
A 2n/2-Time Algorithm for
√
n-SVP and√

n-Hermite SVP, and an Improved
Time-Approximation Tradeoff for (H)SVP

Abstract. We show a 2n/2+o(n)-time algorithm that, given as input a
basis of a lattice L ⊂ Rn, finds a (non-zero) vector in whose length is

at most Õ(
√
n) ·min{λ1(L), det(L)1/n}, where λ1(L) is the length of a

shortest non-zero lattice vector and det(L) is the lattice determinant.
Minkowski showed that λ1(L) ≤

√
ndet(L)1/n and that there exist lat-

tices with λ1(L) ≥ Ω(
√
n) ·det(L)1/n, so that our algorithm finds vectors

that are as short as possible relative to the determinant (up to a poly-
logarithmic factor).
The main technical contribution behind this result is new analysis of (a
simpler variant of) a 2n/2+o(n)-time algorithm from [ADRS15], which
was only previously known to solve less useful problems. To achieve this,
we rely crucially on the “reverse Minkowski theorem” (conjectured by
Dadush [DR16] and proven by [RS17]), which can be thought of as a
partial converse to the fact that λ1(L) ≤

√
ndet(L)1/n.

Previously, the fastest known algorithm for finding such a vector was
the 2.802n+o(n)-time algorithm due to [LWXZ11], which actually found
a non-zero lattice vector with length O(1) · λ1(L). Though we do not
show how to find lattice vectors with this length in time 2n/2+o(n), we
do show that our algorithm suffices for the most important application
of such algorithms: basis reduction. In particular, we show a modified
version of Gama and Nguyen’s slide-reduction algorithm [GN08], which
can be combined with the algorithm above to improve the time-length
tradeoff for shortest-vector algorithms in nearly all regimes—including
the regimes relevant to cryptography.

1 Introduction

A lattice L ⊂ Rn is the set of integer linear combinations

L := L(B) = {z1b1 + · · ·+ znbn : zi ∈ Z}

of linearly independent basis vectors B = (b1, . . . ,bn) ∈ Rn×n. We define the
length of a shortest non-zero vector in the lattice as λ1(L) := minx∈L 6=0

‖x‖.
(Throughout this paper, ‖ · ‖ is the Euclidean norm.)

The Shortest Vector Problem (SVP) is the computational search problem
whose input is a (basis for a) lattice L ⊆ Rn, and the goal is to output a shortest
non-zero vector y ∈ L with ‖y‖ = λ1(L). For δ ≥ 1, the δ-approximate variant
of SVP (δ-SVP) is the problem of finding a non-zero vector y ∈ L of length at
most δ · λ1(L) given a basis of L.



δ-SVP and its many relatives have found innumerable applications over the
past forty years. More recently, many cryptographic constructions have been dis-
covered whose security is based on the (worst-case) hardness of δ-SVP or closely
related lattice problems. See [Pei16] for a survey. Such lattice-based crypto-
graphic constructions are likely to be used in practice on massive scales (e.g.,
as part of the TLS protocol) in the not-too-distant future [NIS18], and it is
therefore crucial that we understand this problem as well as we can.

For most applications, it suffices to solve δ-SVP for superconstant approx-
imation factors. E.g., cryptanalysis typically requires δ = poly(n). However,
our best algorithms for δ-SVP work via (non-trivial) reductions to δ′-SVP for
much smaller δ′ over lattices with smaller rank, typically δ′ = 1 or δ′ = O(1).
E.g., one can reduce nc-SVP with rank n to O(1)-SVP with rank n/(c + 1)
for constant c ≥ 1 [GN08, ALNS20]. Such reductions are called basis reduction
algorithms [LLL82, Sch87, SE94].

Therefore, even if one is only interested in δ-approximate SVP for large ap-
proximation factors, algorithms for O(1)-SVP are still relevant. (We make little
distinction between exact SVP and O(1)-SVP in the introduction. Indeed, many
of the algorithm that we call O(1)-SVP algorithms actually solve exact SVP.)

1.1 Sieving for constant-factor-approximate SVP

There is a very long line of work (e.g., [Kan83, AKS01, NV08, PS09, MV13,
LWXZ11, WLW15, ADRS15, AS18, AUV19]) on this problem.

The fastest known algorithms for O(1)-SVP run in time 2O(n). With one
exception ([MV13]), all known algorithms with this running time are variants
of sieving algorithms. These algorithms work by sampling 2O(n) not-too-long
lattice vectors y1, . . . ,yM ∈ L from some nice distribution over the input lattice
L, and performing some kind of sieving procedure to obtain 2O(n) shorter vectors
x1, . . . ,xm ∈ L. They then perform the sieving procedure again on the xk, and
repeat this process many times.

The most natural sieving procedure was originally studied by Ajtai, Kumar,
and Sivakumar [AKS01]. This procedure simply takes xk := yi − yj ∈ L, where
i, j are chosen so that ‖yi − yj‖ ≤ (1− ε) min` ‖y`‖. In particular, the resulting
sieving algorithm clearly finds progressively shorter lattice vectors at each step.
So, it is trivial to show that this algorithm will eventually find a short lattice
vector. Unfortunately (and maddeningly), it seems very difficult to say nearly
anything else about the distribution of the vectors when this very simple sieving
technique is used, and in particular, while we know that the vectors must be
short, we do not know how to show that they are non-zero. [AKS01] used clever
tricks to modify the above procedure into one for which they could prove cor-
rectness, and the current state-of-the-art is a 20.802n-time algorithm for γ-SVP
for a sufficiently large constant γ > 1 [LWXZ11, WLW15, AUV19].

Another line of research [NV08, Laa15, MW16, BDGL16, Duc18] focuses
on improving the time complexity of practical SVP algorithms by introducing
various experimentally verified heuristics. These heuristic algorithms are thus
more directly relevant for cryptanalysis. The fastest known heuristic algorithm
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for solving SVP has time complexity (3/2)(n/2)+o(n), illustrating a large gap
between provably correct and heuristic algorithms. (In this regard, this work
contributes to the ultimate goal of closing this gap.)

In this work, we are more interested in the “sieving by averages” technique,
introduced in [ADRS15] to obtain a 2n+o(n)-time algorithm for exact SVP. This
sieving procedure takes xk := (yi+yj)/2 to be the average of two lattice vectors.
Of course, L is not closed under taking averages, so one must choose i, j so that
that (yi + yj)/2 ∈ L. This happens if and only if yi,yj lie in the same coset
of 2L, yi = yj mod 2L. Equivalently, the coordinates of yi and yj in the input
basis should have the same parities. So, these algorithms pair vectors according
to their cosets (and ignore all other information about the vectors) and take
their averages xk = (yi + yj)/2.

The analysis of these algorithms centers around the discrete Gaussian distri-
bution DL,s over a lattice, given by

Pr
X∼DL,s

[X = y] ∝ e−π‖y‖
2/s2

for a parameter s > 0 and any y ∈ L. When the starting vectors come from
this distribution, we are able to say quite a bit about the distribution of the
vectors at each step. (Intuitively, this is because this algorithm only uses algebraic
properties of the vectors—their cosets—and entirely ignores the geometry.) In
particular, [ADRS15] used a careful rejection sampling procedure to guarantee
that the vectors at each step are distributed exactly as DL,s for some parameter
s > 0. Specifically, in each step the parameter lowers by a factor of

√
2, which is

exactly what one would expect, taking intuition from the continuous Gaussian.
More closely related to this work is [AS18], which showed that this rejection
sampling procedure is actually unnecessary.

In addition to the above, [ADRS15, Ste17] also present a 2n/2+o(n)-time algo-
rithm that samples from DL,s as long as the parameter s > 0 is not too small. In
particular, we need s to be “large enough that DL,s looks like a continuous Gaus-
sian.” This algorithm is similar to the 2n+o(n)-time algorithms in that it starts
with independent discrete Gaussian vectors with some high parameter, and it
gradually lowers the parameter using a rejection sampling procedure together
with a procedure that takes the averages of pairs of vectors that lie in the same
coset modulo some sublattice (with index 2n/2+o(n)). But, it fails for smaller pa-
rameters because the rejection sampling procedure that it uses must throw out
too many vectors in this case. (In [Ste17], a different rejection sampling proce-
dure is used that never throws away too many vectors, but it is not clear how to
implement it in 2n/2+o(n) time for small parameters s <

√
2η1/2(L).) It was left

as an open question whether there is a suitable variant of this algorithm that
works for small parameters, which would lead to an algorithm to solve SVP in
2n/2+o(n) time. For example, perhaps we could show that the simple algorithm
that solves SVP without doing any rejection sampling at all (similar to what
was shown for the 2n+o(n)-time algorithm in [AS18]).
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1.2 Hermite SVP

We will also be interested in a variant of SVP called Hermite SVP (HSVP).
HSVP is defined in terms of the determinant det(L) := |det(B)| of a lattice L
with basis B. (Though a lattice can have many bases, one can check that |det(B)|
is the same for all such bases, so that this quantity is well-defined.) Minkowski’s
celebrated theorem says that λ1(L) ≤ O(

√
n)·det(L)1/n, and Hermite’s constant

γn = Θ(n) is the maximal value of λ1(L)2/ det(L)2/n. (Hermite SVP is of course
named in honor of Hermite and his study of γn. It is often alternatively called
Minkowski SVP.)

For δ ≥ 1, it is then natural to define δ-HSVP as the variant of SVP that asks
for any non-zero lattice vector x ∈ L such that ‖x‖ ≤ δ det(L)1/n. One typically
takes δ ≥ √γn ≥ Ω(

√
n), in which case the problem is total. In particular, there

is a trivial reduction from δ
√
γn-HSVP to δ-SVP. (There is also a non-trivial

reduction from δ2-SVP to δ-HSVP for δ ≥ √γn [Lov86].)
δ-HSVP is an important problem in its own right. In particular, the ran-

dom lattices most often used in cryptography typically satisfy λ1(L) ≥ Ω(
√
n) ·

det(L)1/n, so that for these lattices δ-HSVP is equivalent to O(δ/
√
n)-SVP. This

fact is quite useful as the best known basis reduction algorithms [GN08, MW16,
ALNS20] yield solutions to both δS-SVP and δH -HSVP with, e.g.,

δH := γ
n−1

2(k−1)

k ≈ kn/(2k) δS := γ
n−k
k−1

k ≈ kn/k−1 , (1)

when given access to an oracle for (exact) SVP in dimension k ≤ n/2. Notice
that δH is significantly better than the approximation factor

√
γnδS ≈

√
nkn/k−1

that one obtains from the trivial reduction to δS-SVP. (Furthermore, the approx-
imation factor δH in Eq. (1) is achieved even for n/2 < k ≤ n.)

In fact, it is easy to check that we will achieve the same value of δH if the
reduction is instantiated with a

√
γk-HSVP oracle in dimension k, rather than an

SVP oracle. More surprisingly, a careful reading of the proofs in [GN08, ALNS20]
shows that a

√
γk-HSVP oracle is “almost sufficient” to even solve δS-SVP. (We

make this statement a bit more precise below.)

1.3 Our results

Our main contribution is a simplified version of the 2n/2+o(n)-time algorithm
from [ADRS15] and a novel analysis of the algorithm that gives an approximation
algorithm for both SVP and HSVP.

Theorem 1.1 (Informal, approximation algorithm for (H)SVP). There is a

2n/2+o(n)-time algorithm that solves δ-SVP and δ-HSVP for δ ≤ Õ(
√
n).

Notice that this algorithm almost achieves the best possible approximation
factor δ for HSVP since there exists a family of lattices for which λ1(L) ≥
Ω(
√
ndet(L)1/n) (i.e., γn ≥ Ω(n)). So, δ is optimal for HSVP up to a polyloga-

rithmic factor.
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Problem Approximation factor Previous Best This work

SVP

Exact 2n [*] [ADRS15] —
O(1) 20.802n [*] [WLW15] —

nc for c ∈ (0.5, 0.802] 2
0.401n
c [ALNS20] 2

n
2 [*]

nc for c ∈ (0.802, 1] 2
0.401n
c [ALNS20] —

nc for c > 1 2
0.802n
c+1 [ALNS20] 2

n
2c+1.24

HSVP

√
n 20.802n [*] [WLW15] 2

n
2 [*]

nc for c ≥ 1 2
0.401n
c [ALNS20] 2

n
4c

Table 1. Proven running times for solving (H)SVP. We mark results that do
not use basis reduction with [*]. We omit 2o(n) factors in the running time, and
except in the first two rows, polylogarithmic factors in the approximation factor.

As far as we know, this algorithm might actually solve exact or near-exact
SVP, but we do not know how to prove this. However, by adapting the basis
reduction algorithms of [GN08, ALNS20], we show that Theorem 1.1 is nearly
as good (when combined with known results) as a 2k/2-time algorithm for exact
SVP in k dimensions, in the sense that we can already nearly match Eq. (1) in
time 2k/2+o(k) with this.

In slightly more detail, basis reduction procedures break the input basis vec-
tors b1, . . . ,bn into blocks bi+1, . . . ,bi+k of length k. They repeatedly call their
oracle on (projections of) the lattices generated by these blocks and use the result
to update the basis vectors. We observe that the procedures in [GN08, ALNS20]
only need to use an SVP oracle on the last block bn−k+1, . . . ,bn. For all other
blocks, an HSVP oracle suffices. Since we now have a faster algorithm for HSVP
than we do for SVP, we make this last block a bit smaller than the others, so
that we can solve (near-exact) SVP on the last block in time 2k/2+o(k).

When we apply the 20.802n-time algorithm for O(1)-SVP from [LWXZ11,
WLW15, AUV19] to instantiate this idea, it yields the following result, which
gives the fastest known algorithm for δ-SVP for all δ & nc.

Theorem 1.2 (Informal). There is a (2k/2+o(k) · poly(n))-time algorithm that
solves δ∗H-HSVP with

δ∗H ≈ kn/(2k) ,

for k ≤ .99n and

δ∗S ≈ k(n/k)−0.62 ,

for k ≤ n/1.63.

Notice that Theorem 1.2 matches Eq. (1) with block size k exactly for δH ,
and up to a factor of k0.37 for δS . This small loss in approximation factor comes
from the fact that our last block is slightly smaller than the other blocks.

Together, Theorems 1.1 and 1.2 give the fastest proven running times for
nc-HSVP for all c > 1/2 and for nc-SVP for all c > 1, as well as c ∈ (1/2, 0.802).
Table 1 summarizes the current state of the art.

5



1.4 Our techniques

Summing vectors over a tower of lattices Like the 2n/2+o(n)-time algorithm
in [ADRS15], our algorithm for Õ(

√
n)-(H)SVP constructs a tower of lattices

L0 ⊃ L1 ⊃ · · · ⊃ L` = L such that for every i ≥ 1, 2Li−1 ⊂ Li. The idea
of using a tower of lattices was independently developed in [BGJ14] (see also
[GINX16]) for heuristic algorithms. The index of Li over Li−1 is 2α for an integer
α = n/2 + o(n), and ` = o(n). For the purpose of illustrating our ideas, we make
a simplifying assumption here that `α is an integer multiple of n, and hence
L0 = L/2α`/n is a scalar multiple of L.

And, as in [ADRS15], we start by sampling X1, . . . ,XN ∈ L0 for N = 2α+o(n)

from DL0,s. This can be done efficiently using known techniques, as long as s is
large relative to, e.g., the length of the shortest basis of L0 [GPV08, BLP+13].
Since L0 = L/2α`/n, the parameter s can still be significantly smaller than, e.g.,
λ1(L). In particular, we can essentially take s ≤ poly(n)λ1(L)/2α`/n.

The algorithm then takes disjoint pairs of vectors that are in the same coset
of L0/L1, and adds the pairs together. Since 2L0 ⊂ L1, for any such pair Xi,Xi,
Yk = Xi + Xj is in L1. (This adding is analogous to the averaging procedure
from [ADRS15, AS18] described above. In that case, L1 = 2L0, so that it is
natural to divide vectors in L by two, while here adding seems more natural.)
We thus obtain approximately N/2 vectors in L1 (up to the loss due to the
vectors that could not be paired), and repeat this procedure many times, until
finally we obtain vectors in L` = L, each the sum of 2` of the original Xi.

To prove correctness, we need to prove that with high probability some of
these vectors will be both short and non-zero. It is actually relatively easy to
show that the vectors are short—at least in expectation. To prove this, we first
use the fact that the expected squared norm of the Xi is bounded by ns2 (which
is what one would expect from the continuous Gaussian distribution). And, the
original Xi are distributed symmetrically, i.e., Xi is as likely to equal −x as it
is to equal x).

Furthermore, our pairing procedure is symmetric, i.e., if we were to replace Xi

with −Xi, the pairing procedure would behave identically. (This is true precisely
because 2L0 ⊂ L1—we are using the fact that x = −x mod L1 for any x ∈ L0.)
This implies that

E[〈Xi,Xj〉 | Ei,j ] = E[〈Xi,−Xj〉 | Ei,j ] = 0 ,

where Ei,j is the event that Xi is paired with Xj . Therefore, E[‖Xi+Xj‖2 | Ei,j ]
is equal to

E[‖Xi‖2 | Ei,j ] + E[‖Xj‖2 | Ei,j ] + 2E[〈Xi,Xj〉 | Ei,j ] ≈ 2E[‖Xi‖2] .

The same argument works at every step of the algorithm. So, (if we ignore the
subtle distinction between E[‖Xi‖2 | Ei,j ] and E[‖Xi‖2]), we see that our final
vectors have expected squared norm

2` E[‖Xi‖2] ≤ 2`ns2 ≤ poly(n)2`(1−2αn) · λ1(L)2 . (2)
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By taking, e.g., α = n/2 + n/ log n < n + o(n) and ` = log2 n, we see that we
can make this expectation small relative to λ1(L).

The difficulty, then, is “only” to show that the distribution of the final vectors
is not heavily concentrated on zero. Of course, we can’t hope for this to be true
if, e.g., the expectation in Eq. (2) is much smaller than λ1(L)2. And, as we will
discuss below, if we choose α and ` so that this expectation is sufficiently large,
then techniques from prior work can show that the probability of zero is low.
Our challenge is therefore to bound the probability of zero for the largest choices
of α and ` (and therefore the lowest expectation in Eq. (2)) that we can manage.

Gaussians over unknown sublattices Peikert and Micciancio (building on
prior work) showed what they called a “convolution theorem” for discrete Gaus-
sians. Their theorem said that the sum of discrete Gaussian vectors is statistically
close to a discrete Gaussian (with parameter increased by a factor of

√
2), pro-

vided that the parameter s is a bit larger than the smoothing parameter η(L)
of the lattice L [MP13]. This (extremely important) parameter η(L), was intro-
duced by Micciancio and Regev [MR07], and has a rather technical (and elegant)
definition. (See Section 2.4.) Intuitively, η(L) is such that for any s > η(L), DL,s
“looks like a continuous Gaussian distribution.” E.g., for s > η(L), the moments
of the discrete Gaussian distribution are quite close to the moments of the con-
tinuous Gaussian distribution (with the same parameter).

In fact, [MP13] showed a convolution theorem for lattice cosets, not just lat-
tices, i.e., the sum of a vector sampled from coset DL+t1,s and a vector sampled
from DL+t2,s yields a vector with a distribution that is statistically close to
DL+t1+t2,

√
2s. Since our algorithm sums vectors sampled from a discrete Gaus-

sian over L0, conditioned on their cosets modulo L1, it is effectively summing
discrete Gaussians over cosets of L1. So, as long as we stay above the smoothing
parameter of L1 ⊃ L, our vectors will be statistically close to discrete Gaussians,
allowing us to easily bound the probability of zero.

However, [ADRS15] already showed how to use a variant of this algorithm
to obtain samples from exactly the discrete Gaussian above smoothing. And,
more generally, there is a long line of work that uses samples from the discrete
Gaussian above smoothing to find “short vectors” from a lattice, but the length
of these short vectors is always proportional to η(L). The problem is that in
general η(L) can be arbitrarily larger than λ1(L) and det(L)1/n. (To see this,
consider the two-dimensional lattice generated by (T, 0), (0, 1/T ) for large T ,
which has η(L) ≈ T , λ1(L) = 1/T and det(L) = 1.) So, this seems useless for
solving (H)SVP, instead yielding a solution to another variant of SVP called
SIVP.1

1 It is not known how to use an SIVP oracle for basis reduction, which makes it
significantly less useful than SVP. [MR07, MP13] and other works used these ideas
to reduce SIVP to the problem of breaking a certain cryptosystem, in order to argue
that the cryptosystem is secure. They were therefore primarily interested in SIVP
as an example of a hard lattice problem, rather than as a problem that one might
actually wish to solve.

7



Our solution is essentially to apply these ideas from [MP13] to an unknown
sublattice L′ ⊆ L. (Here, one should imagine a sublattice generated by fewer
than n vectors. Jumping ahead a bit, the reader might consider the example
L′ = Zv = {0,±v,±2v, . . . , } the rank-one sublattice generated by v, shortest
non-zero vector in the lattice.) Indeed, the discrete Gaussian over L, DL,s, can
be viewed as a mixture of discrete Gaussians over L′, DL,s = DL′+C,s, where
C ∈ L/L′ is some random variable over cosets of L′. (Put another way, one
could obtain a sample from DL,s by first sampling a coset C ∈ L/L′ from some
appropriately chosen distribution and then sampling from DL′+C,s.)

The basic observation behind our analysis is that we can now apply (a suitable
variant of) [MP13]’s convolution theorem in order to see that the sum of two
mixtures of Gaussians over L′, X1,X2 ∼ DL′+C,s, yields a new mixture of
Gaussians DL′+C′,

√
2s for some C′, provided that s is sufficiently large relative

to η(L′).
Ignoring many technical details, this shows that our algorithm can be used

to output a distribution of the form DL′+C,s for some random variable C ∈
L/L′ provided that s � η(L′). Crucially, we only need to consider L′ in the
analysis; the algorithm does not need to know what L′ is for this to work.
Furthermore, we do not care at all about the distribution of C! We already
know that our algorithm samples from a distribution that is short in expectation
(by the argument above), so that the only thing we need from the distribution
DL′+C,s is that it is not zero too often. Indeed, when C is not the zero coset
(i.e., C /∈ L′), then DL′+C,s is never zero, and when C is zero, then we get a
sample from DL′,s for s� η(L), in which case well-known techniques imply that
we are unlikely to get zero.

Smooth sublattices So, in order to prove that our algorithm finds short vec-
tors, it remains to show that there exists some sublattice L′ ⊆ L with low
smoothing parameter—a “smooth sublattice.” In more detail, our algorithm will
find a non-zero vector with length less than

√
n · η(L′) for any sublattice L′.

Indeed, as one might guess, taking L′ = Zv = {0,±v,±2v, . . . , } to be the lat-
tice generated by a shortest non-zero vector v, we have η(L′) = polylog(n)‖v‖ =
polylog(n)λ1(L) (where the polylogarithmic factor arises because of“how smooth

we need L′ to be”). This immediately yields our Õ(
√
n)-SVP algorithm.

To solve Õ(
√
n)-HSVP, we must argue that every lattice has a sublattice

L′ ⊆ L with η(L′) ≤ polylog(n) · det(L)1/n. In fact, for very different reasons,
Dadush conjectured exactly this statement (phrased slightly differently), calling
it a “reverse Minkowski conjecture” [DR16]. (The reason for this name might
not be clear in this context, but one can show that this is a partial converse
to Minkowski’s theorem.) Later, Regev and Stephens-Davidowitz proved the
conjecture [RS17]. Our HSVP result then follows from this rather heavy hammer.

1.5 Open questions and directions for future work

We leave one obvious open question: Does our algorithm (or some variant) solve
γ-SVP for a better approximation factor? It is clear that our current analysis
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cannot hope to do better than δ ≈
√
n, but we see no fundamental reason why

the algorithm cannot achieve, say, δ = polylog(n) or even δ = 1! (Indeed, we
have been trying to prove something like this for roughly five years.)

We think that even a negative answer to this question would also be interest-
ing. In particular, it is not currently clear whether our algorithm is “fundamen-
tally an HSVP algorithm.” For example, if one could show that our algorithm
fails to output vectors of length polylog(n) · λ1(L) for some family of input lat-
tices L, then this would be rather surprising. Perhaps such a result could suggest
a true algorithmic separation between the two problems.

2 Preliminaries

We write log for the base-two logarithm. We use the notation a = 1 ± δ and
a = e±δ to denote the statements 1 − δ ≤ a ≤ 1 + δ and e−δ ≤ a ≤ eδ,
respectively.

Definition 2.1. We say that a distribution D̂ is δ-similar to another distribution
D if for all x in the support of D, we have

Pr
X∼D̂

[X = x] = e±δ · Pr
X∼D

[X = x] .

2.1 Probability

The following inequality gives a concentration result for the values of (sub-
)martingales that have bounded differences.

Lemma 2.2 ([AS04, Azuma’s inequality, Chapter 7]). Let X0, X1, . . . be a set
of random variables that form a discrete-time sub-martingale, i.e., for all n ≥ 0,

E[Xn+1 |X1, . . . , Xn] ≥ Xn .

If for all n ≥ 0, |Xn −Xn−1| ≤ c, then for all integers N and positive real t,

Pr[XN −X0 ≤ −t] ≤ exp

(
−t2

2Nc2

)
.

We will need the following corollary of the above inequality.

Corollary 2.3. Let α ∈ (0, 1), and let Y1, Y2, Y3, . . . be random variables in [0, 1]
such that for all n ≥ 0

E[Yn+1|Y1, . . . , Yn] ≥ α .

Then, for all positive integers N and positive real t,

Pr[

N∑
i=1

Yi ≤ Nα− t] ≤ exp

(
−t2

2N

)
.
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Proof. Let X0 = 0, and for all i ≥ 1,

Xi := Xi−1 + Yi − α =

i∑
j=1

Yi − i · α .

The statement then follows immediately from Lemma 2.2.

2.2 Lattices

A lattice L ⊂ Rn is the set of integer linear combinations

L := L(B) = {z1b1 + · · ·+ zkbk : zi ∈ Z}

of linearly independent basis vectors B = (b1, . . . ,bk) ∈ Rn×k. We call k the
rank of the lattice. Given a lattice L, the basis is not unique. For any lattice
L, we use rank(L) to denote its rank. We use λ1(L) to denote the length of the
shortest non-zero vector in L, and more generally, for 1 ≤ i ≤ k,

λi(L) := min{r : dim span({y ∈ L : ‖y‖ ≤ r}) ≥ i} .

For any lattice L ⊂ Rn, its dual lattice L∗ is defined to be the set of vectors
in the span of L that have integer inner products with all vectors in L. More
formally:

L∗ = {x ∈ span(L) : ∀y ∈ L, 〈x,y〉 ∈ Z} .

We often assume without loss of generality that the lattice is full rank, i.e.,
that n = k, by identifying span(L) with Rk. However, we do often work with
sublattices L′ ⊆ L with rank(L′) < rank(L).

For any sublattice L′ ⊆ L, L/L′ denotes the set of cosets which are transla-
tions of L′ by vectors in L. In particular, any coset can be denoted as L′ + c for
c ∈ L. When there is no ambiguity, we drop the L′ and use c to denote a coset.

2.3 The discrete Gaussian Distribution

For any parameter s > 0, we define Gaussian mass function ρs : Rn → R to be:

ρs(x) = exp
(
− π‖x‖2

s2

)
,

and for any discrete set A ⊂ Rn, its Gaussian mass is defined as ρs(A) =∑
x∈A ρs(x).
For a lattice L ⊂ Rn, shift t ∈ Rn, and parameter s > 0, we have the

following convenient formula for the Gaussian mass of the lattice coset L + t,
which follows from the Poisson Summation Formula

ρs(L+ t) =
sn

det(L)
·
∑

w∈L∗
ρ1/s(w) cos(2π〈w, t〉) . (3)

In particular, for the special case t = 0, we have ρs(L) = snρ1/s(L∗)/ det(L).
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Definition 2.4. For a lattice L ⊂ Rn, u ∈ Rn, the discrete Gaussian distri-
bution DL+u,s over L + u with parameter s > 0 is defined as follows. For any
x ∈ L+ u,

Pr
X∼DL+u,s

[X = x] =
ρs(x)

ρs(L+ u)
.

We will need the following result about the discrete Gaussian distribution.

Lemma 2.5 ([DRS14, Lemma 2.13]). For any lattice L ⊂ Rn, s > 0, u ⊂ Rn,
and t > 1√

2π
,

Pr
X∼DL+u,s

(‖X‖ > ts
√
n) <

ρs(L)

ρs(L+ u)

(√
2πet2 exp(−πt2)

)n
.

2.4 The smoothing parameter

Definition 2.6. For a lattice L ⊂ Rn and ε > 0, the smoothing parameter ηε(L)
is defined as the unique value that satisfies ρ1/ηε(L)(L∗\{0}) = ε.

We will often use the basic fact that ηε(αL) = αηε(L) for any α > 0 and
ηε(L′) ≥ ηε(L) for any full-rank sublattice L′ ⊆ L.

Claim 2.7 ([MR07, Lemma 3.3]). For any ε ∈ (0, 1/2), we have

ηε(Z) ≤
√

log(1/ε) .

We will need the following simple results, which follows immediately from
Eq. (3).

Lemma 2.8 ([Reg09, Claim 3.8]). For any lattice L, s ≥ ηε(L), and any vectors
c1, c2, we have that

1− ε
1 + ε

≤ ρs(L+ c1)

ρs(L+ c2)
≤ 1 + ε

1− ε
.

Thus, for ε < 1/3,

e−3ε ≤ ρs(L+ c1)

ρs(L+ c2)
≤ e3ε .

We prove the following statement.

Theorem 2.9. For any lattice L ⊂ Rn with rank k ≥ 20,

η1/2(L) ≥ λk(L)/
√
k .

Proof. If L is not a full-rank lattice, then we can project to a subspace given
by the span of L. So, without loss of generality, we assume that L is a full-rank
lattice, i.e., k = n.

11



Suppose λn(L) >
√
nη1/2(L). Then there exists a vector u ∈ Rn such that

dist(u,L) > 1
2

√
nη1/2(L). Then, using Lemma 2.5 with t = 1/2, s = η1/2(L), we

have

1 = Pr
X∼DL+u,η1/2(L)

[
‖X‖ > st

√
n
]

<
ρs(L)

ρs(L+ u)

(√
2πet2 exp(−πt2)

)n
≤ 1 + 1/2

1− 1/2
(
√
πe/2 · e−π/4)n using Lemma 2.8

≤ 3 · (0.943)n

< 1 since k = n ≥ 20 ,

which is a contradiction.

Claim 2.10. For any lattice L ⊂ Rn and any parameters s ≥ s′ ≥ η1/2(L),

ρs(L)

ρs′(L)
≥ 2s

3s′
.

Proof. By the Poisson Summation Formula (Eq. (3)), we have

ρs(L) = sn ·
ρ1/s(L∗)
det(L)

≥ sn/det(L) ,

and similarly,

ρs′(L) = (s′)n ·
ρ1/s′(L∗)
det(L)

≤ 3(s′)n/(2 det(L)) ,

since ρ1/s′(L∗) ≤ 3/2 for s′ ≥ η1/2(L). Combining the two inequalities gives
ρs(L) ≥ 2(s/s′)n/3 ≥ 2(s/s′)/3, as needed.

Claim 2.11. For any lattice L ⊂ Rn and any s > 0,

E
X∼DL,s

[‖X‖2] ≤ ns2

2π
.

Lemma 2.12. For s ≥ ηε(L), and any real factor k ≥ 1, ks ≥ ηεk2 (L).

Proof. ∑
w∈L∗\{0}

ρ1/(ks)(w) =
∑

w∈L∗\{0}

e−π‖w‖k
2s2

=
∑

w∈L∗\{0}

ρ1/s(w)k
2

≤
( ∑

w∈L∗\{0}

ρ1/s(w)
)k2

≤ εk
2

.
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Corollary 2.13. For any lattice L ⊂ Rn and ε ∈ (0, 1/2), ηε(L) ≤
√

log(1/ε) ·
η1/2(L).

Proof. Let k =
√

log(1/ε) and thus ( 1
2 )k

2

= ε. By Lemma 2.12, kη1/2(L) ≥
ηε(L).

We will need the following useful lemma concerning the convolution of two
discrete Gaussian distributions. See [GMPW20] for a very general result of this
form (and a list of similar results). Our lemma differs from those in [GMPW20]
and elsewhere in that we are interested in a stronger notion of statistical close-
ness: point-wise multiplicative distance, rather than statistical distance. One can
check that this stronger variant follows from the proofs in [GMPW20], but we
give a separate proof for completeness.

Lemma 2.14. For any lattice L ⊂ Rn, ε ∈ (0, 1/3), parameter s ≥
√

2ηε(L),
and shifts t1, t2 ∈ Rn, let Xi ∼ DL+ti,s be independent random variables. Then
the distribution of X1 + X2 is 6ε-similar to DL+t1+t2,

√
2s.

Proof. Let y ∈ L+ t1 + t2. We have

Pr[X1 + X2 = y] =
1

ρs(L+ t1)ρs(L+ t2)

∑
x∈L+t1

exp(−π(‖x‖2 + ‖y − x‖2)/s2)

=
1

ρs(L+ t1)ρs(L+ t2)

∑
x∈L+t1

exp(−π(‖y‖2/2 + ‖2x− y‖2/2)/s2)

=
ρ√2s(y)

ρs(L+ t1)ρs(L+ t2)
ρs/
√
2(L+ t1 − y/2)

= e±3ερ√2s(y) ·
ρs/
√
2(L)

ρs(L+ t1)ρs(L+ t2)
,

where the last step follows from Lemma 2.8. By applying this for all y′ ∈ L +
t1 + t2, we see that

Pr[X1 + X2 = y] = e±3ε ·
ρ√2s(y)∑

y′∈L+t1+t2
χy′ρ√2s(y

′)

for some χy′ = e±3ε. Therefore,

Pr[X1 + X2 = y] = e±6ε ·
ρ√2s(y)

ρ√2s(L+ t1 + t2)
,

as needed.

2.5 Lattice problems

In this paper, we study the algorithms for the following lattice problems.

13



Definition 2.15 (r-HSVP). For an approximation factor r := r(n) ≥ 1, the r-
Hermite Approximate Shortest Vector Problem (r-HSVP) is defined as follows:
Given a basis B for a lattice L ⊂ Rn, the goal is to output a vector x ∈ L\{0}
with ‖x‖ ≤ r · det(L)1/n.

Definition 2.16 (r-SVP). For an approximation factor r := r(n) ≥ 1, the r-
Shortest Vector Problem (r-SVP) is defined as follows: Given a basis B for a
lattice L ⊂ Rn, the goal is to output a vector x ∈ L\{0} with ‖x‖ ≤ r · λ1(L).

It will be convenient to define a generalized version of SVP, of which HSVP
and SVP are special cases.

Definition 2.17 (η-GSVP). For a function η mapping lattices to positive real
numbers, the η-Generalized Shortest Vector Problem η-GSVP is defined as fol-
lows: Given a basis B for a lattice L ⊂ Rn and a length bound d ≥ η(L), the
goal is to output a vector x ∈ L\{0} with ‖x‖ ≤ d.

To recover r-SVP or r′-HSVP, we can take η(L) = rλ1(L) or η(L) = r′ det(L)1/n

respectively. Below, we will set η to be a new parameter, which in particular will
satisfy η(L) ≤ Õ(

√
n) ·min{λ1(L),det(L)1/n}.

2.6 Gram-Schmidt orthogonalization

For any given basis B = (b1, . . . ,bn) ∈ Rm×n, we define the sequence of pro-
jections πi := π{b1,...,bi−1}⊥ where πW⊥ refers to the orthogonal projection onto
the subspace orthogonal to W . As in [GN08, ALNS20], we use B[i,j] to denote
the projected block (πi(bi), πi(bi+1), . . . , πi(bj)).

The Gram-Schmidt orthogonalization (GSO) B∗ := (b∗1, . . . ,b
∗
n) of a basis

B is as follows: for all i ∈ [1, n],b∗i := πi(bi) = bi −
∑
j<i µi,jb

∗
j , where µi,j =

〈bi,b∗j 〉/‖b∗j‖2.

Theorem 2.18 ([GPV08, Lemma 3.1]). For any lattice L ⊂ Rn with basis
B := (b1, . . . ,bn) and any ε ∈ (0, 1/2),

ηε(L) ≤
√

log(n/ε) ·max
i
‖b∗i ‖ .

For γ ≥ 1, a basis is γ-HKZ-reduced if for all i ∈ {1, . . . , n}, ‖b∗i ‖ ≤ γ ·
λ1(πi(L)).

We say that a basis B is size-reduced if it satisfies the following condition:
for all i 6= j, |µi,j | ≤ 1

2 . A size-reduced basis B satisfies that ‖B‖ ≤
√
n‖B∗‖,

where ‖B‖ is the length of the longest basis vector in B. It is known that we
can efficiently transform any basis into a size-reduced basis while maintaining
the lattice generated by the basis L(B) as well as the GSO B∗. We call such
operation size reduction.
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2.7 Some lattice algorithms

Theorem 2.19 ([LLL82]). Given a basis B ∈ Qn×n, there is an algorithm that
computes a vector x ∈ L(B) of length at most 2n/2 · λ1(L(B)) in polynomial
time.

We will prove a strictly stronger result than the theorem below in the sequel,
but this weaker result will still prove useful.

Theorem 2.20 ([ADRS15, GN08]). There is a 2r+o(r) · poly(n)-time algorithm
that takes as input a (basis for a) lattice L ⊂ Rn and 2 ≤ r ≤ n and outputs a
γ-HKZ-reduced basis for L, where γ := rn/r.

Theorem 2.21 ([BLP+13]). There is a probabilistic polynomial-time algorithm
that takes as input a basis B for an n-dimensional lattice L ⊂ Rn, a parameter
s ≥ ‖B∗‖

√
10 log n and outputs a vector that is distributed as DL,s, where ‖B∗‖

is the length of the longest vector in the Gram-Schmidt orthogonalization of B.

2.8 Lattice basis reduction

LLL reduction. A basis B = (b1, . . . ,bn) is ε-LLL-reduced [LLL82] for ε ∈ [0, 1]
if it is a size-reduced basis and for 1 ≤ i < n, the projected block B[i,i+1] satisfies
Lovász’s condition: ‖b∗i ‖2 ≤ (1 + ε)‖µi,i−1b∗i−1 + b∗i ‖2 . For ε ≥ 1/poly(n), an
ε-LLL-reduced basis for any given lattice can be computed efficiently.

SVP reduction and its extensions. Let B = (b1, . . . ,bn) be a basis of a lattice
L and δ ≥ 1 be approximation factors.

We say that B is δ-SVP-reduced if ‖b1‖ ≤ δ ·λ1(L). Similarly, we say that B
is δ-HSVP-reduced if ‖b1‖ ≤ δ · vol(L)1/n.

B is δ-DHSVP-reduced [GN08, ALNS20] (where D stands for dual) if the
reversed dual basis B−s is δ-HSVP-reduced and it implies that

vol(L)1/n ≤ δ · ‖b∗n‖ .

Given a δ-(H)SVP oracle on lattices with rank at most n, we can efficiently
compute a δ-(H)SVP-reduced basis or a δ-D(H)SVP-reduced basis for any rank
n lattice L ⊆ Zm. Furthermore, this also applies for a projected block of basis.
More specifically, with access to a δ-(H)SVP oracle for lattices with rank at most
k, given any basis B = (b1, . . . ,bn) ∈ Zm×n of L and an index i ∈ [1, n− k+ 1],
we can efficiently compute a size-reduced basis

C = (b1, . . . ,bi−1, ci, . . . , ci+k−1,bi+k, . . . ,bn)

such that C is a basis for L and the projected block C[i,i+k−1] is δ-(H)SVP-
reduced or δ-D(H)SVP reduced. Moreover, we note the following:
– If C[i,i+k−1] is δ-(H)SVP-reduced, the procedures in [GN08, MW16] equipped

with δ-(H)SVP-oracle ensure that ‖C∗‖ ≤ ‖B∗‖;
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– If C[i,i+k−1] is δ-D(H)SVP-reduced, the inherent LLL reduction implies ‖C∗‖ ≤
2k‖B∗‖. Indeed, the GSO of C[i,i+k−1] satisfies

‖(C[i,i+k−1])
∗‖ ≤ 2k/2λk(L(C[i,i+k−1]))

(by [LLL82, p. 518, Line 27]) and λk(L(C[i,i+k−1])) ≤
√
k‖B∗‖. Here, λk(·)

denotes the k-th minimum.
Therefore, with size reduction, performing poly(n, log ‖B‖) many such oper-

ations will increase ‖B∗‖ and hence ‖B‖ by at most a factor of 2poly(n,log ‖B‖). If
the number of operations is bounded by poly(n, log ‖B‖), all intermediate steps
and the total running time (excluding oracle queries) will be polynomial in the
initial input size; Details can be found in e.g., [GN08, LN14]. Hence, we will
focus on bounding the number of calls to such block reduction subprocedures
when we analyze the running time of basis reduction algorithms.

Twin reduction The following notion of twin reduction and the subsequent fact
comes from [GN08, ALNS20].

A basis B = (b1, . . . ,bd+1) is δ-twin-reduced if B[1,d] is δ-HSVP-reduced and
B[2,d+1] is δ-DHSVP-reduced.

Fact 2.22. If B := (b1, . . . ,bd+1) ∈ Rm×(d+1) is δ-twin-reduced, then

‖b1‖ ≤ δ2d/(d−1)‖b∗d+1‖ . (4)

2.9 The DBKZ algorithm

We augment Micciancio and Walter’s elegant DBKZ algorithm [MW16] with
a δH -HSVP-oracle instead of an SVP-oracle since the SVP-oracle is used as a√
γk-HSVP oracle everywhere in their algorithm. See [ALNS20] for a high-level

sketch of the proof.

Algorithm 1 The Micciancio-Walter DBKZ algorithm [MW16, Algorithm 1]

Input: A block size k ≥ 2, number of tours N , a basis B = (b1, · · · ,bn) ∈ Zm×n, and
access to a δH -HSVP oracle for lattices with rank k.

Output: A new basis of L(B).
1: for ` = 1 to N do
2: for i = 1 to n− k do
3: δH -HSVP-reduce B[i,i+k−1].
4: end for
5: for j = n− k + 1 to 1 do
6: δH -DHSVP-reduce B[j,j+k−1]

7: end for
8: end for
9: δH -HSVP-reduce B[1,k].

10: return B.
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Theorem 2.23. For integers n > k ≥ 2, an approximation factor 1 ≤ δH ≤ 2k,
an input basis B0 ∈ Zm×n for a lattice L ⊆ Zm, and N := d(2n2/(k − 1)2) ·
log(n log(5‖B0‖)/ε)e for some ε ∈ [2−poly(n), 1], Algorithm 1 outputs a basis B
of L in polynomial time (excluding oracle queries) such that

‖b1‖ ≤ (1 + ε) · (δH)
n−1
(k−1) vol(L)1/n ,

by making N · (2n − 2k + 1) + 1 calls to the δH-HSVP oracle for lattices with
rank k.

3 Smooth sublattices and ηε(L)

The analysis of our algorithm relies on the existence of a smooth sublattice L′ ⊆ L
of our input lattice L ⊂ Rn, i.e., a sublattice L′ such that ηε(L′) is small (relative
to, say, λ1(L) or det(L)1/n). To that end, for ε > 0 and a lattice L ⊂ Rn, we
define

ηε(L) := min
L′⊆L

ηε(L′) ,

where the minimum is taken over all sublattices L′ ⊆ L. (It is not hard to see
that the minimum is in fact achieved. Notice that any minimizer L′ must be a
primitive sublattice, i.e., L′ = L ∩ span(L′).)

We will now prove that ηε(L) is bounded both in terms of λ1(L) and det(L).

Lemma 3.1. For any lattice L ⊂ Rn and any ε ∈ (0, 1/2),

λ1(L)/
√
n ≤ ηε(L) ≤

√
log(1/ε) ·min{λ1(L), 10(log n+ 2) det(L)1/n} .

The bounds in terms of λ1(L) are more-or-less trivial. The bound ηε(L) .√
log(1/ε) log ndet(L)1/n follows from the main result in [RS17] (originally con-

jectured by Dadush [DR16]), which is called a “reverse Minkowski theorem” and
which we present below. (In fact, Lemma 3.1 is essentially equivalent to the main
result in [RS17].)

Definition 3.2. A lattice L ⊂ Rn is a stable lattice if det(L) = 1 and det(L′) ≥
1 for all lattices L′ ⊆ L.

Theorem 3.3 ([RS17]). For any stable lattice L ⊂ Rn, η1/2(L) ≤ 10(log n+ 2).

Proof of Lemma 3.1. The lower bound on ηε(L) follows immediately from The-
orem 2.9 together with the fact that λ1(L) ≤ λ1(L′) ≤ λn(L′) for any sublattice
L′ ⊆ L. The bound ηε(L) ≤

√
log(1/ε) · λ1(L) is immediate from Claim 2.7

applied to the one-dimensional lattice Zv generated by v ∈ L with ‖v‖ = λ1(L).
So, we only need to prove that η1/2(L) ≤ 10(log n+ 2) det(L)1/n. The result

for all ε ∈ (0, 1/2) then follows from Corollary 2.13.
We prove this by induction on n. The result is trivial for n = 1. (Indeed,

for n = 1 we have det(L)1/n = λ1(L).) For n > 1, we first assume without
loss of generality that det(L) = 1. If L ⊂ Rn is stable, then the result follows
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immediately from Theorem 3.3. Otherwise, there exists a sublattice L′ ⊂ L such
that det(L′) < 1. Notice that k := rank(L′) < n. Therefore, by the induction
hypothesis, η1/2(L′) ≤ 10(log k + 2) det(L′)1/k < 10(log n + 2). The result then
follows from the fact that ηε(L) ≤ ηε(L′) for any sublattice L′ ⊆ L.

3.1 Sampling with parameter poly(n) · ηε(L)

Lemma 3.4. For any lattice L ⊂ Rn, γ ≥ 1, ε ∈ (0, 1/2), γ-HKZ-reduced basis
B = (b1, . . . ,bn) of L, ε ∈ (0, 1/2), and index i ∈ {2, . . . , n} such that

‖b∗i ‖ > γ
√
n · ηε(L) ,

we have ηε(L(b1, . . . ,bi−1)) = ηε(L) .

Proof. Suppose that L′ ⊆ L satisfies ηε(L′) = ηε(L) < ‖b∗i ‖/(γ
√
n) with k :=

rank(L′). We wish to show that L′ ⊆ L(b1, . . . ,bi−1), or equivalently, that
πi(L′) = {0}. Indeed, by Theorem 2.9, λk(L′) ≤

√
k · ηε(L′) ≤

√
n · ηε(L). In

particular, there exist v1, . . . ,vk ∈ L′ with span(v1, . . . ,vk) = span(L′) and

‖πi(vj)‖ ≤ ‖vj‖ ≤ λk(L′) ≤
√
n · ηε(L) < ‖b∗i ‖/γ

for all j ∈ {1, . . . , k}. Therefore, if πi(vj) 6= 0. Then, πi(vj) ∈ πi(L) is a non-
zero vector with norm strictly less than ‖b∗i ‖/γ, which implies that λ1(πi(L)) <
‖b∗i ‖/γ, contradicting the assumption that B is a γ-HKZ basis. Therefore, πi(vj) =
0 for all j, which implies that πi(L′) = {0}, i.e., L′ ⊆ L(b1, . . . ,bi−1), as
needed.

Proposition 3.5. There is a (2r+o(r) +M) ·poly(n, logM)-time algorithm that
takes as input a (basis for a) lattice L ⊂ Rn, 2 ≤ r ≤ n, an integer M ≥ 1, and
a parameter

s ≥ rn/r
√
n log n · ηε(L)

for some ε ∈ (0, 1/2) and outputs a (basis for a) sublattice L̂ ⊆ L with ηε(L̂) =

ηε(L) and X1, . . . ,XM ∈ L̂ that are sampled independently from DL̂,s.

Proof. The algorithm takes as input a (basis for a) lattice L ⊂ Rn, 2 ≤ r ≤
n, M ≥ 1, and a parameter s > 0 and behaves as follows. It first uses the
procedure from Theorem 2.20 to compute a γ-HKZ reduced basis b1, . . . ,bn,
where γ := rn/r. Let i ∈ {1, . . . , n} be maximal such that ‖b∗j‖ ≤ s/

√
log n for

all j ≤ i, and let L̂ := L(b1, . . . ,bi). (If no such i exists, the algorithm simply
fails.) The algorithm then runs the procedure from Theorem 2.21 repeatedly to

sample X1, . . . ,XM ∼ DL̂,s and outputs L̂ and X1, . . . ,XM .

The running time of the algorithm is clearly (2r + M) · poly(n, logM). By
Theorem 2.21, the Xi have the correct distribution. Notice that, if the algorithm
fails, then

‖b1‖ > s/
√

log n ≥ γ
√
n · ηε(L) .
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Recalling that ‖b1‖ ≤ γλ1(L), it follows that
√
nηε(L) < λ1(L), which contra-

dicts Lemma 3.1. So, the algorithm never fails (provided that the promise on s
holds).

It remains to show that ηε(L) = ηε(L(b1, . . . ,bi)). If i = n, then this is
trivial. Otherwise, i ∈ {1, . . . , n− 1}, and we have

‖b∗i+1‖ > s/
√

log n ≥ γ
√
n · ηε(L) .

The result follows immediately from Lemma 3.4.

4 An approximation algorithm for HSVP and SVP

In this section, we present our algorithm that solves Õ(
√
n)-HSVP and Õ(

√
n)-

SVP in 2n/2+o(n) time. More precisely, we provide a detailed analysis of a sim-
ple “pair-and-sum” algorithm, which will solve O(

√
n) · ηε(L)-GSVP for ε =

1/poly(n). This in particular yields an algorithm that simultaneously solves

Õ(
√
n)-SVP and Õ(

√
n)-HSVP.

4.1 Mixtures of Gaussians

We will be working with random variables X that are “mixtures” of discrete
Gaussians, i.e., random variables that can be written as DL+C,s for some lattice
L ⊂ Rn, parameter s > 0, and random variable C ∈ Rn. In other words, X
can be sampled by first sampling C ∈ Rn from some arbitrary distribution and
then sampling X from DL+C,s. E.g., the discrete Gaussian DL,s itself is such a

distribution, as is the discrete Gaussian DL̂,s for any superlattice L̂ ⊇ L. Indeed,

in our applications, we will always have C ∈ L̂ for some superlattice L̂ ⊇ L, and
we will initialize our algorithm with samples from DL̂,s.

Our formal definition below is a bit technical, since we must consider the
joint distribution of many such random variables that are only δ-similar to these
distributions and satisfy a certain independence property. In particular, we will
work with X1, . . . ,XM such that each Xi is δ-similar to Yi ∼ DL+Ci,s, where
Ci is an arbitrary random variable (that might depend on the Xj) but once Ci

is fixed, Yi is sampled from DL+Ci,s independently of everything else. Here and
below, we adopt the convention that Pr[A | B] = 0 whenever Pr[B] = 0, i.e., all
probabilities are zero when conditioned on events with probability zero.

Definition 4.1. For (discrete) random variables X1, . . . ,Xm ∈ Rn and i ∈
{1, . . . ,m}, let us define the tuple of random variables

X−i := (X1, . . . ,Xi−1,Xi+1, . . . ,Xm) ∈ R(m−1)n .

We say that X1, . . . ,Xm are δ-similar to a mixture of independent Gaussians
over L with parameter s > 0 if for any i ∈ {1, . . . ,m}, y ∈ Rn, and w ∈ R(m−1)n,

Pr[Xi = y | X−i = w] = e±δ · ρs(y)

ρs(L+ y)
· Pr[Xi ∈ L+ y | X−i = w] .
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Additionally we will need the distribution we obtain at every step to be
symmetric about the origin as defined below.

Definition 4.2. We say that a list of (discrete) random variables X1, . . . ,Xm ∈
Rn is symmetric if for any i ∈ {1, . . . ,m}, any y ∈ Rn, and any w ∈ R(m−1)n,

Pr[Xi = y | X−i = w] = Pr[Xi = −y | X−i = w] .

We need the following simple lemma that bounds the probability of X being
0, where X is distributed as a mixture of discrete Gaussians over L.

Lemma 4.3. For any lattice L ⊂ Rn, let X1, . . . ,Xm ∈ L be δ-similar to a
mixture of independent Gaussians over L with parameter s ≥ βη1/2(L) for some

β > 1. Then, for any i, and any w ∈ R(m−1)n

Pr[Xi = 0 | X−i = w] ≤ 3eδ

2β
.

Proof. Let s′ := η1/2(L). We have that

Pr[Xi = 0 | X−i = w] ≤ Pr[Xi = 0 | Xi ∈ L, X−i = w] ≤ eδ

ρs(L)
≤ eδ · ρs

′(L)

ρs(L)
.

The result then follows from Claim 2.10.

The following corollary shows that a mixture of discrete Gaussians must
contain a short non-zero vector in certain cases.

Corollary 4.4. For any lattices L′ ⊆ L ⊂ Rn, parameter s ≥ 10eδη1/2(L′),
m ≥ 100, and random variables X1, . . . ,Xm that are δ-similar to mixtures of
independent Gaussians over L′ with parameter s,

Pr[∃i ∈ [1,m] such that 0 < ‖Xi‖2 < 4T ] ≥ 1/10 ,

where T := 1
m

∑m
i=1 E[‖Xi‖2].

Proof. By Markov’s inequality, we have

Pr
[ m∑
i=1

‖Xi‖2 ≥ 2mT
]
≤ 1

2
.

Hence, with probability at least 1
2 , we have

∑m
i=1 ‖Xi‖2 < 2mT .

We next note that many of the Xi must be non-zero with high probability.
Let Y1, . . . , Ym ∈ {0, 1} such that Yi = 0 if and only if Xi = 0. By Lemma 4.3,

E[Yi | Y1 = y1, . . . , Yi−1 = yi−1] ≥ 4/5

for any y1, . . . , yi−1 ∈ {0, 1}. By Corollary 2.3, we have that

Pr[Y1 + · · ·+ Ym ≤ 3m/5] ≤ e−m/100 ≤ 1/e .

Finally, by union bound, we see that with probability at least 1−1/e−1/2 >
1/10 the average squared norm will be at most 2T and more than half of the Xi

will be non-zero. It follows from another application of Markov’s inequality that
at least one of the non-zero Xi must have squared norm less than 4T .
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4.2 Summing vectors

Our algorithm will start with vectors X1, . . . ,Xm ∈ L0, where L0 ⊂ L is some
very dense superlattice of the input lattice L. It then takes sums Yk = Xi + Xj

of pairs of these in such a way that the resulting Yk lie in some appropriate
sublattice L1 ⊂ L0, i.e., Yk ∈ L1. It does this repeatedly, finding vectors in
L2,L3, . . . ,L` until finally it obtains vectors in L` := L.

Here, we study a single step of this algorithm, as shown below.

Algorithm 2 One step of the algorithm.

Input: Lattices L0,L1 ⊂ Rn with 2L0 ⊆ L1 ⊆ L0, and lattice vectors X1, . . . ,Xm ∈
L0 with m ≥ 2|L0/L1|.

Output: Lattice vectors Y1, . . . ,YM ∈ L1, with M := d(m− |L0/L1|)/2e.
1: Set USEDi := false for i = 1, . . . ,m, k = 1, and i = 1.
2: while k ≤M do
3: if not USEDi and (∃j ∈ {1, . . . ,m} \ {i} such that Xj ≡ Xi mod L1 and

USEDj = false) then
4: Let j 6= i be minimal such that Xj ≡ Xi mod L1 and USEDj = false.
5: Set Yk = Xi + Xj .
6: Set USEDi = USEDj = true and increment k.
7: end if
8: Increment i.
9: end while

10: return Y1, . . . ,YM

Notice that Algorithm 2 can be implemented in time m ·poly(n, logm). This
can be done, e.g., by creating a table of the Xi sorted according to Xi mod L1.
Then, for each i, such a j can be found (if it exists) by performing binary
search on the table. Furthermore, the algorithm is guaranteed to find M =
d(m− |L0/L1|)/2e output vectors because at most |L0/L1| of the input vectors
can be unpaired.

The key property that we will need from Algorithm 2 is that for any (possibly
unknown) sublattice L′ ⊆ L1 ⊆ L0, the algorithm maps mixtures of Gaussians
over L′ to mixtures of Gaussians over L′, provided that the parameter s is
larger than ηε(L′) by a factor of

√
2. In other words, as long as there exists some

sublattice L′ ⊆ L1 such that ηε(L′) . s, then the output of the algorithm will be
a mixture of Gaussians. Indeed, this is more-or-less immediate from Lemma 2.14.

Lemma 4.5. For any lattices L0,L1,L′ ⊂ Rn with 2L0 ⊆ L1 ⊆ L0 and
L′ ⊆ L1, ε ∈ (0, 1/3), δ > 0, and parameter s ≥

√
2ηε(L′), if the input vectors

X1, . . . ,Xm ∈ L0 are sampled from the distribution that is δ-similar to a mix-
ture of independent Gaussians over L′ with parameter s, then the output vectors
Y1, . . . ,YM ∈ L1 are (2δ + 3ε)-similar to a mixture of independent Gaussians
over L′ with parameter

√
2s.

Proof. For a list of cosets d := (c1, . . . , cm) ∈ (L0/L′)m such that Pr[X1 =
c1 mod L′, . . . ,Xm = cm mod L′] is non-zero, let Yd,1, . . . ,Yd,M be the ran-
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dom variables obtained by taking Y1, . . . ,YM conditioned on Xi ≡ ci mod L′
for all i. We similarly define Xd,i. Notice that Y1, . . . ,YM is a convex combina-
tion of random variables of the form Yd,1, . . . ,Yd,M , and that the property of
being close to a mixture of independent Gaussians is preserved by taking convex
combinations. Therefore, it suffices to prove the statement for Yd,1, . . . ,Yd,M

for all fixed d.

To that end, fix k ∈ {1, . . . ,M} and such a d ∈ (L0/L′)m. Notice that Xd,i ∈
L′+ ci ⊆ L1 + ci. Therefore, there exist fixed i, j such that Yd,k = Xd,i + Xd,j .
Furthermore, by assumption, for any w ∈ Lm−10 and x ∈ L0,

Pr[Xd,i = x | Xd,−i = w] = e±δ
ρs(x)

ρs(L′ + ci)
,

and likewise for j. It follows from Lemma 2.14 that for any y ∈ L1 and z ∈ LM−11 ,

Pr[Xd,i + Xdj = y | Yd,−k = z] = e±(2δ+3ε)
ρ√2s(y)

ρ√2s(L′ + ci + cj)
,

as needed.

Lemma 4.6. For any lattices L0,L1 ⊂ Rn with 2L0 ⊆ L1 ⊆ L0, if the input
vectors X1, . . . ,Xm ∈ L0 are sampled from a symmetric distribution, then the
distribution of the output vectors Y1, . . . ,YM will also be symmetric. Further-
more, ∑

E[‖Yk‖2] ≤
∑

E[‖Xi‖2] .

Proof. Let d = (c1, . . . , cm) ∈ (L0/L1)m be a list of cosets such that with non-
zero probability we have X1 ∈ L1 + c1, . . . ,Xm ∈ L1 + cm. Let Xd,1, . . . ,Xd,m

be the distribution obtained by sampling the Xi conditioned on this event, and
let Yd,1, . . . ,Yd,M be the corresponding output.

Notice that the distribution of Xd,1, . . . ,Xd,m is also symmetric, since L1 +
c = −(L1 + c) for any c ∈ L0/L1. (Here, we have used the fact that 2L0 ⊆ L1 ⊆
L0.)

And, for fixed d and k ∈ {1, . . . ,M} there exist fixed (distinct) i, j ∈
{1, . . . ,m} such that

Yd,k = Xd,i + Xd,j .

But, since the Xd,1, . . . ,Xd,m are distributed symmetrically, we see immediately
that for any y ∈ L1 and w ∈ LM−11 ,

Pr[Yd,k = y | Yd,−k = w] = Pr[Yd,k = −y | Yd,−k = w] .

In other words, the distribution of Yd,1, . . . ,Yd,M is symmetric.

Furthermore, E[‖Xd,i + Xd,j‖2] is equal to

E[‖Xd,i‖2] + E[‖Xd,j‖2] + 2E[〈Xi,Xj〉] = E[‖Xd,i‖2] + E[‖Xd,j‖2] ,
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where in the last step we have used the symmetry of Xd,1, . . . ,Xd,m. Since the
Yd,k are sums of disjoint pairs of the Xd,i, it follows immediately that

M∑
k=1

E[‖Yd,k‖2] ≤
m∑
i=1

E[‖Xd,i‖2] .

The results for X1, . . . ,Xm,Y1, . . . ,YM then follow immediately from the
fact that this distribution can be written as a convex combination of the vec-
tors Xd,1, . . . ,Xd,m,Yd,1, . . . ,Yd,M for different coset lists d ∈ (L0/L1)m, since
both symmetry and the inequality on expectations are preserved by convex com-
binations.

4.3 A tower of lattices

We will repeatedly apply Algorithm 2 on a“tower”of lattices similar to [ADRS15].
We use (a slight modification of) the definition and construction of the tower of
lattices from [ADRS15].

Definition 4.7 ([ADRS15]). For an integer α satisfying n/2 ≤ α ≤ n, we say
that (L0, . . . ,L`) is a tower of lattices in Rn of index 2α if for all i we have
2Li−1 ⊆ Li ⊂ Li−1,Li/2 ⊆ Li−2, |Li−1/Li| = 2α, and 2diα/neL0 ⊆ Li ⊆
2biα/ncL0 for all i.

Theorem 4.8 ([ADRS15]). There is a polynomial-time algorithm that takes as
input integers ` ≥ 1 and n/2 ≤ α ≤ n as well as a lattice L ⊆ Rn and outputs a
tower of lattice (L0, . . . ,L`) with L` = L.

Proof. We give the construction below. The desired properties are immediate
from the construction. Let b1, . . . ,bn be a basis of L. The tower is then defined
by “cyclically halving α coordinates”, namely,

L` = L(b1, . . . ,bn),

L`−1 = L(b1/2, . . . ,bα/2,bα+1, . . .bn),

L`−2 = L(b1/4, . . . ,b2α−n/4,b2α−n+1/2, . . .bn/2),

etc. The required properties can be easily verified.

The following proposition shows that starting with discrete Gaussian samples
from L0 and then repeatedly applying Algorithm 2 gives us a list of vectors in L`
that is close to a mixture of Gaussians, provided that there exists an appropriate
“smooth sublattice” L′ ⊆ L0.

Proposition 4.9. There is an algorithm that runs in m · poly(n, `, logm) time;
takes as input a tower of lattices (L0, . . . ,L`) in Rn of index 2α, and vectors
X1, . . . ,Xm ∈ L0 with m := 2`+α+1; and outputs Y1, . . . ,YM ∈ L` with M :=
2α with the following properties. If the input vectors X1, . . . ,Xm are symmetric
and 0-similar to a mixture of Gaussians over L′ ⊆ L0 with parameter s >
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10 · 2(α/n−1/2)`ηε(L′) for some (possibly unknown) sublattice L′ ⊆ L0 and ε ∈
(0, 1/3); then the output distribution is (10`ε)-similar to a mixture of independent
Gaussians over 2d`α/neL′ ⊆ L` with parameter 2`/2s, and

M∑
k=1

E[‖Yk‖2] ≤
m∑
i=1

E[‖Xi‖2] .

Proof. The algorithm simply applies Algorithm 2 repeatedly, first using the input
vectors in L0 to obtain vectors in L1, then using these to obtain vectors in L2,
etc., until eventually it obtains vectors Y1, . . . ,YM ∈ L`. The running time is
clearly m · poly(n, `, logm), as claimed.

By Lemma 4.6 and a simple induction argument, we see that every call to
Algorithm 2 results in a symmetric distribution, and the sum of the expected
squared norms is non-increasing after each step. In particular,

M∑
k=1

E[‖Yk‖2] ≤
m∑
i=1

E[‖Xi‖2] ,

as needed.
We suppose for induction that the distribution of the output of the ith

call to Algorithm 2 is 10iε-similar to a mixture of independent Gaussians over
2diα/neL′ ⊆ 2diα/neL0 ⊆ Li with parameter 2i/2s (which is true by assumption
for i = 0). Then, this distribution is also 10iε-similar to a mixture of inde-
pendent Gaussians over 2d(i+1)α/neL′ ⊆ 2diα/neL′ (since a mixture of Gaus-
sians over a lattice is also a mixture of Gaussians over any sublattice). Fur-
thermore, ηε(2

d(i+1)α/neL′) = 2d(i+1)α/neηε(L′) < 2i/2s/
√

2. Therefore, we may
apply Lemma 4.5 to conclude that the distribution of the output of the (i+ 1)st
call to Algorithm 2 is 10i+1ε-similar to a mixture of independent Gaussians over
2d(i+1)α/neL′ ⊆ Li+1 with parameter 2(i+1)/2s. In particular, the final output
vectors are 10`ε-similar to a mixture of independent Gaussians over 2d`α/neL′,
as needed.

4.4 The algorithm

Theorem 4.10. For any ε = ε(n) ∈ (0, n−200), there is a 2n/2+O(n log(n)/ log(1/ε))+o(n)-
time algorithm that solves (100

√
nηε)-GSVP. In particular, if ε = n−ω(1), then

the running time is 2n/2+o(n).

Proof. The algorithm takes as input a (basis for a) lattice L ⊂ Rn with n ≥ 50
and behaves as follows. Without loss of generality, we may assume that ε > 2−n

and that the algorithm has access to a parameter s > 0 with 50ηε(L) ≤ s ≤
100ηε(L). Let ` := blog(1/ε)/ log(10)c−1 and α := dn/2+100n log n/ log(1/ε)e.

The algorithm first runs the procedure from Theorem 4.8 on input `, α,
and L, receiving as output a tower of lattices (L0, . . . ,L`) with L` = L. The
algorithm then runs the procedure from Proposition 3.5 on input L0, r := n/5,
m := 2`+α+1, and parameter s′ := 2−`/2s, receiving as output a sublattice
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L̂ ⊆ L0, and vectors X1, . . . ,Xm ∈ L̂ ⊆ L0. Finally, the algorithm runs the
procedure from Proposition 4.9 on input (L0, . . . ,L`) and X1, . . . ,Xm, receiving
as output Y1, . . . ,YM ∈ L` = L. It then simply outputs the shortest non-zero
vector amongst the Yi ∈ L. (If all of the Yi are zero, the algorithm fails.)

The running time of the algorithm is clearly (m+2r+o(r)) ·poly(n, `, logm) =
2n/2+O(n logn/ log(1/ε))+o(n). We first show that the promise s′ ≥ rn/r

√
n log n ·

ηε(L0) needed to apply Proposition 3.5 is satisfied. Indeed, by the definition of
a tower of lattices, we have L ⊆ 2b`α/ncL0, so that

s′ ≥ 50 · 2−`/2 · ηε(L) ≥ 50 · 2b`α/nc−`/2 · ηε(L0) ≥ rn/r
√
n log n · ηε(L0) ,

as needed. Therefore, the procedure from Proposition 3.5 succeeds, i.e. we have
ηε(L̂) = ηε(L0) and that the Xi are distributed as independent samples from
DL̂,s′ .

In particular, let L′ ⊆ L̂ ⊆ L0 such that ηε(L′) = ηε(L̂) = ηε(L0). Then, the
distribution of X1, . . . ,Xm is symmetric and 0-similar to a mixture of Gaussians
over L′ with parameter s′ > 10 · 2(α/n−1/2)`ηε(L′). We may therefore apply
Proposition 4.9 and see that the Y1, . . . ,YM ∈ L are δ-similar to a mixture of
independent Gaussians over 2d`α/neL′ with parameter s and δ := 10`ε ≤ 1/10.
Furthermore,

M∑
k=1

E[‖Yk‖2] ≤
m∑
i=1

E[‖Xi‖2] ≤ nm(s′)2

2π
= 2−` · nms

2

2π
,

where the last inequality is Claim 2.11.
Finally, we notice that

s ≥ 50ηε(L) ≥ 50 · 2b`α/ncηε(L0) = 50ηε(2
b`α/ncL′) ≥ 25ηε(2

d`α/neL′)
≥ 10eδη1/2((2d`α/neL′) .

Therefore, we may apply Corollary 4.4 to Y1, . . . ,YM to conclude that with
probability at least 1/10, there exists k ∈ {1, . . . ,M} such that

0 < ‖Yk‖2 <
4

M
·
M∑
i=1

E[‖Yi‖2] ≤ 2−` · nms
2

2πM
≤ ns2 ≤ 1002nηε(L)2 .

In other words, Yk ∈ L is a valid solution to (100
√
nηε)-GSVP, as needed.

Corollary 4.11. There is a 2n/2+o(n)-time algorithm that solves γ-SVP for any
γ = γ(n) > ω(

√
n log n).

Proof. Theorem 4.10 gives an algorithm with the desired running time that finds
a non-zero lattice vector with norm bounded by 100

√
nηε(L) for

ε := 2−γ
2/(1002n) < n−ω(1) .

The result follows from Lemma 3.1, which in particular tells us that

ηε(L) ≤
√

log(1/ε)λ1(L) ≤ γ/(100
√
n) · λ1(L) ,

as needed.
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Corollary 4.12. There is a 2n/2+o(n)-time algorithm that solves γ-HSVP for

any γ = γ(n) > ω(
√
n log3 n).

Proof. Theorem 4.10 gives an algorithm with the desired running time that finds
a non-zero lattice vector with norm bounded by 100

√
nηε(L) for

ε := 2−γ
2/(1010n log2 n) < n−ω(1) .

The result follows from Lemma 3.1, which in particular tells us that

ηε(L) ≤ 10
√

log(1/ε)(log n+ 2) det(L)1/n ≤ γ/(100
√
n) · det(L)1/n ,

as needed (where we have assumed that n is sufficiently large).

5 Approximate SVP via Basis Reduction

Basis reduction algorithms solve δ-(H)SVP in dimension n by making polyno-
mially many calls to a δ′-SVP algorithm on lattices in dimension k < n. We will
show in this section how to modify the basis reduction algorithm from [GN08,
ALNS20] to prove Theorem 1.2.

5.1 Slide-reduced bases

Here, we introduce our notion of a reduced basis. This differs from prior work
in that we allow the length ` of the last block to be not equal to k, and we
use HSVP reduction where other works use SVP reduction. E.g., taking ` = k
and replacing (D)HSVP reduction with (D)SVP reduction in Item 2 recovers the
definition from [ALNS20]. (Taking ` = k and q = 0 and replacing all (D)HSVP
reduction with (D)SVP reduction recovers the original definition in [GN08].)

Definition 5.1 (Slide reduction). Let n, k, p, q, ` be integers such that n = pk+
q + ` with p ≥ 1, k, ` ≥ 2 and 0 ≤ q ≤ k − 1. Let δH ≥ 1 and δS ≥ 1. A
basis B ∈ Rm×n is (δH , k, δS , `)-slide-reduced if it is size-reduced and satisfies
the following four sets of constraints.

1. The block B[1,k+q+1] is η-twin-reduced for η := δ
k+q−1
k−1

H .
2. For all i ∈ [1, p− 1], the block B[ik+q+1,(i+1)k+q+1] is δH-twin-reduced.
3. The block B[pk+q+1,n] is δS-SVP-reduced.

Theorem 5.2. For any δH , δS ≥ 1, k ≥ 2, ` ≥ 2, if B ∈ Rn×n is a (δH , k, δS , `)-
slide-reduced basis of a lattice L with λ1(L(B[1,n−`])) > λ1(L) then

‖b1‖ ≤ δS(δ2H)
n−`
k−1 λ1(L) .

Proof. By Fact 2.22, ‖b1‖ ≤ η
2(k+q)
k+q−1 ‖b∗k+q+1‖ = δ

2(k+q)
k−1

H ‖b∗k+q+1‖. Also, for all

i ∈ [1, p− 1], ‖b∗ik+q+1‖ ≤ δ
2k
k−1

H ‖b∗(i+1)k+q+1‖. All together we have:

‖b1‖ ≤ (δ2H)
k+q+(p−1)k

k−1 ‖b∗pk+q+1‖ = (δ2H)
n−`
k−1 ‖b∗pk+q+1‖

Lastly, since λ1(L(B[1,n−`])) > λ1(L), ‖b∗pk+q+1‖ ≤ δSλ1(L(B[pk+q+1,n])) ≤
δSλ1(L). The result does follow.
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5.2 The slide reduction algorithm

We show our algorithm for generating a slide-reduced basis. We stress that this
is essentially the same algorithm as in [ALNS20] (which itself is a generalization
of the algorithm in [GN08]) with a slight modification that allows the last block
to have arbitrary length `. Our proof for bounding the running time of the
algorithm is therefore essentially identical to the proof in [GN08, ALNS20].

Algorithm 3 Our slide-reduction algorithm

Input: Block size k ≥ 2, slack ε > 0, approximation factor δH , δS ≥ 1, basis B =
(b1, . . . ,bn) ∈ Zm×n of a lattice L of rank n = pk + q + ` for 0 ≤ q ≤ k − 1, and
access to a rank k δH -HSVP oracle and a rank ` δS-SVP oracle.

Output: A ((1 + ε)δH , k, δS , `)-slide-reduced basis of L(B).
1: while vol(B[1,ik+q])

2 is modified by the loop for some i ∈ [1, p] do

2: (1 + ε)η-HSVP-reduce B[1,k+q] using Alg. 1 for η := (δH)
k+q−1
k−1 .

3: for i = 1 to p− 1 do
4: δH -HSVP-reduce B[ik+q+1,(i+1)k+q].
5: end for
6: δS-SVP-reduce B[pk+q+1,n].
7: if B[2,k+q+1] is not (1 + ε)η-DHSVP-reduced then

8: (1 + ε)1/2η-DHSVP-reduce B[2,k+q+1] using Alg. 1.
9: end if

10: for i = 1 to p− 1 do
11: Find a new basis C := (b1, . . . ,bik+q+1, cik+q+2, . . . , c(i+1)k+q+1,bik+q+2, . . . ,bn)

of L by δH -DHSVP-reducing B[ik+q+2,(i+1)k+q+1].
12: if (1 + ε)‖b∗

(i+1)k+q+1‖ < ‖c∗(i+1)k+q+1‖ then
13: B← C.
14: end if
15: end for
16: end while
17: return B.

Theorem 5.3. For ε ∈ [1/poly(n), 1], Algorithm 3 runs in polynomial time
(excluding oracle calls), makes polynomially many calls to its δH-HSVP oracle
and δS-SVP oracle, and outputs a ((1 + ε)δH , k, δS , `)-slide-reduced basis of the
input lattice L.

Proof. First, notice that if Algorithm 3 ever terminates, the output must be
((1 + ε)δH , k, δS , `)-slide-reduced basis. It remains to show that the algorithm
terminates in polynomially many steps (excluding oracle calls).

Let B0 ∈ Zm×n be the input basis and let B ∈ Zm×n denote the current basis
during the execution of Algorithm 3. Following the analysis of basis reduction
algorithms in [LLL82, GN08, LN14, ALNS20], we consider an integral potential

P (B) :=

p∏
i=1

vol(B[1,ik+q])
2 ∈ Z+.

27



At the beginning of the algorithm, the potential satisfies logP (B0) ≤ 2n2 ·
log ‖B0‖. For each of the primal steps (i.e., Steps 2, 4 and 6), the lattice L(B[1,ik+q])
for any i ≥ 1 is unchanged. Hence P (B) does not change. On the other hand,
the dual steps (i.e., Steps 8 and 13) either leave vol(B[1,ik+q]) unchanged for all
i or decrease P (B) by a multiplicative factor of at least (1 + ε).

Therefore, there are at most logP (B0)/ log(1+ε) updates on P (B) by Algo-
rithm 3. This directly implies that the algorithm makes at most 4pn2 log ‖B0‖/ log(1+
ε) calls to the HSVP oracle, the SVP oracle, and Algorithm 1.

We then conclude that Algorithm 3’s running time is bounded by some poly-
nomial in the size of input (excluding the running time of oracle calls).

Corollary 5.4. For any constant c ≥ 1, there is a randomized algorithm that
solves (polylog(n)nc)-SVP that runs in 2k/2+o(k) time for k := n−c

c+5/(8.02) .

Proof. Let ` = 0.5k
0.802 and run Algorithm 3, using the O(polylog(n)

√
n)-HSVP

algorithm from Corollary 4.12 and the O(1)-SVP algorithm from [LWXZ11] as
oracles. We receive a ((1 + ε)polylog(k)

√
k, k,O(1), `)-slide-reduced basis B for

any input lattice L. Now consider two cases:

CASE 1: λ1(L(B[1,n−`])) > λ1(L): By Theorem 5.2, we conclude that

‖b1‖ ≤ δS(δ2H)
n−`
k−1 λ1(L) ≤ O(polylog(k)cnc)λ1(L) ,

as desired.

CASE 2: λ1(L(B[1,n−`])) = λ1(L): Then we repeat the algorithm on the lat-
tice L(B[1,n−`]) with lower dimension. This can happen at most n/` times,
introducing at most a polynomial factor in the running time.

For the running time, the algorithm from Corollary 4.12 runs in time 20.5k+o(k).
The algorithm from [LWXZ11] runs in time 20.802`+o(`), which is the same as
20.5k+o(k), by our choice of `. This completes the proof.
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