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Abstract. We introduce a new approach for constructing range proofs.
Our approach is modular, and leads to highly competitive range proofs
under standard assumption, using less communication and (much) less
computation than the state of the art methods, and without relying
on a trusted setup. Our range proofs can be used as a drop-in replace-
ment in a variety of protocols such as distributed ledgers, anonymous
transaction systems, and many more, leading to significant reductions in
communication and computation for these applications.
At the heart of our result is a new method to transform any commitment
over a finite field into a commitment scheme which allows to commit to
and efficiently prove relations about bounded integers. Combining these
new commitments with a classical approach for range proofs based on
square decomposition, we obtain several new instantiations of a paradigm
which was previously limited to RSA-based range proofs (with high
communication and computation, and trusted setup). More specifically,
we get:
– Under the discrete logarithm assumption, we obtain the most compact

and efficient range proof among all existing candidates (with or
without trusted setup). Our proofs are 12% to 20% shorter than
the state of the art Bulletproof (Bootle et al., CRYPTO’18) for
standard choices of range size and security parameter, and are more
efficient (both for the prover and the verifier) by more than an order
of magnitude.

– Under the LWE assumption, we obtain range proofs that improve
over the state of the art in a batch setting when at least a few dozen
range proofs are required. The amortized communication of our range
proofs improves by up to two orders of magnitudes over the state of
the art when the number of required range proofs grows.

– Eventually, under standard class group assumptions, we obtain the
first concretely efficient standard integer commitment scheme (with-
out bounds on the size of the committed integer) which does not
assume trusted setup.
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1 Introduction

In this work, we develop new techniques to construct range proofs, an important
building block in a variety of modern cryptographic protocols such as distributed
ledgers, anonymous transactions, e-cash, e-voting, and many more. The range
proofs obtained with our methods are highly competitive with the state of the art:
they rely on standard assumptions, require less communication and computation,
and do not assume any trusted setup. Furthermore, our approach is modular
and can be instantiated in the discrete logarithm setting, in the lattice setting
(leading to the most efficient post-quantum range proofs in a batch setting), and
in the class group setting. Below, we review some background.

Range proofs and anonymous transactions. Zero-knowledge proofs, intro-
duced in the seminal work of Goldwasser, Micali, and Rackoff [GMR89], allow
a prover to convince a verifier that a statement is true, while concealing all
information beyond the truth of the statement. They are a fundamental primitive
in cryptography, with inumerable applications. Range proofs, whose genesis can
be traced back to [BCDv88], are a particular type of zero-knowledge proof where
the prover wishes to convince the verifier that a committed value belongs to a
certain range. Range proofs are a core building block in numerous applications
such as anonymous credentials [Cha90], e-voting [Gro05], and e-cash [CHL05].
Furthermore, efficient range proofs have recently become central components in
distributed ledgers, the prime example being the recent integration of Bullet-
proof [BBB+18] in the cryptocurrency Monero6 and later Mimblewimble-based
anonymous cryptocurrencies such as Beam7 and Grin8. Range proofs also play
an essential role in anonymous payment schemes for smart contract platforms
such as Zether [BAZB20].

In most of these anonymous payment schemes, (positive and negative) integers
are encoded as finite field elements, and negative spendings constitute a valid
transaction in general, if they are not explicitly disallowed. This feature can be
exploited to launch a double-spending attack, allowing the adversary to print
money out of thin air [MIO18]. In a confidential payment scheme where both
inputs and outputs of a transaction are hidden in either a digital commitment
(as in Monero) or an encryption (as in Zether), range proofs are necessary to
guarantee that the hidden value falls into the correct range and prevent the
aforementioned overflow attack.

The maximum throughput of a distributed ledger protocol is mainly deter-
mined by the maximum block size and average transaction size [CDE+16]. The
smaller the transaction size is, the larger the maximum throughput is. The average
transaction size in an anonymous payment scheme is largely determined by the
zero-knowledge range proof size. Therefore, the proof size is a crucial parameter
6 https://web.getmonero.org/resources/moneropedia/bulletproofs.html
7 https://github.com/BeamMW/beam
8 https://cointelegraph.com/news/cryptocurrency-grin-follows-through-

with-anticipated-july-17-mainnet-hardfork
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for the design of a range proof scheme. The proof generation and verification time
are also vital to the performance of the system built on the range proof scheme.
In the case of a decentralized anonymous payment scheme, the proof generation
time will determine how fast the anonymous payment can be launched and have
a direct impact on the user experience and system scalability [CZJ+17]. The
proof verification time, on the other hand, has a great impact on the workload of
the miners.

1.1 Standard Approaches for Building Range Proofs

Due to their wide variety of applications, many constructions of range proofs have
been proposed over the past decades. All these constructions can be categorized
in two main high level approaches, which we outline below.

First method: n-ary decomposition. The first method is the one employed both
in the early (folklore) constructions of range proofs, as well as in the latest
state-of-the-art constructions (such as Bulletproof). To prove that a committed
integer x belong to an interval of the form [0, n`−1], where n is some small value,
this method uses the following high-level template:

1. First, commit to the n-ary decomposition of x, denoted (x0, · · · , x`−1).
2. Second, prove that the relation x =

∑`−1
i=0 xi · ni holds.

3. Third, prove that each component of the committed tuple belongs to [0, n−1].
Since n is typically very small, this can be achieved using some brute-force
method (for example, when using binary decomposition, it amounts to proving
that each component is a bit, which can be done using standard methods).

When the commitment scheme satisfies some homomorphic properties, it is
generally simple to lift a proof as above to a proof for a more general interval
[a, b]. The first instance of this approach is a folklore discrete-logarithm-based
construction using the Pedersen commitment scheme to commit to the bit
decomposition of x. Denoting β = log(b−a) the bitlength of the interval size and
λ the bitlength of group elements, This leads to a range proof communicating
O(λ · β) bits. This approach was first improved in [CCs08] to O(λ · β/log β) by
using decomposition in a larger basis, and later in [Gro11] to O(λ · β1/3), using
pairings.

In a recent breakthrough work, the authors of [BBB+18] introduced Bullet-
proof, which managed to reduce the communication to O(λ · log β) under the
plain DLOG assumption (without pairings) while still remaining computationally
efficient. Their approach relies on generalized Pedersen commitment to commit
to the entire bit-decomposition of x using few group elements, and on a clever
recursive proof strategy to simultaneously prove that all committed values are
bits.9 This comes at the cost of a larger number of rounds O(log β) (but this is
9 There have been several recent follow up works [HKR19,AC20] to Bulletproof, which
expand the set of relations captured by the framework, but do not translate into
concrete improvements on the size of the range proofs produced by this framework.
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typically not a concern in real-world applications, where the Fiat-Shamir heuris-
tic is used to make the proof non-interactive) and a computational soundness
guarantee (leading to a zero-knowledge argument instead of a proof).

A strong advantage of the proofs obtained in this line of work is that they do
not require any trusted setup. In real-world applications such as cryptocurrencies,
this is an important feature to avoid having to trust any central authority with
the secure generation of the parameters (we will discuss this more later). Due to
this feature and its good concrete efficiency, Bulletproof is currently considered
the state of the art method for range proofs, and has found its way into several
real-world protocols.

Second method: square decomposition. The second method can be traced back to
the work of Boudot [Bou00], and was initially introduced to avoid the large O(λ·β)
cost of the range proofs obtained (at the time) by the first method. It relies
on the following high-level template (or a close variant thereof): first, proving
that x ∈ [a, b] reduces to proving that x− a and b− x (whose commitments can
typically be computed homomorphically from a commitment to x) are positive.
Now, to prove that a committed value y is positive:

1. First, decompose y as y =
∑4
i=1 y

2
i over the integers. Lagrange’s four square

theorem guarantees that such a decomposition exists, and efficient algorithms
allow to quickly find one.

2. Second, commit to the yi and prove (using standard methods) that y =∑4
i=1 y

2
i over the integers.

The advantage of this method is that it requires committing only to a constant
number of components (independent of the interval size), instead of ≈ β compo-
nents with the first method. This typically leads to proofs with communication
O(β + λ) bits. However, it is crucial for this method that the relation is proven
over the integers: standard commitment schemes such as Pedersen only allow
committing values over Zp for some prime p, but finding a 4-square decomposition
over Zp does not provide any guarantee of positivity. Hence, a core component
of this line of work is the notion of integer commitment schemes, introduced
in [FO97,DF02], which allows to commit and prove relations among values directly
over the integers.

The square decomposition method has been refined in [Lip03]. Later, the
work of Groth [Gro05] observed that one can instead decompose 4y + 1 as a
sum of three squares (positive integers congruent to 1 modulo 4 can always
be decomposed this way) to reduce the proof size, and further efficiency and
security improvements were described in [CPP17]. A common issue of all these
works is that all known integer commitment schemes require the use of RSA
groups or class groups with a hard-to-factor discriminant. This means that the
group size is very large (typically 3072 bits), and that these proofs all require a
trusted setup to generate a public product of secret prime factors10. Assuming
10 While it is theoretically possible to use a very large random integer as RSA modulus,

without relying on a trusted party to compute a product of safe primes, this approach
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a trusted setup is a rather undesirable property in a decentralized anonymous
payment scheme: in general, the party responsible for the setup step can exploit
the trapdoor information obtained through this process to print an unlimited
amount of cryptocurrency without being detected [Sle,Ben]. Although one could
potentially mitigate the risk of the above attack by using secure multi-party
computation to execute the setup step (as was done e.g. for zcash11), it introduces
additional engineering complexity and potential vulnerabilities.

Furthermore, even before Bulletproof, these proof systems were competitive
with proofs obtained with the first method only for very large intervals. Compared
to Bulletproof, they lead to much larger proof sizes for any interval size (and
are also computationally less efficient). Due to their higher cost and their need
of a trusted setup, this second method is largely considered obsolete and non-
competitive with the proofs obtained through the first method.

1.2 Our Contribution

In this work, we turn the tables and demonstrate that the square decomposition
method can be refined to create highly competitive range proofs, with smaller
communication and computation compared to the state of the art Bulletproof,
without trusted setup (meaning that our proofs only require a transparent
setup), and under standard assumptions. Among other advantages, our method is
modular and can also be instantiated in the lattice setting to obtain post-quantum
range proofs which are highly competitive with the sate of the art in a batch
scenario (where several range proofs must be computed at once), and in the
class group setting with prime discriminant. Furthermore, our proofs require only
three rounds of interaction, an important feature if one does not want to rely on
the Fiat-Shamir heuristic, and can be modified to achieve statistical soundness
instead of computational soundness (at a small cost in efficiency). At the heart
of our constructions is a new generic method to convert any commitment scheme
over Zp into a bounded integer commitment scheme, i.e., a commitment scheme
which allows to commit to bounded-range integers and to prove relations over Z
between committed bounded-range integers.

Instantiation in the discrete-log setting. Instantiating our framework with
the standard Pedersen commitment scheme, we obtain a bounded integer com-
mitment scheme under the discrete logarithm assumption. When plugging this
bounded integer commitment scheme in the range proof of [CPP17], we obtain
a range proof which does not require any trusted setup and can benefit simul-
taneously from the compactness of square-decomposition-based range proofs
(i.e., constant number of group elements) and the possibility of instantiating the
Pedersen commitment scheme over prime-order elliptic curve, with small group

is completely impractical due to the very large group size and amount of computation,
see the discussion on RSA-UFO in [LM19].

11 https://z.cash/technology/paramgen/
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elements12. To further optimize the proof size, we describe an optimized variant
which relies on the short-exponents discrete logarithm assumption (i.e., the as-
sumption that it is hard to compute discrete logarithm even when the exponent
is sampled from a large enough bounded range), which is a well-studied variant of
the standard discrete log assumption. For example, for an interval size of 232 and
128 bits of security, we obtain range proofs of size 501 Bytes, compared to the 608
Bytes of Bulletproof. For the same parameters, the computational cost for both
the prover and the verifier are more than an order of magnitude smaller compared
to Bulletproof. The high efficiency of prover and verifier is crucial for use of
(range) proofs on resource constrained devices, such as smartphones. Such devices
are of special interest for privacy-enhancing technologies, such as anonymous
credentials [Cha90] and payment systems. To achieve practicalility, tradeoffs have
to made. For example, the work [BBDE19] relies on [CCs08], which requires
pairings and relatively large public parameters, whereas the work [HKRR20]
relies on uncompressed, i.e. linear-size, Bulletproofs, trading communication for
computation. Our range proofs are a great fit for these settings.

Detailed comparison with Bulletproof. A more detailed comparison with Bul-
letproof is given in Table 1. Below, we explain how the numbers in the table
have been obtained. Computing the exact costs of our range proof is rather
tedious, since it involves careful optimizations with rejection sampling techniques,
and optimizations using the short-exponent discrete logarithm assumption. We
consider range proofs over an interval [a, b] with β = log(b − a) ∈ {32, 64}, a
security parameter λ ∈ {80, 128}, and a group of size q (which might not be the
same for Bulletproof and our range proof). The formula below additionally uses
parameters C, S, L′ corresponding respectively to the challenge size, a bound
on the length of short exponents, and a bound for rejection sampling. Our con-
crete numbers are obtained by setting C = 2λ, S = 22λ, L′ = d256

√
2λe. The

formulas for computing the range proof size (in the non-interactive setting, when
Fiat-Shamir is used), the prover work, and the verifier work, are given below:

– Proof size (in bits): 30(β + log(CL′)) + dlog(C)/λe(2λ+ 4(2β + log(CL′) +
2 log(SCL′)) + 2) (our work) versus log q · (2β + 9) (Bulletproof).

– Prover work (in group multiplications): 2.31·(4β+8 logS+6 logC+7 logL′)+
30 (our work) versus 18 · (β log q) (Bulletproof).

– Verifier work (in group multiplications): 4.5β+7 logS+13 logC+9 logL′+10
versus at least 3β · log q (lower bound on the cost for Bulletproof, computed
as the cost of a single inner product argument)

– Group size (in bits): log q = 32(2βCL′)2 + 1 (our work) versus log q = 2λ
(Bulletproof)

12 Since our bounded integer commitment scheme requires the committed values to
remain into a bounded range, we actually require slightly larger group size compared
to Bulletproof to achieve the same security level; this is accounted for in our concrete
comparison and will be covered in details in the technical overview.
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In the above, prover and verifier work are computed as the number of mul-
tiplications required for the exponentiations (we do not directly count the ex-
ponentiations for fairness of comparison: Bulletproof and our work do not use
the same group size, and our optimized construction also uses exponentiations
with short exponents), which largely dominate the overall cost. We note that in
both our work and Bulletproof, the verifier work can be optimized by relying on
multiexponentiations techniques; since these techniques apply identically in both
works and do not significantly change the bottom line in terms of comparisons,
we ignore them in this overview.

Asymptotically, our proofs have size O(λ + β), while Bulletproof has size
O(λ log β). We note that in the range of parameters β = O(λ), our techniques
actually leads to an asymptotic improvement over Bulletproof; for larger ranges,
Bulletproof is more efficient, and for very small ranges, the asymptotic costs
are the same for both. Previous square-decomposition-based range proofs had
asymptotic cost O(β + λ3−o(1)) due to their use of RSA modulus (which allow
for subexponential attacks).

We stress that when not using the Fiat-Shamir heuristic, our scheme can
be instantiated to have only three rounds (this slightly increases the proof size,
because it requires to not use rejection sampling, since the latter causes the
protocol to restart with non-negligible probability) while Bulletproof requires
log β rounds. Even with rejection sampling and our concrete choice of parameters,
the expected number of rounds is less than 5. Thus for sufficiently large β, our
security proof is tighter than the one of Bulletproofs in the random-oracle model.

Furthermore, our scheme can be instantiated to have statistical soundness. On
the other hand, Bulletproof allows for extremely efficient batching a large number
of range proofs, and would therefore become preferable communication-wise when
many range proofs must be performed at once. In any case, and independently of
the number of range proofs, our range proofs requires 20 to 40 times less group
multiplications for the prover, and 6 to 15 times less for the verifier.

Instantiation in the lattice setting. For the instantiation of our framework
in the lattice setting, we build upon the commitment scheme and proof system
from [YAZ+19]. The commitments built this way allow to commit to long vectors
over Znq (think of n as being a few thousands, e.g. n = 5000). Our techniques
require to use a relatively large modulus q in order to avoid overflows in the
computation. As a consequence, our commitments and proofs are quite large.

However, in exchange for using a large modulus, the commitment and proof
system obtained by compiling the commitment of [YAZ+19] with our techniques
allow to batch many range proofs extremely efficiently: we can essentially perform
up to n range proofs in parallel for the cost of a single range proof, even if range
proofs have different ranges. This improves over the communication achieved by
the best LWE-based range proofs [YAZ+19]. Even compared to the more recent
scheme of [BLLS20], which achieves very compact (single-shot) range proofs
under the ring-SIS assumption, our approach starts to become more efficient
from about 35 range proofs (and the efficiency gain scales linearly after that). In
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Table 1. Comparison between the optimized range proof of Section 5.4 and Bullet-
proof [BBB+18] for various choices of security parameter λ and log of interval size
β. Proof size and group size are in Bytes, prover and verifier work are counted as a
number of group multiplications, rounded to two decimal places. See the paragraph
“detailed comparison with Bulletproof” for the details on our computations.

(β, λ) proof size prover work verifier work Group size

(32, 80) This Work 339 4.6k 2.4k 32
Bulletproof 380 92k > 15k 20

(32, 128) This Work 501 7k 3.7k 44
Bulletproof 608 150k > 25k 32

(64, 80) This Work 383 4.9k 2.6k 40
Bulletproof 420 180k > 31k 20

(64, 128) This Work 545 7.3k 3.8k 52
Bulletproof 672 290k > 49k 32

the limit, when performing a large number of range proofs in parallel, we achieve
about two orders of magnitude of communication reduction compared to the
state of the art. The comparison is summarized on Table 2.

Table 2. Comparison of the range proof size in the lattice setting. Note that the
scheme of [YAZ+19] was designed for large ranges. For a fair comparison, we apply
similar vector-based batching optimization. The size is given in KB.

Range batch size λ = 80 λ = 128
LWE [YAZ+19] 31 39 73

β = 32 This Work 35 4.7 5.2
This Work 5000 0.1 0.1

LWE [YAZ+19] 31 77 146
β = 64 This Work 35 8.4 9.7

This Work 5000 0.16 0.16

Instantiation in the class group setting. Eventually, we also instantiate
our method in the class group setting. The proofs obtained this way improve
over our DLOG-based proofs only for large ranges, where Bulletproof would be
more efficient. On the other hand, instantiating our approach in the class group
setting leads to the first concretely efficient construction of unbounded integer
commitment scheme which does not require a trusted setup (the only known
alternative uses RSA-UFO, which is impractical, see the discussion in [LM19]).

8



Concurrent Works. In the DLOG setting, the work of [CHJ+20] recently
claimed an improvement in proof size compared to [BBB+18] by slightly reducing
the number of group elements required in [BBB+18]. The computational cost
of their proof is the same as in [BBB+18]. To our knowledge, their scheme was
not peer reviewed yet; we note that our range proofs are still shorter than theirs,
and more than an order of magnitude computationally more efficient.

2 Technical Overview

As we outlined in the introduction, at the heart of our results is a method
to convert standard homomorphic commitment schemes into bounded integer
commitment schemes – that is, a scheme that allows to commit to integers from a
bounded range, but also to prove in zero-knowledge relations between commited
values over the integers, see [FO97,DF02] – with a certain set of additional specific
properties. We now provide details on our approach.

2.1 A Natural Approach via Σ-Protocols

For simplicity, suppose that we have at our disposal a commitment scheme com
with message space and random coin space Zq, for some large prime q, which
is homomorphic over the messages and the coins: com(m1; r1) · com(m2; r2) =
com(m1 +m2; r1 + r2). This is satisfied for example by the Pedersen commitment
scheme com(m; r) = gmhr for two group elements (g, h) over a group of order q.
The transformation works for a more general class of commitments, this choice
of structure is for the sake of concreteness. Suppose now that we would like to
obtain a bounded integer commitment scheme out of com. The first obvious idea
is to proceed as follows:

– map values in Zq to integers [−(q − 1)/2, (q − 1)/2] in the natural way;
– define com′ to be exactly like com, but where the committed values are

restricted to [−R,R], where R� (q − 1)/2 is some bound.

Intuitively, the bound R is here to ensure that we will have enough “room” to
guarantee that if a relation between elements of [−R,R] holds modulo q, then it
must also hold over the integers. Looking ahead, for building a range proof, we
will want to prove relations of the form x =

∑
i x

2
i , and we will choose R such

that no overflow occurs when computing
∑
i x

2
i mod q with xi ∈ [−R,R].

The next step is to equip this commitment com′ with a zero-knowledge proof
system allowing to prove relations between committed values over the integers.
However, this turns out to be particularly challenging. To see this, consider the
standard Σ-protocol between a prover P and a verifier V for proving knowledge
of an opening (m, r) to a commitment c = com(m; r):

– P: pick (m′, r′) $← Z2
q and send c′ = com(m′; r′).

– V: send a challenge e $← Zq.
– P: send dm = em+m′ and dr = er + r′.
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– V: accept if com(m; r)e · com(m′; r′) = com(dm; dr).

Using a standard rewinding argument, we can extract a valid opening (m; r) ∈
Z2
q of c from any (potentially malicious) prover P∗ which produces accepting

proofs with non-negligible probability ε: run P∗ to get c′, fork it, and run it on two
different random challenges e, e′, receiving (dm, dr) and (d′m, d′r). By a standard
probability lemma (see the splitting lemma from [PS96,PS00]), (c′, e, dm, dr) and
(c′, e′, d′m, d′r) will both be accepting transcript with non-negligible probability
Ω(ε2). From the two accepting equations, one gets

c = com((dm − d′m) · (e− e′)−1, (dr − d′r) · (e− e′)−1). (1)

To adapt the protocol to com′, we would need to modify the Σ-protocol such that
it additionally guarantees that the extracted value m belongs to [−R,R]. This
actually seems feasible at first sight if we agree to settle for a relaxed correctness
and zero-knowledge guarantee: we only enforce correctness and (honest-verifier)
zero-knowledge whenever m belongs to [−R′, R′], for a bound R′ such that
2λ+κR′ ≤ R, where κ is a statistical security parameter for zero-knowledge, and
λ is a statistical security parameter for soundness (we keep both separate for
generality). Then, we can modify the protocol as follows:

– P: pick (m′, r′) $← [−2λ+κR′, 2λ+κR′]× Zq and send c′ = com(m′; r′).
– V: send a challenge e $← [1, 2λ].
– P: send dm = em+m′ and dr = er + r′.
– V: accept if com(m; r)e · com(m′; r′) = com(dm; dr) and dm ∈ [−R,R].

Intuitively, relaxed correctness and relaxed statistical zero-knowledge follow
from the fact that for m ∈ [−R′, R′] and e ∈ [1, 2λ], dm = em + m′ for m′ $←
[−2λ+κR′, 2λ+κR′] will be 2−κ-close to uniform (in statistical distance) over
[−R,R]. It remains to analyze whether we can extract from an accepting prover
a valid witness for com′. However, even though we restricted e and dm to
be small, recall that the extracted value (Equation 1) is of the form m =
(dm − d′m) · (e− e′)−1 mod q. That is, m is not an element of [−R,R] in general;
rather, it is the product of an element in [−R,R] and the inverse modulo q of an
element in [1, 2λ]. Therefore, this approach fails at binding the prover to a value
m ∈ [−R,R].

We note that the failure of this approach – the impossibility of extracting
values guaranteed to be short in general – is a well-known problem in the context
of lattice-based cryptography. Indeed, standard Σ-protocol for proving knowledge
of a short solution to a system of equation – i.e., a witness for the SIS problem –
suffer from exactly the same limitation (see e.g. the discussions in [BCK+14]).
The standard solution is to restrict the challenge set to {−1, 0, 1} (to guarantee
that the inverse of the difference between distinct challenges remains small), and
to amplify soudness via parallel repetitions. However, in our context, this would
lead to a very inefficient proof system. Unfortunately, finding a different proof
system with much better efficiency seems to be a hard problem.
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2.2 Encoding Integers as mod-q Rationals

Instead, we follow a different approach by turning the problem around: rather
than searching an efficient and sound proof system for the commitment com′
above, we seek to find a different construction of bounded integer commitment
com such that the above efficient proof system – which is not sound because
it only allows extracting fractions of small values modulo p – becomes a sound
proof system for com (allowing to extract bounded integers committed with com).
Abstracting out, we saw above that we can extract from a cheating prover a triple
(y, d, ρ) ∈ [−R,R] × [1, 2λ] × Zq such that c = com(y · d−1 mod q; ρ). Our goal
will be to find an appropriate choice of encoding Encode satisfying the following
properties:

– com(x; ρ) = com(Encode(x); ρ), such that a commitment to a value x′ with
com can be seen as a commitment to some different value x = Decode(x′)
with com.

– Extracting a tuple (y, d, ρ) ∈ [−R,R] × [1, 2λ] × Zq should correspond to
extracting a valid opening of com to some bounded integer x in an appropriate
bounded range.

Looking ahead, we will need a few additional properties to hold for Encode if we
want to build an efficient range proofs for com.

– First, we want Encode to satisfy some appropriate homomorphic properties.
Informally: Encode(−x) = −Encode(x), Encode(x+ a) = Encode(x) + a, and
Encode(a · x) = a · Encode(x), for a sufficiently small integer a.

– Second, we want to be able to transfer a square decomposition from encodings
modulo q to encoded integers: informally, proving a relation of the form
x′ =

∑
i(x′i)2 mod q where x′ = Encode(x) and x′i = Encode(xi) should

guarantee that x =
∑
x2
i over the integers.

Our choice of encoding. It turns out that there is a choice of (randomized)
encoding that satisfies all of the above constraints simultaneously. In hindsight,
this encoding is quite simple and natural: we view any pair (y, d) ∈ [−R,R]×[1, 2λ]
as an encoding (y, d) = Encode(x) of the integer

x =
⌊y
d

⌉
∈ [−R,R],

where the fraction denotes standard division, and b·e denotes rounding to the
nearest integer. Given this choice of encoding, com is defined as follows:

– com(x): pick ρ $← Zq and output commitment c = com(x; ρ) and opening
(x, 1, ρ).

– com.Verify(c, ~x, (y, d, ρ)): check that c = com(y · d−1; ρ), x = by/de, y ∈
[−R,R], and d ∈ [1, 2λ].

11



Some remarks are in order. First, observe that com(x) is defined exactly as
com(x); that is, a honest commitment with com is just a normal commitment
with com. This is because we can view any x ∈ [−R,R] as an encoding (x, 1) of
itself (since x = bx/1e). The only difference is that we relax the verification to
accept general openings (y, d) = Encode(x) of x. Second, the fact that extracting
a triple (y, d, ρ) in the Σ-protocol corresponds to extracting a valid opening (w.r.t.
com) of an integer in [−R,R] becomes trivially true. It remains to check two
things:

1. com must remain binding and hiding;
2. com must satisfy some homomorphic properties that we outlined above.

com is binding and hiding. That com is hiding follows immediatly from the
fact that com is hiding. It remains to consider binding. Suppose that an adversary
finds two valid openings (y, d, ρ) and (y′, d′, ρ′) in [−R,R] × [1, 2λ] × Zq to a
commitment c; that is, c = com(y · d−1 mod q; ρ) = com(y′ · (d′)−1 mod q; ρ′).
Since com itself is binding, we must have y · d−1 = y′ · (d′)−1 mod q. This last
equation implies

yd′ = y′d mod q =⇒ yd′ = y′d over Z =⇒ by/d′e = by′/de,

where the first implication holds as long as q is chosen large enough compared to
R and 2λ, i.e., q/2 > R · 2λ.

Properties of com. First, we check some basic homomorphic properties:

– If (y, d) encodes x = by/de, then (−y, d) encodes −x.
– If (y, d) encodes x = by/de and a is an integer such that ya ≤ R, then

com(x)a = com(ayd−1) is a valid commitment com(ax).
– If (y, d) encodes x = by/de and a is an integer such that y + da ≤ R, then

com(x) · com(a) = com(yd−1 + a) = com((y+ da)d−1) is a valid commitment
com(x+ a) since b(y + da)/de = by/d+ ae = by/de+ a.

Second, in our most optimized range proof constructions, we will reduce the
task of proving that x belongs to an interval [a, b] to the task of proving that
x0 = (x− a)(b− x) is positive. To show the latter, we will prove that there exists
three integers (x1, x2, x3) such that 4x0 + 1 =

∑3
i=1 x

3
i ; such a decomposition

exists (and can be found efficiently) if and only if x0 ≥ 0 [Gro05]. Now, suppose
we extracted encodings (y, d), ((yi, d)i≤3) to 4x0 + 1 and (x1, x2, x3) respectively,
with the following guarantee: yd−1 =

∑3
i=1(yid−1)2 mod q.

Intuitively, this guarantee will be obtained by using a standard Σ-protocol to
prove knowledge of a 3-square decomposition directly over commitments with
com. The extracted encodings will all have a common d, because of the structure
of the extraction procedure: d corresponds simply to the difference between two
distinct challenges for which the prover produced an accepting transcript. The
above equation can be rewritten yd =

∑3
i=1 y

2
i mod q, which necessarily holds

12



over the integers (i.e., no overflow occurs) given that 3R2 < q/2 and 2λR < q/2,
since the values y and yi are bounded by R and d is bounded by 2λ. From there,
dividing both sides by d2 over the rationals, we get that y/d can we written as a
sum of three squares over Q. A simple technical lemma shows that this relation
over Q actually suffices to guarantee x = by/de ∈ [a, b]; we omit details in this
high level overview.

Note that in related work [FSW03], a similar encoding is used to allow
for homomorphic computations with bounded rationals. However in our case,
bounded rationals appear as an intermediate result as extracted value (y − y′) ·
(d− d′)−1 mod q of the proof of knowledge. Our encoding is for small integers,
hence the rounding. Also, the work [LN17] uses the fact that the extracted value is
unique to construct verifiable encryption schemes. Again, the application differs.

2.3 Instantiation in the Discrete Log Setting

Equipped with a method to build bounded integer commitment schemes which
satisfy some necessary properties, we turn to the problem of instantiating the
construction in different settings, and building a range proof from it. In the
discrete logarithm setting, we set com to be the standard Pedersen commitment
scheme: com(m; r) = gmhr where (g, h) are two random generators over a group
where computing discrete logarithms is hard. As for the range proof, we rely on
the efficient Σ-protocol of [CPP17], adapting it to prime order group (since the
scheme is described over subgroups of Zn for an RSA modulus n in [CPP17]).
This is a relatively standard Σ-protocol where the prover, given an opening
(x, r) for a commitment c = gxhr, commits to three values (x1, x2, x3) such that
4(x− a)(b− x) + 1 =

∑
i x

2
i , and proves knowledge of openings to x, x1, x2, x3

such that this relation is satisfied. We provide a detailed security analysis of the
resulting protocol.

The scheme of [CPP17] already includes a standard optimization for Σ-
protocols, which relies on a collision-resistant hash function to compress the
first flow while preserving soundness. We introduce two important additional
optimizations tailored to our setting.

First Optimization. Due to our use of a group with a large order, we can
actually reduce the size of the random coins used in the Pedersen commitments,
at the cost of relying on the short-exponent discrete logarithm assumption (DLSE).
This improves the computational efficiency, but also reduces the communication
when proving knowledge of an opening. Furthermore, relying on DLSE has
an important consequence: while the protocol of [CPP17] has computational
soundness (and statistical zero-knowledge), we get an alternative instantiation
which satisfies statistical soundness (and computational zero-knowledge).

On getting range proofs with statistical soundness. This alternative instantiation
is obtained by changing the commitment as follows: To commit to m ∈ [−R,R],
sample r $← [1,K] and output gmhr. Here, R is a bound on the committed
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messages, and K is chosen such that the short-exponent discrete log assumption,
with random exponent chosen from [1,K], is believed to hold. Applying DLSE,
hr is indistinguishable from a uniformly random group element (using a standard
search-to-decision reduction for DLSE in prime-order groups [KK04]). Hence,
the scheme remains (computationally) hiding. Furthermore, gmhr is perfectly
binding: the probability (over the random choice of s such that gs = h) that
there exists (m, r,m′, r′) with m′ 6= m such that m+ sr = m′ + sr′ is negligible
by the Schwartz-Zippel lemma and a union bound (when R,K are small enough).

Therefore, using our proof system with short randomness in the Pedersen
commitments, with appropriate parameter adjustment to guarantee perfect
binding, we obtain a range proof with statistical soundness. We note that this
is an important feature: the impossibility of getting statistical soundness with
Bulletproof is discussed in Section 4.6 of the Bulletproof paper [BBB+18]. In
anonymous transaction schemes, statistical soundness is more important than
statistical zero-knowledge, since the former is crucial for avoiding indetectable
creation of coins (which would render the currency useless), while the second
is only necessary to guarantee anonymity (without which the currency remains
usable). Not getting statistical soundness was generally believed to be inherent
to efficient range proofs, since very compact commitments require computational
soundness; our method shows that it is actually possible to get competitive range
proofs with statistical soundness. Note that there is also a natural instantiation of
our approach using ElGamal encryption as the underlying commitment scheme.
This also yields a statistically sound range proof but it is less efficient than the
variant of this work.

Second Optimization. The scheme of [CPP17] relies on standard “flooding”
to achieve statistical zero-knowledge: the value e ·m, where m ∈ [−R,R] is a
secret value and e ≤ 2λ is a challenge, is masked with a random m′

$← [1, 2λ+κR]
to ensure that em+m′ will be 2−κ-close in statistical distance to the uniform
distribution over [1, 2λ+κR]. However, it turns out that our constraints are closely
related to the constraints satisfied by several Σ-protocols in the lattice setting,
which also deal with careful bounds on the size of secret values. Building upon
this observation, we import a standard optimization of Σ-protocols in the lattice-
setting, namely, the rejection-sampling method [Lyu12]. Using rejection sampling
allows different tradeoffs between the group size, the number of repetitions of
the underlying protocol, and the size of the masks used to hide secret values.
We show that an appropriate choice of tradeoff allows to significantly reduce the
communication complexity of our protocol.

3 Preliminaries

Notation. In this work, we generally perform calculations in Z/qZ with repre-
sentatives Zq = [− q−1

2 , q−1
2 ] for an odd modulus q ∈ N, and we identify Zq with

Z/qZ, unless stated otherwise. Inside of flooring bab c or rounding b
a
b e = bab + 1

2c
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operations, we generally have a, b in Z with division over Q, i.e. we work with
the representatives and not in Z/qZ.

For some randomized algorithm A with input x, we sometimes write y ←
A (x; r) for its execution with explicit randomness r. If the randomness is not
explicit, we write y ← A (x) and assume that the randomness was sampled
accordingly. We also write s $← S for sampling s uniformly random from a
finite set S or d $← D to sample d randomly according to a given probability
distribution D. Further, we often assume that some public parameters, denoted
by pp, and the security parameter, denoted by λ, are implicitly passed as input
to algorithms if it is clear by context.

Throughout, we write integers a ∈ Z in lower case letters, vectors as ~a ∈
Zn with components ai, and matrices A ∈ Zm×n in bold upper case letters.
Computations on vectors are performed component-wise, unless stated otherwise.
For example, for vectors ~a = (ai)i=1..n,~b = (bi)i=1..n ∈ Zn and scalar x ∈ Z, we
write ~c = ~a ·~b = (ai · bi)i=1..n, y

~B = (ybi)i=1..n and ~By = (byi )i=1..n. For some
constant c ∈ Z, we let by ~c = (c)i=1..n the vector with all components equal to c.

We denote by |x| the absolute value of x ∈ R and by ‖·‖1, ‖·‖2, ‖·‖∞ the
norms defined as ‖~x‖1 =

∑
i|xi|, ‖~x‖2 =

√∑
i x

2
i , ‖~x‖∞ = maxi|xi| for ~x ∈ Rm.

3.1 Commitment Schemes
A commitment scheme com with message space Mcom, commitment space Ccom
and opening space Rcom is a 3-tuple of PPT algorithms (Setup,Commit,Verify)
such that
– com.Setup(1λ): outputs public parameters pp,
– com.Commitpp(x): computes a commitment c ∈ Ccom to x ∈Mcom with its

opening d ∈ Rcom and outputs the pair (c, d),
– com.Verifypp(c, x, d): verifies the commitment c ∈ Ccom to x ∈Mcom with

the opening d ∈ Rcom and outputs a bit b ∈ {0, 1}
Further, we require that com is (statistically) correct, and satisfies binding (i.e.
it is hard to find two different openings to a commitment) and hiding (i.e.
one learns nothing about x from Commit(x)). We refer to the full version for
formal definitions. Often, d consists of the randomness used in the commitment
generation, but it can include other auxiliary information.

(Homomorphic) Integer Commitment Schemes. In this work, we are
interested in integer commitment schemes which allow to commit to an integer
x ∈ Z. An integer commitment scheme has message space Mcom = Z and allows
for proving relations, such as knowledge of an opening, in a zero-knowledge
manner (see section 3.2). We also establish bounded integer commitment schemes
(section 4.1) where the message space is Mcom = {x ∈ Z | |x| ≤ R} for some
upper bound R. The crucial difference between message space Mcom = Zq and
Mcom = {x ∈ Z | |x| ≤ R} is: The former can have additive homomorphism
(over Zq), but only binds to a representative of x ∈ Zq, not to an integer. The
latter binds to a (bounded) integer, but has limited homomorphism (over Z).
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3.2 Zero-Knowledge Proofs

We define zero-knowledge with setup GenCRS, which generates a common refer-
ence string (CRS) crs← GenCRS(pp). In this work, we only require an unstruc-
tured CRS 13. Let R be a NP-relation over a set X defining a (pp-dependent)
NP-language L = {x ∈ X | ∃w : R(pp, x, w) = 1}. For simplicity, we suppress
the dependency on pp when it is clear. A zero-knowledge proof system for L
is a protocol between a prover P and verifier V. We write tr ← 〈P(s),V(t)〉
for the transcript of an interaction where P (resp. V) has input s (resp. t) and
implicit inputs 1λ, pp, crs. We write b = 〈P(s),V(t)〉 for the verifier’s verdict b. A
proof system is public coin if the verifier’s messages are uniformly random and
independent of the prover’s messages, and the verifier outputs b = Verify(x, tr)
for a PPT algorithm Verify.

Due to rejection sampling, our schemes have non-negligible correctness error.

Definition 1 (Correctness). A proof system (GenCRS,P,V) for L has cor-
rectness error γerr, or is γerr-correct, if for every adversary A

Pr
[

pp← GenPP(1λ); crs← GenCRS(pp);
(x,w)← A (pp, crs): 〈P(x,w),V(x)〉 = 1]

]
≥ 1− γerr(λ)

We call (GenCRS,P,V) correct if γerr = negl.

To separate (statistical) simulation and knowledge errors from hardness as-
sumptions as much as possible, we define zero-knowledge and knowledge extraction
by means of adversary advantages.

Definition 2 (HVZK). A simulator Sim for a public coin proof system
(GenCRS,P,V) for L is a PPT algorithm with input a statement x for which
(pp, x, w) ∈ R and implicit inputs 1λ, pp, crs, and output a transcript tr . Let A
be a stateful algorithm and let

RealA (λ) = Pr
[

pp← GenPP(1λ); crs← GenCRS(pp); (x,w)← A (pp, crs);
tr ← 〈P(x,w),V(x)〉; b← A (tr): b ∧ R(x,w) = 1

]
IdealA (λ) = Pr

[
pp← GenPP(1λ); crs← GenCRS(pp); (x,w)← A (pp, crs);

tr ← Sim(x); b← A (tr): b ∧ R(x,w) = 1

]
Define the advantage of A by Advhvzk

A ,P,V(λ) = RealA (λ)− IdealA (λ). Then Sim
(and by extension (GenCRS,P,V)) is honest verifier zero-knowledge with simula-
tion error σerr = σerr(λ), if for all PPT A we have Advhvzk

A ,P,V ≤ σerr + negl.

Definition 3 (Knowledge error). Let (GenCRS,P,V) be a public coin proof
system for L . Let Ext be an expected polynomial time oracle algorithm (with
13 Note that the distinction between structured and unstructured random strings is

crucial in real-world applications: the former unavoidably requires either a trusted
third party, or a secure distributed setup. However, the latter can be instantiated in
the real-world using standard heuristic ’nothing-up-my-sleeve’ methods.
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oracle steps counted as one step) with implicit inputs 1λ, pp, crs. Let A be a
(probabilistic) and P∗ be a deterministic algorithm.

RealA (λ) = Pr
[

pp← GenPP(1λ); crs← GenCRS(pp); (x, s)← A (pp, crs);
tr ← 〈P∗(x, s),V(x)〉: Verify(x, tr) = 1

]
IdealA (λ) = Pr

[
pp← GenPP(1λ); crs← GenCRS(pp); (x, s)← A (pp, crs);

(tr , w)← ExtP∗(x,s): Verify(x, tr) = 1 ∧ R(x,w) = 1

]
W.l.o.g. Ext let w = ⊥ if Verify(x, tr) = 1. The advantage of (A ,P∗) is

Advke
A ,P∗,V(λ) = RealA (λ)− IdealA (λ). A proof system has knowledge error κerr,

if for any PPT A , P∗ we have Advke
A ,P∗,V ≤ κerr + negl.

Our definition of knowledge error is closely related to witness extended
emulation [Lin03,GI08], which also requires that an extractor produces convincing
transcripts. This property is trivial to achieve in our setting, but interferes with
our definition of knowledge error. All of our proof systems are Σ-protocols.

Definition 4. A Σ-protocol Σ for relation R is an interactive three-move proto-
col consisting of four PPT algorithms (Σ.Init,Σ.Chall,Σ.Resp,Σ.Verify) between
prover P holding a witness w for the statement x ∈ L and verifier V such that:

– Σ.Init(1λ, w, x) → (α, st): On input of statement and witness (x,w) with
R(x,w) = 1, outputs a first message α and a state st.

– Σ.Chall(1λ)→ γ: Draw challenge γ uniformly from the set of challenges [0, C].
– Σ.Resp(st, γ)→ ω: On input of previous state st and challenge γ, outputs a

response ω.
– Σ.Verify(x, α, γ, ω)→ b: On input statement x and transcript α, γ, ω, accepts
(b = 1) or rejects (b = 0).

Moreover, Σ must satisfy correctness and HVZK. As usual, the algorithms have
implicit inputs 1λ, pp, crs.

The simulators for our Σ-protocols actually show special HVZK, that is, they
work given any (adversarial) challenge γ. Letting Sim pick γ

$← [0, C] yields
standard HVZK. To prove knowledge extraction, we rely on k-special soundness.

Definition 5 (k-special soundness). A k-special soundness extractor Ext is
a PPT algorithm which takes as input a set of k accepting transcripts Γ =
{(α, γi, ωi) | Σ.Verify(x, α, γi, ωi) = 1}i=1..k with fixed α and pair-wise distinct
challenges γi, and outputs a valid witness w ← Ext(Γ), i.e. R(w, x) = 1.

In security proofs, k transcripts will either yield a witness or break an
assumption. Formally, we consider the language L ∨Lhard instead of L . Finding
k transcripts as in definition 5 is a standard (solved) problem.

Fiat–Shamir Transformation. Informally, the Fiat–Shamir transformation applied
to a Σ-protocol replaces the verifier’s random challenge by a hash of the initial
message α, resulting in a non-interactive proof system.
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Range Proofs. A range proof is essentially a zero-knowledge proof that guar-
antees that a committed value x resides inside a specified interval [a, b]. We
can show so by setting y = (b − x)(x − a), computing the commitment to y
homomorphically from the commitment to x and the constants a, b, and showing
that y ≥ 0 in a zero-knowledge manner. The following lemma yields a strategy
to show that committed integers are non-negative.

Lemma 1 (Decomposition into 3 Squares [RS86,Gro05]). Let y ∈ Z be
an integer. It holds that

y ≥ 0 ⇐⇒ ∃{xi}i=1..3 : 4y + 1 =
∑
i=1..3

x2
i

Further, the integers xi can be efficiently computed. In [PS19], the runtime of
finding the decomposition was improved to O(log2(y)/log log(y)) multiplications.

3.3 Tools in the DLOG setting

Hardness Assumptions. First, we establish the hardness assumptions that our
scheme in the DLOG setting is based on (see section 5). To avoid trusted setup,
we assume a deterministic family G = Gλ of cyclic groups with generator gλ and
known order qλ, generated by a group generator (Gλ, gλ, qλ) = GenGrp(1λ). For
notational simplicity, we leave GenGrp implicit in the rest of the work.

Definition 6 (S-Bounded DLSE and SEI Assumption). Consider a group
G of order q with generator g. Let S < q. The S-bounded DLSE assumption
holds if for all PPT A there is a negligible negl such that

Pr
[
z

$← {0..S − 1}, z′ ← A (gz): z = z′
]
≤ negl(λ)

The S-bounded short exponent indistinguishability (SEI) assumption holds if for
all PPT A there is a negligible negl such that∣∣∣Pr

[
z

$← {0..S − 1} : A (gz) = 1
]
− Pr

[
z

$← Zord : A (gz) = 1
]∣∣∣ ≤ negl(λ)

Throughout this work, we generally set S = 22λ. Note that DLOG assumption is
equivalent to the q-bounded DLSE assumption.

Tools. Now, we introduce some lemmas and a commitment scheme that we later
on utilize for constructing the bounded integer commitment and range proof.

Lemma 2 ([KK04]). Let G be a group of prime order q with generator g ∈ G.
For S < q/2, the S-bounded DLSE and SEI assumptions are equivalent.

We consider a Pedersen commitment scheme [Ped92] with smaller openings
in exchange for a computational (instead of statistical) hiding property.
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Definition 7 (Pedersen Commitments with Short Openings.). Let G
be a group of prime order q and consists of a 3-tuple of PPT algorithms
(Ped.Setup,Ped.Commit,Ped.Verify) such that

– Ped.Setup(1λ): samples g, h $← G and outputs public parameters pp = (g, h),
– Ped.Commitpp(x): samples d $← [0, 22λ] for x ∈ Zq, sets c = gxhd and outputs

the pair (c, d),
– Ped.Verifypp(c, x, d): outputs 1 iff c = gxhd.

Using d $← [0, 22λ] instead of d $← [0, q − 1] (as in [Ped92]) still achieves com-
putational hiding: Under SEI (or equivalently DLSE), we can replace the short
random exponent d in hd with a full random d

$← [0..q − 1] in a hybrid game.
Now gxhd is uniformly distributed, independent of x.

3.4 Tools for zero-knowledge

As a technical tool for achieving zero knowledge, our protocols use additive
masking of the witness. We recall the tools for masking here.

Lemma 3 (Masking with the Security Parameter). For any C,B,L ∈ N
and fixed x ∈ [−B,B], γ ∈ [−C,C], the distributions U = U [0, BCL] and V =
{m+ γ · x | m $← [0, BCL]} have statistical distance at most 1/L.

Rejection sampling and Gaussian noise allow to use smaller masks.

Definition 8 (Discrete Gaussian Distributions, [YAZ+19]). The contin-
uous Gaussian distribution over Rm centered around ~v ∈ Rm with standard devi-
ation σ is defined by the density function ρm~v,σ(~x) = ( 1√

2πσ2 )me
−‖x−v‖2

2
2σ2 . The dis-

crete Gaussian distribution over Zm centered around ~v ∈ Zm with standard devi-
ation σ is defined as Dm

~v,σ(~x) = ρm~v,σ(~x)/ρmσ (Zm), where ρmσ (Zm) =
∑
x∈Zm ρ

m
σ (x).

We write Dm
σ (~x) = Dm

~0,σ(~x) for short.

Lemma 4 (Relationship between norms). For v ∈ Rm, the inequalities of
norms, ‖v‖∞ ≤ ‖v‖1 ≤

√
N‖v‖2 ≤ N‖v‖∞, are well known.

Lemma 5 (Lemma 4.4, [Lyu12]).

– For any k > 0 it holds that Pr[|z| > kσ | z $← Dσ] ≤ 2e−k
2

2 .
– For any k > 1 it holds that Pr[‖~z‖2 > kσ

√
m | ~z $← Dm

σ ] < kme
m
2 (1−k2).

Lemma 6 (Theorem 4.6, [Lyu12]). Let V be a subset of Zm in which all
elements have ‖·‖2 norms less than T , σ ∈ R such that σ = ω(T

√
logm) and

h : V 7→ R a probability distribution. Define algorithms T (resp. S ) as follows:

1. ~v $← h
2. ~t $← Dm

~v,σ (resp. ~t $← Dm
σ )

3. output (~t,~v) with probability min
(

Dmσ (~t)
M ·Dm

~v,σ
(~t) , 1

)
(resp. with probability 1/M)
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Then there exists a constant M = O(1) such that the output distributions of T

and S are within statistical distance 2−ω(logm)

M . Moreover, the probability that T

outputs something is at least 1−2−ω(logm)

M .

Note that if σ = αT for some α > 0, then M = e13.3/α+1/(2α2), the output of
algorithm T is within statistical distance 2−128/M of the output of S and the
probability that T outputs something is at least 1−2−128

M [YAZ+19,HPWZ17].

4 Integer Commitments from Rounding Fractions

In this section, we introduce bounded integer commitments and motivate the
construction of range proofs based on these commitments.

4.1 Bounded Integer Commitment Scheme

We introduce a commitment scheme transformation that allows to commit to
bounded integers. The core feature of this transformation is its proof-friendliness:
standard Σ-protocols for proving knowledge of a square decomposition (or, more
generally, any low-degree polynomial relation) with the original commitment
(over a field Zq) can be re-interpreted (with minor adaptations) as Σ-protocols
for proving knowledge of a square decomposition (resp. low-degree relation)
over Z with respect to the transformed commitment scheme. In addition, the
transformation preserves some homomorphic properties of the underlying scheme,
which turns out to be crucial in the application to range proofs.

Definition 9 (The Transformation). Let com be a commitment scheme with
message space com.Mcom = Znq and random space com.Rcom. We define the
commitment scheme com over parameters U,C ∈ N such that U < q−1

2 with

– com.Mcom = {~x ∈ Zn | ‖~x‖∞ ≤ U/C}
– com.Rcom = {(d, γ, ~y) ∈ Rcom × Z× Zn | γ ≤ C, ‖~y‖∞ ≤ U/C}

as follows:

– com.Setup(1λ): outputs pp← com.Setup(1λ).
– com.Commitpp(~x): computes (c, r)← com.Commitpp(~x) and outputs

(c, (r, 1, ~x)).
– com.Verifypp(c, ~x, (r, γ, ~y)): sets ~z = ~y · γ−1 mod q and checks ~x = b ~yγ e, |γ| ≤
C, γ 6= 0, ‖~y‖∞ ≤ U/C, com.Verifypp(c, ~z, r) = 1 as well as ~x = b ~yγ e, where
division is performed in Qn.

Lemma 7. The commitment scheme com is correct, binding and hiding.

The correctness and hiding properties follow directly from the security of com.
The binding property can be argued similarly.
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Let A be a PPT adversary breaking the binding property of com. We design
a PPT adversary B that breaks the binding property of com with challenger C.

On receiving pp from the challenger C, B forwards pp to A and receives
(c, (d0, γ0, ~y0), ((d1, γ1, ~y1), ~x0, ~x1). B sets ~zi = ~yi · γ−1

i mod q and just forwards
(c, d0, d1, ~z0, ~zi) to C. If A is successful, both commitments verify correctly with
respect to com and ~x0 6= ~x1. Thus by definition of com.Verify, the verification
check for the sent openings are valid with respect to the scheme com. Note that
‖~yi‖∞ ≤ U/C, |γi| ≤ C for i ∈ [0, 1]. So ‖~yi · γi‖∞ ≤ U ≤ q−1

2 . Assume for the
sake of contradiction that ~z0 = ~z1:

~z0 = ~z1 =⇒ ~y0 · γ1 = ~y1 · γ0 mod q =⇒ ~y0 · γ1 = ~y1 · γ0 in Q

=⇒ ~y0

γ0
= ~y1

γ1
in Q =⇒

⌊
~y0

γ0

⌉
=
⌊
~y1

γ1

⌉
in Q

This contradicts ~x0 6= ~x1 and thus the advantage of B is the same as A .

Arguing over the Integers. Now, we motivate how to perform proofs over
the integers on the example Ped. Let Ped be the scheme obtained by the above
transformation applied to Ped. Let C = 2λ determine the challenge space, S = 22λ

determine the size of the randomness and L = 2λ be the masking overhead. Let
2λ = C < U ∈ N and let q be prime with 2U < q. Let G be a group of order q.
For clarity, we restate the scheme:

– Ped.Setup(1λ): outputs pp = (g, h) $← G2.
– Ped.Commit(pp, x): samples r $← [0, S] and outputs (c = gxhr, (r, 1, x)).
– Ped.Verify(pp, c, x, (r, γ, y)): checks gy·γ−1

hr = c as well as x = b yγ e, where
the division is performed in Q, |γ| ≤ C, γ 6= 0 and |y| ≤ U/C.

The most essential protocol is the proof of knowledge of an opening. We now
establish an unoptimized version in order to gain a basic understanding of the
underlying arguments. The relation we prove is

R = {(c, (x, (r, γ, y))) | Ped.Verify(c, x, (r, γ, y)) = 1}.

For the correctness property, we are only interested in honest openings, so
γ = 1, y = x. The proof scheme follows the conventional strategy of blinding
the witnesses (x, r) with a mask. We add a size check for the masked witness
to ensure the shortness of the opening. Note that the message space of Ped is
{x ∈ Z | x ≤ U/C} but we can only perform proofs for smaller x values because
the commitments need to stay binding after the masking process. In more detail,
we let B ∈ N such that 2BCL ≤ U/C and we allow for messages |xi| ≤ B. The
following protocol proves knowledge of an opening.

– Init(c, (x ∈ [−B,B], r ∈ [0, S])): m $← [0, BCL], s $← [0, SCL]; outputs d =
gmhs.

– Chall(): outputs γ $← [0, C]
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– Resp(γ): sets z = m+ γ · x, t = s+ γ · r. Outputs (z, t)
– Verify(d, γ, z, t): checks |z| ≤ BCL and gzht = d · cγ .

The first verification check succeeds with overwhelming probability since the
probability that the random m is too close to BCL is small. The second check
succeeds due to

gzht = gm+γ·xhs+γ·r = gmhs · (gxhr)γ = d · cγ .

Further, lemma 3 also implies that z, t hide the witnesses x, r statistically and
using d = gzht · c−γ , a valid transcript can be computed for a given challenge
γ. Thus, the scheme honest-verifier is zero-knowledge. The following soundness
argument shows how to extract correct openings.

First, let (d, γ, z, t), (d, γ′, z′, t′) be two accepting transcripts with γ 6= γ′.
Without loss of generality, we assume that γ′ > γ. We denote z = z′ − z, t =
t′ − t and γ = γ′ − γ. We know that gz′−zht′−t = cγ

′−γ which directly implies
gz/γht/γ = c. Thus, γ∗ = γ, r∗ = t/γ, y∗ = z and x∗ = b y

∗

γ∗ e is a valid opening
for c. Note that the size checks are satisfied:

|γ∗| ≤ C, |y∗| ≤ 2BCL ≤ U/C.

Note that we know that x∗ is short because γ∗ and y∗ are short, so the above
protocol can already be seen as range proof that guarantees that the committed
value lies in [−2BCL, 2BCL]. Nonetheless, this is not very satisfying yet because
the slackness of 2CL = 22λ+1 is very large. But the shortness of the extracted
values can be used to argue in Z instead of Zq which opens the door for more
sophisticated arguments.

On Retaining Homomorphism. If the original scheme is homomorphic, the
transformation retains (restricted) homomorphic properties. Firstly, if the com-
mitments are generated honestly, the homomorphic property is retained as long
as the homomorphic calculation is performed inside the bound U/C of the scheme.
In case of dishonest commitments, the scheme still retains a more limited form
of homomorphic properties.

If the scheme com allows for addition of constants to the committed value,
the homomorphic property is retained up to overflow over the bound U/C. To
illustrate, let ~t ∈ Znq be some constant and c a commitment to message ~m = b~y/γe
with opening (r, γ, ~y). Note that c commits to ~y/γ modulo q with respect to com
and we can use the homomorphic operations. We have

(~y/γ) + ~t = ~y/γ + (~t · γ)/γ = (~y + ~t · γ)/γ mod q

and b~y+~t·γ
γ e = b~y/γe+ ~t = ~m+ ~t. So the result of the homomorphic operation is

actually exact because the additional operand does not introduce an additional
error term. Note that for the opening to be correct, the norm

∥∥~y + ~t · γ
∥∥
∞ needs

to be smaller than U/C. So, enough space needs to be guaranteed to perform
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homomorphic operations. The analysis for retaining multiplicative homomorphic
properties for small constants is similar.

In the case of additive and multiplicative homomorphisms between dishonest
commitments, there are some small error terms and thus, the properties do not
translate as directly. We refer to the full version for more details.

For range proofs, the homomorphism with small constants can be used to
prove the 3-square decomposition of the integer and the complications from
multiplicative and the additive homomorphic error terms can be balanced out
such that we can still prove the relation with the homomorphic property of the
underlying schemes.

Ensuring Membership of an Interval. We use the 3 square decomposition
in order to show membership of [0, B]. This can be extended to a range proof for
interval [a, b] by setting B = b− a. Since com allows for addition of constants,
the prover can show x− a ∈ [0, B] =⇒ x ∈ [a, b]. Note that the values still need
to lie inside the given bounds.

We are using the 3 square decomposition to show that x ∈ [0, B]. Since the
extracted x is a rounded fraction, we still need to ensure that the decomposition
shows the desired range membership.

Lemma 8 (Three Square for Rounded Fractions). Let n, d ∈ Z and
x = bnd e, {xi}i=1..3 ∈ Q and B ≥ 2. Then:

1 + 4n
d

(B − n

d
) =

3∑
i=1

x2
i =⇒ x ∈ [0, B].

Proof. A simple calculation shows that n
d ∈ [ 1

2 (B −
√
B2 + 1), 1

2 (B +
√
B2 + 1)].

This interval can further be bound as follows:
1
2(B +

√
B2 + 1) = 1

2B(1 +
√

1 + 1
B2 ) ≤ 1

2B(1 + 1 + 1
B2 ) = B + 1

2B

A similar computation for the left bound shows that the 3-squares decomposition
implies n

d ∈ [− 1
2B , B + 1

2B ]. Since B ≥ 2, we find n
d ∈ [− 1

4 , B + 1
4 ]. Rounding

leads to the desired result. (In fact, this holds even for B = 1.)

Further Properties. Our adapted commitment scheme and range proofs have
additional useful properties.

Remark 1 (RP for com). For denominator γ = 1, com coincides with com. Under
this precondition, our range proofs establish x ∈ [0, B] for also com-commitments.

Remark 2 (Positivity). Our proofs show x ∈ [0, B]. However, in many appli-
cations, proofs of positivity (x ≥ 0) suffice. That is, B could be made into a
zero-knowledge threshold (used for masking only), so that for x > B no zero-
knowledge guarantees hold.14 This change is achieved by proving 1+4x =

∑3
i=1 x

2
i .

Now, soundness guarantees x ∈ [0, q−1
2 ].

14 In fact, masking and hence zero-knowledge degrades gracefully in the size of x.

23



Remark 3 (Denominators). A closer look at soundness shows, that a denominator
γ > 1 leads to a rejection with probability 1 − 1

γ . Thus, the larger γ, the less
likely will a (malicious) verifier succeed.

5 Range Proof in a DLOG Setting

5.1 Overview

In this section, we present the range proof in the setting of a group G with prime
order q under the DLOG (or DLSE) assumption.15 As basis, we use Pedersen
commitments Ped, which we transform in a bounded rational commitment schemes
Ped as in section 4.1. Recall that the difference of Ped and Ped is mostly in the
interpretation of the committed values.

Our protocol reuses the structure of existing range proofs based on Pedersen
commitments in the RSA setting (see [Lip03,Gro05,CPP17]). For a given commit-
ment c = gxhr, the prover computes the square decomposition 1 + 4(b− x)x =∑
i=1..3 x

2
i and lets x0 = b − x. Thus, we prove 1 + 4x0x =

∑
i=1..3 x

2
i . Note

that all xi are in the range [0, B]. The prover commits to ci = gxihri for some
randomly sampled ri for i ∈ [1, 3], and sets c0 = gbc−1. For a proof of knowledge
of xi, he computes mask commitments di = gmihsi (and an additional “garbage”
term d), and sends them to the verifier. After receiving the challenge γ, the prover
reveals zi = mi + γxi and ti = si + γri and the verifier can check whether the
equation gzihti = cγi di holds (and an equation for the square decomposition).16

The verifier checks the proof of knowledge and accepts only if zi and ti are small.
As usual, if the prover can answer two different challenges γ, γ̃, openings can be
extracted. These openings are xi = zi−z̃i

γ−γ̃ with short nominator and denominator,
and they satisfy the square decomposition (or DLOG is broken). This shows
soundness (for Ped openings), Furthermore, as we sketched in the introduction,
when small exponents are used for the masking term hy, and by adjusting the pa-
rameters, soundness can actually be proven statistically. In our parameter choice,
however, we will optimize for efficiency and focus on computational soundness.

For zero-knowledge, the witness is blinded by the masks mi. Since the mi’s
must be small (hence are not uniform in Zq), we do not get perfect zero-knowledge.
However, xi+mi still statistically hides xi. This is enough to establish (statistical)
zero-knowledge by the usual “simulation by execution in reverse”. The construction
and proof is somewhat complicated by using small exponents for the masking
term hy, which consequently must be masked itself.

5.2 Parameters

Let pp = (g, h, q) be the public parameters of the commitment scheme Ped in
group G with order q, let H : {0, 1}∗ 7→ {0, 1}2λ be a collision resistant hash
15 The optimization of the Pedersen commitment scheme with short exponents relies

on the SEI, which for relevant ranges is equivalent to DLSE.
16 In the scheme, we use a hash function to avoid having to send the mask commitments

to the verifier to save space.
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function, and let [0, B] be the range with B ≥ 2. Let [0, C] be the challenge set. Let
S be the size of small exponents in the SEI assumption, and let L be the growth
factor of masked intervals due to additive noise, that is, masking [0, B] results in
[0, BL]. We define U = 32B2C2L2 and note that it serves as an upper bound for
the integers appearing in the security proof. In particular, we require U < q−1

2 .
The prover shows that he knows x, r committed in c = gxhr = Ped.Commit(x; r)
and that x ∈ [0, B]. (Other commitments are interpreted as Ped)

5.3 Scheme

The scheme RPLog follows the structure of the line of work [Lip03,Gro05,CPP17].
We adapt the scheme to the DLOG setting and apply our encoding technique.

– RPLog.Init(c = gxhr, x ∈ [0, B], r ∈ [0, S]):
1. compute xi s.t. 4x(B − x) + 1 =

∑3
i=1 x

2
i

2. Set r0 = −r, x0 = B − x
3. Set c0 = c−1gB

4. Set ∀i ∈ [1, 3] : ri $← [0, S], ci = gxihri

5. Set ∀i ∈ [0, 3] : mi
$← [0, BCL], si $← [0, SCL], di = gmihsi

6. Set σ $← [0, 4SBCL], d = hσc4m0
∏
i=1..3 c

−mi
i

7. Set ∆ = H({di}i=0..3, d)
8. Outputs {ci}i=1..3,∆

– RPLog.Chall(): outputs γ $← [0, C]
– RPLog.Resp(γ):

1. Sets ∀i ∈ [0, 3] : zi = mi + γ · xi, ti = si + γ · ri
2. Sets τ = σ + γ(

∑
i=1..3 xiri + 4x0r0)

3. Outputs {zi, ti}i=0..3, τ

– RPLog.Verify({ci}i=1..3,∆, γ, {zi, ti}i=0..3, τ):
1. Compute c0 = c−1gB

2. Compute ∀i ∈ [0, 3] : fi = gzihtic−γi
3. Compute f = hτ · gγ · c4z0 ·

∏
i=1..3 c

−zi
i

4. Check ∆ = H({fi}i=0..3, f)
5. Check zi ∈ [0, BC(L+ 1)]

The scheme is perfectly correct. Note that any interval [0, T ], where term
T contains S, may be replaced by [0,max(q − 1, T )], as these masks only serve
zero-knowledge and do not affect soundness, hence wraparound is not a problem.
In particular, the scheme is correct, sound and HVZK if S = q − 1.

Theorem 1. Suppose L ≥ 32. The range proof RPLog for [0, B] is 2-special sound
with knowledge error 1

(C+1) under DLOG and CRHF assumptions.
More precisely, for every adversary A with strict running time T there are adversaries
B1,B2 with expected running time roughly 2T and Advke

A ≤ 1
(C+1) + Advdlog

B1
+ Advcrhf

B2 .
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Proof. Assume we have two accepting transcripts for distinct challenges γ 6= γ̃
with witnesses zi, ti, τ and z̃i, t̃i, τ̃ respectively. Without loss of generality, say
γ > γ̃. We show that either we obtain a valid witness, or we break DLOG or
collision resistance.

By collision resistance of H, we have d = f = f̃ and ∀i ∈ [0, 3] : di = fi = f̃i.
Denote by a the difference of a− ã for a ∈ {zi, ti, τ}. From fi = f̃i we find

gzihtic−γi = gz̃iht̃ic−γ̃i ⇐⇒ gzihti = cγi ⇐⇒ gzi/γhti/γ = ci.

Thus for all i ∈ [1, 3], we have valid openings xi = zi/γ and ri = ti/γ for
commitment ci. For c0, we obtain c = g(γ·B−z0)/γh−t0/γ and therefore x0 = z0/γ
and r0 = t0/γ is an opening to c−1gB. Moreover x = B − z0/γ = B − x0 is the
committed value in c.

Now we turn to the square decomposition. We have

f = f̃ =⇒ hτ · gγ · c4z0 =
∏
i=1..3

czii

=⇒ hτ · gγ · g4(B−z0/γ)z0 · h4r·z0 =
∏
i=1..3

gxi·zihri·zi

=⇒ gγ · g4(B−z0/γ)z0 ·
∏
i=1..3

g−xi·zi = h−4r·z0 · h−τ ·
∏
i=1..3

hri·zi

=⇒ gγ+4(B−z0/γ)z0−
∑

i=1..3
xi·zi = h−4r·z0−τ+

∑
i=1..3

ri·zi .

Under the DLOG assumption (or statistically, when the exponent of h remains
small enough), this forces

γ + 4(B − z0/γ)z0 −
∑
i=1..3

xi · zi = 0 mod q

=⇒ γ + 4(B − z0/γ)z0 =
∑
i=1..3

zi
2/γ mod q

=⇒ γ2 + 4(γ ·B − z0)z0 =
∑
i=1..3

zi
2 mod q

The final equality holds over the integers, because all values are small enough so
that there is no wrap-around. More precisely: Let K = BC(L+1) be the maximal
(accepting) value of |zi|. For the right hand side, |zi| ≤ |zi|+ |z̃i| ≤ 2K and hence∑

i=1..3 zi
2 ≤ 16K2 ≤ U < q−1

2 . Rewrite the left hand side as γ2 + 4γBz0 − z0
2.

Shortness follows from |γ|B ≤ K and thus K2 +8K2 +16K2 ≤ 25K2 ≤ U < q−1
2 .

Here we use that 25K2 = 25(BC(L+ 1))2 ≤ 32(BCL)2 = U since L ≥ 32.
Since the equality holds over the integers, after dividing by γ2 it holds over

Q. Using z0 = γ(B − x), we see that γ2 + 4γx(γB − γx) =
∑3
i=1 γ

2x2
i and hence

1 + 4x(B−x) =
∑3
i=1 x

2
i for x = B− z0

γ . Now, lemma 8 finishes the proof. (Note
that we extracted a valid opening for c.)
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Theorem 2. The proof system RPLog is HVZK with simulation error 9/L. If
S = q − 1, this holds against unbounded adversaries.
More precisely, for every HVZK adversary A , there is a SEI adversary B with roughly
the same running time as A , such that Advhvzk

A ≤ 9/L+ 4Advsei
B .

The proof works by simulation via “execution in reverse”. That is, the simulator
Sim picks random messages zi, ti first and lets xi = 0. Then it uses the challenge
to compute the messages from the first round. Due to masking, this distribution
is L−1-close to the real one. And due to SEI, replacing commitments to xi by
commitments to 0 is also indistinguishable. The full proof is in the full version.

5.4 Optimizations

We discuss some optimizations to either reduce the proof size or the group size.

Rejection sampling for smaller group size. In RPLog, we hide the values γ · xi ∈
[0, BC] by an additive uniformly random mask z ∈ [0, BCL]. So the masking has
an overhead of log(L) bits. By using rejection sampling for masking, as used in
the lattice setting, this overhead can be traded for a (small) correctness error.
For this, we apply lemma 6 instead of lemma 3. That is, we choose the mask
from a discrete Gaussian distribution with large enough standard deviation σx,
and the prover aborts in Resp with (small) probability.

More concretely: Let the parameters for rejection sampling be standard
deviation σx = α · BC and M = e13.3/α+1/(2α2) for some α. Let k =

√
2λ and

let L′ = dkαe. Then the probability that the mask m← Dσx is too large (and
causes verification to abort) is O(2e−k2/2) = negl(λ) by lemma 5. The protocol
is adapted as follows17:

– In Init, sample mi ← Dσx for i ∈ [0, 3] (instead of mi ← [0, BCL′]).
– In Resp, abort with probability 1−min

(
Dσx(zi)

M ·Dγ·xi,σx (zi) , 1
)
for i ∈ [0, 3],

– In Verify, check |zi| ≤ BC(L′+ 1) for i ∈ [0, 3] instead of zi ∈ [0, BC(L′+ 1)].

Since |mi| ≤ BCL′ (and thus |zi| ≤ BC(L′ + 1)) with overwhelming probability,
the completeness is mostly affected by aborting in Resp. For the concrete value
α = 256 which implies M ≈ 1.05, the abort probability is very small (roughly
0.05). The statistical distance between honest masking and “simulated” masked
values is at most δ = 2−120, by lemma 6. Using this property the HVZK simulator
is easily adapted and achieves simulation error 4δ + 5L−1. (Note that si and σ
are sampled as before.) The soundness proof uses L′ but is otherwise unchanged.

To achieve non-negligible completeness, the protocol needs to be repeated,
increasing computation and communication. For the Fiat–Shamir transformation,
only computation increases.
17 For more details on the technique and the proof of security, we refer to the range

proof in the lattice setting of the full version. It uses rejection sampling for masking
the randomness of the commitment scheme.
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Lastly, note that 2U = 32(BCL′)2 is a lower bound on the group size q. With
rejection sampling, we can choose smaller L′, and hence smaller q. One can use
rejection sampling for the masks σ and si as well, but these do not affect the
group size, only the communication (and the simulation error). More concretely,
let σr = α · SCL and further modify the protocol as follows:

– In Init choose si ← Dσr for i ∈ [0, 3].
– In Resp abort with probability 1−min

(
Dσr(ti)

M ·Dγ·ri,σr ti)
, 1
)
for i ∈ [0, 3].

This results in a size of |ti| ≤ SCL′. Also applying this to σ yields |τ | ≤ 4SBCL′.
In the full version, we detail the concrete impact of these changes on the efficiency.

Soundness amplification for smaller group size. The soundness error of the
scheme is 1/(C + 1), and since C affects U and hence the group size, decreasing
it allows smaller groups. However, to achieve negligible soundness error, multiple
iterations are required, namely λ/log(C) iterations for a soundness error of 2−λ.
Note that the commitments ci only need to be sent in the first repetition and
can be reused in the following ones.

Efficiency. Efficiency estimations are given in the introduction. Details on our
calculations and the Python scripts used to compute the costs are given in the
full version.
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