 and given κ bits leakage information about sk. For PV-QA-HPS,
it requires the property to hold even in the presence of the verification key ν(sk).

21

Expvrfy-sndPVQAHPS,A,n:

ppHPS ←$ SetupHPS. For i ∈ [n]: ski ←$ SK, vki := ν(ski)

(i∗ ∈ [n], x∗ ∈ X , hv∗) ←$ A(ppHPS, (ski, vki)i∈[n])

If (hv∗ 6= Λski∗ (x∗)) ∧ (VrfyHPS(vki∗ , x
∗, hv∗) = 1): Return 1; Else: Return 0

Fig. 5. Verification Soundness experiment Expvrfy-sndPVQAHPS,A,n for PVQAHPS.

Definition 10 (κ-LR-〈L0,L 〉-OT-Extracting of QA-HPS and PV-QA-
HPS). Let κ = κ(λ) ∈ N, and let L0 and L be a pair of language distribu-
tions. A (PV-)QA-HPS scheme (PV)QAHPS for L supports κ-LR-〈L0,L 〉-OT-

extracting, if for any (unbounded) adversary A, it holds that ε
lr-〈L0,L〉-otext
(PV)QAHPS,A,κ(λ) :=

Pr[Exp
lr-〈L0,L〉-otext
(PV)QAHPS,A,κ ⇒ 1]≤ negl(λ), where Exp

lr-〈L0,L〉-otext
(PV)QAHPS,A,κ is defined in Fig. 6.

Exp
lr-〈L0,L〉-otext
(PV)QAHPS,A,κ:

ppHPS ←$ SetupHPS. (ρ0, td0) ←$ L0, (ρ, td) ←$ L . sk ←$ SK
(x∗, hv∗) ←$ AOLeak(·)(ppHPS, ρ0, ρ, αρ0(sk), ν(sk))

If (x∗ ∈ Lρ) ∧ (hv∗ = Λsk(x∗)): Return 1; Else: Return 0

OLeak(L): �at most κ leakage

�bits in total

Return L(sk)

Fig. 6. The κ-LR-〈L0,L 〉-OT-Extracting experiment Exp
lr-〈L0,L〉-otext
(PV)QAHPS,A,κ for QAHPS

(without gray part) and Publicly-Verifiable PVQAHPS (with gray part).

Han et al. [20] proposed a computational property for QA-HPS, called L0-
multi-extracting, which demands the pseudorandomness of Λsk(xj) for multiple
instances xj ∈ Lρ0 (j ∈ [Q]) with ρ0 output by L0, when sk is uniformly chosen
from SK. We extend this property in the multi-key setting as follows.

Definition 11 (L0-Multi-Key-Multi-Extracting of QA-HPS). A QA-
HPS scheme QAHPS for L supports L0-multi-key-multi-extracting, if for any
PPT A, any polynomial n = poly(λ) and any polynomial Q = poly(λ), it holds

AdvL0-mk-mext
QAHPS,A,n,Q(λ) := |Pr[A(ppHPS, ρ0, {xj ,

∣∣{Λski(xj)}i∈[n] }j∈[Q]) = 1]

−Pr[A(ppHPS, ρ0, {xj ,
∣∣{hvi,j}i∈[n] }j∈[Q]) = 1]| ≤ negl(λ),

where ppHPS ←$ SetupHPS, (ρ0, td0) ←$ L0, sk1, ..., skn ←$ SK, x1, ..., xQ ←$ Lρ0
and hv1,1, ..., hvn,Q ←$ HV.

We formalize two statistical properties, called projection key diversity (PK-
diversity) and verification key diversity (VK-diversity), for QA-HPS and PV-
QA-HPS respectively. Intuitively, PK-diversity (resp. VK-diversity) expresses
statistical collision resistance of projection keys (resp. verification keys) under
different hashing keys.

22

Definition 12 (PK-Diversity of QA-HPS). A QA-HPS scheme QAHPS

for L has projection key diversity (PK-diversity), if εpk-divQAHPS(λ) := Pr[αρ(sk) =

αρ(sk
′)] ≤ negl(λ), where (ρ, td)←$ L , ppHPS ←$ SetupHPS and sk, sk′ ←$ SK.

Definition 13 (VK-Diversity of PV-QA-HPS). A PV-QA-HPS scheme
PVQAHPS for L has verification key diversity (VK-diversity), if εvk-divPVQAHPS(λ) :=

Pr[ν(sk) = ν(sk′)] ≤ negl(λ), where ppHPS ←$ SetupHPS and sk, sk′ ←$ SK.

Finally, we define a multi-language multi-fold SMP for language distributions.

Definition 14 (Multi-Language Multi-fold SMP). The multi-language
multi-fold SMP related to L is hard, if for any PPT adversary A, any polynomial
n = poly(λ) and any polynomial Q = poly(λ), it holds that Advml-msmp

L ,A,n,Q(λ) :=

|Pr[A({ρ(i), {x(i)j }j∈[Q]}i∈[n]) = 1]−Pr[A({ρ(i), {x′(i)j }j∈[Q]}i∈[n]) = 1]| ≤ negl(λ),

where for each i ∈ [n], (ρ(i), td(i))←$ L , x
(i)
1 , ..., x

(i)
Q ←$ Lρ(i) , x′(i)1 , ..., x

′(i)
Q ←$ X .

Multi-language multi-fold SMP can generally be reduced to SMP with a
security loss of nQ with n the number of languages and Q the number of folds
per language. For some language distributions, such as those for linear subspaces
based on the MDDH assumptions (cf. the full version [19]), the hardness of multi-
language multi-fold SMP can be tightly reduced to that of SMP.

5 SIG with Tight Strong MUc&l-CMA Security

In this section, we present digital signature (SIG) schemes with tight strong
MUc&l-CMA security, by using Publicly-Verifiable QA-HPS (PV-QA-NIZK) for-
malized in Sect. 4 as a central building block.

In Subsect. 5.1, we define the strong MUc&l-CMA security of SIG. Then in
Subsect. 5.2, we present our generic construction of SIG.

5.1 Definition of Strong MUc&l-CMA Security

In [4], Bader et al. defined existential unforgeability for digital signatures under
chosen-message attacks (CMA) in a Multi-User setting with adaptive corruptions
of secret keys (MUc-CMA). Here we extend it to MUc&l-CMA, which considers
existential unforgeability under not only chosen-message attacks and adaptive
corruptions but also key leakages in the multi-user setting. Moreover, strong
MUc&l-CMA requires that the adversary cannot even forge a new signature for
a message that it has ever queried. Below we present the definition of strong
MUc&l-CMA and the non-strong version can be easily adapted accordingly.

Definition 15 (Strong MUc&l-CMA Security for SIG). Let κ = κ(λ) ∈ N.
A signature scheme SIG = (SetupSIG,Gen,Sign,VrfySIG) is strongly MUc&l-CMA
secure under κ bits leakage per user, if for any PPT adversary A and any poly-
nomial n, it holds that Advs-cma-c&l

SIG,A,n,κ(λ) := Pr[Exps-cma-c&l
SIG,A,n,κ ⇒ 1] ≤ negl(λ), where

the experiment Exps-cma-c&l
SIG,A,n,κ is defined in Fig. 7.

23

Exps-cma-c&l
SIG,A,n,κ:

ppSIG ←$ SetupSIG
For i ∈ [n]: (vki, ski) ←$ Gen(ppSIG)

QSign := ∅ �Record the signing queries

QCor := ∅ �Record the corruption queries

(i∗ ∈ [n],m∗, σ∗) ←$ AOSign(·,·),OCor(·),OLeak(·,·)(ppSIG, {vki}i∈[n])

If (i∗ /∈ QCor) ∧ ((i∗,m∗, σ∗) /∈ QSign) ∧ (VrfySIG(vki∗ ,m
∗, σ∗) = 1):

Return 1;

Else: Return 0

OSign(i,m):

σ ←$ Sign(ski,m)

QSign := QSign ∪ {(i,m, σ)}
Return σ

OCor(i):

QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage

�bits per user i

Return L(ski)

Fig. 7. The strong MUc&l-CMA security experiment Exps-cma-c&l
SIG,A,n,κ for SIG.

5.2 Generic Construction of SIG from PV-QA-HPS and QA-NIZK

We present a generic construction of strongly MUc&l-CMA secure SIG. Let M
be an arbitrary message space. The underlying building blocks are as follows.

• Two language distributions L and L0, both of which have hard SMPs.
• A publicly-verifiable PVQAHPS = (SetupHPS, α(·), ν,Pub,Priv,VrfyHPS) for

both L and L0, with hashing key space SK and verification key space VK.
• A tag-based QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for L ,

whose tag space is T .
• A family of collision-resistant hash functions H = {H : VK ×M −→ T }.

Our generic construction of SIG= (SetupSIG,Gen,Sign,VrfySIG) is shown in Fig. 8.

ppSIG ←$ SetupSIG:

(ρ, td)←$ L .
ppHPS ←$ SetupHPS.
ppNIZK ←$ SetupNIZK.
(crs, tdcrs)←$ CRSGen(ρ).
H ←$ H.
Return ppSIG :=

(ρ, ppHPS, ppNIZK, crs, H).

(vk, sk)←$ Gen(ppSIG):

sk ←$ SK, vk := ν(sk).
Return (vk, sk).

σ ←$ Sign(sk,m):

x ←$ Lρ with witness w.
d := Priv(sk, x).
vk := ν(sk).
τ := H(vk,m) ∈ T .
π ←$ Prove(crs, τ, x, w).
Return σ := (x, d, π).

0/1← VrfySIG(vk,m, σ):

Parse σ = (x, d, π).
τ := H(vk,m) ∈ T .
If VrfyNIZK(crs, τ, x, π) = 1
∧ VrfyHPS(vk, x, d) = 1:

Return 1.
Else: Return 0.

Fig. 8. Generic construction of SIG = (SetupSIG,Gen, Sign,VrfySIG) from PVQAHPS,
tag-based QANIZK and H. The message space is M.

Correctness of SIG follows directly from the verification completeness of
PVQAHPS and the perfect completeness of QANIZK.

Next, we show its strong MUc&l-CMA security. We stress that the projection
key pkρ = αρ(sk) is not published as part of SIG’s verification key, and this
is crucial to the security of SIG since otherwise one can publicly generate valid
signatures for any message via the Pub algorithm of PVQAHPS by using pkρ.

Theorem 1 (Strong MUc&l-CMA Security of SIG). Assume that (i) L
and L0 have hard SMPs, (ii) PVQAHPS is a publicly-verifiable QA-HPS for

24

both L and L0, having verification soundness, VK-diversity, and supporting κ-
LR-〈L0,L 〉-OT-extracting, (iii) QANIZK is a tag-based QA-NIZK for L , sat-
isfying both perfect zero-knowledge and unbounded simulation-soundness, (iv)
H is collision-resistant. Then the proposed SIG scheme in Fig. 8 is strongly
MUc&l-CMA secure under κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qs times of OSign queries, there exist adversaries B1, · · · ,B6, such that
T(B1) ≈ · · · ≈ T(B5) ≈ T(A) + (n+Qs) · poly(λ), with poly(λ) independent of
T(A), and

Advs-cma-c&l
SIG,A,n,κ(λ) ≤ Advvrfy-sndPVQAHPS,B1,n

(λ) + AdvcrH,B2
(λ) + Advmsmp

L ,B3,Qs
(λ) + Advmsmp

L0,B4,Qs
(λ)

+ AdvussQANIZK,B5
(λ) + n(n−1)

2 · εvk-divPVQAHPS(λ) + n · εlr-〈L0,L〉-otext
PVQAHPS,B6,κ

(λ).

We refer to Subsect. 2.1 and Fig. 1 therein for an overview of the proof. Due
to space limitations, we postpone the formal proof to the full version [19].

6 PKE with Tight MUMCc&l-CCA Security

In this section, we present public-key encryption (PKE) schemes with tight
MUMCc&l-CCA security, by using QA-HPS with new properties formalized in
Sect. 4 as a central building block.

In Subsect. 6.1, we define the MUMCc&l-CCA security of PKE. Then in Sub-
sect. 6.2, we present our generic construction of PKE.

6.1 Definition of MUMCc&l-CCA Security

In [27], Lee et al. defined indistinguishability for PKE schemes under chosen-
ciphertext attacks (CCA) in a Multi-User Multi-Challenge setting with adaptive
corruptions of secret keys (which was originally called MUC+ in [27] and is de-
noted by MUMCc-CCA in this paper). Here we extend it to MUMCc&l-CCA, which
also takes key leakages into account. Below we present the formal definition.

Definition 16 (MUMCc&l-CCA Security for PKE). Let κ = κ(λ) ∈ N. A
PKE scheme PKE = (SetupPKE,Gen,Enc,Dec) is MUMCc&l-CCA secure under
κ bits leakage per user, if for any PPT adversary A and any polynomial n, it
holds that Advcca-c&l

PKE,A,n,κ(λ) :=
∣∣Pr[Expcca-c&l

PKE,A,n,κ ⇒ 1] − 1
2

∣∣ ≤ negl(λ), where the

experiment Expcca-c&l
PKE,A,n,κ is defined in Fig. 9.

6.2 Generic Construction of PKE from QA-HPS and QA-NIZK

In this subsection, we present a generic construction of MUMCc&l-CCA secure
PKE. The underlying building blocks are as follows.

• Two language distributions L and L0, both of which have hard SMPs.

25

Expcca-c&l
PKE,A,n,κ:

ppPKE ←$ SetupPKE
For i ∈ [n]: (pki, ski) ←$ Gen(ppPKE)

QEnc := ∅ �Record the encryption queries

QCor := ∅ �Record the corruption queries

For i ∈ [n]: chali := false

β ←$ {0, 1} �Single challenge bit

β′ ←$ AOEnc(·,·,·),ODec(·,·),OCor(·),OLeak(·,·)(ppPKE, {pki}i∈[n])

If β′ = β: Return 1; Else: Return 0

OEnc(i∗,m0,m1):

If |m0| 6= |m1|: Return ⊥
If i∗ ∈ QCor: Return ⊥
chali∗ := true

c∗ ←$ Enc(pki∗ ,mβ)

QEnc := QEnc ∪ {(i∗, c∗)}
Return c∗

ODec(i, c):

If (i, c) ∈ QEnc: Return ⊥
Return Dec(ski, c)

OCor(i):

If (i, ·) ∈ QEnc: Return ⊥
QCor := QCor ∪ {i}
Return ski

OLeak(i, L): �at most κ leakage

�bits per user i

If chali = true: Return ⊥
Return L(ski)

Fig. 9. The MUMCc&l-CCA security experiment Expcca-c&l
PKE,A,n,κ for PKE.

• A QAHPS = (SetupHPS, α(·),Pub,Priv) for both L and L0, whose hashing
key space is SK, projection key space is PK and hash value space is HV. We
require HV to be an (additive) group. We stress that QAHPS is not required
to be publicly-verifiable.

• A tag-based QANIZK = (SetupNIZK,CRSGen,Prove,VrfyNIZK,Sim) for L ,
whose tag space is T .

• A family of collision-resistant hash functions H = {H : PK ×HV −→ T }.

Our generic construction of PKE = (SetupPKE,Gen,Enc,Dec) is shown in Fig. 10.

ppPKE ←$ SetupPKE:

(ρ, td)←$ L .
ppHPS ←$ SetupHPS.
ppNIZK ←$ SetupNIZK.
(crs, tdcrs)←$ CRSGen(ρ).
H ←$ H.
Return ppPKE :=

(ρ, ppHPS, ppNIZK, crs, H).

(pk, sk) ←$ Gen(ppPKE):

sk ←$ SK, pk := αρ(sk).
Return (pk, sk).

c ←$ Enc(pk,m ∈ HV):

x ←$ Lρ with witness w.
d := Pub(pk, x, w) +m ∈ HV.
τ := H(pk, d) ∈ T .
π ←$ Prove(crs, τ, x, w).
Return c := (x, d, π).

m/⊥ ← Dec(sk, c):

Parse c = (x, d, π).
pk := αρ(sk).
τ := H(pk, d) ∈ T .
If VrfyNIZK(crs, τ, x, π) = 1:

m := d− Priv(sk, x) ∈ HV.
Return m.

Else: Return ⊥.

Fig. 10. Generic construction of PKE = (SetupPKE,Gen,Enc,Dec) from QAHPS, tag-
based QANIZK and H. The message space is M := HV.

Correctness of PKE follows directly from the correctness of QAHPS and the
perfect completeness of QANIZK. Next, we show its MUMCc&l-CCA security.

Theorem 2 (MUMCc&l-CCA Security of PKE). Assume that (i) L and L0

have hard SMPs, (ii) QAHPS is a QA-HPS for both L and L0, having PK-
diversity, and supporting both κ-LR-〈L ,L0〉-key-switching and L0-multi-key-
multi-extracting, (iii) QANIZK is a tag-based QA-NIZK for L , satisfying both
perfect zero-knowledge and unbounded simulation-soundness, (iv) H is collision-
resistant. Then the proposed PKE scheme in Fig. 10 is MUMCc&l-CCA secure
under κ bits leakage per user.

Concretely, for any number n of users and any adversary A who makes at
most Qe times of OEnc queries and Qd times of ODec queries, there exist ad-
versaries B1, · · · ,B7, such that T(B1) ≈ · · · ≈ T(B6) ≈ T(A) + (n+Qe +Qd) ·

26

poly(λ), with poly(λ) independent of T(A), and

Advcca-c&l
PKE,A,n,κ(λ) ≤ AdvcrH,B1

(λ) + Advmsmp
L ,B2,Qe

(λ) + 2 · Advml-msmp
L0,B3,n,Qe

(λ) + Advmsmp
L0,B4,Qe

(λ)

+ AdvussQANIZK,B5
(λ) + AdvL0-mk-mext

QAHPS,B6,n,Qe
(λ) + n(n−1)

2 · εpk-divQAHPS(λ) + 2n · εlr-〈L,L0〉-ks
QAHPS,B7,κ

(λ).

We refer to Subsect. 2.2 and Fig. 2 therein for an overview of the proof. Due
to space limitations, we postpone the formal proof to the full version [19].

7 More Primitives and Instantiations from MDDH

Tightly MUc&l secure SC, MAC and AE. Our SIG and PKE immediately
lead to direct constructions of tightly MUMCc&l-Priv&Auth secure SC [3, 9].
By fully exploiting the similar and composable components of our SIG and
PKE, we can obtain a more efficient SC construction, which is shown in the full
version [19]. Since SIG naturally implies MAC and SC implies AE, we can also
obtain the constructions of tightly secure MAC and AE. We also give optimized
MAC and AE constructions in the full version [19], where PVQAHPS is replaced
with QAHPS. Our MAC achieves tight strong MUc&l-CMVA security, which also
considers chosen verification attacks [13] in addition to strong MUc&l-CMA.

Instantiations from MDDH. We give instantiations of SIG and PKE from
the matrix DDH (MDDH) assumptions over asymmetric pairing groups. Our
SC, MAC and AE can be similarly instantiated.

Firstly, we instantiate the building blocks needed in our generic construc-
tions (cf. the full version [19]). More precisely, we give concrete instantiations
of Publicly-Verifiable QA-HPS (with an overview in Subsect. 2.4) and QA-HPS,
built upon the MDDH-based QA-HPS schemes proposed in [20], which are in
turn generalizations of the well-known DDH-based HPS scheme proposed by
Cramer and Shoup in [11]. Then we instantiate tag-based QA-NIZK with a tag-
base variant of the QA-NIZK scheme proposed in [1] that has tight USS based
on MDDH, which is recalled in the full version [19] for completeness.

Next we instantiate the generic SIG construction in Sect. 5 with the above
building blocks. Let x · G denote x elements in G. Under MDDH parameters
`, k ∈ N where ` ≥ 2k + 1, the MDDH-based SIG scheme SIGMDDH has public
parameter ppSIG : (5k2 + 3k + `k) · G1 + (5k2 + 4k + 1 + 2`k) · G2, verification
key vk : (`k) · G2, signing key sk : `(k + 1) · Zp, and signature σ : (4k2 + 4k +
2 + `) · G1 + (2k2 + 3k + 1) · G2. By plugging the theorems regarding the tight
security of the MDDH-based PV-QA-HPS and QA-NIZK schemes (cf. the full
version [19]) into Theorem 1, we have the following corollary showing the tight
strong MUc&l-CMA security of SIGMDDH based on the MDDH assumptions (as
well as the collision-resistance of hash functions).

Corollary 1 (Tight Strong MUc&l-CMA Security of SIGMDDH). Let ` ≥
2k + 1 and κ ≤ log p − Ω(λ). For any number n of users and any adversary A
who makes at most Qs times of OSign queries, there exist adversaries B1,B2 and

27

B3, such that T(B1) ≈ T(B2) ≈ T(B3) ≈ T(A) + (n+Qs) ·poly(λ), with poly(λ)
independent of T(A), and

Advs-cma-c&l
SIGMDDH,A,n,κ(λ) ≤ 2 · AdvcrH,B1

(λ) + (4kdlogQse+ `− k + 6) · Advmddh
D`,k,G1,B2

(λ)

+(2dlogQse+ 3) · Advmddh
Dk,G2,B3

(λ) + n+2dlogQseQs

p−1 + n(n−1)
2 · 1

pk` .

Since Qs = poly(λ) for PPT adversaries, the security loss is in fact O(logQs) =
O(log λ), which is lower than O(λ). For k = 1 and ` = 3, we get a fully compact
SIG scheme with ppSIG : 11·G1+16·G2, vk : 3·G2, sk : 6·Zp and σ : 13·G1+6·G2.
The resulting SIG scheme has tight strong MUc&l-CMA security based on the
SXDH assumption (which requires the DDH assumption to hold both in G1 and
G2), and supports κ = log p−Ω(λ) bits leakage per user. The leakage rate (i.e.,

κ/ bit-length of sk) is log p−Ω(λ)
6 log p = 1

6 − o(1) asymptotically as p grows.
We also instantiate the generic PKE construction in Sect. 6. Under MDDH

parameters `, k ∈ N where ` ≥ 2k+ 1, the MDDH-based PKE scheme PKEMDDH

has public parameter ppPKE : (5k2 + 3k + `k) · G1 + (4k2 + 3k + 1 + 2`k) · G2,
public key pk : k ·G1, secret key sk : ` ·Zp, and ciphertext c : (4k2 + 3k+ 2 + `) ·
G1 +(2k2 +3k+1) ·G2. By plugging the theorems regarding the tight security of
the MDDH-based QA-HPS and QA-NIZK schemes (cf. the full version [19]) into
Theorem 2, we have the following corollary showing the tight MUMCc&l-CCA
security of PKEMDDH based on the MDDH assumptions (as well as the collision-
resistance of hash functions).

Corollary 2 (Tight MUMCc&l-CCA Security of PKEMDDH). Let ` ≥ 2k + 1
and κ ≤ log p − Ω(λ). For any number n of users and any adversary A who
makes at most Qe times of OEnc queries and Qd times of ODec queries, there
exist adversaries B1,B2 and B3, such that T(B1) ≈ T(B2) ≈ T(B3) ≈ T(A) +
(n+Qe +Qd) · poly(λ), with poly(λ) independent of T(A), and

Advcca-c&l
PKEMDDH,A,n,κ(λ) ≤ 2 · AdvcrH,B1

(λ) + (4kdlogQee+ `− k + 9) · Advmddh
D`,k,G1,B2

(λ)

+(2dlogQee+ 2) · Advmddh
Dk,G2,B3

(λ) + 2n+2dlogQeeQe

p−1 + n(n−1)
2 · 1

pk
.

For k = 1 and ` = 3, we get a fully compact PKE scheme with ppPKE : 11 ·G1 +
14 ·G2, pk : 1 ·G1, sk : 3 ·Zp and c : 12 ·G1 + 6 ·G2. The resulting PKE scheme
has tight MUMCc&l-CCA security based on the SXDH assumption, and supports

κ = log p−Ω(λ) bits leakage per user. The leakage rate is log p−Ω(λ)
3 log p = 1

3 − o(1)
asymptotically as p grows.

For an overview, we refer to Table 1 and Table 2 in the introduction.

On tightness of our MDDH-based schemes. Our MDDH-based schemes
are the first ones achieving almost tight MUc/MUc&l security in the standard
model, and the security loss factor is O(log λ).

We stress that all our generic constructions are fully tightness-preserving, i.e.,
the MUc/MUc&l securities of the resulting SIG, PKE, SC, MAC, AE schemes are
tightly reduced to the security properties of the building blocks PV-QA-HPS,
QA-HPS and tag-based QA-NIZK, with constant security loss factors. More-
over, our instantiations of PV-QA-HPS and QA-HPS have fully tight securities,

28

and only the tag-based QA-NIZK instantiation has security loss factor O(log λ).
Therefore, our fully tightness-preserving generic constructions leave spaces for
even tighter (fully tight) MUc/MUc&l security, as long as we can find instantia-
tions of tag-based QA-NIZK with tighter security.

On efficiency of our MDDH-based schemes. Note that all our schemes
enjoy full compactness (i.e., all the parameters, keys, signatures and ciphertexts
consist of only a constant number of group elements). We believe our fully com-
pact schemes are good starts for almost tight MUc/MUc&l security in the standard
model and follow-up work might improve efficiency even further.

Acknowledgments. We would like to thank the reviewers for their help-
ful comments and valuable suggestions. Shuai Han and Shengli Liu were par-
tially supported by National Natural Science Foundation of China (Grant Nos.
62002223, 61925207), Guangdong Major Project of Basic and Applied Basic
Research (2019B030302008), the National Key R&D Program of China under
Grant 2022YFB2701500, Shanghai Sailing Program (20YF1421100), Young Elite
Scientists Sponsorship Program by China Association for Science and Technol-
ogy (YESS20200185), and Ant Group through CCF-Ant Research Fund (CCF-
AFSG RF20220224). Dawu Gu was partially supported by the National Key
R&D Program of China under Grant 2020YFA0712302.

References

[1] Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK
and SPS with tighter security. In: ASIACRYPT 2019, pp. 669–699

[2] Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: TCC 2009, pp. 474–495

[3] An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption.
In: EUROCRYPT 2002, pp. 83–107

[4] Bader, C., Hofheinz, D., Jager, T., Kiltz, E., Li, Y.: Tightly-secure authenticated
key exchange. In: TCC 2015, pp. 629–658

[5] Bader, C., Jager, T., Li, Y., Schäge, S.: On the impossibility of tight cryptographic
reductions. In: EUROCRYPT 2016, pp. 273–304

[6] Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-
ting: Security proofs and improvements. In: EUROCRYPT 2000, pp. 259–274

[7] Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. In: ASIACRYPT 2000, pp.
531–545

[8] Bellare, M., Rogaway, P.: Entity authentication and key distribution. In:
CRYPTO 1993, pp. 232–249

[9] Bellare, M., Stepanovs, I.: Security under message-derived keys: Signcryption in
iMessage. In: EUROCRYPT 2020, pp. 507–537

[10] Chen, J., Wee, H.: Fully, (almost) tightly secure IBE and dual system groups. In:
CRYPTO 2013, pp. 435–460

[11] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: EUROCRYPT 2002, pp. 45–64

[12] Diemert, D., Gellert, K., Jager, T., Lyu, L.: More efficient digital signatures with
tight multi-user security. In: PKC 2021, pp. 1–31

29

[13] Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited.
In: EUROCRYPT 2012, pp. 355–374

[14] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: CRYPTO 2013, pp. 129–147

[15] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption without
pairings. In: EUROCRYPT 2016, pp. 1–27

[16] Gay, R., Hofheinz, D., Kohl, L.: Kurosawa-Desmedt meets tight security. In:
CRYPTO 2017, pp. 133–160

[17] Gjøsteen, K., Jager, T.: Practical and tightly-secure digital signatures and au-
thenticated key exchange. In: CRYPTO 2018, pp. 95–125

[18] Han, S., Jager, T., Kiltz, E., Liu, S., Pan, J., Riepel, D., Schäge, S.: Authenti-
cated key exchange and signatures with tight security in the standard model. In:
CRYPTO 2021, pp. 670–700

[19] Han, S., Liu, S., Gu, D.: Almost tight multi-user security under adaptive cor-
ruptions & leakages in the standard model. Cryptology ePrint Archive, Report
2023/153, https://eprint.iacr.org/2023/153

[20] Han, S., Liu, S., Lyu, L., Gu, D.: Tight leakage-resilient CCA-security from quasi-
adaptive hash proof system. In: CRYPTO 2019, pp. 417–447, https://eprint.
iacr.org/2019/512

[21] Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
CRYPTO 2012, pp. 590–607

[22] Hofheinz, D., Jia, D., Pan, J.: Identity-based encryption tightly secure under
chosen-ciphertext attacks. In: ASIACRYPT 2018, pp. 190–220

[23] Jager, T., Stam, M., Stanley-Oakes, R., Warinschi, B.: Multi-key authenticated
encryption with corruptions: Reductions are lossy. In: TCC 2017, pp. 409–441

[24] Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In:
ASIACRYPT 2013, pp. 1–20

[25] Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: EU-
ROCRYPT 2015, pp. 101–128

[26] Langrehr, R., Pan, J.: Tightly secure hierarchical identity-based encryption. In:
PKC 2019, pp. 436–465

[27] Lee, Y., Lee, D.H., Park, J.H.: Tightly CCA-secure encryption scheme in a multi-
user setting with corruptions. Des. Codes Cryptogr. 88(11), 2433–2452 (2020)

[28] Liu, X., Liu, S., Gu, D.: Tightly secure chameleon hash functions in the multi-user
setting and their applications. In: ACISP 2020, pp. 664–673, https://eprint.
iacr.org/2022/1258

[29] Liu, X., Liu, S., Gu, D., Weng, J.: Two-pass authenticated key exchange with
explicit authentication and tight security. In: ASIACRYPT 2020, pp. 785–814

[30] Morgan, A., Pass, R., Shi, E.: On the adaptive security of MACs and PRFs. In:
ASIACRYPT 2020, pp. 724–753

[31] Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption.
In: ASIACRYPT 2016, pp. 729–758

[32] Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In:
CRYPTO 2009, pp. 18–35

[33] Pan, J., Wagner, B.: Lattice-based signatures with tight adaptive corruptions and
more. In: PKC 2022. pp. 347–378

[34] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS 1999, pp. 543–553

[35] Steinfeld, R., Pieprzyk, J., Wang, H.: How to strengthen any weakly unforgeable
signature into a strongly unforgeable signature. In: CT-RSA 2007, pp. 357–371

30

https://eprint.iacr.org/2023/153
https://eprint.iacr.org/2019/512
https://eprint.iacr.org/2019/512
https://eprint.iacr.org/2022/1258
https://eprint.iacr.org/2022/1258

	 Almost Tight Multi-User Security under Adaptive Corruptions & Leakages in the Standard Model
	Introduction
	Our Contributions

	Technical Overview
	Our SIG: Technical Overview
	Our PKE: Technical Overview
	Our SC, MAC and AE: Technical Overview
	Instantiations from MDDH Assumptions and Leakage Resilience
	Comparison with Existing Techniques for Tight MUc Security

	Preliminaries
	Language Distribution
	Quasi-Adaptive Hash Proof System
	Tag-based Quasi-Adaptive Non-Interactive Zero-Knowledge

	Publicly-Verifiable QA-HPS and New Properties
	SIG with Tight Strong MUc&l-CMA Security
	Definition of Strong MUc&l-CMA Security
	Generic Construction of SIG from PV-QA-HPS and QA-NIZK

	PKE with Tight MUMCc&l-CCA Security
	Definition of MUMCc&l-CCA Security
	Generic Construction of PKE from QA-HPS and QA-NIZK

	More Primitives and Instantiations from MDDH

