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Abstract. We introduce non-interactive distributionally indistinguish-
able arguments (NIDI) to address a significant weakness of NIWI proofs:
namely, the lack of meaningful secrecy when proving statements about
NP languages with unique witnesses.
NIDI arguments allow a prover P to send a single message to verifier V,
from which V obtains a sample d from a (secret) distribution D, together
with a proof of membership of d in an NP language L.
The soundness guarantee is that if the sample d obtained by the verifier
V is not in L, then V outputs ⊥. The privacy guarantee is that secrets
about the distribution remain hidden: for every pair of (sufficiently) hard-
to-distinguish distributions D0 and D1 with support in NP language L,
a NIDI that outputs samples from D0 with proofs of membership in L
is indistinguishable from one that outputs samples from D1 with proofs
of membership in L.

– We build NIDI arguments for superpolynomially hard-to-distinguish
distributions, assuming sub-exponential indistinguishability obfusca-
tion and sub-exponentially secure (variants of) one-way functions.

– We demonstrate preliminary applications of NIDI and of our tech-
niques to obtaining the first (relaxed) non-interactive constructions
in the plain model, from well-founded assumptions, of:
• Commit-and-prove that provably hides the committed message
• CCA-secure commitments against non-uniform adversaries.

The commit phase of our commitment schemes consists of a sin-
gle message from the committer to the receiver, followed by a ran-
domized output by the receiver (that need not be returned to the
committer).

1 Introduction

Can one non-interactively commit to a plaintext and prove that it satisfies a
predicate (e.g., the plaintext is larger than 0) while also ensuring that the

plaintext is hidden?
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More generally, can a prover send a statement to a verifier and demonstrate
that the statement is true without revealing secrets about it? An interactive
solution to this problem can be obtained via the use of zero-knowledge proofs.
These were first introduced in an influential work of Goldwasser, Micali and
Rackoff [38], and it was subsequently shown that all languages in NP admit
interactive ZK proofs [36]. An interactive proof is said to be zero-knowledge if
there exist a simulator that can simulate the behavior of any verifier, without
having access to the prover, in such a way that its output is indistinguishable
from the output of the verifier after having interacted with an honest prover.

Understanding the round complexity of zero knowledge has been an impor-
tant problem. In particular, zero-knowledge arguments for languages outside
BPP, and without any trusted setup, are known to require at least three messages
of interaction [37]. This leads to a natural question: what meaningful relaxations
of zero-knowledge are achievable non-interactively and without setup?

Existing Relaxations of Zero-Knowledge. Towards addressing this question, sev-
eral relaxations of zero-knowledge have been studied over the years.

– Weak Zero-Knowledge [28] relaxes zero-knowledge by switching the or-
der of quantifiers. Specficially, weak zero-knowledge requires that for every
verifier and every distinguisher, there exists a distinguisher-dependent simu-
lator that fools this specific pair1.
Weak zero-knowledge is known to require at least two messages [37].

– Witness Hiding [30] loosely guarantees that a malicious verifier cannot
recover a witness from a proof unless the witness can be efficiently computed
from the statement alone.

– Strong Witness Indistinguishability (Strong WI) [35] requires that
for two indistinguishable statement distributions D0,D1, a proof (or argu-
ment) for statement d0 ← D0 must be indistinguishable from a proof (or
argument) for statement d1 ← D1.

– Witness indistinguishability (WI) [30] ensures that proofs of the same
statement generated using different witnesses are indistinguishable. WI does
not hold for statements sampled from different distributions, or statements
that have a unique witness associated with them.

Two-message variants of weak zero-knowledge, witness hiding and strong WI
have been obtained by [57, 47, 5, 25, 12]. But so far, the only relaxation known to
be achievable non-interactively from well-studied assumptions, is witness indis-
tinguishability. Non-interactive witness indistinguishable proofs (NIWIs) have
been obtained by [8, 44, 15] under various assumptions. While NIWIs are quite
natural and are useful as a building blocks in some applications, they are often
quite limited. In (common) scenarios like committing to a secret message and
proving a predicate about it – where statements being proven often have unique
witnesses – the witness indistinguishability guarantee is meaningless.

1 There are several variants of this definition strengthening/weakening different as-
pects [28, 22].
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Commit-and-Prove. In a “commit-and-prove” protocol, a prover commits to
(or encrypts) one or more messages, and would like to prove that the secret
message(s) satisfy a predicate.

A simplification of the most basic privacy guarantee required in these ap-
plications is the following: for every pair of messages (m0,m1) that satisfy a
(polynomial-time computable) predicate φ (i.e. φ(m0) = φ(m1) = 1), the follow-
ing two distributions must be computationally indistinguishable:(

c0 = Com(m0; r), Πc0∈Lφ
)

and
(
c1 = Com(m1; r), Πc1∈Lφ

)
where Com denotes a perfectly binding commitment (or encryption), and Πc∈Lφ
denotes a proof of the statement c ∈ Lφ where

Lφ = {c : ∃(m, r) such that (c = Com(m; r)) ∧ (φ(m) = 1)}.

In other words, any distributions c0 = Com(m0; r) and c1 = Com(m1; r) that
are computationally indistinguishable, must remain indistinguishable even given
proofs of membership in Lφ. Here φ is any efficiently computable predicate of
the message, eg., φ(m) = 1 if and only if m > 10.

The Insufficiency Of NIWIs. Because the statements in question clearly have
unique witnesses, using NIWIs to generate the proof Πc∈Lφ does not guarantee
that the secret message remains hidden. We note that the notion of strong witness
indistinguishability would suffice, but whether strong WI can be achieved non-
interactively remains an important open problem.

All known constructions [57, 47, 5, 25, 12] of two-message strong WI argu-
ments follow variants of the common FLS [29] paradigm. Here, the prover pro-
vides a WI proof that:

“Either x ∈ L or the prover knows some trapdoor”.

The trapdoor is designed to be hard for a (cheating) prover to compute,
but easy for a simulator. Security is argued by having the simulator extract the
secret trapdoor in polynomial or superpolynomial time, and use this trapdoor
to generate the proof, instead of relying on a witness for x.

In settings where the verifier can send (at least) one message to the prover,
the verifier’s message can be used to set up a trapdoor, eg., by sampling f(z)
for a one-way permutation f and random trapdoor z [57]. The trapdoor z can
be obtained by a simulator non-uniformly or in superpolynomial time (or even
in polynomial time via specialized recent techniques [47, 25, 12]).

Establishing Trapdoors in the Non-Interactive Setting. In the non-interactive
setting, since the verifier does not send any message to the prover, it becomes
much more challenging to establish a trapdoor of the form described above, that
is easy for a simulator to compute but not for a cheating prover.

Nevertheless, there have been exciting prior attempts. In particular, Barak
and Pass [9] obtain variants of one-message zero-knowledge with nonuniform sim-
ulation and soundness against uniform provers. They rely on problems that are
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hard for uniform algorithms (eg., keyless collision-resistant hash functions) to set
up a trapdoor that no uniform prover can obtain. Bitansky and Lin [13] propose
a clever extension of this to the non-uniform setting by relying on problems that
are hard for algorithms with a polynomial amount of non-uniformity. Assum-
ing keyless collision-resistant hash functions with security against non-uniform
adversaries, they obtain one-message zero-knowledge with superpolynomial sim-
ulation and weak soundness against non-uniform provers. They guarantee that
the number of false statements a polynomial-time non-uniform prover can con-
vince the verifier to accept is not much larger than its non-uniform advice.

In summary, known constructions of meaningful non-interactive secrecy-preserving
arguments either (1) are not adequately sound and rely on non-standard hard-
ness assumptions, or (2) do not provide meaningful secrecy, especially when
considering statements with unique witnesses.

Bottlenecked Applications. The lack of non-interactive secrecy-preserving proofs
for statements with unique witnesses has led to the need for non-standard as-
sumptions in additional applications besides the example commit-and-prove sce-
nario described above.

A prominent example are non-interactive non-malleable commitments: for
which the only known constructions [56, 54, 13, 48, 31] either achieve non-standard
forms of security or rely on relatively less standard assumptions like keyless
collision resistant hashing with security against non-uniform adversaries. Elimi-
nating non-standard assumptions appears to require appropriate non-interactive
secrecy-preserving arguments, which were so far not known under well-founded
assumptions. In the following section, we outline our contributions that aim to
remedy this situation.

1.1 Our Results

We introduce and construct non-interactive distributional indistinguishable (NIDI)
arguments without trusted setup from well-founded assumptions. These help
overcome some of the drawbacks of existing non-interactive arguments, and en-
able applications like non-interactive commit-and-prove without trusted setup.

Non-Interactive Distributionally Indistinguishable (NIDI) Arguments. NIDI ar-
guments enable a prover P with input a secret efficiently sampleable distribution
D to send a single message (a “sampler”) to verifier V. Given this sampler, V
can obtain a sample d from the (secret) distribution D together with a proof of
membership of the sampled instance d in a (public) NP language L. Specifically,
after checking such a proof, the verifier either outputs ⊥ or a sample d.2

In more detail, the prover algorithm P obtains input a security parameter,
the description of a (secret) distribution D, and a public NP language L, and

2 Jumping ahead, in our construction, a prover message will take the form of a pro-
gram, to which the verifier will make a (randomized) query. In response, the program
will output a sample d and a proof of membership of d ∈ L.

4



generates P(1κ,D,L)→ π. The verifier V on input sampler π and the language
L computes V(1κ, π,L)→ d or ⊥.

– The soundness guarantee is that V does not output d 6∈ L (except with
negligible probability). In other words, if the sample d obtained by V is not
in L, then the proof allows the verifier to detect this fact, and V outputs ⊥
(except with negligible probability over the randomness of V).

– The secrecy guarantee is that secrets in the distribution remain hidden from
a malicious verifier: i.e., for every pair of (sufficiently) hard-to-distinguish
distributions D0 ≈ D1 where Supp(D0) ∪ Supp(D1) ∈ L,

P(1κ,D0,L) ≈ P(1κ,D1,L)

Equivalently, a NIDI that outputs samples from D0 with proofs of member-
ship in L is indistinguishable from one that outputs samples from D1 with
proofs of membership in L.

NIDI arguments bear a peripheral resemblance to, and are implied by (non-
interactive) strong witness indistinguishable arguments, by simply having the
prover on input D sample d← D and attach a strong WI proof of membership
of d ∈ L. In particular, the secrecy guarantee of NIDI is similar in spirit to
that of strong witness indistinguishable arguments. However, we do not know if
non-interactive strong WI arguments exist under standard assumptions.

We note that the syntax/completeness properties of NIDI are different from
strong WI: in the case of a strong WI proof system, the prover samples d ← D
and attaches a proof that d ∈ L. On the other hand, in the case of NIDI,
the prover sends a “sampler” to V, and the sample d (together with a proof)
are obtained by V from this sampler. Therefore, while an honest prover knows
the distribution D, it may not know the exact value d that was sampled by a
(randomized) V.

Non-Interactive Distributionally Indistinguishable (NIDI) Arguments from Sub-
exponential Indistinguishability Obfuscation. We rely on sub-exponential indis-
tinguishability obfuscation and other standard assumptions to obtain NIDI ar-
guments that satisfy the secrecy guarantee described above as long as the pair
of distributions (D0,D1) are superpolynomially indistinguishable.

Theorem 1. (Informal) For every p(κ) = ω(log κ) and every pair of distribu-
tions D0,D1 that cannot be distinguished with advantage better than 2−p(κ) by
any polynomial-sized adversary, NIDI arguments exist assuming sub-exponentially
secure indistinguishability obfuscation and other standard assumptions.

Application 1: Non-interactive Commit-and-Prove. A commit-and-prove argu-
ment is a protocol between a committer C and receiver R. In the commit phase,
the committer sends to the verifier a message that allows it to commit to a value
m ∈ {0, 1}κ. It also proves that the committed value m satisfies a (public) effi-
ciently computable predicate φ. Given the prover’s message, the receiver outputs
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⊥, or a string c. Later, C and R possibly engage in another decommit phase, at
the end of which R outputs ⊥ or m ∈ {0, 1}κ.

The soundness and secrecy guarantees are as expected:

– Soundness requires that if the verifier outputs a string c that is not ⊥, then
there does not exist an opening m′ of c such that m′ does not satisfy φ.

– Secrecy guarantees that the message m is hidden, i.e. for all pairs of (equal-
sized) messages (m0,m1) that satisfy the predicate φ, C(1k,m0, φ) ≈ C(1k,m1, φ).

Theorem 2. (Informal) Assuming sub-exponentially secure indistinguishability
obfuscation and other standard assumptions, there exist commit-and-prove argu-
ments in the plain model that satisfy a relaxed notion of non-interactivity.

In our construction, the commitment phase consists of a committer send-
ing the receiver a string (representing a program), but the actual commitment
transcript is finalized only after the receiver produces an output (based on a
randomized query to this program). While the commitment transcript is a de-
terministic function of the committer’s message and the receiver’s randomness,
the receiver randomness/receiver query may or may not have to be known to
the committer before or during the decommitment phase. If this randomness
needs to be made explicit, then the commitment needs an extra message from
the receiver. If it is not necessary to make the receiver randomness explicit, it
becomes possible to achieve a truly non-interactive protocol.

For example, in two-party settings where one player establishes a secret trap-
door for use in a larger protocol, the extra message from the receiver may either
be unnecessary (since it is not needed for decommitment) or could be clubbed to-
gether with other receiver messages. At the same time, there could be multi-party
settings where the committer and receiver must agree to an entire commitment
transcript before the protocol can proceed. For example, on a blockchain, one
may want to commit to the value of a transaction and prove that the committed
value is positive. Applying our non-interactive commit-and-prove naıvely to such
a setting, without an explicit receiver message, could allow a malicious commit-
ter to trick different verifiers into recording different transactions (although each
to a positive value).

Application 2: Non-interactive Non-malleable (CCA) Commitments. Very roughly,
non-malleability prevents an adversary from modifying a commitment com(m)
to generate a commitment com(m′) to a value m′ that is related to the original
m. This is equivalent (assuming the existence of signatures/one-way functions)
to a tag-based notion where the commit algorithm obtains an additional input,
a tag ∈ {0, 1}κ, and where the adversary is restricted to using a tag, or identity,
that is different from the tag used to generate the honest commitment.

We consider a strong form of non-malleability for non-interactive commit-
ments: CCA security [21]. Namely, we build commitments that hide the com-
mitted value even from an adversary which has access to an oracle that computes
decommitments of arbitrary commitment strings that the adversary sends to this
oracle, as long as they are different from the challenge string.
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Theorem 3. (Informal) CCA commitments for 2κ tags satisfying a relaxed no-
tion of non-interactivity exist assuming sub-exponentially secure indistinguisha-
bility obfuscation, CCA commitments for log log log κ tags and other standard
assumptions.

We note that CCA commitments for log log log κ tags can be based on either
(1) sub-exponential time-lock puzzles (which can be based on sub-exponential
indistinguishability obfuscation and the existence of sub-exponentially hard non-
parallelizable languages [11]), or (2) sub-exponential hardness of discrete log and
sub-exponential quantum hardness of LWE.

Just like the setting of commit-and-prove, the underlying “committed value”
is defined as a function of the (non-interactive) message from the committer, and
the receiver’s randomness. However, again like the case of commit-and-prove, the
receiver can remain silent throughout, thereby leading to a truly non-interactive
protocol. In this setting, the CCA commitment guarantees that the value under-
lying a mauled commitment is independent of the honestly committed message,
with overwhelming over the randomness of an honest receiver. Therefore this
appears to achieve the conceptual objective of completely non-interactive com-
mitments.

In addition, this notion would suffice for classic applications of non-malleable
commitments like coin-flipping and auctions, with a non-interactive committer
message and without the need for any additional messages from the receiver.
An auction would be implemented by having all parties commit to their inputs
using the CCA commitment, with just a single (broadcast) message from the
committer. In the next round, all committers reveal all the input and random-
ness they used to generate their entire obfuscated program. These openings are
accepted only if the honest committer strategy applied to the opened input and
randomness results in the same obfuscated program that the committer sent;
otherwise the protocol aborts. If the protocol does not abort, then the result of
the protocol is computed on these opened values.

Finally, we remark that recent exciting progress [1, 45, 3, 2, 33, 34, 17] has
led to constructions of indistinguishability obfuscation from simpler assump-
tions, including most recently [34, 18, 65] that obtain sub-exponentially secure iO
from simple-to-state (circular security) assumptions on LWE-based cryptosys-
tems and [46] that obtains iO from the following sub-exponential well-founded
assumptions: SXDH, LWE, (a variant of) LPN and boolean PRGs in NC0.

1.2 Additional Related Work

Relaxations of Zero-Knowledge. Subsequent to the introduction of weak zero-
knowledge [28], three-message weak ZK and witness hiding were constructed
by [14] from what are now considered implausible assumptions (due to [19,
10]). The work of [22] proved equivalence between different variants of weak
zero-knowledge. Next, [47] constructed distributional weak-zero-knowledge and
witness-hiding protocols for a restricted class of non-adaptive verifiers who choose
their messages obliviously of the proven statement. They obtain protocols in
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three messages under standard assumptions, and in two messages under stan-
dard, but super-polynomial, assumptions. More recently, [12] obtained two-message
weak-zero knowledge (which implies witness hiding and strong WI) in the stan-
dard setting via a new simulation technique, and concurrently [25] obtained
two-message witness hiding from new assumptions. Even more recently, [51]
gave best-possible/universal and non-uniform witness hiding arguments, as well
as witness hiding proofs under assumptions on the non-existence of weak forms
of witness encryption for certain languages. We note that witness hiding argu-
ments provide a weaker one-wayness guarantee, and are insufficient to achieve,
e.g., commit-and-prove with message hiding as discussed in the example in the
introduction.

Zero knowledge with simulators that run in super-polynomial time is known
in two messages from standard, but super-polynomial, assumptions [57, 5]. One-
message ZK with super-polynomial simulation can be obtained against uni-
form provers, assuming uniform collision-resistant keyless hash functions [9], or
against non-uniform verifiers, but with weak soundness, assuming multi-collision-
resistant keyless hash functions [13]. As discussed earlier, these proofs satisfy
weak notions of soundness against non-uniform provers (allowing non-uniform
provers to cheat on certain instances). This is undesirable in many settings.

Non-Malleable Commitments. Minimizing the round complexity of non-malleable
commitments has been an important research goal in cryptography. Prior work,
namely [27, 6, 58, 59, 55, 56, 53, 64, 60, 52, 39, 40, 43, 41, 24, 23] culminated in three
round non-malleable commitments from standard polynomial-time assumptions [42,
49] and two round commitments from sub-exponential assumptions like time-lock
puzzles [54] and sub-exponential DDH/LWE/QR/NR [50].

However, achieving non-interactive non-malleable commitments from well-
found assumptions has been particularly challenging. In the non-interactive set-
ting, Pandey, Pass and Vaikuntanathan [56] first gave constructions of non-
malleable commitments based on a strong non-falsifiable assumption (“adap-
tive” one-way functions). Recently Bitansky and Lin [13] obtained constructions
of non-interactive non-malleable commitments from sub-exponential time-lock
puzzles and keyless hash functions with (variants of) collision resistance against
non-uniform adversaries. Additionally Kalai and Khurana [48] obtained con-
structions satisfying a weaker notion of non-malleability w.r.t. ‘replacement’ (es-
sentially allowing selective-abort attacks) from well-studied assumptions includ-
ing sub-exponential NIWIs, discrete log and the quantum hardness of LWE. Very
recently Garg et. al. [31] improved upon [13], eliminating the need for NIWIs and
making black-box use of cryptography. Despite this substantial progress, prior
to this work, there were no known constructions of non-interactive (or relaxed
non-interactive) non-malleable commitments from well-founded assumptions.

2 Technical Overview

We now walk the reader through our construction and offer additional insight
into the notion of a NIDI. Our aim will be to find a meaningful privacy guar-
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antee that is achievable non-interactively, and applicable widely. A “commit-
and-prove” protocol as described in the introduction will serve as a canonical
example of the type of applications that we would like to enable.

2.1 Commit-and-Prove Arguments

Outline: Compressing Interactive Commit-and-Prove via Obfuscation. Our first
stab at constructing non-interactive commit-and-prove with meaningful secrecy
is as follows: let us try to compress an interactive commit-and-prove protocol to
a non-interactive one, as follows.

Let (ICP.P, ICP.V) denote the (honest) prover and verifier circuits for an ap-
propriate interactive n-round commit-and-prove protocol ICP. The prover in the
non-interactive system simply outputs obfuscations of the next-message func-
tions of ICP.P, one obfuscation for each round. The prover’s next-message func-
tion ICP.Pj for round j ∈ [n] of ICP depends on its inputs m,φ (i.e. the secret
message and predicate), and randomness r – all of which are hardwired in the
obfuscated circuits. This function on input the transcript through round (j−1),
produces as output the next message. The prover must output, for every round
j ∈ [n], the obfuscated circuit

Cj = Obf (ICP.Pj(m,φ, r, ·)) .

Given (C1, . . . , Cn), V queries these circuits as if it were interacting with ICP.P,
feeding them the current transcript and obtaining the next message. Finally, it
accepts if ICP.V would have accepted.

But obfuscating the next message function in this manner leads to new
vulnerabilities that do not necessarily arise in the interactive setting. Unlike
queries to an actual prover, an adversarial verifier can query obfuscated programs
(C1, . . . , Cn) out of order, and may even query them many times, amounting to
“resetting” attacks [20]. Thus one would generally need to rely on resettably zero-
knowledge protocols that satisfy security in the presence of resetting attacks [20].

Second, we note that general-purpose obfuscators satisfying the most natural
notion of security (virtual-black-box) cannot exist [7]. We would therefore like to
base security of the compressed protocol on the weaker notion of indistinguisha-
bility obfuscation, for which we know constructions under plausible assumptions
(most recently due to [34, 18, 65, 46]).

Basing Security on Indistinguishability Obfuscation. Recall that we would like
the compressed commit-and-prove argument to hide the committed m. This
means that for every pair of values m0,m1 that satisfy a predicate φ, obfuscated
next-message circuits that commit to m0 and generate a proof of m0 satisfying
φ, should be indistinguishable from obfuscated circuits that generate a similar
commit-and-prove argument for m1.

Before going into further detail, we point out that the general paradigm of
using obfuscation to compress interactive protocols has been explored in prior
work, (eg., MPC protocols were compressed via obfuscating the next-message
function in [32, 26, 4]). However in these works, the set of allowable or meaningful
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inputs to the program are small in number and are fixed apriori. This makes it
possible to hardwire a few meaningful paths in the obfuscated programs and use
such paths to argue security.

In our setting, the obfuscated next-message function must remain functional
for (nearly) all verifier inputs. Because of this, our strategy to prove indistin-
guishability will iterate over all possible verifier inputs. To make this easier, we
will begin by fixing a specific two-message interactive protocol, that will then be
compressed to a non-interactive protocol via obfuscation.

Fixing an Interactive Protocol. To begin with, the interactive protocol that we
rely on will be the following two-message protocols due to Pass [57].

– The interactive verifier ICP.V samples a random α and outputs f(α), where
f denotes a one-way function with “efficiently recognizable range” : where it
is easy to efficiently check given y if there exists α such that f(α) = y (eg.,
this is true whenever f is a one-way permutation).

– Next, the prover ICP.P generates a commitment c to m by means of any
perfectly binding non-interactive commitment, and also a non-interactive
commitment c′ to 0. In addition, it sends a NIWI asserting that:

“
(
c is a commitment to m such that φ(m) = 1

)
OR

(
c′ is a commitment to α such that f(α) = y

)
.”

To argue that this interactive protocol hides the value m, one can rely on a
simulator that extracts α given y in superpolynomial time, and uses the second
trapdoor statement to generate the NIWI. This makes it possible to rely on
the hiding property of the non-interactive commitment and replace c with a
commitment to a different message.

Arguing Security of the Compressed Commit-and-Prove System. Plugging this
two-message argument into the template described above yields the following
commit-and-prove protocol:

The non-interactive prover simply obfuscates a circuit that on input an ar-
bitrary string y computes c, c′ as commitments to m and 0 respectively, and as
described above a NIWI asserting that:

“
(
c is a commitment to m such that φ(m) = 1

)
OR

(
c′ is a commitment to α such that f(α) = y

)
.”

Arguing secrecy of the non-interactive protocol is somewhat more involved
as one cannot hope to directly emulate the proof of secrecy of the interactive
protocol. In particular, ideally one would like to replace the obfuscated circuit
with a different one that has the superpolynomial simulator’s code hardwired
into it. In the next hybrid step one could hope to switch the commitment string
c to commit to a different value. But this does not immediately work because of
the inefficiency introduced by the simulator. In fact, even if we started out with a
resettably-secure protocol with a polynomial simulator, it is completely unclear
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how to replace the next-message circuit with one that generates simulated proofs,
unless the simulator is straight-line and black-box. Unfortunately straight-line
black-box simulators cannot exist in the plain model without trusted setup, so
we explore a different route as described below. In what follows, we will outline
a concrete construction by building on the ideas and pitfalls discussed above.

Towards a Concrete Construction. The commit-and-prove algorithm C(1k,m, φ)
samples a random key K for a puncturable PRF, and then outputs an indistin-
guishability obfuscation P̃ of the program P described in Figure 1.

Hardwired: Puncturable PRF Key K, Message m, Predicate φ.

Input: Query y ∈ {0, 1}κ.

1. If y 6∈ Range(f), output ⊥. Otherwise, continue.
2. Set (r1, r2, r3) = PRF(K, y).
3. Set c = com(m; r1) and c′ = com(0κ; r2).
4. Let e be a NIWI, computed with randomness r3, asserting that

“
(
c is a commitment to m such that φ(m) = 1

)
OR

(
c′ is a commitment to α such that f(α) = y

)
.”

5. Output (c, c′, e).

Fig. 1: Program P .

The receiver on input the obfuscated program P̃ samples random α, sets
y = f(α) and queries the program on y to obtain output some (c, c′, e). It parses
e as a NIWI and outputs ⊥ if the NIWI does not verify, otherwise outputs c.

Message Hiding. Recall that we would like to establish that for all pairs of
(equal-sized) messages (m0,m1) such that φ(m0) = φ(m1) = 1, C(1κ,m0, φ) ≈
C(1κ,m1, φ).

We will prove this by iterating over exponentially many hybrids, correspond-
ing to all possible inputs to the obfuscated program. The jth intermediate hybrid
Hybridj for j ∈ [0, 2κ] will obfuscate a program P (j) that is identical to P except

the following. On all inputs y such that y < j, P (j) sets c = com(m1), and on all
inputs y such that y ≥ j, sets c = com(m0). When defined this way, note that
Hybrid0 ≡ C(1κ,m0, φ) and Hybrid1 ≡ C(1κ,m1, φ).

Let us now argue that for all j ∈ [1, 2κ], Hybridj−1 ≈ Hybridj . Note that the
only difference between the two hybrids is the difference in behavior of programs
P (j−1) and P (j) on input y = j. While P (j−1) on input y = j outputs com(m0),
P (j−1) on input y = j outputs com(m1).
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We rely on standard iO techniques to show that Hybridj−1 and Hybridj are
indistinguishable. This is done by first puncturing the key K on input y = j, then
hardwiring uniform randomness corresponding to input j, and then relying on
the hiding of the commitments c and c′, as well as the witness indistinguishability
of NIWI.

Since there are ∼2κ hybrids, denoting (an upper bound on) the adversary’s
distinguishing advantage between any consecutive pair Hybridj−1 and Hybridj
by µ, the overall advantage between C(1κ,m0, φ) and C(1κ,m1, φ) can grow to

2κ · µ, which is not negligible unless µ = negl(κ)
2κ .

Therefore, we ensure that µ is small enough by relying on subexponential
assumptions. Specifically, we will assume the PRF, non-interactive commitment,
and iO allow adversarial advantage to be at most 2−k

ε

for some arbitrary small
0 < ε < 1 when executed with security parameter k. By setting k = κ1/ε, we
will achieve the desired small µ.

Proving Soundness: A Subtle Malleability Problem. Recall also that we would like
to ensure soundness, meaning that a malicious prover, by sending an arbitrary
obfuscated program P̃ to a verifier, should not be able to convince such a verifier
to output a string c for which the underlying value m does not satisfy predicate
φ.

Note that this is only possible if the verifier’s query to P̃ results in output
(c, c′) and a NIWI e for which verification accepts, and which asserts that:

“
(
c is a commitment to m such that φ(m) = 1

)
OR

(
c′ is a commitment to α such that f(α) = y

)
.”

By soundness of the NIWI, if the verifier outputs c such that the underlying
value m does not satisfy φ(m) = 1, then (w.h.p.) it must be the case that

c′ is a commitment to α such that f(α) = y.

To rule out this possibility, we would like to argue that it is impossible for a
committer to efficiently compute com(α) given y = f(α). A natural way to
achieve this is via complexity leveraging: we could try setting the parameter of
the commitment to be relatively small so that it is easy to extract the value
α from commitment string c′ in time T . At the same time, we could require
f to be uninvertible in time T . This would ensure that any committer that
efficiently computes com(α) given y = f(α), would necessarily be contradicting
uninvertibility of f against adversaries running in time T .

But this leads to a circularity: recall that we set the size of y to be κ bits,
and for our hybrid argument to go through, we needed com to use a security
parameter k = κ1/ε for the commitment scheme com, such that the commitment
scheme can be broken in time T = 2k. But because the size of y is κ bits, f
cannot be more than 2κ � T -secure. Therefore, our setting of parameters for
the proof of secrecy directly contradicts the parameters needed for the proof of
soundness described above.

12



To get around this issue, we replace the commitment scheme used to gener-
ate the commitment c′ in our construction, with a perfectly correct public-key
encryption scheme.

Specifically, the commit-and-prove protcol outputs a public key pk in addition
to the obfuscated program. And instead of generating c′ as a commitment to 0, c′

is generated as an encryption of 0, with respect to pk. This enables a non-uniform
proof of soundness.

Specifically, given (pk, P̃ ) if the verifier outputs c such that the underlying
value m does not satisfy φ(m) = 1, then (w.h.p.) it must be the case that

c′ is an encryption (w.r.t. pk) of α such that f(α) = y.

Now given pk, our reduction/proof of soundness will non-uniformly obtain the
corresponding sk. Next, given any prover that on input y outputs c′ as an en-
cryption of f−1(y), this reduction will be able to use sk to decrypt c′ and recover
α. This will yield a contradiction to the uninvertibility of f , and therefore help
us obtain a proof of soundness. We note that a similar technique was used in [16]
to achieve soundness in the context of post-quantum interactive ZK arguments.

2.2 Non-Interactive Distributional Indistinguishability

A reader may have already observed that the technique discussed so far is more
general: it need not be limited to commit-and-prove, and may be used to prove
arbitrary statements about (indistinguishable) distributions.

We distill out a general formulation of this technique into what we call a NIDI
argument. The construction of our NIDI argument follows an outline identical to
that of our commit-and-prove system. Namely, the prover algorithm P(1κ,D,L)
is given a secret efficiently sampleable distribution D and public language L with
corresponding relation RL. It outputs a public key pk and an indistinguishabil-
ity obfuscation of a program P ′ that is very similar to the program P discussed
above. The key difference is that the commitment c to value m in the function-
ality of the program P is replaced by a general sample d from distribution D.
This program is described in Figure 2. Secrecy and soundness of this program
follow identically to the commit-and-prove argument.

2.3 Application: CCA Commitments

These techniques also yield (relaxed) non-interactive non-malleable commmit-
ments: in fact, we achieve a strong form of non-malleability, i.e. CCA security.

We model CCA commitments as being associated with identities or tags,
where the CCA adversary gets access to a decommitment oracle for all tags/i-
dentities different from its own. All non-malleable commitment schemes assign
“tags” (or identities) to parties, and require non-malleability to hold whenever

the adversary is trying to generate a commitment CCAComT̃ w.r.t. a tag T̃ that
is different from the honest tag T . Existing constructions of non-interactive non-
malleable commitments (1) develop a scheme for a small (constant) number of
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Hardwired: Puncturable PRF Key K, Distribution D, Language L,
Public key pk.

Input: Query y ∈ {0, 1}κ.

1. If y 6∈ Range(f), output ⊥. Otherwise, continue.
2. Set (r1, r2, r3) = PRF(K, y).
3. Set d = D(r1) and c′ = Encpk(0κ; r2).
4. Let e be a NIWI, computed with randomness r3, asserting that

“
(
d = D(r) for some D and r such that RL(d,D, r) = 1

)
OR

(
c′ is an encryption w.r.t. pk, of α such that f(α) = y

)
.”

5. Output (d, c′, e).

Fig. 2: Program P ′.

tags, and then (2) recursively apply tag amplification, discussed below, several
times until a scheme supporting (2λ) tags is achieved – which corresponds to
supporting every possible λ-bit identity that a participant can assume.

Outline of Existing Tag Amplification Techniques. Non-interactive CCA com-
mitments that support a small space of tags can be bootstrapped into commit-
ments for a larger space of tags by executing (a round optimized variant of) a
tag encoding scheme first suggested by [27].

Given a large tag T (in [2n]) where n ≤ poly(λ), first encode T into n small
tags t1, t2, . . . tn each in [2n], by setting each ti = (i||Ti) where Ti denotes the

ith bit of T . This encoding ensures that for any different large tags T 6= T̃ , there
exists at least one index i such that t̃i 6∈ {t1, t2, . . . tn}, where (t̃1, t̃2, . . . t̃n) is an

encoding of T̃ . Note that when T ∈ [2n], each of the small tags t will only be as
large as 2n. Now starting with a CCA commitment ’ComSmall’ for tags in [2n],
a scheme CCACom for tags in [2n] can be obtained as follows:

To commit to a message m w.r.t. a tag T , set

CCAComT (m) =
(
{ci = ComSmallti(m)}i∈[n], Π

)
, where

Π is (an appropriate variant of a) zero-knowledge argument certifying that:

“All n commitments ci are to the same message.”

Analysis. Suppose the adversary used large tag T̃ = (t̃1, . . . , t̃n) and the honest
party used tag T = (t1, . . . , tn). By the property of the encoding, for any two

large tags T 6= T̃ , there exists at least one index i such that t̃i 6∈ {t1, t2, . . . tn},
where (t1, t2, . . . tn) and (t̃1, t̃2, . . . t̃n) refer to encodings of T and T̃ respectively.
This means (due to non-malleability of ComSmall) that the message committed
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by the adversary using tag t̃i must be independent of the honest committer’s
input. By the soundness of ZK, the message committed by the adversary using
each (small) tag t̃1, . . . t̃n is identical, so independence of the one committed
using t̃i implies independence of them all! Loosely, it then suffices to argue that
a message corresponding to any tag t̃i is generated independently of the honest
committer’s message.

In some more detail, for the CCA attacker’s jth oracle decommitment query,
we will focus on the index ij such that the tag t̃ij 6∈ {t11, t12, . . . t1n}. In the real
interaction, by soundness of the ZK argument, the value committed by the at-
tacker is identical to the value committed using t̃ij . This makes it possible to
rely on CCA security of the value committed using t̃ij . We note that this method
will need rely on a ZK argument that is secure against adversaries running in
time T , where T is the time required to brute-force break the CCA commitment
with t̃i,j . This is because we will want to argue that the value committed using
tag t̃ij remains unchanged even when the challenge commitment is generated by
simulating the underlying ZK argument.

Once the ZK argument in the challenge commitment is simulated, it becomes
possible to switch all components of the challenge commitment one by one, while
arguing CCA security w.r.t. the value committed by the adversary via tag t̃ij .
This follows because of CCA security of the underlying commitment scheme for
small tags.

The Zero-Knowledge Bottleneck. Unfortunately, this process makes cricital use
of the zero-knowledge argument. Recall that ZK requires more than 2 rounds
of interaction, which leads to a clear problem in the non-interactive setting.
Existing methods to overcome this problem without interaction rely on special
(weak) types of ZK – thus requiring non-standard assumptions [13], or achieving
only weak forms of security [54, 48, 31]. In [54, 13], NIWIs are combined with
a trapdoor statement to enable weak forms of NIZKs without setup: against
uniform provers assuming keyless collision-resistant hash functions in [54], and
a weak form of soundness against non-uniform provers under the non-standard
assumption of keyless collision-resistant hash against non-uniform adversaries
in [13]. In addition [48] use NIWIs without trapdoors, but only achieve weaker
forms of non-malleability (that is, w.r.t. replacement). Even more recently, [31]
replace NIWIs with hinting PRGs and remove the need for non-black-box use
of cryptography. However, they also rely on keyless hash functions to set up
“trapdoors” for equivocal commitments, thereby achieving only uniform secu-
rity. In summary, due to the need for (variants of) non-interactive ZK, all known
constructions achieving the standard notion of non-malleability w.r.t. commit-
ment (or the stronger notion of CCA security) without trusted setup and against
non-uniform adversaries end up having to rely on non-standard assumptions.

In fact by now, CCA commitments – only for constant (and slightly super-
constant) tags – are known based on relatively mild assumptions, whereas tag
amplification requires stronger assumptions. We now briefly describe the milder
assumptions for schemes with slightly super-constant tags for completeness, be-
fore going back to discussing the tag amplification bottleneck.
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Base Schemes. Three recent works [54, 13, 48] build non-interactive “base” schemes:
i.e. non-malleable commitments for a tag/identity space of size c log log κ for a
specific constant c > 0, based on various hardness assumptions. This is achieved
by relying on families of assumptions, each of which is harder than the other
along some axis of hardness.

Lin, Pass and Soni [54] assume a sub-exponential variant of the hardness of
time-lock puzzles. Bitansky and Lin [13] show that base commitments can also
rely on sub-exponentially hard one-way functions that admit a strong form of
hardness amplification (the assumption is stronger than what is currently known
to be provable by known results on hardness amplification). Subsequently, Kalai
and Khurana [48] showed that one can assume classically sub-exponentially
hard but quantum easy one-way functions (which can be based, e.g., on sub-
exponential hardness of DDH), and sub-exponentially quantum hard one-way
functions (which can be based, e.g., on sub-exponential quantum hardness of
LWE). As discussed above, we would like to enable an alternative tag amplifi-
cation process.

Commit-and-Prove. Going back to the tag amplification process outlined above,
one may observe that the type of statement being proved via ZK fits well into the
“non-interactive commit-and-prove” paradigm. In particular, one may hope that
it would suffice to replace the ZK argument Π with (an appropriate) commit-
and-prove – which allows a committer to generate n commitments w.r.t. n differ-
ent small tags, and give a (privacy-preserving) proof that all n strings commit to
the same message. As such, by carefully relying on our non-interactive commit-
and-prove discussed in Section 2.1, it seems like one should be able to achieve
generic tag amplification.

In fact, our construction is roughly as expected at this point. The committer
C on input a message m and tag T encoded as {t1, . . . , tn}3, outputs a public
key pk, together with an obfuscation of the program PCCA described in Figure 3.

The proof of security of the resulting CCA commitment for large tags relies
on a delicate interplay of parameters between the CCA commitment and the
zero-knowledge argument. Specifically, recall that the tag amplification method
sketched out earlier requires the “strength” of zero-knowledge to be higher than
the time needed to brute-force extract the committed value from the underlying
CCA commitment for small tags. In our setting, this translates to carefully fine-
tuning parameters so that the NIWI, PRF and public key encryption scheme
are all secure against T -size adversaries, where T is the time needed to break
(via brute-force) the underlying CCA commitment for small tags. This require-
ment for fine-tuned parameters requires us to “open the black-box” and give a
monolithic proof of security. By contrast, our (regular) commit-and-prove system
makes black-box use of the NIDI abstraction.

A Final Subtle Issue. We now point out one additional subtlety that we glossed
over the in the overview so far. Existing base schemes [54, 13, 48] (for O(log log κ)

3 In the main technical body, we use a somewhat more optimal encoding scheme due
to [50], but we ignore this optimization for the purposes of this overview.
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Hardwired: Puncturable PRF Key K, Message m, Tags t1, . . . , tn, Public
key pk.

Input: Query y ∈ {0, 1}κ.

1. If y 6∈ Range(f), output ⊥. Otherwise, continue.
2. Set (r1, r2, . . . , rn+2) = PRF(K, y).
3. Set ci = ComSmall(m; ri) for all i ∈ [n].
4. Set c′ = encpk(0κ; rn+1).
5. Let e be a NIWI, computed with randomness rn+2, asserting that

“(There exist m and {ri}i∈[n] s.t. ∀i ∈ [n], ci = ComSmall(m; ri))

OR
(
c′ is an encryption w.r.t. pk, of α such that f(α) = y

)
.”

6. Output ({ci}i∈[n], c′, e).

Fig. 3: Program PCCA.

tags) are only secure in a setting where the adversary is restricted to using the
same tag in all its queries to the CCA decommitment oracle. Before performing
our tag amplification process, we will need to remove this “same-tag” restriction.

We build on a technique proposed by [31] to eliminate this restriction. A CCA
commitment scheme without the same-tag restriction, for tags in [n] where n ≤
poly(κ), can be obtained from a CCA commitment with the same tag restriction,
via the following process: To commit w.r.t. tag t ∈ [n], send commitments w.r.t.
all tags in [n] that are not equal to t. In more detail,

CCAComt(m) = ({CCACom-same-tagi(m)}i∈[n]\{t}, Π),

where Π is (an appropriate variant of a) ZK argument certifying that

“All n− 1 commitments ci are to the same message.”

Let us assume that the adversary’s challenge commitment has tag t∗. This
means that the challenge commitment does not contain the underlying commit-
ment CCACom-same-tag w.r.t. tag t∗, and on the other hand, all the adversaries
oracle decommitment queries will contain CCACom-same-tag w.r.t. tag t∗. This
means that all decommitment queries that the adversary makes contain a com-
mitment w.r.t. tag t∗ that does not appear in the challenge commitment. This
leads to an identical situation as the setting of tag amplification, and a very sim-
ilar construction (and proof) helps bootstrap same-tag schemes for n ≤ poly(κ)
tags to those that do not have such a requirement.

In summary, our final CCA commitment is obtained by first bootstrapping
“base” same-tag commitment schemes for small tags to remove the same-tag
requirement, and then bootstrapping the resulting small tag commitment via
the tag amplification process outlined above.
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Organization. The rest of this paper is organized as follows. In Section 3 we
set up notation and define building blocks. In Section 4 we define and construct
NIDIs, in Section 5, we use NIDIs in a black-box way to obtain commit-and-
prove, and finally in Section 6 we build CCA commitments.

3 Preliminaries

We rely on the standard notions of Turing machines and Boolean circuits.

– A polynomial-size circuit family C is a sequence of circuits C = {Cκ}κ∈N,
such that each circuit Cκ is of polynomial size κO(1) and has κO(1) input and
output bits. We also consider probabilistic circuits that may toss random
coins.

– We follow the standard habit of modeling any efficient adversary as a family
of polynomial-size circuits. For an adversary A corresponding to a family of
polynomial-size circuits {Aκ}κ∈N, we omit the subscript κ, when it is clear
from the context.

– A function f : N→ R is negl(n) if f(n) = n−ω(1).

– For random variables X,Y , and 0 < µ < 1, we write X ≈T (κ) Y if for all
polynomial-sized circuits A, there exists a negligible function µ such that for
all κ, ∣∣Pr[A(X) = 1]− Pr[A(Y ) = 1]

∣∣ ≤ µ(T (κ)).

– We will use d← D to denote a random sample from distribution D. This will
sometimes be denoted equivalently as d = D(r) for r ← {0, 1}∗. Similarly, we
will consider randomized algorithms that obtain inputs, and toss coins. We
will use notation t← T (m) to denote the output of randomized algorithm T
on input m. Sometimes we will make the randomness of T explicit, in which
case we will use notation t = T (m; r) for r ← {0, 1}∗.

4 Non-Interactive Distributionally Indistinguishable
(NIDI) Arguments

In this section, we define and construct NIDI arguments. As discussed earlier,
NIDI arguments enable a prover P with input a secret efficiently sampleable
distribution D to send a single message (a “sampler”) to verifier V. Given this
sampler, V can obtain a sample d from the (secret) distribution D together with
a proof of membership of the sampled instance d in a (public) NP language L.
Specifically, after checking such a proof, the verifier either outputs ⊥ or a sample
d from the distribution.
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4.1 Definitions

In a NIDI, the prover algorithm P obtains input a security parameter, the de-
scription of a (secret) distribution D, and a public NP language L, and generates
P(1κ,D,L)→ π. The verifier V on input sampler π and the language L computes
V(1κ, π,L)→ d or ⊥. We formally define this primitive below.

Definition 1 (Non-Interactive Distributionally-Indistinguishable (NIDI)
Arguments). A pair of PPT algorithms is (P,V) is a non-interactive distributionally-
indistinguishable (NIDI) argument for NP language L with associated relation
RL if the non-interactive algorithms P(1κ,D,L) and V(1κ, π,L)4 satisfy:

– Completeness: For every poly(λ)-sampleable distribution5 D = (X ,W)
over instance-witness pairs in RL such that Supp(X ) ⊆ L,(

V(1κ, π,L) : π ∈ Supp (P(1κ,D,L))
)
∈ Supp(X ).

– Soundness: For every ensemble of polynomial-length strings {πκ}κ∈N there
exists a negligible function µ(·) such that:

Pr
x←V(1κ,π,L)

[(
x 6= ⊥

)
∧
(
x 6∈ L

)]
≤ µ(κ)

– Distributional Indistinguishability: For every poly(κ)-sampleable pair
of distributions D0 = (X0,W0) and D1 = (X1,W1) over instance-witness
pairs in RL where Supp(X0) ∪ Supp(X1) ⊆ L, and X0 ≈κ X1,

P(1κ,D0,L) ≈κ P(1κ,D1,L)

Definition 2 (NIDI Arguments for T (κ)-Hard Distributions). A pair of
PPT algorithms is (P,V) is a non-interactive distributionally-indistinguishable
(NIDI) argument for T (κ)-hard distributions and NP language L with assocaited
relation RL if the non-interactive algorithms P(1κ,D,L) and V(1κ, π,L) satisfy
the completeness and soundness properties from Definition 1, and additionally
satisfy:

– Distributional Indistinguishability for T (κ)-Hard Distributions: For
every poly(κ)-sampleable pair of distributions D0 = (X0,W0) and D1 =
(X1,W1) over instance-witness pairs in RL where Supp(X0)∪Supp(X1) ⊆ L,
and X0 ≈T (κ) X1,

P(1κ,D0,L) ≈κ P(1κ,D1,L)

4 Since we define a NIDI for L, it is not necessary to explicitly send L as input to P
and V but we nevertheless write it this way for clarity.

5 Here, we slightly abuse notation and use D to also denote a circuit that on input
uniform randomness, outputs a sample from the distribution D.
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4.2 Construction and Analysis

We prove the following theorem.

Theorem 4. Assuming the existence of sub-exponentially secure one-way func-
tions with efficiently recognizable range and sub-exponentially secure indistin-
guishability obfuscation, there exists a constant c > 1 s.t. for T (κ) = 2(log κ)

c

there exist NIDI arguments for T (κ)-Hard Distributions satisfying Definition 2.

To prove Theorem 4, we show that there exist NIDI arguments for T (κ)-
hard distributions, where log T = (log κ)c, and c > 1 is some constant. Our
construction depends on T , and is as follows.

Construction 4.1. Let ε > 0 be an arbitrarily small constant such that:

– There exists a sub-exponentially secure one-way function f : {0, 1}poly(k) →
{0, 1}poly(k) with an efficiently recognizable range, i.e., given y there is an
efficient algorithm to check whether there exists a value x such that f(x) = y.
Note that permutations have this property, because every y is in the range
of the permutation. We require that for security parameter k′, this function
is invertible with probability at most 1

2(k′)ε
by machines of size 2(k

′)ε .
– There exists a perfectly correct, sub-exponentially secure public-key encryp-

tion scheme with key generation, encryption and decryption algorithms
(KeyGen,Enc,Dec) that for security parameter 1k satisfies 2k

ε

- IND-CPA se-
curity against (non-uniform) adversaries6.

– There exists a sub-exponentially secure indistinguishability obfuscation scheme
(iO.Obf, iO.Eval) that for security parameter 1k satisfies 2k

ε

- security against
(non-uniform) adversaries.

– There exists a sub-exponentially secure puncturable PRF that for security
parameter 1k satisfies 2k

ε

- security against (non-uniform) adversaries.
– There exist sub-exponentially secure NIWIs that for security parameter 1k

satisfy 2k
ε

- security against (non-uniform) adversaries.

Set c = 1
ε . We construct our non-interactive distributionally-indistinguishable

(NIDI) argument below, where letting RL denote the relation corresponding to
NP language L we define

LNIWI =
{

(pk, dx, c, y) : ∃(dw, s, sk) s.t.
(
(dx, dw) ∈ RL

)∨(
(pk, sk)← KeyGen(s)∧y = f(Decsk(c))

)}
– The prove algorithm P(1κ,D,L) does the following:

• Set k = 2(log κ)
c2

, k′ = 2(log κ)
c

.
• Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).
• Sample K ← {0, 1}k, R← {0, 1}k.
• Generate program Ppk,K,D,L defined in Figure 4.

• Compute P̃ = iO.Obf(Ppk,K,D,L;R).

• Output (pk, P̃ ).
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Hardwired: Public key pk, Puncturable PRF Key K, Distribution D,
Language L.

Input: Query y ∈ {0, 1}k
′
.

1. If y 6∈ Range(f), output ⊥. Otherwise, continue.
2. Set (r1, r2, r3) = PRF(K, y).
3. Set (dx, dw) = D(r1).
4. Set c = Encpk(0k

′
; r2).

5. Set x = (pk, dx, c, y), w = (dw, 0
k′+k).

Then compute e = NIWI.P(1k, x, w,LNIWI; r3).
6. Output (x, e).

Fig. 4: Program Ppk,K,D,L.

– The verify algorithm V(1κ, π,L) on input a proof π = (pk, P̃ ) does the
following:
• Sample v ← {0, 1}k′ and set y = f(v).

• Compute out = iO.Eval(P̃ , y). Parse out = (x, e) and parse x = (pk, d, c, y).
• If NIWI.V(1k, x, e,LNIWI) rejects, output ⊥ and stop.
• Else output d.

Lemma 1. Construction 4.1 satisfies completeness according to Definition 1.

Proof. The proof follows by observing that due to perfect correctness of iO,
V(π,L) for π = (pk, P̃ ) obtains (x, e) from P̃ , where x = (pk, d, c, y). By perfect
correctness of NIWI, V will output d with probability 1. Recall that (d, ·) = D(r1)
by construction, and therefore d ∈ Supp(X ).

Lemma 2. Under the assumptions in Theorem 4, construction 4.1 satisfies
soundness according to Definition 1.

Lemma 3. Under the assumptions in Theorem 4, construction 4.1 satisfies dis-
tributional indistinguishability for T (κ)-hard distributions per Definition 2.

The proofs of these lemmas appear in the full version but are omitted from
this version due to lack of space.

5 Commit-and-Prove

A (relaxed) non-interactive commit-and-prove argument is a protocol between a
committer C and receiver R. In the commit phase, C sends R a single message to

6 This can be based on sub-exponential indistinguishability obfuscation and sub-
exponential one-way functions following [62].
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commit to a value m ∈ {0, 1}κ. The transcript of the commitment is finalized as
a function of the receiver’s randomness and the committer’s message, although
the receiver does not need to return this randomness to the committer. It also
proves that m satisfies some public predicate φ, in other words it proves that
φ(m) = 1. At the end of this phase, R either outputs ⊥ (denoting that the
commitment phase was rejected) or outputs a commitment string c.

Later, the parties C and R possibly engage in another decommit phase, at
the end of which R outputs ⊥ or m ∈ {0, 1}κ.

Definition 3 (Non-Interactive Commit-and-Prove). A pair of PPT algo-
rithms (C,R) where R = (R1,R2) is a non-interactive commit-and-prove argu-
ment if it satisfies the following.

– Completeness: For every φ and every m ∈ {0, 1}κ such that φ(m) = 1,

Pr

[
m← R2(1κ, c, cert, st) ∧
φ(m) = 1

∣∣∣∣ (π, st)← C(1κ,m, φ)
(c, cert)← R1(1κ, π, φ)

]
= 1.

– Soundness: For every poly(κ)-sized (non-uniform) committer C∗ there ex-
ists a negligible function µ(·) such that for large enough κ ∈ N,

Pr

∃(m∗, st∗) s.t. (m∗ 6= ⊥) ∧
m∗ ← R2(1κ, c, cert, st∗) ∧
φ(m∗) 6= 1

∣∣∣∣∣∣π ← C
∗

(c, cert)← R1(1κ, π, φ)

 ≤ µ(κ).

– Computational Hiding: For every language L, every pair of messages
(m0,m1) such that φ(m0) = φ(m1) = 1,

C(1κ,m0, φ) ≈κ C(1κ,m1, φ)

Construction 5.1. Let ε > 0 be a constant such that:

– There exists a non-interactive perfectly binding commitment Com that sat-
isfies hiding against 2κ

ε

-time (non-uniform) adversaries, and
– There exists a NIDI argument for 2κ

ε

-hard distributions that satisfies Defi-
nition 1.

We define

Lφ =
{
c : ∃(m, r) s.t. c = Com(m; r) ∧ φ(m) = 1

}
– The commit algorithm C(1κ,m, φ) does the following:
• Define distribution Dm(r) = Com(m; r).
• Output π = P(1κ,Dm,Lφ) computed using uniform randomness rC .
• Set st = (m, rC).

– The receiver algorithm R1(1κ, π, φ) does the following.
• Sample randomness rR.
• Obtain y ← V(1κ, π,Lφ; rR).
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• Output (y, rR).
– The receiver algorithm R2(1κ, c, cert, st∗) does the following:
• Parse st∗ = (m∗, r∗C) and cert = rR.
• Compute π∗ = P(1κ,Dm∗ ,Lφ; r∗C).
• If V(1κ, π∗,Lφ; rR) = (c, ·), output m∗.
• Otherwise, output ⊥.

Lemma 4. Construction 5.1 satisfies completeness according to Definition 3.

Proof. The proof follows by the perfect correctness of NIDI.

Lemma 5. Construction 5.1 satisfies soundness according to Definition 3.

Proof. We prove that this lemma follows by the soundness of the NIDI according
to Definition 2 and the perfect binding property of Com. Towards a contradiction,
suppose there exists a poly(κ)-sized (non-uniform) committer C∗ for which there
exists a polynomial p(·) such that for infinitely many κ ∈ N,

Pr

∃(m∗, st∗) s.t. (m∗ 6= ⊥) ∧
m∗ ← R2(1κ, c, cert, st∗) ∧
φ(m∗) 6= 1

∣∣∣∣∣∣π ← C
∗

(c, cert)← R1(1κ, π, φ)

 ≥ 1

p(κ)
.

Fix any string π, and let (c, cert)← R1(1κ, π, φ).

– By construction, for any st∗ parsed as (m∗, r∗C), R2(1κ, c, cert, st∗) outputs
m∗ 6= ⊥ if and only if for π∗ = P(1κ,Dm∗ ,Lφ; r∗C), V(1κ, π∗,Lφ; cert) = (c, ·).
By perfect completeness of NIDI, this implies thatR2(1κ, c, cert, st∗) outputs
some m∗ 6= ⊥ if and only if there exists r∗C such that c = Com(m∗; r∗C).

– Next by the perfect binding of Com, for every string c, there exists at most
one message m∗ and randomness r∗C such that c = Com(m∗; r∗C). Then
φ(m∗) 6= 1 ⇐⇒ c 6∈ Lφ.

Taken together, this implies that

Pr
[(
R(1κ, π,Lφ) 6= ⊥

)
∧
(
R(1κ, π,Lφ) 6∈ L

)∣∣∣π ← C∗] ≥ 1

p(κ)
,

which contradicts the soundness of NIDI, as desired.

Lemma 6. Construction 5.1 satisfies computational hiding according to Defini-
tion 2.

Proof. This lemma follows almost immediately from the distributional indistin-
guishability of NIDI.

Specifically, for language L = Lφ, for any pair of messages m0,m1 such that
φ(m0) = φ(m1) = 1, define poly(κ)-sampleable distributions (Dm0

,Dm1
) where

Dmb = (Com(mb; r), (mb, r)).
By definition of Lφ, Supp(D0)∪Supp(D0) ⊆ Lφ. Moreover by 2κ

ε

-hardness of
Com, we have that Com(m0; r) ≈2κε Com(m1; r), Therefore, distributional indis-
tinguishability of NIDI according to Definition 2 implies that: P(1κ,Dm0

,Lφ) ≈κ
P(1κ,Dm1

,Lφ) or equivalently, C(1κ,m0, φ) ≈κ C(1κ,m1, φ), as desired.
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6 CCA Commitments from Indistinguishability
Obfuscation

In this section, we prove the following theorem.

Theorem 5. Assume the existence of sub-exponentially secure indistinguisha-
bility obfuscation, sub-exponentially secure one-way functions with efficiently
recognizable range and sub-exponentially secure CCA commitments for tags in
[log log log κ]. Then there exist CCA commitments for tags in 2κ.

We prove this theorem by building a tag amplification compiler that am-
plifies CCA commitments for tags in [t/2] for t ≤ poly(κ) to tags in [T ] where

T =

(
t
t/2

)
. Applying this compiler 4 times to a CCA commitments for tags in

[log log log κ] yields the statement of the theorem.
In what follows, let ε > 0 be an arbitrarily small constant such that:

– The CCA commitment for small tags and security parameter κ is 2(log κ)
1/ε

secure and has a “brute-force” value algorithm CCAVal that recovers the
value underlying any commitment, and runs in time at most poly(2κ).

– There exists a subexponentially secure one-way function f that with security
parameter k is 2k

ε

one-way. Furthermore, f has an efficiently recognizable
range, i.e., given y there is an efficient algorithm to check whether there exists
a value x such that f(x) = y. Note that permutations have this property,
because every y is in the range of a permutation.

– There exists a perfectly correct, sub-exponentially secure public-key encryp-
tion scheme with key generation, encryption and decryption algorithms
(KeyGen,Enc,Dec) that for security parameter 1k satisfies 2k

ε

- IND-CPA se-
curity against (non-uniform) adversaries.

– There exists a sub-exponentially secure indistinguishability obfuscation scheme
(iO.Obf, iO.Eval) that for security parameter 1k satisfies 2k

ε

- security against
(non-uniform) adversaries.

– There exists a sub-exponentially secure puncturable PRF that for security
parameter 1k satisfies 2k

ε

- security against (non-uniform) adversaries.
– There exist sub-exponentially secure NIWIs that for security parameter 1k

satisfy 2k
ε

- security against (non-uniform) adversaries.

Our compiler is described formally below, where letting RL denote the rela-
tion corresponding to NP language L we define language

LNIWI =
{
{(ci, si)}i∈[t/2], (pk, enc, y) : ∃(M, r1, . . . , rt/2, s, sk) s.t.(
∀i ∈ [t/2], ci = ComSmallsi(M ; ri)

)
∨(

(pk, sk)← KeyGen(s) ∧ y = f(Decsk(c))
)}

where si denotes a tag in [t/2], and ComSmall denotes the commit algorithm for
an underlying CCA commitment with tags in [t/2].
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Construction 6.1. We now describe the CCACom and CCAVal algorithms for the
scheme with large tags. We note that just like our commit-and-prove system
described in the previous section, the commit phase ends after the receiver has
queried the committer’s program on a random input. The output of the commit
phase is the output of such a receiver (and depending on the application, the
receiver may or may not need to send its input back to the committer).

On input security parameter κ, we will set parameters of our building blocks
as follows. Our one-way function with efficiently recognizable range and sub-
exponential security will have security parameter kf set to (log κ)1/ε. The CCA
commitment for small tags will have security parameter set to κ. Note that this
implies (by assumption) that CCAVal runs in time poly(2κ). Finally, all other
primitives including iO, the puncturable PRF and the PKE scheme will have
security parameter set to k = κ

1
ε .

The CCACom Algorithm: CCACom(1κ,m, tag) does the following.

– Let T denote the ordered set of all possible subsets of [t], of size t/2. Pick the
ith element in set T, for i = tag.7 Let this element be denoted by (s1, . . . st/2).

– The committer C(1κ,M, tag) does the following:
• Set k = κ

1
ε , and kf = (log κ)

1
ε .

• Sample s← {0, 1}k and set (pk, sk)← KeyGen(s).
• Sample K ← {0, 1}k and R← {0, 1}k.
• Generate program Ppk,K,M,tag defined in Figure 5.

• Compute P̃ = iO(Ppk,K,M,tag;R).

• Output c = (tag, pk, P̃ ).
– The receiver R on input a commitment c = (tag, pk, P̃ ) does the following.
• Sample v ← {0, 1}κ and set y = f(v).

• Compute out = iO.Eval(P̃ , y). Parse out = (x, e), x = (d, pkenc, y) and
d = {ci}i∈[t/2].

• Set x′ = {(ci, si)}i∈[t/2], (pk, enc, y). If NIWI.V(1k, x′, e,LNIWI) rejects,
output ⊥ and stop.

• Else output v, and for each i ∈ [t/2], execute the receiver algorithm
ComSmall.R(ci).
If any of these (t/2) algorithms output ⊥, then output ⊥ and stop.

• At the end of this process, the receiver either outputs ⊥ or (τ1, . . . , τt/2)
where τi denotes the (non-⊥) outcome of ComSmall.R(ci)

8.

The CCAVal Algorithm: The CCAVal algorithm obtains as input a commit-
ment string parsed as ⊥ or (τ1, . . . , τt/2), generated as the output of the commit
phase above, and does the following.

7 Here, we use a different tag encoding scheme due to [50] that offers a slightly more
optimized way to the same effect as the DDN encoding [27] discussed in the overview.
That is, for every pair of unequal large tags T and T ′, there is at least one member
in the set corresponding to T that is not present in the set corresponding to T ′, and
vice-versa.

8 Note that for the base scheme, R simply outputs the string it obtained from the
committer.
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– On input a commitment string, if ⊥, output ⊥. Otherwise parse the string
as (τ1, . . . , τt/2) and execute ComSmall.CCAVal(τ1).

Hardwired: Public key pk, Puncturable PRF Key K, message
M ∈ {0, 1}p, small tags (s1, . . . st/2) corresponding to tag.

Input: Query y ∈ {0, 1}kf .

1. If y 6∈ Range(f), output ⊥. Otherwise, continue.
2. Set r = (r1||r2|| . . . ||rt/2||rt/2+2) = PRF(K, y).
3. For i ∈ [t/2], set ci = ComSmallsi(M ; ri). Set d = {ci}i∈[t/2].
4. Set enc = Encpk(0κ; rt/2+1).

5. Set x = d, (pk, enc, y), w = (M, r1, . . . , rt/2, 0
2k).

6. Compute e = NIWI.P(1k, x, w,LNIWI; rt/2+2) and output (x, e).

Fig. 5: Program PK,M,tag

We prove the security of this construction, and discuss how to eliminate the
same-tag restriction in the full version of the paper.
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