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Abstract. Quantum lightning is a new cryptographic object that gives
a strong form of quantum money. Zhandry recently defined quantum
lightning and proposed a construction of it based on superpositions of
low-rank matrices. The scheme is unusual, so it is difficult to base the
scheme’s security on any widespread computational assumptions. In-
stead, Zhandry proposed a new hardness assumption that, if true, could
be used to prove security.
In this work, we show that Zhandry’s hardness assumption is in fact
false, so the proof of security does not hold. However, we note that the
proposal for quantum lightning has not been proven insecure. This work
is the first step in analyzing the security of [3]’s proposal and moving
toward a scheme that we can prove to be secure.

1 Introduction

A cryptographic protocol for money should satisfy two conditions:1

1. Verification by untrusted users: Any untrusted user, even an adversary seek-
ing to counterfeit, can distinguish between valid and counterfeit banknotes.

2. No counterfeiting : Only the mint, a trusted administrator, can produce valid
banknotes.

A classical bitstring can be easily duplicated, and will fail the no counter-
feiting condition. However an arbitrary string of qubits cannot be duplicated,
so quantum information is the first setting where no counterfeiting may hold.
Therefore, there is interest in creating uncounterfeitable money from quantum
states. This is known as public-key quantum money. However, we do not yet
know how to construct public-key quantum money from widely used crypto-
graphic assumptions, despite many attempts including [2] and [1].

More recently, [3] defined a new cryptographic object, called quantum light-
ning, that gives a strong form of public-key quantum money in which not even
the mint can produce two copies of the same banknote. Zhandry also proposed a
construction of quantum lightning, but it is unknown whether the scheme is se-
cure. Instead, Zhandry proposed a plausible computational hardness assumption
and proved that if it is true, then the scheme is secure. However, the assumption
was untested.
1 There are several variations on the quantum money problem, each with slightly

different conditions. These are adapted from ones presented in [2].



Here, we show that the hardness assumption is false. Therefore the proof
of security for [3]’s scheme does not hold. However, our work does not prove
the scheme insecure, and it may be possible to fix the hardness assumption. Our
work is the first step in determining whether [3]’s proposal is secure and whether
a similar approach is viable.

The rest of the paper is organized as follows: first we summarize [3]’s proposed
scheme for quantum lightning. Then we show that the hardness assumption that
was used to prove security is false. Finally, we suggest where our work may lead:
to a new plausible hardness assumption or to a stronger attack that proves the
scheme insecure.

2 Proposed Construction of Quantum Lightning

For context, we summarize [3]’s proposed construction of quantum lightning in
this section. The lightning bolt is a superposition that can be sampled efficiently,
but not duplicated. Anyone can generate a random lightning bolt, and a verifier
can check that the bolt was generated honestly. But it is supposedly hard to
generate two states that appear to the verifier to be the same bolt.

Here is a simplified version of the construction. There is a collision-resistant
hash function, fA, and the bolt is a superposition over the pre-image of some
value output by fA. To generate a random bolt, we create a superposition over
the domain of fA, apply fA to the superposition, and write the output to a
separate register. The output register is a superposition over the image of fA,
and it is entangled with the first register. Finally, we measure the output register,
which collapses to a single random eigenstate |y〉, called the hash or the serial
number. Since the two registers were entangled, the first register becomes a
uniform superposition over the pre-image of y. The first register’s state is the
bolt, and y is the classical serial number that identifies the bolt.

The bolt is unclonable if fA is collision-resistant. If we can create two bolts
that hash to the same serial number, then we can find a collision in fA by
simply measuring both bolts in the computational basis. Each measurement will
give a random value in the pre-image of y, and the two values are very likely
to be distinct. These values represent a collision in fA, which contradicts the
collision-resistance of fA.

More formally, the construction comprises three polynomial-time quantum
algorithms: Setup, Gen, and Ver. Setup samples the hash function and the public
verification key. This is performed by an honest administrator, called the mint.
Gen generates a random bolt, and can be run by anyone, even the adversary.
Finally, Ver verifies that a given state is an honestly generated bolt. Like Gen,
Ver is also public-key. We describe the construction’s variables, as well as the
three algorithms, below.
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Variables

◦ The scheme takes as parameters the positive integers m, q, d, e, k for which
m− d < e and d < e.

◦ Let n =
(
m+1
2

)
−
(
e+1
2

)
. n is the dimension of the image of fA.

◦ Let D be the set of m×m symmetric matrices over Zq with rank ≤ d. D is
the domain of fA.

◦ Let A = {A1,A2, . . . ,An} be some subset of the symmetric m×m matrices
over Zq. A determines fA.

◦ Let fA : D → Zn
q such that for an input M ∈ D and each i ∈ [n],

[fA(M)]i =

m∑
j=1

m∑
k=1

(Ai)j,k ·Mj,k = Tr
(
AT

i M
)

(1)

fA is the hash function used to sample the bolt. It maps matrices to vectors.
[fA(M)]i is the dot product of Ai’s entries with M’s entries. To take the dot
product of two matrices, we unfurl the entries of each matrix into a vector
and dot the vectors together. This procedure is captured by (1).

◦ Let |E〉 be the lightning bolt, which is an unclonable state.

Setup

Setup samples a verification trapdoor R and a hash function fA. fA is chosen
so that RTR is in the kernel of fA, a fact that will be useful in Ver.
Setup

1. Sample R ∈R Ze×m
q . R is the verification trapdoor.

2. Choose A such that R ·Ai ·RT = 0, ∀i ∈ [n], and no Ai is a linear combi-
nation of the others. The purpose of this step is to ensure that RTR is in
the kernel of fA.

3. Publish R, A, and the parameters n,m, q, d, e, k.

Note that the space of m×m symmetric matrices A for which R ·A ·RT = 0
has dimension

(
m+1
2

)
−
(
e+1
2

)
= n, so A is a basis for this space.

Gen

Gen generates a bolt. The bolt is statistically close to a tensor product of k + 1
mini-bolts. A mini-bolt is a uniform superposition over the pre-image of y, and
all the mini-bolts that belong to a bolt have the same y-value.

Gen

1. Create
∣∣φ0〉, a uniform superposition over all sets of k + 1 rank-d matrices

in D that are mapped to the same y-value. Within a set of k + 1 matrices,
all matrices must map to the same value, but the various sets can map to
any value in the image of fA. [3] explains how this step is accomplished.
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2. Compute fA(
∣∣φ0〉) in superposition, and measure the function’s output, y.

After the measurement,
∣∣φ0〉 collapses to

∣∣φ1〉, a superposition over all sets
of k + 1 rank-d matrices in D that are pre-images of y.

3. Let |E〉 =
∣∣φ1〉; then output |E〉 and y.

Ver

Ver verifies a purported bolt. It takes as input a serial number y and a purported
bolt |P 〉, which comprises the purported mini-bolts,

∣∣P (1)
〉
, . . . ,

∣∣P (k+1)
〉
. Ver

checks each purported mini-bolt separately, and the bolt is accepted if all mini-
bolts pass and have the same serial number y.

Ver makes two measurements to verify the mini-bolt, one in the computa-
tional basis, the other in the Fourier basis. The computational basis test checks
that the eigenstates of the mini-bolt are indeed in the pre-image of y. The
Fourier basis test checks that the mini-bolt is a superposition over many eigen-
states, rather than a single eigenstate. See [3] for an explanation of why the test
works.
Ver

1. For each purported mini-bolt,
∣∣P (i)

〉
, let |M〉 be a generic computational-

basis eigenstate of
∣∣P (i)

〉
. Compute and measure whether: M ∈ D and

fA(M) = y.
2. Take the quantum Fourier transform of the state. Let |N〉 be a generic

Fourier-basis eigenstate. Measure whether rank(R ·N ·RT ) ≤ m− d.
3. Take the inverse quantum Fourier transform, and output the resulting state.

The mini-bolt passes if and only if our measurements in steps 1 and 2 passed.
4. The purported bolt passes if and only if all the mini-bolts passed relative to

the same y.

Crucially, the Fourier basis test uses the trapdoor R to check that the mini-
bolt has the right structure, and Ver does not work without R. However, R also
gives information about the kernel of fA, which we will use to break the hardness
assumption.

3 Analysis of the Security Proof

It is difficult to base the scheme’s security on any widespread computational
assumptions because superpositions of low-rank matrices are not well studied.
Instead, Zhandry proposed a plausible new hardness assumption (1) and showed
that if assumption 1 is true, then the proposed construction of quantum lightning
is secure.

Essentially, assumption 1 says that fA is (2k + 2)-multi-collision-resistant
(MCR) even when we publish the trapdoor R.

Assumption 1 ([3]). For some functions d, e, k in m for which n =
(
m+1
2

)
−(

e+1
2

)
< dm−

(
d
2

)
, kn ≤ dm−

(
d
2

)
< (2k + 1)n, and e > d, fA is (2k + 2)-multi-

collision-resistant, even if R is public.
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Before this work, assumption 1 was untested, but here we will show that it
is false.

Breaking Assumption 1

We will show that R allows us to construct more than 2k+ 2 low-rank matrices
that are in the pre-image of y. RTR is in the kernel of fA, so we use RTR
to construct many low-rank matrices that are in the kernel of fA. All of these
matrices hash to the same value: y = 0.

First, observe that RTR is in the kernel of fA:

fA(RTR)i = Tr
(
AT

i R
TR
)

= Tr
(
RAiR

T
)

= 0

Second, we will use the rows of R to construct a set of low-rank matrices in
the kernel of fA. Let the rows of R be {r1, . . . , re} ⊂ Zm

q , expressed as column

vectors. For any row rj , rjr
T
j is a symmetric matrix with rank = 1, so rjr

T
j ∈ D.

For any i ∈ [n], rTj ·Ai · rj = 0. This means that

fA(rjr
T
j )i = Tr

(
AT

i rjr
T
j

)
= Tr

(
rTj Airj

)
= 0

Therefore, rjr
T
j is in the kernel of fA.

Third, let K = {r1rT1 , . . . , rerTe } be the e matrices that we constructed. Then
take any linear combination of d of the matrices in K. The resulting matrix is
also a symmetric matrix of rank ≤ d that maps to 0. This procedure can be
easily modified to produce matrices in the pre-image of another output value.

Lastly, this procedure produces many more than 2k+2 colliding inputs. Due
to the restrictions on m,n, d, e, k, it is the case that k < d < e. It suffices to
find 4e colliding inputs because 2k + 2 < 2e+ 2 < 4e. Since R is random, with
overwhelming probability, R has rank e. Then the matrices in K are linearly
independent, and the number of matrices we can construct from this procedure
is on the order of

(
e
d

)
qd matrices, which is much more than 4e.

In summary, we’ve given a procedure that uses R to construct many (≥
2k + 2) inputs to fA that map to 0. Therefore assumption 1 is false.

Implications and Future Work

The proof of security given in [3] was based on assumption 1, and since assump-
tion 1 is false, the proof of security does not hold.

However we are optimistic that the construction can be patched (modified) to
rule out the attack on assumption 1 that we presented, and any similar attacks.
We would need to find an R that is useful for verification but that does not give
a matrix in the kernel of fA. Patching the construction is an open problem.
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Additionally, we wonder whether [3]’s existing construction can be proven
insecure with an attack similar to the one presented in this paper. After all, a
similar attempt at constructing quantum lightning can be proven insecure with
a similar attack. [3]’s scheme is similar to an attempted folklore construction
of quantum lightning based on the SIS problem ([3], section 1.1). Where [3]’s
construction uses matrices of low rank, the SIS-based construction uses vectors
of small norm. The SIS-based construction is insecure because the verification
trapdoor can be used to construct a superposition over short vectors in the
kernel of the hash function, and this state passes verification. Analogously, we
hypothesize that R could be used to create a superposition of low-rank matrices
in the kernel of fA that passes verification.
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