
Bifurcated Signatures: Folding the
Accountability vs. Anonymity Dilemma into a

Single Private Signing Scheme

Benôıt Libert1,2, Khoa Nguyen3, Thomas Peters4, and Moti Yung5

1 CNRS, Laboratoire LIP, France
2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, Inria, UCBL), France

3 Nanyang Technological University, SPMS, Singapore
4 FNRS and UCLouvain (ICTEAM), Belgium

5 Google and Columbia University, USA

Abstract. Over the development of modern cryptography, often, alter-
native cryptographic schemes are developed to achieve goals that in some
important respect are orthogonal. Thus, we have to choose either a scheme
which achieves the first goal and not the second, or vice versa. This results
in two types of schemes that compete with each other. In the basic area
of user privacy, specifically in anonymous (multi-use credentials) signing,
such an orthogonality exists between anonymity and accountability.
The conceptual contribution of this work is to reverse the above orthogo-
nality by design, which essentially typifies the last 25 years or so, and
to suggest an alternative methodology where the opposed properties are
carefully folded into a single scheme. The schemes will support both
opposing properties simultaneously in a bifurcated fashion, where:
– First, based on rich semantics expressed over the message’s context

and content, the user, etc., the relevant property is applied point-wise
per message operation depending on a predicate; and

– Secondly, at the same time, the schemes provide what we call “branch-
hiding;” namely, the resulting calculated value hides from outsiders
which property has actually been locally applied.

Specifically, we precisely define and give the first construction and security
proof of a “Bifurcated Anonymous Signature” (BiAS): A scheme which
supports either absolute anonymity or anonymity with accountability,
based on a specific contextual predicate, while being branch-hiding. This
novel signing scheme has numerous applications not easily implementable
or not considered before, especially because: (i) the conditional trace-
ability does not rely on a trusted authority as it is (non-interactively)
encapsulated into signatures; and (ii) signers know the predicate value
and can make a conscious choice at each signing time.
Technically, we realize BiAS from homomorphic commitments for a general
family of predicates that can be represented by bounded-depth circuits.
Our construction is generic and can be instantiated in the standard model
from lattices and, more efficiently, from bilinear maps. In particular,
the signature length is independent of the circuit size when we use
commitments with suitable efficiency properties.

Keywords. New primitive, privacy, anonymity, accountability, group
signatures, conditional traceability, predicate-based privacy.

1 Introduction

Properties provided by cryptographic primitives (such as confidentiality and
anonymity) generate a natural tension between the requirements of individual
users (such as privacy and other rights), and those of society (such as safety
and individual accountability). This fact has created a very rigid positioning of
cryptosystems: Designs that serve individual needs, and those which serve societal
concerns. A classical example of the above rigidity is the scenario of anonymous
signing. On the one hand, there are group signatures [18], central privacy tools
allowing users to anonymously sign messages in the name of a population of
users they belong to. In order to keep users accountable for their actions, group
signatures involve a trusted opening authority (OA) which is called upon when
needed only, and is endowed with some privileged information allowing it to
trace any signature back to its author. This accountability mechanism, therefore,
in these cases, revokes the anonymity of that user. On the other hand, ring
signatures [45] and related primitives [30,39,19,11] allow users to sign whatever
they like in the name of a population while retaining unconditional anonymity.

In light of this over quarter-of-a-century old situation, we claim that for
many applications, in fact, group and ring signatures fall short of providing
an appropriate tradeoff between anonymity and accountability that would be
sufficiently fair for, both, signers and authorities. Privacy-aware signers naturally
want to protect their privacy as much as possible. At the same time, authorities
aim to ensure that signers of all problematic signatures can be caught. What
we argue in this work is that in many real-life situations, the ability to trace a
signature or not should actually depend on the content and context of the message,
and should be provided programmatically by the primitive rather than being
supported by a one sided mechanism which is part of the primitive specification.

Consider the scenario where each signature authenticates an anonymous
financial transaction associated with a hidden amount of money and between
users in different countries that should only be known to the payer and the payee
(this can be done by employing additional cryptographic mechanisms, e.g., the
amount and countries are encrypted or committed to, as in the privacy-preserving
cryptocurrency system Monero [41]). For money-laundering detection purposes,
the authorities would like to make sure that transactions with amounts above
a certain threshold between two specific countries can be traced. On the other
hand, to satisfy privacy-aware users, the system should also provide absolute
anonymity for transactions amounts below the traceability threshold or within
the same country, say, or for any other messages of harmless content. Importantly,
for privacy reasons as well (e.g., keeping statistics of the financial transactions
hidden), the public should not be able to determine whether a given signed
transaction, corresponds to a traceable or to an untraceable type.

As another example, imagine that visitors of a digital library are required
to register and sign before reviewing specific e-books. The ability/ inability
to identify signers should naturally depend on whether the books in question
are totally benign (e.g., comics, essays containing controversial but inoffensive
political opinions, etc.) or potentially harmful (like chemistry books explaining

2

how to produce bombs, any form of advocacy of hatred, etc.).
As yet another example, note that service providers often ask users to attest to

personal attributes, for example, to guarantee the veracity of answers to questions
like “Have you been to one of these countries in the last 6 months?”, “Are you
above 18?”, etc. In this case we argue that while suspicious online activities and
alert-raising messages should be traceable by some warranted authority, regular
well-behaved typical users should not have to reveal their history and information
to service providers that verify their signatures.

The above examples motivate the design of a new anonymous signature
primitive where the ability to trace a signature back to its source is determined
by a predicate that depends on the signed message and the user’s credential, and
where the traceability property of a signature is hidden from the general public.
Such schemes are highly desirable, so that they can support the above scenarios,
since they provide a fair privacy-preserving non-rigid setting which users and
authorities both have strong incentives to deploy. However, to our knowledge, a
non-rigid conditional setting, and such signatures have never been considered so
far. We call this type of schemes that allow this on the fly flexibility “Bifurcated
Cryptosystems.”

1.1 Our Contributions

We introduce the study of cryptographic primitives that provide tradeoffs between
competing requirements like end-to-end privacy and accountability, by suggesting
bifurcated anonymous signatures (BiAS). In short, BiAS schemes are anonymous
signature schemes allowing to bifurcate into absolute anonymity and identity
escrow at the signing time, where computing signatures is associated with a
predicate P . They enable unconditional anonymity when the predicate P (M, id, w)
evaluates to 1 on input of the message M , the user’s identity id and some secret
context-dependent piece of information w which we call a witness. At the same
time, signatures should be traceable by an authority whenever P (M, id, w) = 0.

As a first major requirement, BiAS must be branch-hiding : verifiers as well
as the issuing credential authority should be unable to figure out whether a
signature is traceable or not.

In our BiAS primitive, whether a signature is traceable or not depends on
the content which is being signed and the user’s identity. Since users know the
predicate and its value before signing, they know beforehand when they will
be subject to tracing and they can make an educated decision as to whether
they can afford to sign a specific message or not. At the same time, only the
tracing authority will be able to learn whether the signatures are traceable or
not. The users are assured that if their signature is not traceable, no one, even
if the authority’s keys are available, will be able to trace them. In fact, let us
emphasize that this is an unconditional anonymity property, which is of high
importance in some applications, such as the case of journalists signing an article
unfavorable to the local regime, in a place where their life is in danger upon
eventual identification.

As a natural second requirement, we pair the notion of branch-hiding with

3

the notion of branch-soundness. Branch-soundness prevents users from generating
untraceable signatures when the signer should have been identified or vice versa.
Said otherwise, no signers can fool the system even with the help of the authorities
and be able to produce a signature of which the traceability does not respect the
predicate.

We first give precise syntax and security definitions for the BiAS primitive.
The guarantee offered by this notion allows us to extend the notions of traceability,
non-frameability, and anonymity, borrowed from ordinary group signatures to
our more general predicate-based primitive.

Secondly, we provide a generic BiAS realization where predicates may consist
of polynomial-size circuits of a priori bounded depth. As building blocks, our
construction relies on the homomorphic equivocal commitment (HEC) primitive
defined by Katsumata et al. [27], dual-mode non-interactive zero-knowledge
(NIZK) arguments [24,42,26], and a variant of the R-lossy encryption primitive
of Boyle et al. [14]. Our constructions are instantiable in the standard model for
arbitrary polynomial-size Boolean circuits under the Learning-With-Errors (LWE)
assumption [44]. For Boolean formulas (equivalently, NC1 circuits), more efficient
instantiations are possible under falsifiable assumptions in groups endowed with
a bilinear map. In both cases, our schemes enjoy the property that the signature
size only depends on the maximal circuit depth, and not on its size. The signature
size is dominated by O((logN + |w|) · λc) bits (where N is the group size and c
is a constant) committing to the witness w and the user’s identity together with
NIZK arguments showing that the ciphertexts were properly generated.

1.2 Technical Overview

Defining Security. Our security model puts forth the notions of branch-hiding
and branch-soundness for our bifurcated anonymous signature (BiAS) primitive.
We advocate, more generally, that it is the first instance of a new fundamental
notion of bifurcated cryptosystems (balancing based on a predicate in one scheme,
both, user concerns and public safety issues). Further, to capture anonymity
we extend the CCA-like notion of unlinkability of signatures which can be now
produced from different predicate values. We call the resulting notion anonymity
“in the traceable case” which implies the branch-hiding property of BiAS. We
augment this anonymity notion with the anonymity “in the non-traceable case”
where all the signatures are generated from a predicate value equals to 1, i.e.,
from the branch leading to unconditional anonymity. A BiAS is, then, called
fully anonymous if it fulfills both anonymity notions. Branch-hiding and full
anonymity, primarily, take care of privacy of BiAS.

To prevent misuse of the BiAS functionality, we build on two security notions
from the Kiayias-Yung model [29] of group signatures. First, the security against
mis-identification attacks (a.k.a. traceability) which requires that, even if the
adversary can introduce users under its control in the group of signers, it cannot
produce a signature that traces outside the dishonest coalition. Second, the notion
of security against framing attacks which implies that honest users can never be
falsely accused of having signed messages, even if the whole system conspires

4

against them. However, extending these security notions is not straightforward
or immediate in our model, since we have to detect whether a given signature
contradicts one of these properties even, if that signature is untraceable. Indeed,
to build a reduction in a security proof, for instance, we have to figure out if a
given untraceable signature has been generated honestly by a legitimate signer
or if it is a forgery. However, being able to do so, in fact, seems to contradict
statistical (unconditional) anonymity.

To circumvent the apparent incompatibility between privacy and security,
we rely on our branch-soundness notion. It is a two-stage definition which first
defines an extractable mode of the scheme only useful for the sake of proving
security: it generates parameters of the scheme allowing to extract the identity
and the witness behind any valid signatures. Such an extraction allows evaluating
the predicate a posteriori given any signature. As a second stage, we require that
the (real) tracing algorithm can be indistinguishably emulated from the (ideal)
extractable mode, even when the authorities’ keys are exposed. A BiAS satisfying
branch-soundness thus ensures the hardness of “cheating” with the predicate,
even for corrupt authorities. The reason is that it implies the infeasibility of
producing signatures that: (i) can be traced while the context allows retaining
statistical anonymity, i.e., P (M, id, w) = 1, and conversely (ii) cannot be traced
while the context allows retaining identity escrow, i.e., P (M, id, w) = 0. We stress
that the indistinguishability in branch-soundness cannot be statistical since,
otherwise, untraceable signatures would no longer be statistically anonymous.
Based on the branch-soundness notion, we can now extend the security notion
of [29] from the (ideal) extractable mode of the BiAS.

Underlying primitives. Our construction for bounded-depth circuits is based
on combining a number of primitives. First, it is built on the homomorphic equiv-
ocable commitments (HEC) of Katsumata et al. [27]. An HEC is a commitment
scheme that allows committing to a message ~x using random coins R in such
a way that anyone can publicly evaluate a circuit C over the commitment com
to obtain an evaluated commitment comev = Eval(C, comev) to C(~x). Using the
pair (~x,R), the committer can internally run a private evaluation algorithm over
(~x,R) in order to compute a proof π which will convince a verifier that comev is a
commitment to C(~x). The primitive is instantiatable for all circuits via the fully
homomorphic commitments of Gorbunov, Vaikuntanathan and Wichs [23], which
in turn, is built on the FHE scheme of Gentry, Sahai and Waters (GSW) [22].
Katsumata et al. [27] also gave a construction for log-depth circuits under pairing-
related assumptions [27]. In order to combine statistical anonymity in non-tracing
mode and extractability in the security proofs, we employ a dual-mode NIZK
argument, which either provides statistical zero-knowledge and computational
soundness or vice versa, depending on the distribution of the common reference
string. In the public verifiability setting, dual-mode NIZK is known to exist under
standard assumptions in pairing-friendly groups, as shown by Groth, Ostrovsky
and Sahai [24]. Peikert and Shiehian [42] (inspired by the earlier work of Canetti
et al. [17]) recently gave constructions under the Learning-With-Errors (LWE)
assumption. In order to smoothly interact with HEC schemes, the dual-mode

5

NIZK system makes use of dual-mode commitments [24], where the commitment
key can be tuned to give either statistically hiding or extractable commitments.

Construction. At a high level, our construction proceeds as follows. When
a user joins the group, he generates a fresh public key for a digital signature
pkid and obtains from the group manager (GM) a membership certificate certid
consisting of the GM’s signature on the pair (id, pkid), where id is the user’s
identity. In order to sign a message w.r.t. the predicate P , a group member
computes an HEC commitment com(id,w) to the witness w and his identity id. At
the same time, the signer computes a dual-mode commitment to (id, w), which is
configured to be statistically hiding in the real scheme. The signer then considers
the message-dependent circuit CM (., .) which evaluates CM (id, w) = P (M, id, w)
on input of (id, w). He runs the private HEC evaluation algorithm to compute a
proof πC,M that comev = Eval(CM , comev) is really a commitment to CM (id, w).
It finally computes a public key encryption ctid ← Encrypt(pk, (1−CM (id, w)) · id)
of the product (1− CM (id, w)) · id, so that ctid encrypts 0 when unconditional
anonymity is enabled (i.e., when CM (id, w) = 1) and id otherwise. A dual-mode
NIZK argument then allows arguing that all steps were properly carried out.

When the tracing capability is enabled (namely, when CM (id, w) = 0), we
need to rely on a special kind of dual-mode commitment to prove computational
anonymity in the CCA sense (i.e., when the adversary has access to a signature
opening oracle). Specifically, we need to program the commitment key to make
commitments extractable in all signature opening queries and statistically hiding
in the challenge phase. This is achieved using tag-based commitments, where each
commitment is computed under a tag-dependent commitment key that either
provides statistically hiding or extractable commitments, depending on the tag.
In order to instantiate these dual-mode tag-based commitments, we use a recent
variant [34] of the R-lossy encryption of Boyle et al. [14], for which we give a
DDH-based realization (as well as an LWE-based realization adapted from [34]).
Using this R-lossy encryption to instantiate the dual-mode commitment compo-
nent, we can make it statistically hiding in the challenge phase (for a specific tag
corresponding to a one-time verification key VK?) and statistically extractable
for all other tags VK 6= VK?. This allows us to proceed with a sequence of hybrid
games where, instead of answering opening queries by decrypting the ciphertext
ctid, we can extract the committed (id, w). This can be seen as applying the
two-key paradigm of Naor and Yung [40] for CCA2-secure encryption.

The above construction crucially relies on HEC to avoid the signature length
from depending on the circuit size. If we were to give up the circuit-size in-
dependent property, constructions would be possible from any non-interactive
statistically hiding commitment.

Open Questions. Naturally, our work, being in a new area (with some new
technical and definitional challenges as described above), leaves many open prob-
lems which we believe to be interesting. Conceptually, one can ask how bifurcated
cryptography applies elsewhere. Technically, the first problem that comes to mind
is finding practically efficient instantiations from lattice assumptions (even in the
random oracle model) as our LWE-based construction is only meant to be a first

6

feasibility result. In particular, it would be interesting to provide more efficient
lattice-based solutions using, e.g., the Fiat-Shamir-with-abort method [37,10]
or the techniques recently suggested in [49]. The second open problem is to
determine the extent to which more specific predicate families can be realized
more efficiently (with or without random oracles) and under different assumptions.
While the work of Katsumata et al. [27] implies a pairing-based construction for
Boolean formulas, it is only known to achieve circuit-size independence under a
q-type (although falsifiable) assumption. A sufficient condition to avoid relying
on variable-size assumptions in the pairing setting would be to build an HEC
scheme based on simple assumptions, where the size of partial openings does not
depend on the circuit size. Finally, while the rest of the paper will concentrate on
BiAS, exploring further primitives providing point-wise predicate-based built-in
privacy or confidentiality bifurcated tradeoffs seems like a new area for broader
investigations.

1.3 Related Work

The rigid anonymity vs. accountability situation indeed generated much discom-
fort in the community. Group signatures traditionally allow opening authorities
to identify the author of any signature. As advocated by Sakai et al. [46], it
may be desirable to prevent the OA from seeing the entire signature history
of all group members. Restricting the power of the opening authorities is a
challenging research direction, where a few steps have been taken. For example,
traceable signatures [28], group signatures with message-dependent opening [46],
and accountable tracing signatures [33] can all be viewed as group signatures
with restricted opening authorities. However, the OA can still freely break the
anonymity of some subset of signatures without the user’s agreement. These
primitives offer more privacy to users than ordinary group signatures, but not at
a level that privacy-sensitive users would hope for.

Ring signatures [45,6] confer everlasting anonymity to group members. They
depart from group signatures in that signers are not required to register in the
system and signers have complete freedom on the list of their ring-mates at each
signature. Compared to group signatures, they stand at the opposite extreme
of the spectrum as they do not provide any accountability at all. Linkable ring
signature [36], traceable ring signatures [20], as well as k-time anonymous au-
thentication systems [47] only introduce a weak form of accountability in ring
signatures as users only lose anonymity to some extent: for example, if they issue
two or more signatures for some message, their signatures become linkable but
they can still create one controversial signature and disappear from the system
without being caught.

Accountable tracing signatures (ATS) [32,33] take a different approach to
balance accountability and anonymity, by allowing the two extreme settings of
ring signatures and group signatures to co-exist. In ATS schemes, a given user is
either always unconditionally anonymous or always traceable, based on a decision
made by the authority when the user joins the system. In addition, users are
never notified about their traceability status. In our setting and use-cases, the

7

ability to trace or not should depend point-wise on the message and not only on
group members’ identities. Moreover, we deliberately aim at leaving users some
control on when and under which circumstances they want to accept traceability.

Accountable ring signatures (ARS) [48,9] provide another kind of tradeoff
where anonymity and traceability can live together. Xu and Yung [48] consider a
threshold opening mechanism where no single opener is given the entire power.
The ARS model of Bootle et al. [9] also provides some flexibility in the choice of
tracing authorities as signers are allowed to choose which opener they trust with-
out necessarily leaving the full tracing capability to a pre-determined authority.
On the other hand, neither of these models [48,9] provides full expressiveness as
to which messages can be signed with unconditional anonymity and which ones
should always be traceable.

Bangerter et al. [2] considered an informal framework allowing to monitor
the release of certified data. Their (interactive) model fully trusts the opening
authority to only disclose users’ data when specific conditions are met. In con-
trast, BiAS does not trust the opener when de-anonymization conditions are not
fulfilled and even requires unconditional anonymity in this case.

Boyen and Delerablée [12] introduced a variant of group signatures allowing
group members to flexibly and expressively choose a subgroup wherein they
hide their identity. Our goals are orthogonal to theirs since their model always
allows tracing authorities to identify signers whereas we accurately control the
conditions under which the signer’s identity can be uncovered.

Garms and Lehmann [21] put forth the concept of convertably linkable signa-
tures (CLS) which are group signatures where a “converter” can blindly relate
a bunch of signatures to some randomized pseudonyms. To convert the given
signatures into linkable ones, another authority first blinds the signatures in
order to mitigate the power of the converter. However, the converter is actually
an opening authority that can always trace a given signature as long as it was
not blinded. At any time, CLS thus “only” provide computational anonymity.

Attribute-based signatures (ABS) [38] allow a signer to sign a message while
simultaneously showing possession of credentials satisfying a public predicate.
Policy-based signatures (PBS) [3] are signature schemes where users obtain a
policy-based signing key (associated with some predicate P) from some authority,
which allows them to sign exactly those messages M for which P (M) = 1. ABS
and PBS address different problems than our BiAS primitive in that they provide
fine-grained control over “who can sign” and “which messages can be signed at
all”, respectively. As such, they do not give users control over which signatures
can be traced (with user knowledge of it). Our BiAS functionality departs from
PBS [3] in that predicates are not associated with keys but with signed messages
and may vary across signatures. In terms of generic implications, PBS were
shown [3] to imply digital signatures, NIZK [7] and CCA-secure encryption [43].
However, they are not known to imply homomorphic equivocable commitments
with circuit-size independent verification, and the relationship between PBS and
BiAS thus remains unclear. In particular, we do not see any obvious way to
obtain BiAS realizations by generically using a PBS.

8

Functional signatures [13] differ from conditionally traceable signatures in
that, in the same spirit as PBS, they accurately control which messages can be
signed. In contrast, BiAS controls which signatures can be traced.

In the context of anonymous compact e-cash [15], Camenisch et al. [16] were
bothered by the anonymity vs. accountability issue in a specific scenario. They
considered a conditional anonymity setting which restricts transactions to be
untraceable only when they do not exceed a specific amount. In their model, the
threshold amount is fixed for each merchant over multiple transactions. If a user
performs a number of transactions with total values exceeding a threshold, he
can be traced based on public records. On the other hand, if the total amount
remains under the threshold, the traceable authority is unable to extract the
user’s identity. However, the anonymity remains computational even in that case.
In contrast, our BiAS primitive is a generic add-on mechanism, and ensures the
statistical anonymity of signers as long as the predicate equals 1, e.g., the amount
does not reach a fixed threshold.

In summary, there was a lot of discomfort with the existing dichotomy between
anonymity and accountability. This has produced a large number of interesting
and useful cases and solutions. However, a bifurcated solution with choice at the
user’s hand folded into a single scheme, where the choice is driven by a local
predicate which further remains undetected by others, has not been considered.
This new BiAS system, which gives the user the best possible (i.e., unconditional)
anonymity when permitted, in fact, constitutes the most private and the most
versatile solution for the problem of balancing user’s vs. society’s needs within
anonymous signing scenarios.

2 Preliminaries

2.1 R-Lossy Public-Key Encryption

Boyle et al. [14] formalized the notion of R-lossy encryption. The primitive is
a tag-based encryption scheme [31] where the tag space T is partitioned into
injective tags and lossy tags. When ciphertexts are generated under an injective
tag, the decryption algorithm recovers the underlying plaintext. On lossy tags, the
ciphertext statistically hides the underlying plaintext. In R-lossy PKE schemes,
the tag space is partitioned according to a binary relation R ⊆ K × T . The key
generation algorithm inputs an initialization value K ∈ K and partitions T in
such a way that injective tags t ∈ T are exactly those for which (K, t) ∈ R (i.e.,
all tags t for which (K, t) 6∈ R are lossy).

Libert et al. [34] considered a flavor of R-lossy PKE schemes with two distinct
key generation algorithms and equivocable lossy ciphertexts. For our purposes,
we do not need to equivocate lossy ciphertexts but we still need two distinct key
generation algorithms. Looking ahead, our proof of anonymity (in Lemma 4),
requires to switch from a setting where all tags are lossy to a setting where only
one tag is lossy. Also, proving other security notions requires to move from the
“all lossy” setting to the “all injective” setting in the proof of Theorem 1.

9

Definition 1. Let R ⊆ Kλ × Tλ be an efficiently computable binary relation.
An R-lossy PKE scheme with efficient opening is a 5-uple of PPT algorithms
(Par-Gen,Keygen, LKeygen,Encrypt,Decrypt) such that:

Parameter generation: On input of a security parameter λ, a desired length
of initialization values L ∈ poly(λ) and a lower bound B ∈ poly(λ) on the
message length, Par-Gen(1λ, 1L, 1B) outputs public parameters Γ that specify
a tag space T , a space of initialization values K, a public key space PK and
a secret key space SK.

Key generation: For an initialization value K ∈ K and public parameters
Γ , algorithm Keygen(Γ,K) outputs an injective public key pk ∈ PK and a
decryption key sk ∈ SK. The public key specifies a ciphertext space CtSp and
a randomness space RRLE.

Lossy Key generation: Given an initialization value K ∈ K and public pa-
rameters Γ , the lossy key generation algorithm LKeygen(Γ,K) outputs a lossy
public key pk ∈ PK and a lossy secret key sk ∈ SK.

Decryption under injective tags: For any Γ ← Par-Gen(1λ, 1L, 1B), any
K ∈ K, any t ∈ T such that (K, t) ∈ R, and any Msg ∈ MsgSp, we have

Pr
[
∃r ∈ RRLE : Decrypt

(
sk, t,Encrypt(pk, t,Msg; r)

)
6= Msg

]
< ν(λ) ,

for some negligible function ν(λ), where (pk, sk) ← Keygen(Γ,K) and the
probability is taken over the randomness of Keygen.

Indistinguishability: For any Γ ← Par-Gen(1λ, 1L, 1B), the key generation
algorithms LKeygen and Keygen satisfy the following:

(i) For any K ∈ K, the distributions Dinj = {pk | (pk, sk)← Keygen(Γ,K)}
and Dloss = {pk | (pk, sk)← LKeygen(Γ,K)} are computationally indis-
tinguishable.

(ii) For any initialization values K,K ′ ∈ K, the two distributions {pk |
(pk, sk) ← LKeygen(Γ,K)} and {pk | (pk, sk) ← LKeygen(Γ,K ′)} are
statistically indistinguishable.

Lossiness: For any Γ ← Par-Gen(1λ, 1L, 1B), any initialization value K ∈ K
and tag t ∈ T such that (K, t) 6∈ R, any (pk, sk) ← Keygen(Γ,K), and any
Msg0,Msg1 ∈ MsgSp, the following distributions are statistically close:

{C | C ← Encrypt(pk, t,Msg0)} ≈s {C | C ← Encrypt(pk, t,Msg1)}.

For any (pk, sk)← LKeygen(Γ,K), the above holds for any tag t.

We will use an R-lossy encryption scheme for the inequality relation.

Definition 2. Let K = {0, 1}L and T = {0, 1}L \ {0L}, for some L ∈ poly(λ).
The inequality relation RNEQ : K × T → {0, 1} is the relation for which we
have RNEQ(K, t) = 1 if and only if K 6= t.

10

We note that, since we exclude the all-zeroes string 0L from T , running
Keygen on input of the initialization value K = 0L produces a key pk that is
injective for all tags. In contrast LKeygen produces keys that are lossy for any
tag and any initialization value.

We now give an RNEQ-Lossy PKE realization under the Decision Diffie-
Hellman (DDH) assumption (MDDH generalization is obvious). In the full version,
we also provide a construction from the LWE assumption.

An RNEQ-Lossy PKE Scheme from DDH. The construction below is inspired
from [35], which is itself inspired from Groth-Sahai commitments [25] to scalars.
We first recall the definition of the DDH problem.

Definition 3. In a cyclic group G of prime order p, the Decision Diffie-
Hellman Problem (DDH) in G, is to distinguish the distributions (g, ga, gb, gab)
and (ga, gb, gc), with a, b, c ←↩ Zp. The Decision Diffie-Hellman assumption
is the intractability of DDH for any PPT algorithm D.

Par-Gen(1λ, 1L, 1B): Define K = {0, 1}L, and T = {0, 1}L \ {0L}. Define public
parameters as Γ = (1λ, 1L, 1B).

Keygen(Γ,K): On input of Γ and K ∈ K, generate a key pair as follows.

1. Choose a cyclic group G or prime order p > 2λ with a generator g ←↩ U(G).
Choose α ←↩ U(Zp) and compute h = gα. Define ~g0 = (g, h) ∈ G2 and

~g = ~gβ0 · (1, g) ∈ G2, where β ←↩ U(Zp).
2. Pick γ ←↩ U(Zp) and compute ~u = ~gγ0 · ~g−K ∈ G2, where K ∈ {0, 1}L is

interpreted as an element of Zp.
Define RRLE = ZBp and output sk = (α,K) as well as pk :=

(
G, ~g0, ~g, ~u

)
.

LKeygen(Γ,K): This algorithm is identical to Keygen with the difference that,

at step 1, it computes ~g as ~g = ~gβ0 ∈ G2, where β ←↩ U(Zp). It defines

RRLE = ZBp and outputs sk = (α,K) as well as pk :=
(
G, ~g0, ~g, ~u

)
.

Encrypt(pk, t,Msg): To encrypt Msg ∈ {0, 1}B, interpret the tag t ∈ T as an
element of Zp. For each index i ∈ [B], pick ri ←↩ U(Z∗p) and compute

cti =
(
~u · ~gt

)Msg[i] · ~gri0 ∈ G2. Then, output ct = (ct1, . . . , ctB) ∈ G2B .

Decrypt(sk, t, ct): Given sk = (α,K) and t ∈ {0, 1}L, interpret t as an element
of Zp. If t = K, return ⊥. Otherwise, for each i ∈ [B], do the following:

1. Parse cti as (cti,1, cti,2) ∈ G2

2. Set Msg[i] = 0 if cti,2 = ctαi,1 and Msg[i] = 1 otherwise.

Output Msg ∈ {0, 1}B .

The proof of Lemma 1 is straightforward. The first indistinguishability property
follows immediately from the semantic security of ElGamal and the observation
that Keygen and LKeygen only differ in the distribution of ~g. The second indistin-
guishability property follows from the fact that, for any K ∈ K and any public
key pk generated by LKeygen, ~u ∈ G2 is uniformly distributed in the subspace

11

spanned by ~g0. The same holds for any ciphertext encrypted under an injective
key for the lossy tag t = K or a lossy key for any tag. The construction readily
extends to rely on the k-linear assumption [8] for k > 1.

Lemma 1. The above construction is an RNEQ-lossy public-key encryption
scheme under the DDH assumption.

2.2 Homomorphic Equivocal Commitments

We now recall the definition of homomorphic equivocal commitment, as formalized
by Katsumata et al. [27].

Definition 4. A HEC scheme with message space X , randomness space RHEC

and randomness distribution DHEC over RHEC for a circuit class C = {C : X →
{0, 1}} is a tuple of PPT algorithms HEC = (Setup,Commit,Open,Evalin,Evalout,
Verify) with the following specifications:

Setup(1λ): Inputs a security parameter 1λ and outputs public parameters pp, an
evaluation key ek and a master secret key msk.

Commit(pp, ~x, r): Takes as input public parameters pp, a message ~x ∈ X and
randomness r ∈ RHEC. It outputs a commitment com. When r is omitted
from the notation Commit(pp, ~x), we man that r is sampled from DHEC.

Open(msk, ~x, r, ~x′): Takes as input a master secret key msk, messages ~x, ~x′ ∈ X ,
and randomness r ∈ RHEC. It outputs fake randomness r′ ∈ RHEC.

Evalin(ek, C, ~x, r): The inner evaluation algorithm inputs a key ek, a circuit
C ∈ C, a message ~x and randomness r ∈ RHEC. It outputs a proof π.

Evalout(ek, C, com): The outer evaluation algorithm is a deterministic algorithm
that inputs an evaluation key ek, a circuit C ∈ C and a commitment com. It
outputs an evaluated commitment comev.

Verify(pp, comev, z, π): The verification algorithm takes as input public parame-
ters pp, an evaluated commitment comev, a message z ∈ {0, 1}, and a proof
π. It outputs 0 or 1.

In addition, it should satisfy the following properties:

Evaluation correctness: For all λ ∈ N, all (pp, ek,msk) ← HEC.Setup(1λ),
any input ~x ∈ X , any randomness r ∈ RHEC, and any circuit C ∈ C, if
com = HEC.Commit(pp, ~x; r), π ← HEC.Evalin(msk, C, ~x, r), and

comev = HEC.Evalout(ek, C, com),

then Pr[HEC.Verify(pp, comev, C(~x), π) = 1] ≥ 1 − ν(λ), for some function
ν(λ) ∈ negl(λ).

Distributional equivalence of Open: For all λ ∈ N, any (pp, ek,msk) ←
HEC.Setup(1λ), any ~x, ~̄x ∈ X , randomness r, r′ ←↩ DHEC, the distributions
{(pp, ek,msk, ~x, r, com) | r ←↩ DHEC, com = HEC.Commit(pp, ~x; r)} and

{(pp, ek,msk, ~x, r′ = HEC.Open(msk, ~̄x, r̄, ~x), com′) |
r̄ ←↩ DHEC, com′ = HEC.Commit(pp, ~̄x; r̄)}

are statistically close.

12

Computational binding on evaluated commitments: For any PPT adver-
sary A, we have

Pr
[
HEC.Verify(pp, comev, z

?, π?) = 1 ∧ z? 6= C(~x)|
(pp, ek,msk)← HEC.Setup(1λ),

(~x, r, C, z?, π?)← A(pp, ek),

com = HEC.Commit(pp, ~x; r),

comev = HEC.Evalout(ek, C, com)
]
∈ negl(λ)

Efficient committing: There exists a polynomial poly(λ) such that, for all
(pp, ek,msk) ← HEC.Setup(1λ), ~x ∈ X and r ∈ RHEC, the running time of
com = HEC.Commit(pp, ~x; r) is bounded by |~x| · poly(λ).

Efficient verification: There exists a polynomial poly(λ) such that, for all
(pp, ek,msk) ← HEC.Setup(1λ) and any ~x ∈ X , r ∈ RHEC, C ∈ C and
z ∈ {0, 1}, if com = HEC.Commit(pp, ~x; r), π ← HEC.Evalin(msk, C, ~x, r)
and comev = HEC.Evalout(ek, C, com), then |π|, |comev| ≤ poly(λ) and the
running time of HEC.Verify(pp, comev, z, π) is at most poly(λ) (which does
not depend on |C|).

Context hiding: There exists a PPT simulator HEC.ProofSim such that, for all
λ ∈ N, (pp, ek,msk) ← HEC.Setup(1λ), ~x ∈ X , C ∈ C, r ∈ RHEC and com =
HEC.Commit(pp, ~x; r), the distribution {π ← HEC.Evalin(msk, C, ~x,R)} is
statistically indistinguishable from {π′ ← HEC.ProofSim(msk, com, C, C(~x))}.

We note that the distributional equivalence of Open implies that the commitment
is statistically hiding. Here, we only need the statistically hiding property and
we do not rely on equivocation. We do not explicitly rely on the context hiding
property either since partial openings π produced by Open will be part of witnesses
in a NIZK argument. On the other hand, we will exploit the efficient verification
property to achieve circuit-size independence in terms of signature size.6

3 Bifurcated Anonymous Signatures

This section formalizes the primitive of bifurcated anonymous signature (BiAS).
BiAS is the first general signature primitive reconciling statistical anonymity and
accountability in front of dishonest authorities in a single scheme. Nevertheless,
our model and syntax are inspired by those in the context of dynamic group
signatures given by Kiayias and Yung [29] —who extended the work of Bellare,
Micciancio and Warinschi [4] on static group signatures.

3.1 Syntax

Like in [29], we consider dynamically growing groups. The syntax includes an
interactive protocol which allows users to be enrolled as new members of the

6 As pointed out in [27, Remark 3.3], it is straightforward to build an HEC without
the context-hiding and efficient verification properties, using any statistically hiding
commitment.

13

group at any time. Analogously to the similar model of Bellare, Shi and Zhang [5],
the Kiayias-Yung (KY) model assumes an interactive join protocol whereby
a prospective user becomes a group member by interacting with the group
manager responsible to issuing credentials. This protocol provides the user with
a membership certificate, certi, and a membership secret, seci.

In the syntax below, we define a space ID of user identifiers as well as a space
of witnessesW . For any message-identity-witness triple (M, id, w) ∈M×ID×W ,
we adopt the convention that P (M, id, w) = 0 whenever the user of identity id
was only allowed to sign M using the witness w while being subject to tracing,
by the opening authority. In contrast, having P (M, id, w) = 1 allows the user to
use the witness w to generate a signature on M while retaining unconditional
anonymity. For generality and more applicability, a BiAS defines a family P of
authorized public predicates P which are needed to verify signatures.

Definition 5 (Bifurcated Anonymous Signature). A bifurcated anony-
mous signature (BiAS) scheme for a predicate family P consists of the following
algorithms or protocols.

Setup(1λ, 1N): given a security parameter λ and a maximal number of group
members N ∈ poly(λ)∩N, this algorithm is run by a trusted party to generate
a group public key Y associated to the predicate family Pλ, which specifies a
message space M, a space of user identifiers ID, and a witness space W. It
also outputs the group manager’s private key SGM and the opening authority’s
private key SOA. Each key is given to the appropriate authority while Y is
made public. The algorithm also initializes a public state St comprising a set
data structure Stusers = ∅ and a string data structure Sttrans = ε. From now
on we assume λ is implicit.

Join: is an interactive protocol between the group manager GM and a user U
who gets a unique identifier id ∈ ID (both are responsible for enforcing the
uniqueness of the identifier). The protocol involves two interactive Turing
machines Juser and JGM that both take Y as input. The execution, denoted as
[Juser(Y), JGM(Y,SGM, St)], ends with user Uid := U obtaining a membership
secret secid, that no one else knows, and a membership certificate certid. If
the protocol is successful, the group manager updates the public state St by
setting Stusers := Stusers ∪ {id} as well as Sttrans := Sttrans||〈id, transcriptid〉.

Sign(id, certid, secid,M,w, P): given an identifier id ∈ ID, a membership certifi-
cate certid, a membership secret secid, a message M ∈M, a witness w ∈ W,
and a predicate P ∈ P, this probabilistic algorithm outputs a signature σ.

Verify(Y,M, σ, P): given a message M ∈M, a signature σ, a predicate P ∈ P
and a group public key Y, this deterministic algorithm returns either 0 or 1.

Open(Y,SOA,M, σ, P, St): takes as input the opening authority’s private key
SOA, a message M ∈ M, a signature σ w.r.t. Y and a predicate P ∈ P as
well as the public state St. It outputs id ∈ Stusers ∪ {⊥}, which is the identity
of a group member or a symbol indicating anonymity.

Correctness basically requires that, if all parties honestly run the protocols,
all algorithms are correct with respect to their specification described as above.

14

Correctness of Bifurcated Anonymous Signatures. Following the Kiayias-Yung
terminology [29], we say that a public state St is valid if it can be reached from
St = (∅, ε) by a Turing machine having oracle access to JGM. Also, a state St′ is
said to extend another state St if it is within reach from St. Moreover, we write
certid �Y secid to mean that there exists coin tosses $ for JGM and Juser such
that, for some valid public state St′, the execution of the interactive protocol
[Juser(Y), JGM(Y,SGM, St′)]($) provides Juser with 〈id, secid, certid〉.

Definition 6 (Correctness). A BiAS scheme is correct if the following condi-
tions are all satisfied for any (St,Y,SGM,SOA)← Setup(1λ, 1N):

(1) In a valid state St, |Stusers| = |Sttrans| always holds and two distinct entries
of Sttrans always contain certificates with distinct id.

(2) If [Juser(Y), JGM(Y,SGM, St)] is run by two honest parties following the protocol
and 〈id, certid, secid〉 is obtained by Juser, then we have certid �Y secid.

(3) For each 〈id, certid, secid〉 such that certid �Y secid, any message M ∈ M,
any witness w ∈ W and any predicate P ∈ P, we have

Verify
(
Y,M, Sign(id, certid, secid,M,w, P), P

)
= 1.

(4) For any M 6∈ M or any P 6∈ P, and any σ, we have Verify(Y,M, σ, P) = 0.
(5) Open(Y,SOA,M, σ, P, St) ∈ ID ∪ {⊥} as long as Verify(Y,M, σ, P) = 1.
(6) For any outcome 〈id, certid, secid〉 of [Juser(., .), JGM(., St, ., .)], for some valid

St, any predicate P ∈ P, any message M ∈ M, any witness w ∈ W and
σ ← Sign(id, certid, secid,M,w, P), with overwhelming probability:
(a) if P (M, id, w) = 0, then Open(Y,SOA,M, σ, P, St) = id;
(b) if P (M, id, w) = 1, then Open(Y,SOA,M, σ, P, St) = ⊥.

We formalize security properties via experiments where the adversary interacts
with a stateful interface I that maintains the following variables:

– stateI : is a data structure representing the state of the interface as the
adversary invokes the various oracles available in the attack games. It is
initialized as stateI = (St,Y,SGM,SOA) ← Setup(1λ, 1N). It includes the
(initially empty) set Stusers of group members and a dynamically growing
database Sttrans storing the transcripts of previously executed join protocols.

– n = |Stusers| ≤ N denotes the current cardinality of the group.
– Sigs: is a database of honestly generated signatures created by the signing

oracle. Each entry consists of a tuple (id,M,w, σ, P) indicating that message
M was signed by user id with respect to the witness w and the predicate P .

– Ua: is an initially empty set of users that are introduced by the adversary in
the system in an execution of the join protocol.

– U b: is an initially empty set of honest users introduced in the system by the
adversary acting as a dishonest group manager. For these users, the adversary
obtains the transcript of [Juser, JGM] but not the user’s membership secret.

In attack games, adversaries are granted access to the following oracles:

15

– Qpub, QkeyGM and QkeyOA: when these oracles are invoked, the interface looks
up stateI and returns the group public key Y, the GM’s private key SGM
and the opening authority’s private key SOA respectively. Once the oracle
QkeyGM (resp. QkeyOA) is invoked, it updates the initially empty key state
StGM ← {SGM} (resp. StOA ← {SOA}).

– Qa-join: allows the adversary to introduce users under its control in the group.
On behalf of the GM, the interface runs JGM in interaction with the Juser-
executing adversary who plays the role of the prospective user in the join
protocol. At the beginning of Juser, the user chooses an identifier id and the
interface aborts if id was previously assigned to a different user in Ua. If this
protocol successfully ends, the interface updates St by inserting the new user
id in both sets Stusers and Ua. It also sets Sttrans := Sttrans||〈id, transcriptid〉.

– Qb-join: allows the adversary, acting as a corrupted group manager, to introduce
new honest group members of its choice. The interface triggers an execution
of [Juser, JGM] and runs Juser in interaction with the adversary who runs JGM.
If the protocol successfully completes, the interface adds user id to Stusers
and U b and sets Sttrans := Sttrans||〈id, transcriptid〉. It stores the membership
certificate certid and the membership secret secid in a private part of stateI .

– Qsig: given a tule (M,w,P) and an identifier id, the interface returns ⊥ if
id 6∈ U b. Otherwise, the private area of stateI must contain a certificate certid
and a membership secret secid. The interface outputs a signature σ on behalf
of user id and also updates Sigs← Sigs||(id,M,w, σ, P).

– Qopen: when this oracle is invoked on input of a valid triple (M,σ, P), the
interface runs algorithm Open using the current state St. When S is a set
of tuples of the form (M,σ, P), Q¬Sopen denotes a restricted oracle that only
applies the opening algorithm to tuples (M,σ, P) which are not in S.

– Qread and Qwrite: are used by the adversary to read and write the content of
St. At each invocation, Qread outputs the state St of the interface. By using
Qwrite, the adversary can modify St at will as long as it does not invalidate
St: for example, the adversary is allowed to create dummy users as long as it
does not re-use already existing certificates.

In the random oracle model we implicitly assume that all the BiAS algorithms
and protocols have access to the random oracle.

3.2 Branch-Hiding and Privacy

Branch-Hiding. The notion of branch-hiding captures the infeasibility, even for
a corrupt group manager, to decide whether a user signs a message M for a
given predicate P while enabling traceability or not. In particular, P (M, id, w)
remains computationally hidden. Said otherwise, signatures do not betray any
potential intent of a user to remain untraceable or accept traceability. The formal
description is given in the full version as we require a stronger privacy notion.

Full Anonymity. The notion of anonymity is formalized via two games parametrized
by a bit d and involving a two-stage adversary. The first stage is called play

16

stage and allows the adversary A to modify stateI via Qwrite-queries and open
arbitrary signatures by probing Qopen. When the play stage ends, A chooses a
message-predicate pair (M?, P ?) as well as two 4-ules (id?0, w

?
0 , sec

?
0, cert

?
0) and

(id?1, w
?
1 , sec

?
1, cert

?
1), both containing a valid membership certificate and a corre-

sponding membership secret. Then, depending on d ∈ {0, 1}, the adversary is
given a challenge signature σ? computed using (id?d, w

?
d, sec

?
d, cert

?
d) with the task

of eventually guessing the bit d ∈ {0, 1}. Before doing so, it is allowed further
oracle queries throughout the second stage, called guess stage, but is restricted not
to query Qopen for (M?, σ?, P ?). We note that the adversary is allowed to choose
(id?0, sec

?
0, cert

?
0) and (id?1, sec

?
1, cert

?
1) such that P ?(M?, id?0, w

?
0) 6= P ?(M?, id?1, w

?
1).

Our definition of anonymity thus reflects the inability of a verifier to distinguish
signatures that are traceable from those that are not. To strengthen the model,
the definition even allows the adversary to corrupt the opening authority as
long as P ?(M?, id?0, w

?
0) = 1 = P ?(M?, id?1, w

?
1). In such a non-traceable case, we

require that the indistinguishability is statistically independent of the bit d. We
elaborate more on this adversarial complexity just after.

Definition 7. A BiAS is fully anonymous if it satisfies the next conditions:

Traceable case For any PPT adversary A the following advantage is negligible.

Advanon
A,N (λ) :=

∣∣Pr
[
Expanon-1

A,N (λ) = 1
]
− Pr

[
Expanon-0

A,N (λ) = 1
]∣∣

Non-traceable case For any (unbounded) adversary involved in Expanon-d
A,N

and Expanon-ntr-d
A,N (defined in Fig. 1), the following advantage is negligible.

Advanon-ntr
A,N (λ) :=

∣∣Pr
[
Expanon-ntr-1

A,N (λ) = 1
]
− Pr

[
Expanon-ntr-0

A,N (λ) = 1
]∣∣

1 stateI := (St,Y,SGM,SOA)← Setup(1λ, 1N);

2

(
aux,M?, w?0 , w

?
1 , (id

?
0, sec

?
0, cert

?
0), (id?1, sec

?
1, cert

?
1), P ?

)
← A(play; Qpub, QkeyGM, Qopen, Qread, Qwrite, QkeyOA);

3 if ¬
(
certid?0 �Y secid?0

)
∨ ¬

(
certid?1 �Y secid?1

)
then return 0;

4 if
(
M? 6∈ M

)
∨
(
w?0 , w

?
1 6∈ W

)
∨
(
P ? 6∈ P

)
then return 0;

5 σd ← Sign(Y, id?d, cert?d, sec?d,M?, w?d, P
?) ;

6 d′ ← A(guess; σd, aux,Qpub, QkeyGM, Q
¬{(M?, σd,P

?)}
open , Qread, Qwrite, QkeyOA);

7 if
(
P ?(M?, id?0, w

?
0) = 1

)
∧
(
P ?(M?, id?1, w

?
1) = 1

)
then return d′ ;

8 if
(
StOA = ∅

)
then return d′ ;

9 return 0;

Fig. 1: Experiment Expanon-d
A,N (λ) (resp. Expanon-ntr-d

A,N (λ)) excluding the
dotted (resp. solid) box.

17

The anonymity definition has two parts: a first one that captures the (CCA)
unlinkability against all entities but the OA regardless of the predicate value;
and a second one which captures the unlinkability even against the OA when
the predicate evaluates to 1. Clearly, the first case can never be statistical if the
predicate is not constantly equal to 1. However, while the requirement of the
second case could only have been computational, we stress that having two cases
has nothing to do with the running time of the adversary.

The reason we are requiring statistical anonymity is because we advocate the
need to enhance the privacy branch in the context of anonymous signatures. When
the predicate equals 1, the signer should have full confidence in his anonymity.
Allowing computational anonymity leaves room for a potential backdoor in the
system, which could be exploitable in an unexpected way in some applications.

In the full version of this paper, we suggest an even stronger notion of
anonymity, called unsubversive anonymity, in the non-traceable case. This notion
allows for adversarially-generated authorities’ keys. Since it only seems achievable
in the random oracle model, we do not include it in the general BiAS model and
leave the design of a BiAS achieving it for future research.

3.3 Branch-Soundness and Security

Defining strong unforgeability-related notions requires being able to check whether
an adversary fools the underlying predicate value embedded into signatures.
However, checking such a relation needs extracting meaningful information
even from (statistically) non-traceable signatures. To circumvent this apparent
conflicting requirements we first define the branch-soundness notion which sets
an indistinguishable extractable mode even if all the keys are exposed. It also
captures the inability of any efficient adversary to produce valid signatures in
the extractable mode that contradict the openability of signatures in the real
mode. Equipped with a setting where identities and witnesses are extractable
“all the time” we can turn to other security notions.

Branch-Soundness. To be able to extract (id, w) from any valid signatures, we
introduce an indistinguishable setting allowing such extractions for the purpose
of testing the underlying predicate value P (M, id, w). As long as signatures are
traceable, we require id to be consistent with the outcome of Open.

Definition 8. A BiAS scheme satisfies the branch-soundness property if there
is a pair of efficient algorithms with the following specifications:

SimSetup(1λ, 1N): given a security parameter λ and a maximal number of users
N ∈ poly(λ) ∩ N, this algorithm generates a group public key Y, the group
manager’s secret key SGM, the opening authority’s secret key SOA as well
as an extraction trapdoor τext. The algorithm also initializes a public state
St = (Stusers, Sttrans) := (∅, ε) as in Setup;

Extract(Y, τext,M, σ, P, St): inputs a valid message-signature pair (M,σ) w.r.t.
Y and a predicate P ∈ P, the extraction trapdoor τext as well as the public
state St. It outputs an identity id ∈ ID and a witness w ∈ W.

18

In addition, these algorithms must satisfy the following notions.

Extractable correctness: for any (St,Y,SGM,SOA, τext) ← SimSetup(1λ, 1N),
for any outcome 〈id, certid, secid〉 such that certid �Y secid, any message M ,
any witness w, and any predicate P ∈ P: if σ ← Sign(id, certid, secid,M,w, P)
and (id′, w′)← Extract(Y, τext,M, σ, P, St), then (id, w) = (id′, w′) with over-
whelming probability.

Extractable soundness: For any PPT adversary A involved in the experiments
defined in Fig.2, the following advantage function must be negligible:

Advext-s
A (λ) =

∣∣∣Pr
[
Expreal

A (λ) = 1
]
− Pr

[
Expext

A (λ) = 1
]∣∣∣.

1 (St,Y,SGM,SOA)← Setup(1λ, 1N) (St,Y,SGM,SOA, τext)← SimSetup(1λ, 1N) ;

2 (M,σ, P, st)← A(St,Y,SGM,SOA);

3 if Verify(Y,M, σ, P) = 0 then return 0;

4 id? ← Open(SOA,Y,M, σ, P, St) (id, w)← Extract(τext,Y,M, σ, P, St) ;

5 if P (id,M,w) = 1 then id? ← ⊥ else id? ← id ;

6 return A(st, id?);

Fig. 2: Experiment Expreal
A (λ) (resp. Expext

A (λ)) excluding the dotted
(resp. solid) boxes.

In the random oracle model, Item 2 of Fig. 2 is modified as follows:

2’ (M,σ, P, st)← AH0 (St,Y,SGM,SOA) (M,σ, P, st)← AH1 (St,Y,SGM,SOA) ;

Here, H0 and H1 are random oracles which privately evaluate and return the
digests of given inputs. In the real setup, the BiAS algorithms have access to H0

whereas, in the extractable setup, they have access to H1.
We stress that all secret keys but the extraction trapdoor are given to

the distinguisher/adversary. This is necessary because we need the extractable
properties even in presence of dishonest authorities. In the extractable setting, we
require Extract to output a potential identifier id ∈ ID and a witness w ∈ W with
overwhelming probability, even on adversarially-chosen verifying signatures and
when both authorities are corrupted. This extractable mode makes it possible to
compute the predicate in a meaningful way. Further, the extractable soundness
property implies the hardness of computing a valid signature that traces to some
user id for some predicate P although this predicate would have allowed user id to
sign the message with statistical anonymity. While Extract is consistent with Open,
we still do not have the complementary property of the hardness of computing a
valid signature that cannot be traced although the tracing operation should have
been possible. Indeed, if Open identifies a signature as non-traceable, we still
have no clue about the meaning of the identity-witness pair produced by Extract
on adversarially generated valid signatures that are not honestly generated (as
otherwise, extractable-correctness implies the match with the actual pair)

19

Security Against Misidentification Attacks (a.k.a. traceability). In a misidentifi-
cation attack, the adversary can corrupt the opening authority using the QkeyOA

oracle and introduce malicious users in Ua via Qa-join-queries. It aims at producing
a valid signature σ? that does not open to any adversarially-controlled user.

Definition 9. A BiAS scheme is secure against misidentification attacks if it is
branch-sound and, for any PPT adversary A involved in experiment Expmis-id

A,N
(as defined in Fig.3), we have: Advmis-id

A,N (λ) = Pr
[
Expmis-id

A,N (λ) = 1
]
∈ negl (λ) .

1 stateI := (St,Y,SGM,SOA); (St,Y,SGM,SOA, τext)← SimSetup(1λ, 1N) ;

2 (M,σ, P)← A(Qpub, Qa-join, Qread, Qwrite, QkeyOA);

3 if Verify(Y,M, σ, P) = 0 then return 0;

4 (id, w)← Extract(τext,Y,M, σ, P, St);

5 if id ∈ ID \ Ua then return 1;

6 return 0;

Fig. 3: Experiment Expmis-id
A,N (λ).

The winning condition is also checkable without the extractor if we rather define
id? ← Open(SOA,Y,M, σ, P, St) in the experiment, as long as id? 6= ⊥ in the
winning condition of line 5. In that case, the analogue security with the real setup
is implied by the extractable soundness property. Nevertheless, in the extractable
mode the definition also captures the unforgeability of anonymous signatures, i.e.
those which would have made Open to return id? = ⊥ at line 5, if the extracted id
does not correspond to a corrupt user when the group manager remains honest.

Non-Frameability. Framing attacks consider the case where the entire system is
colluding against some honest user. The adversary can corrupt the group manager
as well as the opening authority (via oracles QkeyGM and QkeyOA, respectively).
It can also introduce honest group members (via Qb-join-queries), observe the
system while these users sign messages and create dummy users using Qwrite. The
adversary aims at framing an honest group member. Moreover, the adversary is
also deemed successful if it is able to create a non-traceable valid signature which
could have been created by an honest user but who never computed it: even a
corrupted group manager is unable to compute a non-traceable signature using the
identity of an honest user. For example, if the predicate of a BiAS only allows some
users to compute perfectly anonymous signatures, it is infeasible to compute such
signatures without corrupting at least one of these users. The definition follows
the indistinguishable approach of security against misidentification attacks.

Definition 10. A BiAS scheme is secure against framing attacks if it satisfies
branch-soundness and, for any PPT adversary A involved in experiment Expfra

A,N
(as defined in Fig.4), we have: Advfra

A,N (λ) = Pr
[
Expfra

A,N (λ) = 1
]
∈ negl (λ) .

20

1 stateI := (St,Y,SGM,SOA); (St,Y,SGM,SOA, τext)← SimSetup(1λ, 1N) ;
2 (M?, σ?, P ?)← A(Qpub, QkeyGM, QkeyOA, Qb-join, Qsig, Qread, Qwrite);

3 if Verify(Y,M?, σ?, P ?) = 0 then return 0;

4 (id, w)← Extract(τext,Y,M?, σ?, P ?, St);

5 if
(
id ∈ Ub

)
∧ (id,M?, w, σ?, P ?) 6∈ Sigs then return 1;

6 return 0;

Fig. 4: Experiment Expfra
A,N (λ)

Let id? = Open(SOA,Y,M?, σ?, P ?, St) in the framing experiment. Then, we can
derive two winning conditions depending on whether id? ∈ ID or id? = ⊥. In the
former case, the branch-soundness tells us that id? = id. This traceable case is thus
the analogue of the usual framing attack of KY in group signature transposed to
our BiAS primitive. In the latter case, the signature σ? of a successful adversary
is deemed non-traceable, but it would have been created on behalf of an honest
signer with identifier id who never produced it. This further justifies the need of
all these security notions as we now have the complementary property discussed
after Definition 8: a branch-sound BiAS scheme whose extracting algorithm
returns independent identity-witness pairs given non-honest valid signatures
cannot be secure against framing attacks.

Finally, we note that a signature does not only authenticate the message M ,
but it also binds the predicate value as well as the hidden (id, w) toM . The framing
resistance also guarantees that the signature itself is not malleable as the winning
condition is akin to the “strong”-unforgeability notion of standard signatures.
This requirement is actually necessary since, in order to achieve anonymity in
the “CCA sense”, we need to prevent signatures from being malleable.

Discussion on the witness. Our model does not assume any property of the
witness. At first glance, it may seem strange to apparently let the users choose
their witnesses arbitrarily at the signature generation time. This syntactic choice
makes BiAS more flexible to be combined with other building blocks. For instance,
the witness w may already be committed in an external commitment, i.e. outside
our syntax, and bound by the application. Additional zero-knowledge proofs
between w, the context, and the BiAS scheme are of course possible, which might
prevent the user from choosing w freely.

In a money-laundering prevention application, a signer has no incentive in
authenticating a transaction for a big amount of money w if he does not want to
pay such an amount. Therefore, even if P (M, id, w) may vary when w varies at
each transaction, the context prevents the user with identity id from fixing w in
an arbitrary way. We thus leave it to the applications to define their own rules
on the w’s and the desire and the way to keep their level of secrecy.

21

4 Generic Construction

We provide a generic construction of BiAS for an arbitrary predicate family
P : {0, 1}∗ → {0, 1}. Our construction relies on the following building blocks:

- An RNEQ-lossy PKE scheme ΠRLE = (Par-Gen,Keygen,Encrypt,Decrypt);
- An ordinary lossy PKE scheme Π lpke = (Keygen, LKeygen,Encrypt,Decrypt)

where the message space has size at least N and forms an additive group;
- A digital signature scheme Πsig = (Kg,Sign,Verify) with signature space S

and public key space VK;
- A one-time signature Πots = (Kg,Sign,Verify);
- A homomorphic equivocal commitment scheme HEC = (Setup,Commit,
Open,Evalin,Evalout,Verify), where Commit samples its random coins from a
distribution DHEC over a randomness space RHEC;

- A dual-mode statistical NIZK argument system NIZK = (Setup,ExtSetup,
Prove,Verify,Sim,Extract), as defined in the full version.

Since an RNEQ-lossy PKE scheme implies a standard lossy PKE scheme, the
only ingredients we need are an RNEQ-lossy PKE system, a digital signature, a
homomorphic equivocable commitment and a dual-mode NIZK argument.

For our purposes, it is sufficient to use an HEC scheme without the context-
hiding property since we combine it with NIZK arguments where its partial
openings serve as witnesses.7 By using an HEC with the efficient verification
property, we can make the signature length independent of the circuit size.
Katsumata et al. [27] gave such a pairing-based HEC construction under a q-
type assumption for NC1 circuits. In the lattice setting, the fully homomorphic
commitments of Gorbunov et al. [23] provide efficient verification (for bounded-
depth circuits) under the Short Integer Solution [1] assumption, as recalled in the
full version. At the expense of a signature length depending on the circuit size, the
construction can be simplified to use any statistically hiding commitment instead
of an efficiently verifiable HEC. However, we aim at avoiding the circuit-size
dependency.

Intuitively, the construction encrypts the group member’s identity id and the
witness w using an HEC and simultaneously encrypts them into ct(id,w) using
the RNEQ-lossy PKE scheme, which realizes either a statistically hiding or an
extractable commitment to (id, w). Our proofs of anonymity require statistically-
hiding commitments (as in the real scheme). In our proofs of security against
mis-identification attacks and framing attacks, we will switch ct(id,w) to its
extractable mode because we need to be able to extract the underlying w and id.

In the signing algorithm, the group member next computes an evaluated HEC
commitment comev of the predicate evaluation CM (id, w) by homomorphically
computing over com(id,w) (note that comev need not be included in the signature
since the verifier can recompute if from com(id,w)). Then, the signer computes
a ciphertext ctid that verifiably encrypts a product (1 − CM (id, w)) · id of his

7 A context-hiding construction can still improve the efficiency by outputting partial
openings in the clear in each signature.

22

identity id and the logical NOT of CM (id, w). When the predicate evaluates to
CM (id, w) = 0, ctid is distributed as a lossy encryption8 of id. When CM (id, w) = 1,
ctid is completely independent of the signer’s identity as it encrypts 0|id|.

Setup(1λ, 1N ,Pd): Given a security parameter λ, a predicate family Pd modeled
by circuits of depth d = d(λ) and the maximal number of group members
N = 2` ∈ poly(λ), do the following.

1. Generate a key pair (pksig, sksig)← Πsig.Kg(1λ) for the signature scheme.
We assume that each public key has bitlength `sig ∈ poly(λ).

2. Run (pp, ek,msk) ← HEC.Setup(1λ) to generate parameters for the ho-
momorphic equivocal commitment, together with an evaluation key ek
and a master key msk.

3. Choose a one-time signature scheme Πots = (Kg,Sign,Verify) with verifi-
cation key space {0, 1}L, for some L ∈ poly(λ).

4. Choose public parameters Γ ← ΠRLE.Par-Gen(1λ, 1L, 1B) for an RNEQ-
lossy PKE scheme with tag space K = T = {0, 1}L and message length
B = ` + `w, where `w ∈ poly(λ) is the bitlength of witnesses from the
witness space W = {0, 1}`w . Then, generate lossy keys (pkRLE, skRLE)←
ΠRLE.LKeygen(Γ,0L) for the initialization value K = 0L.

5. Generate an injective key pair (pke, ske) ← Π lpke.Keygen(1λ) for the
standard lossy PKE scheme.

6. Generate a common reference string ρ from (ρ, ζ)← NIZK.Setup(1λ) for
a dual-mode NIZK argument in its statistical ZK mode.

The algorithm outputs
(
Y,SGM,SOA

)
, where the group public key is as

Y :=
(
ρ, pksig, (pp, ek), (Γ, pkRLE), pke

)
,

the opening authority’s private key is SOA := ske and the private key of the
group manager consists of SGM := sksig. Y implicitly initializes St.

Join(GM,Uid): the group manager and the prospective user Uid run the following
interactive protocol [Juser(λ,Y), JGM(λ, St,Y,SGM)]:

1. User Uid generates a key pair (skid, pkid) ← Πsig.Kg(1λ) and sends the
public key pkid together with his identity id ∈ {0, 1}` \ {0`} and an
ordinary signature sigid ← Πsig.Sign(usk[id], (id, pkid)) to GM.

2. JGM verifies that: id 6= 0`; id was not previously used by a registered user;
sigid is a valid signature on (id, pkid) w.r.t. upk[id]. It aborts if this is not
the case. Otherwise, it computes certid ← Πsig.Sign(sksig, (id, pkid)) as a
signature on the message (id, pkid). The membership certificate certid is
sent to Uid. Then, Juser verifies that Πsig.Verify(pksig, (id, pkid), certid) = 1.
If this condition is not satisfied, Juser aborts. Otherwise, Juser defines the
membership certificate as certid. The membership secret secid is defined
to be secid = skid. JGM stores transcriptid = (id, pkid, certid, upk[id], sigid) in
the database Sttrans of joining transcripts.

8 It is possible to compute ctid using an ordinary (i.e., non-lossy) PKE scheme but it
requires to rely on the simulation-soundness of NIZK in the proof of Lemma 4.

23

Sign(id, certid, secid,M,w, P): To sign a message M ∈ {0, 1}`m using the witness
w = w[1] . . . w[`w] ∈ {0, 1}`w w.r.t. the predicate P ∈ Pd, let CM : {0, 1}`w ×
{0, 1}` → {0, 1} be the message-dependent Boolean circuit of depth ≤ d that
evaluates P (M, id, w) on input of (w[1], . . . , w[`w], id[1], . . . , id[`]).

1. Generate a one-time signature key pair (VK,SK)← Πots.Kg(1λ).
2. Choose rid,w ←↩ RRLE in the randomness space of ΠRLE and encrypt the

identity-witness pair (id, w) ∈ {0, 1}`+`w as an RNEQ-lossy encryption

ct(id,w) = ΠRLE.Encrypt(pkRLE,VK, (id, w); rw) (1)

under the tag VK ∈ {0, 1}L.
3. Sample random coins rhec ←↩ DHEC and compute a commitment

com(id,w) = HEC.Commit(pp, ek, (id, w); rhec). (2)

4. Using the homomorphic evaluation algorithm of HEC, compute

πC,M ← HEC.Evalin
(
ek, CM , (id, w), rhec

)
comev = HEC.Evalout

(
ek, CM , com(id,w)

)
.

5. Choose rlpke ←↩ Rlpke and compute

ctid = Π lpke.Encrypt
(
pke, (1− cev) · id; rlpke

)
, (3)

where cev = CM (w1, . . . , w`w , id1, . . . , id`) ∈ {0, 1}.
6. Generate σ ← Πsig.Sign(skid, (M,P, ct(id,w))) as a signature on the mes-

sage (M,P, ct(id,w)).
7. Generate a NIZK argument ~π ← NIZK.Prove(ρ, ~x, ~w) for the statement
~x that there exists a witnesses ~w comprised of (id, w) ∈ {0, 1}`+`w ,
(pkid, certid, σ) ∈ VK × S × S, rid,w ∈ RRLE, rhec ∈ RHEC, rlpke ∈ Rlpke,
cev ∈ {0, 1} and πC,M , which satisfy the relations (1)-(3) as well as

Πsig.Verify(pksig, (id, pkid), certid) = 1

Πsig.Verify(pkid, (M,P, ct(id,w)), σ) = 1 (4)

HEC.Verify(pp, comev, cev, πC,M) = 1.

8. Compute sig ← Πots.Sign(SK, (ct(id,w), com(id,w), ctid, ~π)).

Return the signature

Σ =
(
VK, (ct(id,w), com(id,w), ctid, ~π), sig

)
(5)

Verify(Y,M,Σ, P): Parse Σ as above. Return 1 if and only if: (i) sig is a valid
one-time signature on (ct(id,w), com(id,w), Cid, ~π) for the verification key VK;
(ii) The NIZK argument ~π properly verifies for the commitment comev publicly
obtained as comev = HEC.Evalout

(
ek, CM , com(id,w)

)
.

24

Open(Y,SOA,M,Σ, P, St): Given the opener’s secret key SOA := ske, parse the
signature Σ as in (5). Compute tid = Π lpke.Decrypt(ske, ctid). If tid = 0`,
return ⊥. Otherwise, check if the string tid ∈ {0, 1}` appears in a record
(tid, transcriptid = (tid, pkid, certid, upk[id], sigid)) of Sttrans. If it does, output
id = tid ∈ {0, 1}` (and, optionally, upk[id]). Otherwise, output ⊥.

In the full version, we provide details on instantiations from lattices and
bilinear maps. The lattice-based construction is only a feasibility result based on
generic NIZK for NP statements [42]. In the case of NC1 circuits, the scheme can
be instantiated with Groth-Sahai proofs [25] to provide much shorter signatures
than using the Groth-Ostrovsky-Sahai techniques [24].

4.1 Branch-Soundness and Security

To prove security under our definitions, we first consider the following SimSetup
and Extract algorithms associated to our BiAS construction.

SimSetup(1λ, 1N ,Pd): This algorithm is exactly as Setup(1λ, 1N ,Pd) except that
steps 4 and 6 are modified in the following way:

4. Choose public parameters Γ ← ΠRLE.Par-Gen(1λ, 1L, 1B) for an RNEQ-
lossy PKE scheme with tag space K = T = {0, 1}L and message
length B = ` + `w, where `w ∈ poly(λ) is the bitlength of witnesses
from the witness space W = {0, 1}`w . Then, generate injective keys
(pkRLE, skRLE)← ΠRLE.Keygen(Γ,0L) for the initialization value K = 0L.

6. Generate a common reference string ρ from (ρ, ξ)← NIZK.ExtSetup(1λ)
for an extractable (and thus statistically sound) NIZK proof system.

The algorithm returns the same output as Setup, together with an extraction
trapdoor τext = (skRLE, ξ), where ξ is the extraction trapdoor of NIZK.

Extract(Y, τext,M,Σ, P, St): WriteΣ as
(
VK, (ct(id,w), com(id,w), ctid, ~π), sig

)
and

return ⊥ if its components do not parse properly. Otherwise, use skRLE to
decrypt the RNEQ-lossy PKE ciphertexts ct(id,w) (recall that the NEQ rela-
tions makes all tags injective on a public key produced by Keygen for the
initialization value K = 0`). If any decryption fails, return ⊥. Otherwise,
output w ∈ {0, 1}`w and id ∈ {0, 1}`.

The security properties of the NIZK argument system ensure that the common
reference strings ρ produced by NIZK.Setup and NIZK.ExtSetup are computation-
ally indistinguishable. Moreover, in the RNEQ-lossy PKE scheme, the public keys
produced by LKeygen and Keygen are computationally indistinguishable as well.

Next, we will show that this extractable BiAS satisfies the extractable sound-
ness notion unless the adversary can break the (statistical) soundness of the proof
~π included in a valid signature Σ.

Theorem 1. The scheme satisfies branch-soundness if: (i) ΠRLE is a secure
RNEQ-lossy PKE scheme; (ii) NIZK is a dual-mode NIZK argument system (i.e.,
its statistically sound and statistically ZK modes are computationally indistin-
guishable); (iii) HEC is computationally binding for evaluated commitments.

25

Proof. To prove the result, we consider a sequence of games. In each game, we
call Wi the event that the challenger outputs 1.

Game 0: This is the real experiment Expreal
A (λ), where the adversary A is

given (Y,SGM,SOA), where (St,Y,SGM,SOA)← Setup(1λ, 1N). The adversary
outputs a tuple (M,Σ,P, st), where Σ =

(
VK, (ct(id,w), com(id,w), ctid, ~π), sig

)
.

If Σ does not verify, the challenger outputs 0. Otherwise, it runs Open to
obtain id? ∈ {0, 1}` and feeds A with id?. Then, the challenger outputs
whatever A outputs. By definition, Pr[W0] = Pr[Expreal

A (λ) = 1].

Game 1: This game is identical to Game 0 except that, at step 4 of the Setup algo-
rithm, the challenger computes (pkRLE, skRLE)← ΠRLE.Keygen(Γ,0L) instead
of (pkRLE, skRLE) ← ΠRLE.LKeygen(Γ,0L). By the first indistinguishability
property of ΠRLE, we have |Pr[W1]− Pr[W0]| ∈ negl(λ).

Game 2: This game is like Game 1 except that, at step 6 of the Setup algorithm,
the challenger generates (ρ, ξ) ← NIZK.ExtSetup(1λ) instead of (ρ, ζ) ←
NIZK.Setup(1λ) and keeps the extraction trapdoor τext = (skRLE, ξ) to itself.
By the dual-mode property of NIZK, the CRSes produced by NIZK.Setup and
NIZK.ExtSetup have computationally indistinguishable distributions, thus
ensuring that |Pr[W2]− Pr[W1]| ∈ negl(λ) for any PPT adversary A.

Game 3: In this game, the challenger makes use of the trapdoor τext = (skRLE, ξ).
When A outputs a tuple (M,Σ,P, st), the challenger parses the signature
Σ as

(
VK, (ct(id,w), com(id,w), ctid, ~π), sig

)
and uses skRLE to extract (id†, w†).

From the NIZK proof ~π, it uses ξ to extract the witnesses (id, w) ∈ {0, 1}`w+`,
(pkid, certid, σ) ∈ VK × S × S, rid,w ∈ RRLE, rhec ∈ RHEC, rlpke ∈ Rlpke,
cev ∈ {0, 1} and πC,M . Then, the challenger halts and outputs a random bit
if cev 6= CM (w1, . . . , w`w , id[1], . . . , id[`]).

We claim that |Pr[W3] − Pr[W2]| ∈ negl(λ) as the two games only differ when
A breaks the computational binding property of HEC for evaluated commit-
ments. Indeed, by the statistical soundness of NIZK on a CRS ρ produced by
NIZK.ExtSetup, we have (id, w) = (id†, w†) and extracted witnesses satisfy the rela-
tions (1)-(3). In particular, we have com(id,w) = HEC.Commit(pp, ek, (id, w); rhec)
and the extracted cev ∈ {0, 1}, πC,M satisfy HEC.Verify(pp, comev, cev, πC,M) = 1,
where comev = HEC.Evalout

(
ek, CM , com(id,w)

)
. It is easy to see that Game3 only

differs from Game2 when the extracted πC,M differs from

π̄C,M ← HEC.Evalin
(
ek, CM , (id, w), rhec

)
,

which is the value that would satisfy HEC.Verify(pp, comev, CM (w, id), π̄C,M) = 1.
Hence, if |Pr[W3]− Pr[W2]| is noticeable, the challenger can break the binding
property of HEC by outputting

(
(id, w), rhec, CM , cev, πC,M

)
.

Game 4: This game is identical to Game 3 with the difference that, after hav-
ing extracted (id, w), the challenger computes CM (w, id) ∈ {0, 1}, which
is identical to the extracted cev ∈ {0, 1} unless the failure event of Game
3 occurs. If CM (w, id) = 0, it overwrites id? ← Open(SOA,Y,M, σ, P, St)

26

with id? = id, which was extracted from ct(id,w). If CM (w, id) = 1, it sets
id? =⊥. In both cases, it feeds A with id? and returns whatever A outputs
in reaction. This change does not modify the output distribution of A be-
cause, as long as cev = CM (w, id), the statistical soundness of ~π ensures that
ctid = Π lpke.Encrypt

(
pke, (1 − CM (w, id)) · id; rlpke

)
, where rlpke and id are

extracted from ~π. Hence, unless A breaks the statistical soundness of ~π, Game
4 eventually returns id =⊥ or id = id? to A whenever Game 3 does.

Game 5: This game is like Game 4 but we remove the restriction introduced in
Game 3. Namely, the challenger does no longer replace A’s output by a random
bit when the witnesses cev ∈ {0, 1}, (id, w) ∈ {0, 1}`w+` extracted from ~π
are such that cev 6= CM (w1, . . . , w`w , id[1], . . . , id[`]). The same arguments
as those in the transition between the first two games show that |Pr[W5]−
Pr[W4]| ∈ negl(λ) so long as HEC is computationally binding.

We conclude the proof by noting that Game 5 is identical to Expext
A (λ), so that

we have |Pr
[
Expreal

A (λ) = 1
]
− Pr

[
Expext

A (λ) = 1
]
| = [Pr[W0]− Pr[W5]|. ut

Security Against Mis-Identification and Framing Attacks.

Lemma 2. The scheme is secure against misidentification attacks if: (i) Πsig is
existentially unforgeable under chosen-message attacks; (ii) The NIZK argument
is computationally sound. (The proof is given in the full version.)

Lemma 3. The scheme is secure against framing attacks provided: (i) Πsig is
strongly unforgeable under chosen-message attacks; (ii) The NIZK argument is
computationally sound. (The proof is given in the full version.)

4.2 Branch-Hiding and Privacy

The branch-hiding property follows from the full anonymity of our scheme.

Theorem 2. The scheme provides full anonymity if: ΠRLE and Π lpke are secure
RNEQ-lossy PKE and standard lossy PKE schemes, respectively; (ii) NIZK is a
computationally sound NIZK argument; (iii) Πots is strongly unforgeable.

To prove Theorem 2, we separately consider the tracing and non-tracing
modes. Lemma 4 first considers the former case where the adversary does not
corrupt the opening authority. Lemma 5 shows that even an unbounded adversary
is unable to distinguish group members’ signatures in non-tracing mode.

Lemma 4. The scheme provides anonymity in tracing mode assuming that: (i)
ΠRLE is a secure RNEQ-lossy PKE scheme; (ii) Π lpke is a standard lossy PKE
scheme; (ii) The NIZK argument system provides soundness; (iii) Πots is strongly
unforgeable. (The proof is given in the full version.)

Lemma 5. The scheme provides statistical anonymity in non-tracing mode.

27

Proof. Recall that experiment Expanon-ntr-d
A (λ) allows the adversary to obtain a

challenge for the non-tracing mode. Namely, it is allowed to corrupt the opening
authority and obtain SOA as long as, in the challenge phase, it chooses a pair
(M?, P ?) and two tuples (id?0, w

?
0 , sec

?
0, cert

?
0) and (id?1, w

?
1 , sec

?
1, cert

?
1), such that

P ?(M?, id?0, w
?
0) = P ?(M?, id?1, w

?
1) = 1. In this scenario, we will prove that, even

after having obtained SOA, an unbounded adversary A remains unable to infer
anything about the bit d ∈ {0, 1} used by the challenger to compute the signature
Σ? =

(
VK?, (ct?(id,w), com

?
(id,w), ct

?
id, ~π

?), sig?
)

using (id?d, w
?
d, sec

?
d, cert

?
d).

To this end, we consider two statistically indistinguishable games. The first one
is the real game whereas the second one appeals to the statistical honest-verifier
zero-knowledge simulator of the argument system.

Game(d) 0: This is the real game, which is as in the proof of Lemma 4.

Game(d) 1: This game is like Game(d) 0 except that, in the challenge signature Σ?,
we use the simulation trapdoor ζ generated from NIZK.Setup and the statistical
NIZK simulator NIZK.Sim to generate ~π?. Owing to the statistical ZK property of
NIZK, the simulated ~π? is statistically close to a real ~π? that would be generated
using the witnesses. Moreover, it is statistically independent of the witnesses
used to compute ct?(id,w), com

?
(id,w) and ct?id.

In Game(d) 1, we note that, when CM?(w?1 , . . . , w
?
`w
, id?1, . . . , id

?
`) = 1, the

ciphertext ct?id is of the form ct?id = Π lpke.Encrypt
(
pke,0

`; rlpke
?)
, where rlpke

? ←↩
Rlpke, so that ct?id is independent of d ∈ {0, 1} although pke is an injective public
key. Moreover, ct?(id,w), com

?
(id,w) statistically hide the underlying pair (id, w) since,

by definition, the homomorphic equivocable commitment com?
(id,w) is statistically

hiding and the RNEQ-lossy encryption ct?(id,w) is computed under a lossy key
produced by LKeygen. ut

Acknowledgements

Part of this research was funded by the French ANR ALAMBIC project (ANR-
16-CE39-0006). This work was also supported in part by the European Union
PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant
780701). Khoa Nguyen was supported in part by the Gopalakrishnan - NTU PPF
2018, by A*STAR, Singapore under research grant SERC A19E3b0099, and by
Vietnam National University HoChiMinh City (VNU-HCM) under grant number
NCM2019-18-01. Thomas Peters is a research associate of the Belgian Fund for
Scientific Research (F.R.S.-FNRS).

References

1. M. Ajtai. Generating hard instances of lattice problems. In STOC, 1996.
2. E. Bangerter, J. Camenisch, and A. Lysyanskaya. A cryptographic framework for

the controlled release of certified data. In Security Protocols, 2004.
3. M. Bellare and G. Fuchsbauer. Policy-based signatures. In PKC, 2014.

28

4. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In Eurocrypt, 2003.

5. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of
dynamic groups. In CT-RSA, 2005.

6. A. Bender, J. Katz, and R. Morselli. Ring Signatures: Stronger Definitions, and
Constructions without Random Oracles. J. Cryptology, 22(1):114–138, 2009.

7. M. Blum, M. Feldman, and S. Micali. Non-interactive zero-knowledge and its
applications. In STOC, 1988.

8. D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Crypto, 2004.
9. J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit. Short

accountable ring signatures based on DDH. In ESORICS, 2015.
10. J. Bootle, V. Lyubashevsky, and G. Seiler. Algebraic techniques for short(er) exact

lattice-based zero-knowledge proofs. In Crypto, 2019.
11. X. Boyen. Mesh signatures. In Eurocrypt, 2007.
12. X. Boyen and C. Delerabée. Expressive subgroup signatures. In SCN, 2008.
13. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom

functions. In PKC, 2014.
14. E. Boyle, G. Segev, and D. Wichs. Fully leakage-resilient signatures. In Eurocrypt,

2011.
15. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In Eurocrypt,

2005.
16. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Balancing accountability and

privacy using e-cash. In SCN, 2006.
17. R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. Rothblum, R. Rothblum, and

D. Wichs. Fiat-Shamir: From practice to theory. In STOC, 2019.
18. D. Chaum and E. Van Heyst. Group signatures. In Eurocrypt, 1991.
19. Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup. Anonymous identification in

ad-hoc groups. In Eurocrypt, 2004.
20. E. Fujisaki and K. Suzuki. Traceable ring signature. In PKC, 2007.
21. L. Garms and A. Lehmann. Group signatures with selective linkability. In PKC,

2019.
22. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with

errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Crypto,
2013.

23. S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled fully homomorphic
signatures from standard lattices. In STOC, 2015.

24. J. Groth, R. Ostrovsky, and A. Sahai. Perfect non-interactive zero-knowledge for
NP. In Eurocrypt, 2006.

25. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In Eurocrypt, 2008.

26. D. Hofheinz and B. Ursu. Dual-mode NIZKs from obfuscation. In Asiacrypt, 2019.
27. S. Katsumata, R. Nishimaki, S. Yamada, and T. Yamakawa. Exploring constructions

of compact nizks from various assumptions. In Crypto, 2019.
28. A. Kiayias, Y. Tsiounis, and M. Yung. Traceable signatures. In Eurocrypt, 2004.
29. A. Kiayias and M. Yung. Secure scalable group signature with dynamic joins and

separable authorities. Int. Journal of Security and Networks, 1(1):24–45, 2006.
30. J. Kilian and E. Petrank. Identity escrow. In Crypto, 1998.
31. E. Kiltz. Chosen-ciphertext security from tag-based encryption. In TCC, 2006.
32. M. Kohlweiss and I. Miers. Accountable tracing signatures. IACR Cryptology

ePrint Archive, 2014:824, 2014.

29

33. M. Kohlweiss and I. Miers. Accountable metadata-hiding escrow: A group signature
case study. In PoPETs, 2015.

34. B. Libert, K. Nguyen, A. Passelègue, and R. Titiu. Simulation-sound arguments
for LWE and applications to KDM-CCA2 security. In Asiacrypt, 2020.

35. B. Libert and M. Yung. Non-interactive CCA-secure threshold cryptosystems with
adaptive security: New framework and constructions. In TCC, 2012.

36. J. Liu, V. Wei, and D. Wong. Linkable spontaneous anonymous group signature
for ad hoc groups (extended abstract). In ACISP, 2004.

37. V. Lyubashevsky. Fiat-Shamir with Aborts: Applications to Lattice and Factoring-
Based Signatures. In Asiacrypt, 2009.

38. H. Maji, M. Prabhakaran, and M. Rosulek. Attribute-based signatures. In CT-RSA,
2011.

39. M. Naor. Deniable ring authentication. In Crypto, 2002.
40. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen

ciphertext attacks. In STOC, 1990.
41. S. Noether and A. Mackenzie. Ring confidential transactions. Ledger, 1:1–18, 2016.
42. C. Peikert and S. Shiehian. Non-interactive zero knowledge for NP from (plain)

Learning With Errors. In Crypto, 2019.
43. C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of knowledge and

chosen ciphertext attack. In Crypto, 1991.
44. O. Regev. On lattices, learning with errors, random linear codes, and cryptography.

In STOC, 2005.
45. R. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Asiacrypt, 2001.
46. Y. Sakai, K. Emura, G. Hanaoka, Y. Kawai, T. Matsuda, and K. Omote. Group

signatures with message-dependent opening. In Pairing, 2012.
47. I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous authentication (extended

abstract). In Asiacrypt, 2004.
48. S. Xu and M. Yung. Accountable ring signatures: A smart card approach. In

CARDIS, 2004.
49. R. Yang, M.-H. Au, Z. Zhang, Q. Xu, Z. Yu, and W. Whyte. Efficient lattice-based

zero-knowledge arguments with standard soundness: Construction and applications.
In Crypto, 2019.

30

	Bifurcated Signatures: Folding the Accountability vs. Anonymity Dilemma into a Single Private Signing Scheme
	Introduction
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries
	R-Lossy Public-Key Encryption
	Homomorphic Equivocal Commitments

	Bifurcated Anonymous Signatures
	Syntax
	Branch-Hiding and Privacy
	Branch-Soundness and Security

	Generic Construction
	Branch-Soundness and Security
	Branch-Hiding and Privacy

