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Abstract. Robust property-preserving hash (PPH) functions, recently
introduced by Boyle, Lavigne, and Vaikuntanathan [ITCS 2019], com-
press large inputs x and y into short digests h(x) and h(y) in a manner
that allows for computing a predicate P on x and y while only having
access to the corresponding hash values. In contrast to locality-sensitive
hash functions, a robust PPH function guarantees to correctly evaluate
a predicate on h(x) and h(y) even if x and y are chosen adversarially
after seeing h.
Our main result is a robust PPH function for the exact hamming distance
predicate

HAMt(x, y) =

{
1 if d(x, y) ≥ t
0 Otherwise

where d(x, y) is the hamming-distance between x and y. Our PPH func-
tion compresses n-bit strings into O(tλ)-bit digests, where λ is the secu-
rity parameter. The construction is based on the q-strong bilinear dis-
crete logarithm assumption.
Along the way, we construct a robust PPH function for the set intersec-
tion predicate

INTt(X,Y ) =

{
1 if |X ∩ Y | > n− t
0 Otherwise

which compresses sets X and Y of size n with elements from some ar-
bitrary universe U into O(tλ)-bit long digests. This PPH function may
be of independent interest. We present an almost matching lower bound
of Ω(t log t) on the digest size of any PPH function for the intersection
predicate, which indicates that our compression rate is close to optimal.
Finally, we also show how to extend our PPH function for the intersection
predicate to more than two inputs.

1 Introduction

Compressing data while maintaining some of its properties is one of the most
fundamental tasks in computer science. Approximate set membership data struc-
tures, such as Bloom Filters [2] or Cuckoo Hashing [16], allow for compressing
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large data sets into small digests that can afterwards be used to test whether
some element x was a member of the original data set or not. Locality-sensitive
hash functions [11] allow for compressing data points x and y independently
into short digests h(x) and h(y) such that the hash values can be used to check
whether the original points were close or far apart according to some metric like
the euclidean or angular distance. Streaming algorithms [14] enable an observer
of a data stream to estimate certain statistics about the stream while using
only a small amount of local storage. All of these algorithms have two things
in common. They are all randomized and thus may fail on certain inputs with
some, usually small, probability and they all assume that the inputs are chosen
independently of the random coins used by the data structure.

Over the past years, a series of works [13, 10, 15, 5, 4, 1] have investigated
such data structures in the presence of adversarial inputs that are chosen af-
ter seeing the random coins of the data structure. Naor and Yogev [15], for
instance, study the robustness of Bloom filters in the presence of an adversary
that aims to find an input set X and a value z 6∈ X such that the approxi-
mate membership test on a digest of X and the value z incorrectly reports that
z ∈ X. Clayton, Patton, and Shrimpton [5] extend the work of Naor and Yogev
to other data structures such as counting Bloom filters and count-min sketches.
Boyle, LaVigne and Vaikuntanathan [4], referenced as BLV hereafter, initiated
the study of robust property-preserving hash (PPH) functions, which, in a nut-
shell, combine the security guarantees of collision-resistant and the functionality
of locality-sensitive hash functions.

A bit more formally, a PPH function h : X → Y with evaluation algorithm
Eval : Y × Y → {0, 1} for some predicate P : X × X → {0, 1} is said to be
robust, if no PPT adversary A, who is given (h,Eval), can produce an output
(x, y) such that P (x, y) 6= Eval(h(x), h(y)). The authors construct such a hash
function, which compresses n-bit inputs by some small constant factor, for the
gap-hamming predicate

GAP-HAMt
ε(x, y) =


1 if d(x, y) ≥ t(1 + ε)

0 if d(x, y) ≤ t(1− ε)
? Otherwise

for t = O(n/ log n) and an arbitrary small, but constant, non-zero value ε, where
d is the hamming distance. This means that the Eval function can only guarantee
that the Hamming distance is at most t(1 + ε) for output 0 or at least t(1 − ε)
for output 1. In the gap between the two values either output is possible and
we get no correctness or security guarantees. It would therefore be desirable to
close this gap, i.e., to obtain a construction for ε = 0, which was left open by
the work of BLV. In addition to their positive results, BLV also proved that a
compressing PPH function for ε = 0 and t = n/2 cannot exist.

1.1 Our Contribution

In this work, we construct a robust PPH function for the exact hamming distance
predicate, which essentially corresponds to GAP-HAMt

ε(x, y) with ε = 0, for t ≤

2



n/cλ for some small constant c > 1. We also show how to generalize our result to
strings over large alphabets, e.g. alphanumeric sequences, and the corresponding
generalized hamming distance, which counts the number of positions in which
the strings differ.3 Our construction is based on the q-strong bilinear discrete
logarithm assumption in pairing-friendly groups and compresses n-bit inputs into
O(tλ)-bit hash values. Our results are not covered by the impossibility results
of BLV, since we restrict t to be sufficiently small in comparison to the input
bit-length n.

Along the way, we consider the symmetric set difference predicate, which
takes two sets X and Y of size n from some universe U as input and checks
whether |(X \Y )∪ (Y \X)| < t. We construct a PPH function for this predicate
from the same assumptions and with the same O(tλ)-bit long hash values as
above. Here it is insightful to note that for two-input predicates, the symmetric
set difference and an intersection predicate with a threshold on the minimum
intersection size are equivalent.

For the symmetric set difference and the intersection predicate, we show that
any PPH function has to have Ω(t log t)-bit long hash values, which indicates
that our hash functions are close to optimal in terms of compression factor.

Finally, we show how to construct PPH functions for the intersection predi-
cate with more than two inputs.

1.2 Technical Overview

We will start our overview by constructing a robust PPH function for the two-
input symmetric set difference predicate. Obtaining our PPH function for the
exact hamming distance predicate will only require one additional step of en-
coding the input bit strings into appropriate sets.

The starting point of our work is a simple, yet beautiful, observation about
polynomials and rational function interpolation made by Minsky et al. [12]4.
Consider sets A = {a1, . . . , an} and B = {b1, . . . , bn} which are encoded into the
roots of some polynomials u(x) =

∏n
i=0(x − ai) and v(x) =

∏n
i=0(x − bi) over

some finite field F, and consider the rational function5

w(x) :=
u(x)

v(x)
=

∏
ai∈A\B(x− ai)∏
bj∈B\A(x− bj)

.

3 Note that encoding strings from a large alphabet into bit strings and then using
our construction for binary inputs does not work, since the hamming distance of the
encoded strings has no meaningful interpretation.

4 The work of Minsky et al. has recently found other applications in the context
of cryptography in the domain of communication efficient private set intersection
protocols [7].

5 Note, that the equality does not strictly hold, since the function on the right is
defined for x ∈ A∪B, whereas the one on the left is not. However, the two functions
are equivalent for all x except for the removable singularities of u(x)/v(x) which is
exactly what we need.
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The main observation behind the work of Minsky et al. was the following: the
larger the intersection of A and B, the smaller their symmetric set difference,
the more roots of the polynomials u(x) and v(x) “cancel out”. Furthermore, the
smaller the degrees of the remaining polynomials in the numerator and denom-
inator, the fewer evaluation points are needed for correctly interpolating w(x).
More precisely, the degree each polynomial, once they have been reduced to
lowest terms, is exactly |A \ B| = |B \ A|, thus if the symmetric set difference
is at most 2t large, then w(x) can be correctly interpolated from ` evaluation
points of w(x), where ` ∈ O(t). Importantly for us, ` can be chosen such that
`− 1 points are not sufficient for correctly interpolating the rational function if
|(A \B) ∪ (B \A)| > 2t.

As a first attempt towards compressing sets A and B of size n into appropri-
ate hash values, one might want to compute (u(α1), . . . , u(α`)) and (v(α1), . . . ,
v(α`)), where α1, . . . , α` are some distinct publicly known fixed evaluation points.
Given these two hash values, the evaluation algorithm Eval could now compute
w(αi) := u(αi)/v(αi) for i ∈ [n] and attempt to interpolate a rational function
ŵ(x) using these points. Recall that w(x) = ŵ(x) if |(A \B)∪ (B \A)| ≤ 2t and
w(x) 6= ŵ(x) otherwise.

At this point we are left with the task of checking whether the interpo-
lated function is the correct one. Ideally, we would like to simply evaluate
the polynomials u(x) and v(x) on some random point r and check whether
u(r)/v(r) = ŵ(r). Over a large enough field and using a uniformly and inde-
pendently sampled random value r this allows us to efficiently test the equality
of two (rational) functions with only negligible error. Unfortunately, since we
are designing a hash function, rather than an interactive protocol, u(r) and v(r)
would need to be part of the corresponding hash value. This means, r would need
to be fixed at the time of hashing and needs to be the same for all inputs to the
hash function. Thus, it has to already be fixed as part of the sampling of the hash
function from its corresponding family and an adversary can choose sets A and B
conditioned on r. Since r is now no longer distributed independently of A,B the
adversary could potentially find two such input sets with |(A\B)∪(B \A)| > 2t,
which result in an interpolation of a function ŵ(x) 6= w(x) that still passes the
check, because the sets are chosen such that ŵ(r) = w(r).

To get around this problem, we need to hide r from the adversary. Towards
this goal, we fix a uniformly random hidden value r in a way that allows for
performing the check described above obliviously. Assume the PPH function
description includes values ~Γ = (g, gr, gr

2

, . . . , gr
n

) for some uniformly random

value r. Now given the coefficients of polynomials u(x), v(x), and ~Γ , we can
evaluate our polynomials in the exponent to obtain gu(r) and gv(r). Under an
appropriate q-type discrete logarithm assumption we can argue that the actual
value r remains hidden and the attack outlined above is no longer possible.

To see how to perform the rational function equality check in the exponent,
assume that the interpolation of ŵ(x) gives us the coefficients of the polynomials
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v̂(x) and û(x) with ŵ(x) = û(x)/v̂(x). The equation

w(x) =
u(x)

v(x)
=
û(x)

v̂(x)
= ŵ(x)

holds if and only if
u(x)v̂(x) = û(x)v(x)

holds. Finally, given gu(r), gv(r), which are computed independently during hash-
ing, the vector ~Γ , which is part of the hash function description, and the coef-
ficients of û(x) and v̂(x), which we obtain from the interpolation, we can use a
bilinear pairing, which allows us to perform a multiplication in the exponent, to
check the desired equation.

To obtain our construction for the hamming distance predicate, we need to
encode the input bit strings into sets in a way that allows us to translate a
threshold on the hamming distance to a threshold on the size of the symmetric
set difference of the corresponding sets. Towards this goal, we simply encode a
bit string x = x1x2 . . . xn into a set Sx := {2i − xi | i ∈ [n]}. For two strings x
and y and each bit position i with xi = yi the corresponding sets Sx and Sy will
have one element 2i− xi = 2i− yi in common. For each position i with xi 6= yi,
the sets will contain distinct elements 2i and 2i − 1. With this in mind, it is
straightforward to see that

d(x, y) =
|(Sx \ Sy) ∪ (Sy \ Sx)|

2
,

which means that we can reduce the problem of computing the hamming distance
between bit strings to computing the size of the symmetric set difference of the
corresponding set encodings.

2 Preliminaries

This section introduces notation, some basic definitions and lemmas that we
will use throughout this work. We denote by λ ∈ N the security parameter
and by poly(λ) any function that is bounded by a polynomial in λ. A function
f is negligible if for every c ∈ N, there exists some N ∈ N such that for all
λ > N it holds that f(λ) < 1/λc. We denote by negl(λ) any negligible function.
An algorithm is PPT if it is modeled by a probabilistic Turing machine with a
running time bounded by poly(λ).

Let n ∈ N, we denote by [n] the set {1, . . . , n}. Let X,Y be sets, we denote
by |X| the size of X and by X 4 Y the symmetric set difference of X and Y ,
i.e., X 4 Y = (X ∪ Y ) \ (X ∩ Y ) = (X \ Y ) ∪ (Y \X). Further, we denote by
Pn(X) = {S ⊆ X | |S| = n} the set of all subsets of size n of X and by x← X
the process of sampling an element of X uniformly at random. Let x, y ∈ {0, 1}n,
we write w(x) to denote the Hamming weight of x and we write d(x, y) to denote
the Hamming distance between x and y, i.e., d(x, y) = w(x⊕y). For a polynomial
p =

∑n
i=0 cix

i, we write coef(p, i) = ci to denote the i-th coefficient of p.
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Rational Functions. A rational function is the fraction of two polynomials.
The total degree of a rational function is the sum of the degrees of the numer-
ator and the denominator after they have been reduced to lowest terms. More
precisely, it is defined as follows.

Definition 1 (Total Degree). Let f and g be arbitrary non-zero polynomials.
Let r, f ′, g′ be polynomials, such that f = rf ′, g = rg′ and f ′ and g′ are co-
prime. Note that r, f ′, g′ always exist and are unique. The total degree of the
rational function f/g is then defined as tdeg(f/g) = deg(f ′) + deg(g′).

Encoding bit strings as sets. A given bit string x ∈ {0, 1}n can be efficiently
encoded into a set as Sx := {2i− xi | i ∈ [n]}. We have that Sx ∈ Pn([2n]), i.e.
the size of Sx is n and its description length in bits is ndlog 2ne. We call Sx the
set encoding of x.

Lemma 1. Let n ∈ N. For any x, y ∈ {0, 1}n, it holds that

2d(x, y) = |Sx 4 Sy|.

Proof. We denote by I := {i ∈ [n] | xi = yi} the set of indices i where xi = yi.
Similarly, we denote by J := {j ∈ [n] | xj 6= yj} the set of indices j where
xj 6= yj . By definition of the Hamming distance, we have |J | = d(x, y) and
|I| = n− |J |.

We can now write Sx, Sy in terms of I and J as

Sx ={2i− xi | i ∈ I} ∪ {2j − xj | j ∈ J}
Sy ={2i− yi | i ∈ I} ∪ {2j − yj | j ∈ J}.

By definition of I, we have that {2i−xi | i ∈ I} = {2i−yi | i ∈ I} and therefore
that

Sx ∪ Sy = {2i− xi | i ∈ [n]} ∪ {2j − yj | j ∈ J} = Sx ∪ {2j − yj | j ∈ J}

Since, by definition of J it must also hold that Sx ∩ {2j − yj | j ∈ J} = ∅ we
thus have

|Sx ∪ Sy| = |Sx|+ |J | = n+ d(x, y). (1)

Similarly, by the above observations, it holds that Sx ∩ Sy = {2i − xi | i ∈ I}
and thereby

|Sx ∩ Sy| = |I| = n− |J | = n− d(x, y) (2)

Finally, combining the definition of symmetric set difference and Equations 1
and 2 we thus have

|Sx 4 Sy| = |(Sx ∪ Sy) \ (Sx ∩ Sy)| = |Sx ∪ Sy| − |Sx ∩ Sy|
=n+ d(x, y)− (n− d(x, y)) = 2d(x, y)

as claimed. ut
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Encoding sets as polynomials. We define the polynomial encoding of a set
S = {s1, . . . , sn} ⊆ [N ] as the polynomial pS(z) =

∏n
i=1(z − si) over some field

Zq of prime order q > N . For a bit string x ∈ {0, 1}n, we will abuse notation and
write px to denote the polynomial encoding of the set encoding of x. Observe
that the roots of px are all in [2n].

Lemma 2. Let n,N ∈ N such that n < N . For any pair of sets X,Y ∈ Pn([N ]),
it holds that

|X 4 Y | = tdeg

(
pX
pY

)
.

Proof. Let X ′ := X \ Y , Y ′ := Y \X and W := X ∩ Y . We have by definition of
the polynomial encoding that

pX(z) =
∏
x∈X

(z − x) =

( ∏
w∈W

(z − w)

)
·

( ∏
x∈X′

(z − x)

)

and

pY (z) =
∏
y∈Y

(z − y) =

( ∏
w∈W

(z − w)

)
·

∏
y∈Y ′

(z − y)

.
Since X ′ ∩ Y ′ = ∅, the two polynomials

∏
x∈X′(z − x) and

∏
y∈Y ′(z − y) are

coprime, while
∏
w∈W (z−w) is a common factor in pX and pY . By Definition 1,

it thus holds that

tdeg

(
pX(z)

pY (z)

)
=deg

( ∏
x∈X′

(z − x)

)
+ deg

∏
y∈Y ′

(z − y)


=|X ′|+ |Y ′| = |X ′ ∪ Y ′| = |(X \ Y ) ∪ (Y \X)|
=|X 4 Y |

as claimed. ut

Proposition 3 ([12]). For polynomials f ∈ F≤n[X] and g ∈ F≤m[X], the ratio-
nal function h(z) = f(z)/g(z) can be uniquely interpolated (up to equivalences)
from distinct evaluation points z1, . . . , zd and f(z1), g(z1), . . . , f(zd), g(zd), where
d = n+m+ 1, as well as upper bounds on n and m.

Remark 1. We denote by RatInt the algorithm that takes as input a list of d
points (x1, y1), . . . , (xd, yd) ∈ Fq and tries to find a rational function p/q with
degrees of p and q at most b(d− 1)/2c, such that p(xi)/q(xi) = yi for 1 ≤ i ≤ d.
Upon success it outputs (p, q). Otherwise it outputs the constant 0 function.

Two-Input Predicates. We define the following two-input predicates, which
will be the main focus of this work.
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Definition 2 (Hamming Predicate). For x, y ∈ {0, 1}n and t > 0, the two-
input predicate is defined as

HAMt(x, y) =

{
1 if d(x, y) ≥ t
0 Otherwise

Definition 3 (Symmetric Set Difference Predicate). For a universe U ,
natural number n, X,Y ∈ Pn(U), and t > 0, the two-input symmetric set dif-
ference predicate is defined as

SSDt(X,Y ) =

{
1 if |X 4 Y | ≥ t
0 Otherwise

Bilinear Groups and Pairings. A bilinear group is described by a tuple
(G1,G2,GT , q, e), where G1,G2,GT are groups of order q and e : G1×G2 → GT
is a (non-degenerate) bilinear asymmetric map, called pairing, such that for all
a, b ∈ Zq and g1 ∈ G1 and g2 ∈ G2 it holds that

e(ga1 , g
b
2) = e(g1, g2)ab.

If G1 and G2 are cyclic and g1 and g2 are generators of those groups respectively,
then e(g1, g2) is a generator of GT .

Let GGen be a PPT algorithm that takes the security parameter 1λ as input
and outputs bilinear map parameters (G1,G2,GT , q, e, g1, g2), where G1,G2,GT
are the groups of prime order q = q(λ). e : G1×G2 → GT is a (non-degenerate)
bilinear map and g1 and g2 are generators of G1 and G2 respectively. Our con-
structions will rely on the following q-type extension of the discrete logarithm
assumption over bilinear groups.

Definition 4 (The n-Strong Bilinear Discrete Logarithm (n-SBDL) As-
sumption). The n-SBDL assumption holds relative to GGen if for all PPT al-
gorithms A it holds that

Pr

[
r = A

(
G1,G2,GT , q, e,

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

))]
≤ negl(λ),

where the probability is taken over (G1,G2,GT , q, e, g1, g2)← GGen(1λ) and r ←
Zq.

To the best of our knowledge, and unlike the regular n-strong discrete loga-
rithm (n-SDL) assumption [9], this exact assumption has not been used before.
However, it is in fact implied by, and thus weaker than, other related q-type
assumptions such as the n-BDHI [3] assumption.
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Hash Functions. We first recall the standard definition of collision-resistant
hash functions.

Definition 5 (Collision Resistant Hash Function Family). For a λ ∈ N a
hash function family F = {f : {0, 1}∗ → {0, 1}λ} consists of a pair of efficiently
computable algorithms:

Sample(1λ)→ f is an efficient randomized algorithm that samples an efficiently
computable random hash function from F with security parameter λ.

Hash(f, x)→ y is an efficient deterministic algorithm that evaluates the hash
function h on x.

The family F is collision resistant if, for any PPT adversary A it holds that,

Pr[f ← Sample(1λ); (x1, x2)← A(f) : f(x1) = f(x2)] ≤ negl(λ),

where the probability is taken over the internal random coins of Sample and A.

The following definition of property-preserving hash functions is taken almost
verbatim from [4]. In this work, we consider the strongest of several different
security notions that were proposed by BLV.

Definition 6 (Property-Preserving Hash). For a λ ∈ N an η-compressing
property preserving hash function family Hλ = {h : X → Y } for a two-input
predicate requires the following three efficiently computable algorithms:

Sample(1λ)→ h is an efficient randomized algorithm that samples an efficiently
computable random hash function from H with security parameter λ.

Hash(h, x)→ y is an efficient deterministic algorithm that evaluates the hash
function h on x.

Eval(h, y1, y2)→ {0, 1}: is an efficient deterministic algorithm that on input h,
and y1, y2 ∈ Y outputs a single bit.

We require that H must be compressing, meaning that log |Y | ≤ η log |X| for
0 < η < 1.

For notational convenience we write h(x) for Hash(h, x).

Definition 7 (Direct-Access Robustness). A family of PPH functions H =
{h : X → Y } for a two-input predicate P : X × X → {0, 1} is a family of
direct-access robust PPH functions if, for any PPT adversary A it holds that,

Pr

[
h← Sample(1λ);

(x1, x2)← A(h)
: Eval(h, h(x1), h(x2)) 6= P (x1, x2)

]
≤ negl(λ),

where the probability is taken over the internal random coins of Sample and A.
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Sample(1λ)

(G1,G2,GT , q, e, g1, g2)← GGen(1λ)

r ← Zq \ [N ]

~Γ :=

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)
return h := (G1,G2,GT , q, e, ~Γ )

Hash(h,X)

parse h as (G1,G2,GT , q, e, ~Γ )

~a :=
(
pX(N + 1), . . . , pX(N + t)

)
b :=

n∏
i=0

Γ
coef(pX ,i)
1,i+1 = g

pX (r)
1

return (~a, b)

Eval(h, (~a, b), (~̃a, b̃))

parse h as (G1,G2,GT , q, e, ~Γ )

for 1 ≤ i ≤ t

si :=

(
N + i,

ai
ãi

)
(u, v) := RatInt(s1, . . . , st)

return e

(
b,

n∏
i=0

Γ
coef(v,i)
2,i+1

)
?

6= e

(
b̃,

n∏
i=0

Γ
coef(u,i)
2,i

)

Fig. 1. A family of direct-access robust PPH for the predicate SSDt over the domain
Pn([N ]) for any N ∈ N with N ≤ 2λ−1.

3 PPH for Symmetric Set Difference

In this section we construct property preserving hash functions for symmetric set
difference. We start by presenting a construction for sets with elements from a
universe of bounded size in Section 3.1 and show how to extend the construction
to sets with elements from an arbitrarily large universe in Section 3.2.

3.1 PPH for Symmetric Set Difference of Pn([N ])

Theorem 4. Let GGen be a bilinear group generation algorithm that generates
groups of prime order q = q(λ) with q > 2λ. Then, for any n = poly(λ), N ∈ N
with n ≤ N ≤ 2λ−1 and any t < n(logN−logn)

log q(λ) −1, the construction in Figure 1 is

a (t+1) log q(λ)

log (Nn)
≤ (t+1) log q(λ)

n(logN−logn) -compressing direct-access robust property preserv-

ing hash function family for the two-input predicate SSDt and domain Pn([N ]),
if the n-SBDL assumption holds relative to GGen.

Proof. Let A be an arbitrary PPT adversary against the direct access robustness
of H. We have

Pr[Eval(h, h(X1), h(X2)) 6= SSDt(X1, X2)]

= Pr[Eval(h, h(X1), h(X2)) = 1 | SSDt(X1, X2) = 0] · Pr[SSDt(X1, X2) = 0]
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+ Pr[Eval(h, h(X1), h(X2)) = 0 | SSDt(X1, X2) = 1] · Pr[SSDt(X1, X2) = 1],

where the probabilities are taken over h ← Sample(1λ) and (X1, X2) ← A(h).
We consider the two cases separately.

Claim 5. Pr[Eval(h, h(X1), h(X2)) = 1 | SSDt(X1, X2) = 0] = 0

Proof (Claim 5). Since SSDt(X1, X2) = 0, we know that |X1 4 X2| < t. By
Lemma 2 this means that

tdeg

(
pX1

pX2

)
< t.

From Proposition 3 it follows that the rational function pX1
/pX2

can (up to
equivalences) be uniquely interpolated from t points. We observe that for 1 ≤
i ≤ t it holds that pX2(N + i) 6= 0, since roots of pX2 are in the interval [N ] by
construction. Therefore, si = pX1(N + i)/pX2(N + i) is well-defined and thus

pX1

pX2

=
u

v

where u/v is the rational function computed by RatInt in Eval(h, h(X1), h(X2)).
Finally, we observe that

e

(
g
pX1

(r)
1 ,

n∏
i=0

Γ
coef(v,i)
2,i+1

)
= e

(
g
pX2

(r)
1 ,

n∏
i=0

Γ
coef(u,i)
2,i

)
⇐⇒ e(g1, g2)pX1

(r)
∑n
i=0(coef(v,i)·r

i) = e(g1, g2)pX2
(r)

∑n
i=0(coef(u,i)·r

i)

⇐⇒ e(g1, g2)pX1
(r)v(r) = e(g1, g2)pX2

(r)u(r),

which is true whenever

pX1
(r) · v(r) = pX2

(r) · u(r)

⇐⇒ pX1
(r)

pX2(r)
=
u(r)

v(r)
,

which is true for all r and thus the last inequality in Eval(h, h(X1), h(X2)) is
never satisfied. ut

Claim 6. If the n-SBDL assumption holds relative to GGen, then

Pr[Eval(h, h(X1), h(X2)) = 0 | SSDt(X1, X2) = 1] · Pr[SSDt(X1, X2) = 1]

≤negl(λ).

Proof (Claim 6). Since SSDt(X1, X2) = 1, it must hold that t ≤ |X14X2| ≤ 2n.
By Lemma 2 this means that

t ≤ tdeg

(
px1

px2

)
≤ 2n.

11



On the other hand, by construction u/v is the rational function of total degree
at most t− 1 uniquely determined by s1, . . . , st. It must therefore hold that

u

v
6= px1

px2

.

For the last inequality in Eval(h, h(X1), h(X2)) to hold, pX1/pX2 and u/v must
therefore be two different rational functions that agree on point r. This means
that r must be one of the at most n+ (t− 1)/2 roots of the rational function

pX1

pX2

− u

v
=
pX1
· v − pX2

· u
pX2 · v

.

Whenever A would be successful, we could therefore find r by testing the roots
of the polynomial pX1 · v − pX2 · u. We give a formal reduction as follows:
R takes as input

G1,G2,GT , q, e, ~Γ :=

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)
and invokes A on h := (G1,G2,GT , q, e, ~Γ ) and receives X1, X2.

If SSDt(X1, X2) = 0, R aborts. Otherwise it computes (u, v) as in Eval and
determines the set X of roots of the polynomial pX1

·v−pX2
·u. For each r′ ∈ X,

R checks whether gr
′

1
?
= Γ1,2 and returns r′ if it holds. If the equality holds for

no r′ ∈ X, R aborts.
SinceA is PPT and finding the roots of a polynomial is possible in polynomial

time, it follows thatR is PPT and must, by assumption, have a negligible success
probability against the n-SBDL problem.

Note that r from the input of the reduction is distributed uniformly in Zq,
while A expects r to be uniformly distributed in Zq \ [N ]. However, since N ≤
2λ−1 and q > 2λ, it holds that r ∈ Zq \ [N ] with probability at least 1/2.
Furthermore, once we condition on r 6∈ [N ], the distribution of h is identical to
the one expected by A.

Now, observe that the reduction R is successful, if A outputs X1, X2, such
that SSDt(X1, X2) = 1 and r is one of the roots of pX1 · v − pX2 · u. As argued
above, the latter must be true, if Eval(h, h(x1), h(x2)) = 0. Therefore, it holds
that

negl(λ)

≥Pr

[
r = R

(
G1,G2,GT , q, e,

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

))]
≥Pr

[
r 6∈ [N ]

]
· Pr

[
r = R

(
G1,G2,GT , q, e,

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)) ∣∣∣∣ r 6∈ [N ]

]
≥1

2
· Pr[Eval(h, h(X1), h(X2)) = 0 | SSDt(X1, X2) = 1] · Pr[SSDt(X1, X2) = 1]

and, thus, the claim follows. ut
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Using Claims 5 and 6 we can thus conclude that

Pr[Eval(h, h(X1), h(X2)) 6= SSDt(X1, X2)] ≤ 0 + negl(λ) = negl(λ).

Therefore, H is direct access robust as claimed. It remains to show that it is
also compressing. The domain of the hash function is Pn([N ]), the codomain is
Ztq(λ) ×G1. It follows that the compression factor is

η =
log |Ztq(λ) ×G1|

log |Pn([N ])|
=

log q(λ)t+1

log
(
N
n

) ≤ log q(λ)t+1

log
(
N
n

)n =
(t+ 1) log q(λ)

n(logN − log n)

as claimed. The construction is thus compressing, if

(t+ 1) log q(λ)

n(logN − log n)
< 1 ⇐⇒ t <

n(logN − log n)

log q
− 1.

ut

3.2 PPH for Symmetric Set Difference of Arbitrary Sets.

To obtain our construction for sets with elements from an arbitrarily large uni-
verse, we make use of a collision-resistant hash function. We simply first hash the
elements of the input sets into a smaller universe and then apply our construction
from the previous section.

Sample(1λ)

h← H.Sample(1λ)

f ← F .Sample(1λ)

return h′ := (h, f)

Hash((h, f), X)

X ′ := {f(x) | x ∈ X}
y := h(X ′)

return y

Eval((h, f), y, ỹ)

b := H.Eval(h, y, ỹ)

return b

Fig. 2. A family of direct-access robust PPH for SSDt on Pn({0, 1}`).

Theorem 7. Let Hλ = {h : Pn({0, 1}λ) → Y } be an η-compressing direct-
access robust property preserving hash function family for SSDt. Let F = {f :
{0, 1}` → {0, 1}λ} be a collision resistant hash function family. Then the con-

struction in Figure 2 is a η · log (2λ

n )
log (2`

n )
≤ η · log e+λ−logn`−logn -compressing direct-access

robust PPH for SSDt and domain Pn({0, 1}`).
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Proof. Let A be an arbitrary PPT adversary against the direct-access robustness
of H′. We have that

Pr[Eval(h′, h′(X1), h′(X2)) 6= SSDt(X1, X2)]

= Pr[H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X1, X2)]

= Pr
[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X1, X2)

∣∣∣ |X ′1 4X ′2| = |X1 4X2|
]

· Pr
[
|X ′1 4X ′2| = |X1 4X2|

]
+ Pr

[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X1, X2)

∣∣∣ |X ′1 4X ′2| 6= |X1 4X2|
]

· Pr
[
|X ′1 4X ′2| 6= |X1 4X2|

]
(3)

where the probability is taken over the sampling of h′ = (h, f) ← Sample′(1λ)
and (X1, X2)← A(h′). Equation 3 follows by applying the definition of H′ and
then splitting the probability. We will now upper bound the two parts of the
sum in Claims 8 and 9.

Claim 8. If H is direct-access robust, it holds that

Pr
[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X1, X2)

∣∣∣ |X ′1 4X ′2| = |X1 4X2|
]

·Pr
[
|X ′1 4X ′2| = |X1 4X2|

]
≤ negl(λ).

Proof (Claim 8). By the direct access robustness of H, we have

negl(λ)

≥Pr
[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X ′1, X

′
2)
]

≥Pr
[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X ′1, X

′
2)
∣∣∣ |X ′1 4X ′2| = |X1 4X2|

]
· Pr
[
|X ′1 4X ′2| = |X1 4X2|

]
= Pr

[
H.Eval(h, h(X ′1), h(X ′2)) 6= SSDt(X1, X2)

∣∣∣ |X ′1 4X ′2| = |X1 4X2|
]

· Pr
[
|X ′1 4X ′2| = |X1 4X2|

]
where the last equality follows from the fact that |X ′1 4X ′2| = |X1 4X2| implies
that SSDt(X ′1, X

′
2) = SSDt(X1, X2). Thus the claim follows. ut

Claim 9. If F is collision resistant, it holds that

Pr
[
|X ′1 4X ′2| 6= |X1 4X2|

]
≤ negl(λ).

Proof (Claim 9). Note that, since f is a function, it must hold that |X ′1 ∪X ′2| ≤
|X1 ∪X2|. Further, if |X ′1 ∪X ′2| = |X1 ∪X2| then it must hold that |X ′1 ∩X ′2| ≥
|X1 ∩X2|. By definition of symmetric set difference it therefore holds that

Pr
[
|X ′1 4X ′2| 6= |X1 4X2|

]
14



≤Pr
[
|X ′1 ∪X ′2| < |X1 ∪X2| ∨ |X ′1 ∩X ′2| > |X1 ∩X2|

]
= Pr

[
∃ x1, x2 ∈ X1 ∪X2 : x1 6= x2 ∧ f(x1) = f(x2)

]
.

Since F is a family of collision resistant hash functions, the probability that A
finds a collision is negligible and thus the claim follows. ut

Combining Equation 3 with Claims 8 and 9, it thus follows that

Pr[Eval(h′, h′(X1), h′(X2)) 6= SSDt(X1, X2)] ≤ negl(λ)

and the theorem follows. ut

We obtain the following Corollary by combining Theorems 7 and 4.

Corollary 10. Let GGen be a bilinear group generation algorithm that generates
bilinear groups of prime order q = q(λ) with q > 2λ relative to which the n-SBDL
assumption holds. Let F = {f : {0, 1}` → {0, 1}λ} be a collision resistant hash

function family. Then for any n = poly(λ), and any t < n(`−logn)
log q(λ) − 1 there

exists a (t+1) log q(λ)

log (2`

n )
≤ (t+1) log q(λ)

n(`−logn) -compressing direct-access robust PPH for for

the two-input predicate SSDt and domain Pn({0, 1}`).

4 PPH for Hamming Distance

In this section, we construct a PPH function for the hamming distance predicate.
To hash a string x ∈ {0, 1}n, we apply our PPH function for the symmetric set
difference predicate to the set encoding Sx of x.

Theorem 11. Let Hλ = {h : Pn([2n])→ Y } be an η-compressing direct-access
robust property preserving hash function family for SSD2t. Then the following

construction H′ is a η · log (2n
n )

n ≤ η · (1 + log e)-compressing direct-access robust

PPH for HAMt and domain {0, 1}n. H′ is defined by (Sample′,Hash′,Eval′) with
Sample′ = Sample, Hash′(x) := Hash(Sx), and Eval′ = Eval.

Proof. Let A be an arbitrary PPT adversary against the direct-access robustness
of H′. We have that

Pr[Eval′(h′, h′(x1), h′(x2)) 6= HAMt(x1, x2)]

= Pr[Eval(h, h(Sx1), h(Sx2)) 6= HAMt(x1, x2)] (4)

= Pr[Eval(h, h(Sx1
), h(Sx2

)) 6= SSD2t(Sx1
, Sx2

)] (5)

≤negl(λ) (6)

where Equation 4 follows from the definition of H′, Equation 5 follows from the
fact that by Lemma 1 for any x, y ∈ {0, 1}n it holds that d(x1, x2) > t ⇐⇒
|Sx1
4Sx2

| > 2t. Finally Equation 6 follows from the direct-access robustness of
the underlying property preserving hash function family H.
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The inputs to the hash functions are of length n and are first mapped to
elements of Pn([2n]) before being hashed with an η-compressing function. The
total compression is thus

η ·
log
(
2n
n

)
n

≤ η ·
log
(
e·2n
n

)n
n

= η · log 2e = η · (1 + log e)

as claimed. ut

Combining Theorems 11 and 4, we immediately get the following Corollary.

Corollary 12. Let GGen be a bilinear group generation algorithm that generates
bilinear groups of prime order q = q(λ) with q > 2λ relative to which the n-SBDL
assumption holds. Then for any n = poly(λ), and any t < n

2 log q(λ) −
1
2 there

exists a (2t+1) log q(λ)
n -compressing direct-access robust PPH for for the two-input

predicate HAMt and domain {0, 1}n.

4.1 Generalization to Different Alphabets

Previously, we have defined Hamming distance specifically for binary strings.
This notion, however, as well as the corresponding predicate, can easily be gen-
eralized to strings over an arbitrary alphabet Σ. Let Σ be an alphabet and let
x, y ∈ Σn be strings. The Hamming distance between the two strings is the num-
ber of indices i ∈ [n], such that xi 6= yi, formally d(x, y) = |{i ∈ [n] | xi 6= yi}|.

Using this generalized definition of Hamming distance, it is straightforward to
generalize the Hamming predicate defined in Definition 2 to a predicate HAMΣ,t

for strings over an arbitrary alphabet Σ.

To generalize the construction from Theorem 11 to this predicate, we merely
need to define a set-encoding for strings over Σ. Let Σ = {a1, . . . , a`} be an
alphabet of size ` and let x = xi . . . xn = ai1 . . . ain ∈ Σn be an arbitrary string
over Σ. We define the set encoding of x as Sx = {` · j − ij | j ∈ [n]}. Using this
set encoding in the construction from Theorem 11 immediately gives us a PPH
function for HAMΣ,t as stated in the following.

Proposition 13. Let H = {h : Pn([`n]) → Y } be an η-compressing direct-
access robust property preserving hash function family for SSD2t. Then the fol-

lowing construction H′ is a η · log (`nn )
log `n ≤ η · (1 + log e

log ` )-compressing direct-access

robust PPH for HAMΣ,t and domain Σn. H′ is defined by (Sample′,Hash′,Eval′)
with Sample′ = Sample, Hash′(x) := Hash(Sx), and Eval′ = Eval.

The proof easily follows from the proof of Theorem 11, by extending Lemma 1
to strings over arbitrary alphabets. Note, that the proof of Lemma 1 already
proves this stronger statement.
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5 PPH for Multi-Input Predicates

In this section, we show how to extend our constructions to the multi-input in-
tersection predicate, which we introduce below. The basic idea underlying our
construction is reminiscent to an idea used by Ghosh and Simkin [7]6 for con-
structing interactive protocols that are secure against semi-honest adversaries
for the so-called multiparty threshold private set intersection problem. Since we
consider an active adversary and would like to construct a non-interactive prim-
itive, our setting is quite a bit more challenging and requires a more intricate
security analysis.

Definition 8 (Intersection Predicate). For sets X1, . . . , X` ∈ Pn(U) of size
n with elements from the universe U and threshold t > 0, the multi-input set
intersection predicate is defined as

INTt`(X1, . . . , X`) =

{
1 if |X1 ∩ · · · ∩X`| > n− t
0 Otherwise

Before presenting our construction in this section, we observe that the sym-
metric set difference and the intersection predicate are equivalent for the two-
input setting.

Proposition 14. For all n ∈ N, for all sets X,Y ∈ Pn(U) of size n with
elements from the universe U and for all t ∈ N, it holds that INTt2(X,Y ) =
1− SSD2t(X,Y ).

Proof. Let X and Y be two sets of size n with elements from an arbitrary
universe U . We observe that

|X 4 Y | =|(X \ Y ) ∪ (Y \X)|
=|(X \ (X ∩ Y )) ∪ (Y \ (X ∩ Y ))|
=n− |X ∩ Y |+ n− |X ∩ Y |
=2n− 2|X ∩ Y |

and therefore

SSD2t(X,Y ) = 1 ⇐⇒ |X 4 Y | ≥ 2t

⇐⇒ 2n− 2|X ∩ Y | ≥ 2t

⇐⇒ n− t ≥ |X ∩ Y | ⇐⇒ INTt2(X,Y ) = 0

and equivalently SSD2t(X,Y ) = 0 ⇐⇒ INTt2(X,Y ) = 1. ut
6 Their multiparty protocols can be found in the extended abstract [8] on ePrint.
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5.1 PPH for the Intersection Predicate INTt
`

The intuition for our PPH function for INTt` is as follows. Let X1, . . . , X` be sets
encoded into polynomials pX1

(z), . . . , pX`(z) over a field Zq of prime order. Let
W = X1 ∩ · · · ∩ X` be the intersection of those sets and let c1, . . . , c` be field
elements, then

c1 · pX1(z) + · · ·+ c`−1 · pX`−1
(z)

c1 · pX`(z)

=
pW (z)

(
c1 · pX1\W (z) + · · ·+ c`−1 · pX`−1\W (z)

)
pW (z) · c` · pX`\W (z)

=
c1 · pX1\W (z) + · · ·+ c`−1 · pX`−1\W (z)

c` · pX`\W (z)

If |W | > n− t, then for each i ∈ [`] the degree of pXi\W (z) is upper bounded
by t. This implies that the degree of the two polynomials in the numerator and
denominator are upper bounded by t respectively, resulting in an upper bound
of 2t for the total degree of the rational function. This is stated formally in the
following lemma.

Lemma 15. Let n,N ∈ N such that n < N and let Zq be a field of prime order
q > N . For all X1, . . . , X` ∈ Pn([N ]) and all c1, . . . , c` ∈ Z∗q it holds that

2
(
n−

∣∣∣⋂
i∈[`]

Xi

∣∣∣) ≥ tdeg

(∑
i∈[`−1] ci · pXi
c` · pX`

)

Proof. Let W = X1 ∩ · · · ∩X` be the intersection of the sets. We have

pX`(z) =
∏
x∈X`

(z − x) =
(∏
x∈X`\W

(z − x)
)
·
(∏
x∈W

(z − x)
)

= pX`\W (z) · pW (z)

and thus the degree of the denominator is at most n − |W |. Similarly, for any
1 ≤ i ≤ `− 1, we have

ci · pXi(z) = ci · pXi\W (z) · pW (z)

and thus the degree of each individual polynomial in the numerator is at most
n−|W |. Since the sum of polynomials of degrees d1, . . . , d`−1 is a new polynomial
of degree max(d1, . . . , d`), the lemma follows. ut

To obtain something equivalent to Lemma 2, i.e. that the degree of the ra-
tional function corresponds exactly to n − t, we would like to argue that if
|W | ≤ n− t, then the degree of numerator and denominator are also at least t.
However, this is not necessarily the case. Even though, after factoring out pW (z)
the remaining polynomials pXi\W (x) no longer share any common roots, the
sum of polynomials in the numerator could share an additional root with the
numerator. However, by choosing the ci with a random oracle and choosing our
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parameters appropriately, we can ensure that no efficient algorithm will be able
to find such a combination with non-negligible probability. We formally state
the following lemma.

Lemma 16. Let n,N ∈ N with n < N and let δ ≥ λ + ` log2 λ + logN + 1.
Let Zq be a field of prime order q > 2δ and let R : Pn([N ]) → Z∗q be a random
oracle. Then for any PPT algorithm A it holds that

Pr

2
(
n−

∣∣∣⋂
i∈[`]

Xi

∣∣∣) > tdeg

(∑
i∈[`−1]R(Xi) · pXi
R(X`) · pX`

) ≤ negl(λ),

where the randomness is taken over (X1, . . . , X`)← AR(·)(1λ) and the choice of
the random oracle.

Proof. Denote by (X1, . . . , X`) the output of A and by W = {w | pX1
(w) = · · · =

pX`−1
(w) = 0} the set of common roots of the polynomials in the numerator.

We first note, that the degree of the rational function can only be smaller than
(n− |

⋂
i∈[`]Xi|), if an additional root of pX1

cancels out. For this to be the case,

the sum in the numerator must have a root z ∈ [N ] \W . To prove the lemma,
it thus suffices to show that

Pr
[∑
i∈[`−1]

R(Xi) · pXi(z) = 0 ∧ ∃i ∈ [`− 1]. pXi(z) 6= 0
]
≤ negl(λ).

Denote by Q the set of queries made to the random oracle R before A produces
its output. For any fixed z ∈ [N ] \W , and any index i it holds that

Pr
[∑
j∈[`−1]

R(Xj) · pXj (z) = 0
∣∣∣ ∃ Xi 6∈ Q. pXi(z) 6= 0

]
= Pr

[
R(Xi) = −p−1Xi (z) ·

∑
j∈[`−1]\{i}

R(Xj) · pXj (z)
∣∣∣ ∃ Xi 6∈ Q. pXi(z) 6= 0

]
≤ 2−δ,

since the left-hand side is an independently and uniformly distributed element
of Z∗q . By a union bound this gives us the following probability that there exists
any such z ∈ [N ] \W and Xi 6∈ Q:

Pr
[
∃ z ∈ [N ] \W.

∑
j∈[`−1]

R(Xj) · pXj (z) = 0 ∧ ∃ Xi 6∈ Q. pXi(z) 6= 0
]

≤
∑

z∈[N ]\W

Pr

[ ∑
j∈[`−1]

R(Xj) · pXj (z) = 0 ∧ ∃ Xi 6∈ Q. pXi(z) 6= 0

]

≤
∑

z∈[N ]\W

Pr

[ ∑
j∈[`−1]

R(Xj) · pXj (z) = 0

∣∣∣∣ ∃ Xi 6∈ Q. pXi(z) 6= 0

]
=

∑
z∈[N ]\W

2−δ ≤ N · 2−δ.
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Thus we can conclude that for any z and any (X1, . . . , X`) the adversary
has to query R on all polynomials that are not vanishing at z to have any hope
of succeeding at that evaluation point. At this point, the adversary’s task is
effectively reduced to finding a sequence (X1, . . . , Xk) ∈ Qk of length k ∈ [`− 1]
such that pX(z) 6= 0 for all Xi, but∑

i∈[k]

R(Xi) · pXi(z) = 0.

Given such a sequence, the adversary can win by simply “filling up” the sequence
to length `− 1 using sets corresponding to polynomials that vanish at z.

SinceA runs in polynomial time, there exists a µ = poly(λ) such that |Q| = µ.
Let Yi denote the ith query made by A and let Qi = {Y1, . . . , Yi} ⊆ Q denote
the set of the first i queries.

Fix an arbitrary z ∈ [N ] and consider the set Zi = {R(Y ) · pY (z) | Y ∈
Qi ∧ pY (z) 6= 0} with |Zi| ≤ |Qi| = i, which is a set of independent uniformly
random elements of Z∗q because R is a random oracle and none of the involved
polynomials is 0 at point z. The number of sequences7 of elements from Zi of
length at most `− 1 can be bounded as∣∣∣⋃

k∈[`−1]

Zki

∣∣∣ ≤∑
k∈[`−1]

ik ≤ 2i`−1,

Assume that a sequence that sums up to zero does not exist in Zi−1. Then for
each of those sequences of Zi elements, there is at most one value of R(Yi)·pYi(z)
that would make the sequence sum up to zero. Let ZERO be the event that at
least one sequence summing up to zero occurs in Zµ and let ZEROi be the
event that the first such sequence occurs after the ith query. Then by the above
observation, we have

Pr[ZERO] =

µ∑
i=1

Pr[ZEROi] ≤
µ∑
i=1

Pr
[∧
j∈[i−1]

¬ZEROj
]
· 2i`−1

2δ

≤21−δ ·
µ∑
i=1

i`−1

≤21−δµ`

≤21−δλ` log λ = 21+` log
2 λ−δ

where the last inequality follows from the fact that µ ≤ λlog λ for large enough
λ. By a union bound over z ∈ [N ], we get that

Pr
[
∃z ∈ [N ]. ∃ (X1, . . . , Xk) ∈

⋃
j∈[`−1]

Qj .
∑
i∈[k]

pXi(z) = 0
]

= 2logN+1+` log2 λ−δ.

7 Taking into account the commutativity of addition in F, many of these sequences are
actually equivalent. It would be sufficient to count the number of possible multi-sets
instead. However, counting sequences is an upper bound on this actual number and
gives a simpler, though slightly worse, bound for δ.
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Sample(1λ)

(G1,G2,GT , q, e, g1, g2)← GGen(1λ)

r ← Zq \ [N ]

~Γ :=

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)
return h := (G1,G2,GT , q, e, ~Γ )

HashR(h,X)

parse h as (G1,G2,GT , q, e, ~Γ )

c := R(X)

~a :=

 c · pX(N + 1)
...

c · pX(N + 2t)


b :=

n∏
i=0

Γ
coef(c·pX ,i)
1,i+1 = g

c·pX (r)
1

return (~a, b)

EvalR
(
h,
(
~a(1), b(1)

)
, . . . ,

(
~a(`), b(`)

))
parse h as (G1,G2,GT , q, e, ~Γ )

for 1 ≤ i ≤ 2t

si :=

(
N + i,

∑
j∈[`−1] a

(j)
i

a
(`)
i

)
(u, v) := RatInt(s1, . . . , st)

return e
(∏
j∈[`−1]

b(j),

n∏
i=0

Γ
coef(v,i)
2,i+1

)
?
= e
(
b(`),

n∏
i=0

Γ
coef(u,i)
2,i

)

Fig. 3. A family of direct-access robust PPHs for INTt`.

Note that this event is exactly the event that the adversary can find the desired
sequence described above. Since by the lemma statement, δ ≥ λ+(`+1) log2 λ+
logN + 1 the lemma follows. ut

Equipped with these observations, our construction will now be a natural
extension of our previous constructions for the two-input case. The proof of
Theorem 17 will therefore mirror the proof of Theorem 4 closely.

Theorem 17. Let n = poly(λ), N ∈ N with n ≤ N ≤ 2λ. Let GGen be a
bilinear group generation algorithm that generates bilinear groups of prime order
q(λ) > 2δ, where δ ≥ λ + ` log2 λ + logN + 1 and let R : Pn([N ]) → Z∗q
be a random oracle. Then for any any t < n(logN−logn)

2 log q(λ) − 1
2 the construction

in Figure 3 is a (2t+1) log q(λ)
n(logN−logn) -compressing direct-access robust PPH for for the

multi-input predicate INTt` and domain Pn([N ]) if the n-SBDL assumption holds
relative to GGen.

Proof. Let A be an arbitrary PPT adversary against the direct access robustness
of H. We have

Pr[Eval(h, h(X1), . . . , h(X`)) 6= INTt`(X1, . . . , X`)]
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= Pr[Eval(h, h(X1), . . . , h(X`)) = 0 | INTt`(X1, . . . , X`) = 1]

· Pr[INTt`(X1, . . . , X`) = 1]

+ Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INTt`(X1, . . . , X`) = 0]

· Pr[INTt`(X1, . . . , X`) = 0],

where the probabilities are taken over h← Sample(1λ) and (X1, . . . , X`)← A(h).
We consider the two cases separately.

Claim 18. Pr[Eval(h, h(X1), . . . , h(X`)) = 0 | INTt`(X1, . . . , X`) = 1] = 0

Proof (Claim 18). Let ci = R(Xi). Since INTt`(X1, . . . , X`) = 1, it holds that
|X1 ∩ · · · ∩X`| > n− t and by Lemma 15 that

tdeg

(∑
i∈[`−1] ci · pXi
c` · pX`

)
< 2t.

By Proposition 3, it follows that the rational function can thus be uniquely (up
to equivalences) interpolated from 2t points. We observe that for 1 ≤ i ≤ 2t it
holds that c` · pX`(N + i) 6= 0, since the roots of pX` are in the interval [N ] by
construction and c1 ∈ Z∗q . Therefore,

si =

∑
j∈[`−1] cj · pXj (N + i)

c` · pX`(N + i)

are well-defined and thus ∑
j∈[j−1] cj · pXj
c` · pX`

=
u

v
(7)

where u/v is the rational function computed by RatInt in Eval(h, h(X1), . . . ,
h(X`)). Finally we observe that

e
(∏
j∈[`−1]

b(j),

n∏
i=0

Γ
coef(v,i)
2,i+1

)
= e
(
b(`),

n∏
i=0

Γ
coef(u,i)
2,i

)
⇐⇒ e

(
g
∑
j∈[`−1] cj ·pXj (r)

1 , g
v(r)
2

)
= e
(
g
c`·pX` (r)
1 , g

u(r)
2

)
⇐⇒ e(g1, g2)

(∑
j∈[`−1] cj ·pXj (r)

)
·v(r) = e(g1, g2)c`·pX` (r)·u(r)

⇐⇒
(∑
j∈[`−1]

cj · pXj (r)
)
· v(r) = c` · pX`(r) · u(r)

⇐⇒
∑
j∈[`−1] cj · pXj (r)
c` · pX`(r)

=
u(r)

v(r)
,

which due to Equation 7 is always true and thus Eval always returns 1 in this
case. ut
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Claim 19. If the n-SBDL assumption holds relative to GGen, then

negl(λ) ≥Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INTt`(X1, . . . , X`) = 0]

· Pr[INTt`(X1, . . . , X`) = 0].

Proof (Claim 19). Since INTt`(X1, . . . , X`) = 0, it must hold that 0 ≤ |X1∩· · ·∩
X`| ≤ n− t. By Lemma 16, since A is a PPT algorithm, this means that except
with negligible probability

2t ≤ tdeg

(∑
i∈[`−1] ci · pXi
c` · pX`

)
≤ 2n.

On the other hand, by construction u/v is the rational function of total degree
at most 2t− 1 uniquely determined by s1, . . . , s2t. It must therefore hold that

u

v
6=
∑
i∈[`−1] ci · pX`
c` · pX`

.

For the last inequality in Eval(h, h(X1), . . . , h(X`)) to hold, (
∑
i∈[`−1] ci·pX`)/(c1·

pX`) and u/v must therefore be two different rational functions that agree on
point r. This means that r must be one of the at most n+ (t− 1)/2 roots of the
rational function∑

i∈[`−1] ci · pX`
c` · pX`

− u

v
=
v ·
∑
i∈[`−1] ci · pX` − c` · pX` · u

c` · pX` · v
.

Whenever A would be successful, we could therefore find r by testing the roots
of the polynomial v ·

∑
i∈[`−1] ci · pX` − c` · pX` · u. We give a formal reduction

as follows:
R takes as input

G1,G2,GT , q, e, ~Γ :=

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)
and invokes A on h := (G1,G2,GT , q, e, ~Γ ) and receives X1, . . . , X`.

The reduction then checks whether INTt`(X1, . . . , X`) = 0 and aborts other-
wise. We denote this event as INT0. Next R checks whether

tdeg

(∑
i∈[`−1] ci · pXi
c` · pX`

)
≥ 2t

and again aborts otherwise. We denote this event as TDEG≥2t. Note, that as
argued above, by Lemma 16

Pr[TDEG≥ | INT0] ≥ 1− negl(λ).

If it has not aborted, R then computes (u, v) as in Eval and determines the set
X of roots of the polynomial v ·

∑
i∈[`−1] ci · pX` − c` · pX` · u. For each r′ ∈ X,
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R checks whether gr
′

1
?
= Γ1,2 and returns r′ if it holds. If the equality holds for

no r′ ∈ X, R aborts.
The reduction R essentially performs three steps, executing A, checking the

total degree of a rational function, and finding the roots of a polynomial. Each of
those steps can be performed in polynomial time. It follows that R is PPT and
must, by assumption, have a negligible success probability against the n-SBDL
problem.

Note that r from the input of the reduction is distributed uniformly in Zq,
while A expects r to be uniformly distributed in Zq \ [N ]. However, since and

q > 2δ ≥ 2λ+` log
2 λ+logN+1 ≥ N · 2λ+` log2 λ+1, it holds that r ∈ Zq \ [N ] with

probability at least 1−2−λ−` log
2 λ−1. Furthermore, once we condition on r 6∈ [N ],

the distribution of h is identical to the one expected by A.
Now, observe that the reductionR is successful, ifA outputsX1, . . . , X`, such

that INT0 and TDEG≥2t both occur and r is one of the roots of v ·
∑
i∈[`−1] ci ·

pX` − c` · pX` · u. As argued above, conditioned on the first two, the latter must
be true, if Eval(h, h(X1), . . . , h(X`)) = 1. Therefore, it holds that

negl(λ)

≥Pr

[
r = R

(
G1,G2,GT , q, e,

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

))]
≥Pr

[
r 6∈ [N ]

]
· Pr

[
r = R

(
G1,G2,GT , q, e,

(
g1 g

r
1 · · · gr

n

1

g2 g
r
2 · · · gr

n

2

)) ∣∣∣∣ r 6∈ [N ]

]
≥(1− negl(λ)) · Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INT0,TDEG≥2t]

· Pr[TDEG≥2t | INT0] · Pr[INT0]

≥Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INT0,TDEG≥2t]

· Pr[TDEG≥2t | INT0] · Pr[INT0]− negl(λ)

≥Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INT0] · Pr[INT0]

− Pr[¬TDEG≥2t | INT0]− negl(λ)

≥Pr[Eval(h, h(X1), . . . , h(X`)) = 1 | INT0] · Pr[INT0]− negl(λ)

and the claim follows. ut
Using Claims 18 and 19 we can thus conclude that

Pr[Eval(h, h(X1), . . . , h(X`)) 6= INTt`(X1, . . . , X`)] ≤ 0 + negl(λ) = negl(λ).

Therefore, H is direct access robust as claimed. It remains to show that it is
also compressing. The domain of the hash function is Pn([N ]), the codomain is
Ztq(λ) ×G1. It follows that the compression factor is

η ≤
log |Z2t

q(λ) ×G1|
log |Pn([N ])|

=
log q(λ)2t+1

log
(
N
n

) ≤ log q(λ)2t+1

log(Nn )n
=

(2t+ 1) log q(λ)

n(logN − log n)

as claimed. The construction is thus compressing, if

(2t+ 1) log q(λ)

n(logN − log n)
< 1 ⇐⇒ t <

n(logN − log n)

2 log q
− 1

2
. ut
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6 Lower Bounds

In this section, we show that the compression rate of our constructions for the
SSDt and INTt2 predicates are close to optimal. We prove our lower bound on
the size of a hash value by drawing connections to one-round communication
complexity lower bounds. Such a connection was already observed in the work
of BLV8, but we state our lower bound and full proof here for the sake of com-
pleteness.

Theorem 20 ([6]). For a universe U , let X,Y ⊆ Pn(U). Let the set disjoint-
ness predicate be defined as follows:

DISJ(X,Y ) =

{
1 if X ∩ Y = ∅
0 Otherwise

For n <
√
|U | the one-way randomized communication complexity of DISJ(X,Y )

in the common random string model is Ω(n log n).

In contrast to BLV, who prove the non-existence of PPH functions for certain
parameters, we prove a lower bound on the size of the hash value for parameters
where PPH functions are feasible.

Theorem 21. Let H = {h : Pn(U) → Y } be a family of direct-access robust
PPH functions for the symmetric set difference predicate SSDt for some universe
U with |U | > t2/4 + n− t/2. Then,

log |Y | ∈ Ω(t log t).

Proof. We assume without loss of generality, that t is even.9 Fix an arbitrary
set S ∈ Pn−t/2(U). We prove the stated theorem by using H to construct a
communication efficient one-round protocol for the set disjointness problem for
input sets of size t/2 from the universe U ′ = U \ S. Let R be the common
random string that the parties can access in the set disjointness problem. Let
A,B ∈ Pn′(U ′) be the input sets of the two parties. The protocol proceeds as
follows:

The parties define A′ = A ∪ S and B′ = B ∪ S. We note that |A′| = |B′| =
n and that SSDt(A′, B′) = 1 if and only if A ∩ B = ∅. I.e., SSDt(A′, B′) =
DISJ(A,B). Both parties then sample a hash function h ∈ H using randomness
R and security parameter n. We let party PA holding A send z = h(A′) to party
PB holding B. Party PB computes b = Eval(h, z, h(B′)) and outputs b. Note,
that A′, B′ are fixed before and independently of h. It follows from the direct
access robustness of H that for any such a priori fixed A′, B′ it holds that

Pr[Eval(h, h(A′), h(B′) = SSDt(A′, B′)] ≥ 1− negl(n)

8 See Theorem 36 in [4].
9 Note that for sets of equal size, the symmetric set difference is always even and

therefore SSD2i−1 = SSD2i for all i ∈ N+.
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where the probability is taken over the random choice of h ∈ H. It therefore
holds that Pr[b = DISJt(A,B)] ≥ 1− negl(n).

Observe that by definition of U ′ and S, it holds that |U ′| = |U | − |S| =
|U | − (n − t/2). By the condition on |U | from the theorem statement, it thus
follows that

|U ′| > t2

4
+ n− t/2− (n− t/2) =

t2

4
,

and thereby
√
|U ′| > t/2. Since the protocol described above works for sets of

size t/2, Theorem 20 therefore applies. The total communication of our protocol
consists of z ∈ Y , thus by Theorem 20 we have that log |Y | ∈ Ω(t log t). ut

Via the equivalence of the SSDt and INTt predicate proven in Proposition 14,
we immediately also get the following lower bound on size of a hash value of a
PPH function for INTt2.

Corollary 22. Let H = {h : Pn(U) → Y } be a family of direct-access robust
PPH functions for the two-input intersection predicate INTt2 for some universe
U with |U | > t2 + n− t. Then,

log |Y | ∈ Ω(t log t).
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