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Abstract. It is well-known that general secure multi-party computation
can in principle be applied to implement differentially private mecha-
nisms over distributed data with utility matching the curator (a.k.a. cen-
tral) model. In this paper we study the power of protocols running on
top of a much weaker primitive: A non-interactive anonymous channel,
known as the shuffle model in the differential privacy literature. Such pro-
tocols are implementable in a scalable way using known cryptographic
methods and are known to enable non-interactive, differentially private
protocols with error much smaller than what is possible in the local
model. We study fundamental counting problems in the shuffle model
and obtain tight, up to polylogarithmic factors, bounds on the error and
communication in several settings.

For the classic problem of frequency estimation for n users and a domain
of size B, we obtain:

— A nearly tight lower bound of £2(min({/n,v/B)) on the fy error
in the single-message shuffle model. This implies that the protocols
obtained from the amplification via shuffling work of Erlingsson et
al. (SODA 2019) and Balle et al. (Crypto 2019) are nearly optimal
for single-message protocols.

— Protocols in the multi-message shuffle model with poly(log B, logn)
bits of communication per user and ¢« error at most poly (log B, logn),
which provide an exponential improvement on the error compared to
what is possible with single-message algorithms. This implies proto-
cols with similar error and communication guarantees for several
well-studied problems such as heavy hitters, d-dimensional range
counting, M-estimation of the median and quantiles, and more gen-
erally sparse non-adaptive statistical query algorithms.
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For the selection problem on a domain of size B, we prove:
— A nearly tight lower bound of 2(B) on the number of users in
the single-message shuffle model. This significantly improves on the
2(BY'7) lower bound obtained by Cheu et al. (Eurocrypt 2019).

A key ingredient in our lower bound proofs is a lower bound on the error
of locally-private frequency estimation in the low-privacy (a.k.a. high €)
regime. For this we develop new tools to improve the results of Duchi et
al. (FOCS 2013; JASA 2018) and Bassily & Smith (STOC 2015), whose
techniques only gave tight bounds in the high-privacy setting.

1 Introduction

With increased public awareness and the introduction of stricter regulation of
how personally identifiable data may be stored and used, user privacy has be-
come an issue of paramount importance in a wide range of practical applications.
While many formal notions of privacy have been proposed (see, e.g., [76]), dif-
ferential privacy (DP) [46,44] has emerged as the gold standard due to its broad
applicability and nice features such as composition and post-processing (see,
e.g., [51,93] for a comprehensive overview). A primary goal of DP is to enable
processing of users’ data in a way that (i) does not reveal substantial information
about the data of any single user, and (ii) allows the accurate computation of
functions of the users’ inputs. The theory of DP studies what trade-offs between
privacy and accuracy are feasible for desired families of functions.

Most work on DP has been in the central (a.k.a. curator) setup, where numer-
ous private algorithms with small error have been devised (see, e.g., [18,49,50]).
The premise of the central model is that a curator can access the raw user data
before releasing a differentially private output. In distributed applications, this
requires users to transfer their raw data to the curator — a strong limitation
in cases where users would expect the entity running the curator (e.g., a gov-
ernment agency or a technology company) to gain little information about their
data.

To overcome this limitation, recent work has studied the local model of
DP [71] (also [97]), where each individual message sent by a user is required
to be private. Indeed, several large-scale deployments of DP in practice, at com-
panies such as Apple [62,5], Google [55,87], and Microsoft [40], have used local
DP. While estimates in the local model require weaker trust assumptions than in
the central model, they inevitably suffer from significant error. For many types
of queries, the estimation error is provably larger than the error incurred in the
central model by a factor growing with the square root of the number of users.

Shuffle Privacy Model. The aforementioned trade-offs have motivated the study
of the shuffle model of privacy as a middle ground between the central and local
models. While a similar setup was first studied in cryptography in the work of
Ishai et al. [68] on cryptography from anonymity, the shuffle model was first
proposed for privacy-preserving protocols by Bittau et al. [16] in their Encode-
Shuffle-Analyze architecture. In the shuffle setting, each user sends one or more



messages to the analyzer using an anonymous channel that does not reveal where
each message comes from. Such anonymization is a common procedure in data
collection and is easy to explain to regulatory agencies and users. The anony-
mous channel is equivalent to all user messages being randomly shuffled (i.e.,
permuted) before being operated on by the analyzer, leading to the model illus-
trated in Figure 1; see Section 2 for a formal description of the shuffle model. In
this work, we treat the shuffler as a black box, but note that various efficient cryp-
tographic implementations of the shuffler have been considered, including onion
routing, mixnets, third-party servers, and secure hardware (see, e.g., [68,16]). A
comprehensive overview of recent work on anonymous communication can be
found on Free Haven’s Selected Papers in Anonymity website [57].

The DP properties of the shuffle model were first analytically studied, inde-
pendently, in the works of Erlingsson et al. [54] and Cheu et al. [29]. Protocols
within the shuffle model are non-interactive and fall into two categories: single-
message protocols, in which each user sends one message (as in the local model),
and multi-message protocols, in which a user can send more than one message.
In both variants, the messages sent by all users are shuffled before being passed
to the analyzer. The goal is to design private protocols in the shuffle model with
as small error and total communication as possible. An example of the power of
the shuffle model was established by Erlingsson et al. [54] and extended by Balle
et al. [9], who showed that every locally differentially private algorithm directly
yields a single-message protocol in the shuffle model with significantly better
privacy. In this paper we study the optimal error achievable for fundamental
tasks such as frequency estimation (i.e., histograms) and selection in the shuffle
model of differential privacy. We show that in many settings, multi-message pro-
tocols can achieve significantly smaller error than single-message protocols, and
we introduce such low-error multi-message protocols that have the additional
property of having low communication.

The study of differential privacy in the shuffle model can be seen as part of a
movement towards an integrated study of differential privacy and cryptographic
protocols, i.e., “DP-cryptography” [94].
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Fig. 1: Computation in the shuffle model consists of local randomization of inputs in
the first stage, followed by a shuffle of all outputs of the local randomizers, after which
the shuffled output is passed on to an analyzer.



Overview. The remainder of the paper is organized as follows. In Section 2
we review some preliminaries for differential privacy and the shuffle model. In
Section 3 we give an overview of our main theorems for the frequency estimation
and selection problems, and in Section 4 we overview the proofs of our main
results. In Section 5 we discuss applications of our results to problems such
as range queries and median estimation. In Section 6 we discuss related work
in detail, and we conclude in Section 7. Full proofs of our results as well as
the precise statements of some theorems are relegated to the supplementary
material; see Section A.

2 Preliminaries

Before stating our main results, we formally introduce the basics of differential
privacy and the shuffle model.

Notation. For a positive real number a, we use log(a) to denote the logarithm
base 2 of a, and In(a) to denote the natural logarithm of a. For any positive
integer B, let [B] = {1,2,...,B}. For any set ), we denote by Y* the set
consisting of sequences of elements of ), i.e., Y* = Un>0 Y. For positive integers
n, B, we write polylog(n, B) to denote the class of functions f(n, B) for which
there is a constant C so that for all n, B € N, f(n, B) < C(log(nB))°.

Datasets. Fix a finite set X', the space of reports of users. A dataset is an element
of X*, namely a tuple consisting of elements of X. Let hist(X) € NI*! be the
histogram of X: for any x € X, the xzth component of hist(X) is the number
of occurrences of x in the dataset X. We will consider datasets X, X’ to be
equivalent if they have the same histogram (i.e., the ordering of the elements
Z1,...,%, does not matter). For a multiset S whose elements are in X', we will
also write hist(S) to denote the histogram of S (so that the xth component is
the number of copies of z in S).

Differential Privacy. Two datasets X, X’ are said to be neighboring if they dif-
fer in a single element, meaning that we can write (up to equivalence) X =
(x1,.. ,Zp-1,2p) and X' = (z1,...,2p_1,2,), for z1,...,2,,2/, € X. In this
case, we write X ~ X’. Let Z be a set; we now define the differential privacy of
a randomized function P : X" — Z:

Definition 21 (Differential privacy [46,44]) A randomized algorithm P :
X" — Z is (g,0)-differentially private (DP) if for every pair of neighboring
datasets X ~ X' and for every set S < Z, we have

P[P(X) e S] < ¢ -P[P(X') e 8]+,

where the probabilities are taken over the randommness in P. Here, ¢ = 0,0 €
[0,1].

We will use the following compositional property of differential privacy.



Lemma 1 (Post-processing, e.g., [50]). If P is (g,0)-differentially private,
then for every randomized function A, the composed function Ao P is (g,0)-
differentially private.

Shuffle Model. We review the shuffle model of differential privacy [16,54,29]. The
input to the model is a dataset (z1,...,2,) € X™, where item z; € X is held by
user i. A protocol in the shuffle model is the composition of three algorithms:
— The local randomizer R : X — Y* takes as input the data of one user,
x; € X, and outputs a sequence (y; 1,...,Yim;) of messages; here m; is a
positive integer. In the single-message shuffle model, we require m; = 1 for
each i; in the multi-message shuffle model, m; may be any positive integer.
— The shuffler S : Y* — Y* takes as input a sequence of elements of ), say
(Y1, - -, Ym), and outputs a random permutation, i.e., the sequence (yr(1y; - - -, Yr(m));
where 7 € Sy, is a uniformly random permutation on [m]. The input to the
shuffler will be the concatenation of the outputs of the local randomizers.
— The analyzer A : Y* — Z takes as input a sequence of elements of )V (which
will be taken to be the output of the shuffler) and outputs an answer in Z
which is taken to be the output of the protocol P.
We will write P = (R, S, A) to denote the protocol whose components are given
by R, S, and A. The main distinction between the shuffle and local model is
the introduction of the (trusted) shuffler S between the local randomizer and
the analyzer. Similar to the local model, in the shuffle model the analyzer is
untrusted; hence privacy must be guaranteed with respect to the input to the
analyzer, i.e., the output of the shuffler. Formally, we have:

Definition 22 (Differential privacy in the shuffle model, [54,29]) A pro-
tocol P = (R, S, A) is (g, 0)-differentially private if, for any dataset X = (x1,...,2,),
the algorithm

(1,...,2n) — S(R(x1),...,R(zn))

is (e, 0)-differentially private.

Notice that the output of S(R(z1),...,R(z,)) can be simulated by an algo-
rithm that takes as input the multiset consisting of the union of the elements of
R(x1),...,R(xy) (which we denote as | J; R(z;), with a slight abuse of notation)
and outputs a uniformly random permutation of them. Thus, by Lemma 1, it
can be assumed without loss of generality for privacy analyses that the shuffler
simply outputs the multiset | J, R(z;). For the purpose of analyzing accuracy of
the protocol P = (R, S, A), we define its output on the dataset X = (z1,...,2,)
to be P(X) := A(S(R(z1),...,R(x,))). We also remark that the case of local
differential privacy, formalized in Definition 23, is a variant of the shuffle model
where the shuffler S is replaced by the identity function.

Definition 23 (Local differential privacy [71]) A protocol P = (R, A) is
(e, 9)-differentially private in the local model (or (e,d)-locally differentially pri-
vate) if the function x — R(z) is (g,d)-differentially private in the sense of
Definition 21. We say that the output of the protocol P on an input dataset
X =(x1,...,2p) 18 P(X) := A(R(x1), ..., R(xy)).



3 Overview of Results

In this work, we study several basic problems related to counting in the shuffle
model of DP. In these problems, each of n users holds an element from a domain
of size B. We consider the problems of frequency estimation, variable selection,
heavy hitters, median estimation, and range counting and study whether it is
possible to obtain (g,0)-DP in the shuffle model with accuracy close to what is
possible in the central model, while keeping communication low. This section
contains an overview of our main results.

The frequency estimation problem (also known as computing histograms) is
at the core of many of the problems we study. In the simplest version, for some
positive integer B, each of n users gets an element of the domain X := [B], and
the goal is to estimate the number of users in a dataset X holding element j,
namely hist(X);, for each query element j € [B]. We study frequency estimation
with the o, error, meaning that we define the error of a frequency estimation
protocol to be the the maximum additive error for the frequency estimate of
any coordinate j. In particular, if f € R is a vector of frequency estimates
for a dataset X, then the £, error is ||hist(X) — flo = maxe[p] [hist(X); —
fj|. Frequency estimation is a fundamental primitive that is used in various
data structural, sketching, and streaming applications (see Section 5 for its use
in the shuffled protocols for range counting and median estimation as well as
Section 6 for a sample of related work on the problem). Frequency estimation
has been extensively studied in DP where in the central model, the smallest
possible error is ©(min(log(1/9)/e,log(B)/e,n)) (see, e.g., [93, Section 7.1]). By
contrast, in the local model of DP, the smallest possible error is known to be
O(min(1/nlog(B)/e,n)) under the assumption that § < o(1/n) [12] (this regime
for & covers all values for § of interest in the setting of differential privacy).*

In the high-level exposition of our results given below, we let n and B be
any positive integers. We typically take € > 0 to be any constant, and § > 0
to be inverse polynomial in n. This assumption on € and § covers a regime of
parameters that is relevant in practice. We will make use of tilde notation (e.g.,
0, é) to indicate the suppression of multiplicative factors that are polynomial in
log B and logn. Theorem statements which do not make such assumptions and
contain full dependence on all parameters may be found in the supplementary
material.

Single-Message Bounds for Frequency Estimation. For the frequency estimation
problem, we show the following result in the shuffle model where each user sends
a single message.

Theorem 1 (Informal version of Theorems 5 & 7). Any (O(1),0(1/n))-
differentially private frequency estimation protocol in the single-message shuf-

fle model has expected (o, error 2(min({/n,/B)). Moreover, there is a single-
message (O(1), o(1/n))-differentially private protocol with error O(min({/n, v B)).

4 Most of the large-scale deployments of local DP in practice (e.g., [5,55]) have been
variants of frequency estimation protocols.



The main contribution of Theorem 1 is the lower bound. To prove this result, we
obtain improved bounds on the error needed for frequency estimation in local
DP in the weak privacy regime where ¢ is around Inn. The upper bound in
Theorem 1 follows by combining the recent result of Balle et al. [9] (building
on the earlier result of Erlingsson et al. [54]) with RAPPOR [55] and B-ary
randomized response [97] (see Section 4.1 and Section C for more details).

The precise version of Theorem 1 with polylogarithmic factors (i.e., Theorem
5) implies that in order for a single-message differentially private protocol to

log B

get error o(n) one needs to have n = w (W

) users; see Corollary 2. This

improves on a result of Cheu et al. [29, Corollary 32], which gives a lower bound
of n = w(log"'" B) for this task.

Multi-Message Protocols for Frequency Estimation. Theorem 1 implies that
in the single-message shuffle model, the error has to grow polynomially with
min(n, B), even with unbounded communication (i.e., message length). We next
present (non-interactive) multi-message protocols in the shuffle model of DP for
frequency estimation with only polylogarithmic error and communication. One
of the protocols is a public-coin protocol, meaning that it makes use of a source
of public randomness (known to all parties, including the adversary); the other
protocol is a private-coin protocol, meaning that no such assumption is made. In
addition to error and communication, a parameter of interest is the query time,
which is the time to estimate the frequency of any element j € [B] from the data
structure constructed by the analyzer.?

Theorem 2 (Informal version of Theorems 15 & 16). There are private-
coin and public-coin multi-message (O(1),1/n°W)-DP protocols in the shuffle
model for frequency estimation satisfying the following:
— The private-coin protocol has Ly, error O(max{log B,logn}), total commu-
nication of O(log Blog®n) bits per user, and query time O(n).
— The public-coin protocol has o, error O(log®?(B)+/log(nlog(B))), total com-
munication of O(log*(B)log?(n)) bits per user, and query time O(log B).

Combining Theorems 1 and 2 yields the first separation between single-
message and multi-message protocols for frequency estimation. Moreover, Theo-
rem 2 can be used to obtain multi-message protocols with small error and small
communication for several other widely studied problems (e.g., heavy hitters,
range counting, and median and quantile estimation), discussed in Section 5.
Finally, Theorem 2 implies the following consequence for statistical query (SQ)
algorithms with respect to a distribution D on X (see Section G for the basic
definitions). We say that a non-adaptive SQ algorithm .4 making at most B
queries ¢ : X — {0, 1} is k-sparse if for each © € X', the Hamming weight of the
output of the queries is at most k. Then, under the assumption that users’ data

® The analyzers for both protocols in Theorem 2 have pre-processing time O(n) on the
output of the shuffler. In the regime B » n (which is often of interest), this running
time precludes them from computing all frequencies up-front.



Local Local + shuffle| . Shuffle, S%luﬂ‘le, Central
single-message |multi-message
Expected | ~ = .. =
Expected 16| 2(yim)|O(min( /i, vB))| (min( ¢, VE))| polylog(n, B) |polylog(n, B)
Comm. O(B) (err {/n)
per user O(1) | any log B (err VB) any polylog(n, B) n.a.
References| [11] [12] [97,55,9] Thms. 7 & 5 Thm. 15 [78,90]

Table 1: Upper and lower bounds on expected maximum error (over all B queries,
where the sum of all frequencies is n) for frequency estimation in different models
of DP. The bounds are stated for fixed, positive privacy parameters ¢ and §, and
é/é/f? asymptotic notation suppresses factors that are polylogarithmic in B and n.
The communication per user is in terms of the total number of bits sent. In all upper
bounds, the protocol is symmetric with respect to the users, and no public randomness
is needed. References are to the first results we are aware of that imply the stated
bounds.

is drawn i.i.d. from D, the algorithm A can be efficiently simulated in the shuffle
model as follows:

Corollary 1 (Informal version of Corollary 4). For any non-adaptive k-
sparse SQ algorithm A with B queries of tolerance 7 > 0 and any § € (0,1),
there is a (private-coin) shuffle model protocol satisfying (e,d)-DP whose output

has total variation distance at most 3 from that of A, such that the number of

users is n < O(ﬁ-l-%2

. . . ~ 2
) and the per-user communication is O (%), where
ET ’ £ ’

O(+) hides logarithmic factors in B,n,1/5,1/e, and 1/8.

Corollary 1 improves upon the simulation of non-adaptive SQ algorithms in the
local model [71], for which the number of users must grow as ﬁ as opposed to
T% + ﬁ in the shuffle model. We emphasize that the main novelty of Corollary
1 is in the regime that k%/e? « B; in particular, though prior work on low-
communication private summation in the shuffle model [29,59,10] implies an
algorithm for simulating A with roughly the same bound on the number of users
n as in Corollary 1 and communication 2(B), it was unknown whether the
communication could be reduced to have logarithmic dependence on B, as in
Corollary 1.

Single-Message Bounds for Selection. The techniques that we develop to prove
the lower bound in Theorem 1 can be used to get a nearly tight £2(B) lower bound
on the number of users necessary to solve the selection problem. In the selection
problem®, each user i € [n] is given an arbitrary subset of [B], represented by
the indicator vector x; € {0,1}”, and the goal is for the analyzer to output an

5 Sometimes also referred to as variable selection.



index j* € [B] such that
n
g = i Tae 1
>, g mag; Tij = 10 1)

In other words, the analyzer’s output should be the index of a domain element
that is held by an approximately maximal number of users. The choice of the
constant 10 in (1) is arbitrary; any constant larger than 1 may be used.

The selection problem has been studied in several previous works on differen-
tial privacy, and it has many applications to machine learning, hypothesis testing
and approximation algorithms (see [41,90,92] and the references therein). Our
work improves an Q(Bl/ 17) lower bound on n in the single-message shuffle model
due to Cheu et al. [29]. For ¢ = 1, the exponential mechanism [78] implies an
(€,0)-DP algorithm for selection with n = O(log B) users in the central model,
whereas in the local model, it is known that any (e, 0)-DP algorithm for selection
requires n = {2(Blog B) users [92].

Theorem 3 (Informal version of Theorem 11). For any single-message
(O(1),0(1/(nB)))-DP protocol in the shuffle model that solves the selection prob-
lem given in Equation (1), the number n of users should be 2(B).

The lower bound in Theorem 3 nearly matches the O(B log B) upper bound on
the required number of users that holds even in the local model (and hence in the
single-message shuffle model) and that uses the B-randomized response [97,92].
Cheu et al. [29] have previously obtained a multi-message protocol for selection
with O(v/B) users, and combined with this result Theorem 3 yields the first
separation between single-message and multi-message protocols for selection.
In subsequent work Chen et al. [28] have extended Theorem 3 to the setting
when each user only sends few messages; in particular, they show that if each
user sends at most m messages in the shuffle model, then the number of users
should be 2(B/m). Their proof uses generally similar techniques to ours.

4 Proof outlines

4.1 Overview of Single-Message Lower Bounds

We start by giving an overview of the lower bound of 2(min{n'/*,+/B}) in
Theorem 1 on the error of any single-message frequency estimation protocol. We
first focus on the case where n < B2 and thus min{n'/*,v/B} = n'/*. The main
component of the proof in this case is a lower bound of 2(n'/*) for frequency
estimation for (eg,dy)-local DP protocols” when e, = In(n) + O(1). In fact,
we prove lower bounds for (er,, 9z, )-locally differentially protocols for a broader
range of parameters €5, in Theorem 6; a special case of this result which
includes the setting e, = In(n) + O(1) relevant for the shuffle model is stated
below:

" Note that we use the subscripts in e, and 67, to distinguish the privacy parameters
of the local model from the € and § parameters (without a subscript) of the shuffle
model.



Theorem 4 (Local DP lower bound; informal version of Theorem 6).
Suppose that €, 0, > 0 satisfy

; ‘Inn <ep +In(l +e) <min{2In(B) — O(1),21In(n) —2Inin(B)},

and d, < o (min {ﬁ, exp(—sL)}). Then any (e, 01,)-locally differentially pri-
NG

vate protocol for frequency estimation on [ B] must have Ly, error at least Q (W

SN—

where the tilde hides factors polynomial in log B,logn.

While lower bounds for local DP frequency estimation were previously ob-
tained in the seminal works of Bassily and Smith [12] and Duchi, Jordan and
Wainwright [42], two critical reasons make them less useful for our purposes: (i)
for e, = w(1) (i.e., in the low-privacy regime) they only apply to the case where
51 = 0 (i.e., pure privacy)®, and (ii) even for §;, = 0, their dependence on ey,
is sub-optimal when e, = w(1): the results of [42], for instance, imply a lower

bound of {2 <7V”IE°LgB> on the /o, error.? By contrast, Theorem 4 covers the low

e
and approxrimate privacy regime; we next discuss its proof.

Let R be an (er,dr)-locally differentially private randomizer. The general
approach in the proof of Theorem 4, which was also taken in [12,42], is to show
that if V' is a random variable drawn uniformly at random from [B] and if X is a
random variable that is equal to V' with some appropriate choice of o € (0,1), and
is drawn uniformly at random from [B] otherwise, then the mutual information
between V' and the local randomizer output R(X) satisfies

I(V;R(X)) < loan. )

Once (2) is established, the chain rule of mutual information implies that
I(V;R(X1),...,R(X,)) < 22 where X1,..., X, are independent and identi-
cally distributed given V. Fano’s inequality [38] then implies that the probabil-
ity that any analyzer receiving R(Xy),..., R(X,) correctly guesses V is at most
1/4; on the other hand, an 2(an)-accurate analyzer must be able to determine
V' with high probability since its frequency in the dataset Xy, ..., X, is roughly
an, greater than the frequency of all other v € [B]. This approach thus yields a
lower bound of £2(an) on frequency estimation.

8 As we discuss in Remark 1, generic reductions [29,20] showing that one can efficiently
simulate an approximately differentially private protocol (i.e., with é > 0) with a
pure differentially private protocol (i.e., with 7, = 0) are insufficient to obtain tight
lower bounds.

9 If we were to ignore the assumption of 6z = 0 and try to use this bound for ep, =
In(n) + O(1) to attempt to derive a lower bound in the single-message shuffle model
in the context of Theorem 1, we would get a lower bound of 2(1/log(B)/n) on
the o error, which for n » log B is (much) worse than even the lower bound of
N2(min{log B,logn}) from the central model.

10



To prove the lower bound of Theorem 4 using this approach, we choose
n = O(y/n/ect/*), and show that

x log B

I(ViR(X)) < O(a’ne) < Ofn . (3)

For the application to the single-message shuffle model, we will have e7, = In(n)+
O(1) and so a = O(n~%/%); as we will discuss later, (3) is essentially tight in this
regime.

Limitations of Previous Approaches. We first state the existing upper bounds
on I(V;R(X)), which only use the privacy of the local randomizer. Bassily
and Smith [12, Claim 5.4] showed an upper bound of I(V;R(X)) < O(e2a?)
with e, = O(1) and é6; = o(1/(nlogn)), which thus satisfies (2) with o =

&) ( IOZLB) For §;, = 0, Duchi et al. [42] generalized this result to the case

ELTL

er, = 1, proving that!'® I(V; R(X)) < O(a?e?1). Even ignoring the constraint
0z, = 0, this bound of [42] is weaker than (3) for the above setting of a and ep,.

However, proving the mutual information bound in (3) turns out to be im-
possible if we only use the privacy of the local randomizers! In particular, the
bound can be shown to be false if all we assume about R is that it is (e1,0r)-
locally differentially private for some e, ~ Inn and §;, < n~°™M). For instance, it
is violated if one takes R to be Rrr, the local randomizer of the B-randomized
response [97]. Consider for example the regime where B < n < B2, and the
setting where Rgrgr(v) is equal to v with probability 1 — B/n, and is uniformly
random over [B] with the remaining probability of B/n. In this case, the local
randomizer Rrg(+) is (In(n)+O(1), 0)-differentially private. A simple calculation
shows that I(V; Rrr(X)) = O(c). Whenever a « 1/n?/3, which is the regime we
have to consider in order to prove Theorem 11, it holds that a » a*nexp(In(n)),
thus contradicting (3). (See also Remark 4 for an explanation of how a slightly
different strategy also fails.) The insight derived from this counterexample is
crucial, as we describe in our new technique next.

Mutual Information Bound from Privacy and Accuracy. Departing from pre-
vious work, we manage to prove the stronger bound (3) as follows. Inspecting
the counterexample based on the B-randomized response outlined above, we
first observe that any analyzer must have error at least £2(v/B) when com-
bined with Rrg(+), which is larger than an, the error that would be ruled out
by the subsequent application of Fano’s inequality. This leads us to appeal to
accuracy, in addition to privacy, when proving the mutual information upper
bound. We thus leverage the additional available property that the local ran-
domizer R can be combined with an analyzer A in such a way that the mapping
(@1,...,2n) = A(R(z1), ..., R(zy)) computes the frequencies of elements of ev-
ery dataset (x1,...,2,) accurately, i.e., to within an error of O(an). At a high
level, our approach for proving the bound in (3) then proceeds by:

!0 This bound is not stated explicitly in [42], though [42, Lemma 7] proves a similar
result whose proof can readily be modified appropriately.
Hie., we will take an = O(n'/*), so a = O(n=*).
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(i) Proving a structural property satisfied by the randomizer corresponding to
any accurate frequency estimation protocol. Namely, we show in Lemma 10
that if there is an accurate analyzer, the total variation distance between
the output of the local randomizer on any given input, and its output on a
uniform input, is close to 1.

(ii) Using the (er,dr)-DP property of the randomizer along with the structural
property in (i) in order to upper-bound the mutual information I(V; R(X)).

We believe that the application of the structural property in (i) to proving

bounds of the form (3) is of independent interest. As we further discuss below,

this property is, in particular, used (together with privacy of R) to argue that
for most inputs v € [B], the local randomizer output R(v) is unlikely to equal

a message that is much less likely to occur when the input is uniformly random

than when it is v. Note that it is somewhat counter-intuitive that accuracy is

used in the proof of this fact, as one way to achieve very accurate protocols is to
ensure that R(v) is equal to a message which is unlikely when the input is any

u # v. We now outline the proofs of (i) and (ii) in more detail.

The gist of the proof of (i) is an anti-concentration statement. Let v be a fixed
element of [B] and let U be a random variable uniformly distributed on [B].
Assume that the total variation distance A(R(v), R(U)) is not close to 1, and that
a small fraction of the users have input v while the rest have uniformly random
inputs. Let Z denote the range of the local randomizer R. First, we consider the
special case where Z is {0, 1}. Then the distribution of the histogram of outputs
of the users with v as their input is in bijection with a binomial random variable
with parameter p := P[R(v) = 1], and the same is true for the distribution of
the shuffled outputs of the users with uniform random inputs U (with parameter
q := P[R(U) = 1]). Then, we use the anti-concentration properties of binomial
random variables in order to argue that if |p — q| = A(R(v), R(U)) is too small,
then with nontrivial probability the shuffled outputs of the users with input v
will be indistinguishable from the shuffled outputs of the users with uniform
random inputs. This is then used to contradict the supposed accuracy of the
analyzer. To deal with the general case where the range Z is any finite set, we
repeatedly apply the data processing inequality for total variation distance in
order to reduce to the binary case (Lemma 13). The full proof appears in Lemma
10.

Equipped with the property in (i), we now outline the proof of the mutual
information bound in (ii). Denote by

— 7T, the set of messages much more likely to occur when the input is v than
when it is uniform,

— Y, the set of messages less likely to occur when the input is v than when it
is uniform.

Note that the union 7, u ), is not the entire range Z of messages; in particular,

it does not include messages that are a bit more likely to occur when the input

is v than when it is uniform.'? On a high level, it turns out that the mutual

12 For clarity of exposition in this overview, we refrain from quantifying the likelihoods
in each of these cases; for more details on this, we refer the reader to Section B.3.
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information I(V; R(X)) will be large, i.e., R(X) will reveal a significant amount
of information about V, if either of the following events occurs:

(a) There are not enough inputs v € [B] such that the mass P[R(X) € )] is
large. Intuitively, for v so that P[R(X) € ),] is large, the local randomizer
“effectively hides” the fact that the uniform input X is v given that X indeed
equals v and R(v) € ).

(b) There are too many inputs v € [B] such that the mass P[R(v) € T,] is large.
Such inputs make it too likely that X = v given that R(X) € T,, which
makes it more likely in turn that V = v.

We first note that the total variation distance A(R(v), R(X)) is upper-bounded
by P[R(X) € Y,]. On the other hand, the accuracy of the protocol along with
property (i) imply that A(R(v), R(X)) is close to 1 for all v. By putting these
together, we can conclude that event (a) does not occur (see Lemma 10 for more
details).

To prove that event (b) does not occur, we use the (er,dr)-DP guarantee
of the local randomizer R. Namely, we will use the inequality P[R(v) € S| <
e - P[R(X) € 8] + ¢ for various subsets S of Z. Unfortunately, setting S = 7,
does not lead to a good enough upper bound on P[R(v) € T,]; indeed, for the
local randomizer R = Rgrgr corresponding to the B-ary randomized response, we
will have T, = {v} for n » B, and so P[R(v) € T,] = 1 — B/n ~ 1 for any v.
Thus, to establish (b), we need to additionally use the accuracy of the analyzer
A (i.e., property (i) above), together with a careful double-counting argument
to enumerate the probabilities that R(v) belongs to subsets of 7, of different
granularity (with respect to the likelihood of occurrence under input v versus a
uniform input). For the details, we refer the reader to Section B.3 and Lemma
9.

Having established Theorem 4 giving a lower bound for locally differentially
private estimation in the low-privacy regime, Theorem 1 follows in a straightfor-
ward manner: the only step is to apply a lemma of Cheu et al. [29] (restated as
Lemma 2 below), stating that any lower bound for (¢ + In(n), §)-locally differen-
tially private protocols implies a lower bound for (g, §)-differentially private pro-
tocols in the single-message shuffle model (i.e., we take e, = € + In(n)). Indeed,
for 7 = In(n) + O(1), the error lower bound from Theorem 4 is 2(y/n/et/*) =
Q(nl/ 4). Finally, we point out that while the above outline assumed that n < B2,
it turns out that this is essentially without loss of generality as the other case
where n > B? can be reduced to the former (see Lemma 6).

Tightness of Lower Bounds. The lower bounds sketched above are nearly tight.
The upper bound of Theorem 1 follows from combining existing results showing
that the single-message shuffle model provides privacy amplification of locally
differentially private protocols [54,9], with known locally differentially private
protocols for frequency estimation [97,55,42,9]. In particular, as recently shown
by Balle et al. [9], a pure (g1, 0)-differentially private local randomizer yields a
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n

protocol in the shuffle model that is | O | e°Z k’g(l/é)) ,5) -differentially pri-

vate and that has the same level of accuracy.'® Then:
— When combined with RAPPOR [55,42], we get an upper bound of O(n'/4)
on the error.
— When combined with the B-randomized response [97,3], we get an error
upper bound of O(v/B).
The full details appear in Section C. Put together, these imply that the mini-
mum in our lower bound in Theorem 1 is tight (up to logarithmic factors). It
also follows that the mutual information bound in Equation (3) is tight (up to
logarithmic factors) for e, = In(n) + O(1) and a = n~3/* (which is the pa-
rameter settings corresponding to the single-message shuffle model); indeed, a
stronger bound in Equation (3) would lead to larger lower bounds in the single-
message shuffle model thereby contradicting the upper bounds discussed in this
paragraph.

Lower Bound for Selection: Sharp Bound on Level-1 Weight of Probability Ratio
Functions. We now outline the proof of the nearly tight lower bound on the
number of users required to solve the selection problem in the single-message
shuffle model (Theorem 3). The main component of the proof in this case is a
lower bound of 2(B) users for selection for (er,,dr)-local DP protocols when
£ = 1n(n) + 0(1)

In the case of local (£1,0)-DP (i.e., pure) protocols, Ullman [92] proved a

lower bound n = {2 <%). There are two different reasons why this
lower bound is not sufficient for our purposes:
1. Tt does not rule out DP protocols with §;, > 0 (i.e., approximate protocols),
which are necessary to consider for our application to the shuffle model.
2. For the low privacy setting of e, = In(n) + O(1), the bound simplifies to

n = 2(B/n?), i.e., n = 2(BY/3), weaker than what we desire.

To prove our near-optimal lower bound, we remedy both of the aforemen-
tioned limitations by allowing positive values of ¢; and achieving a better de-
pendence on €. As in the proof of frequency estimation, we reduce proving
Theorem 3 to the task of showing the following mutual information upper bound:

(T R(X2.0)) 0 (5 ) + 06(5 + ) (1

where L is a uniform random bit, J is a uniform random coordinate in [B],
and X, ; is uniform over the subcube {z € {0,1}” : z; = L}. Indeed, once (4)
holds and ¢;, < o(1/(Bn)), the chain rule implies that the mutual information

between all users’ messages and the pair (L, J) is at most O (MHT@). It follows

13 Note that we cannot use the earlier amplification by shuffling result of [54], since it
is only stated for ez = O(1) whereas we need to amplify a much less private local
protocol, having an ¢, close to Inn.
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by Fano’s inequality that if n = o(B), no analyzer can determine the pair (L, J)
with high probability (which any protocol for selection must be able to do).
For any message z in the range of R, define the Boolean function f,(z) :=

% where 2 € {0,1}7. Let W![f] denote the level-1 Fourier weight
of a Boolean function f. To prove inequalities of the form (4), the prior work
of Ullman [92] shows that I((L,.J); R(Xr, s)) is determined by W1[f.], up to
normalization constants. In the case where é; = 0 and e, = In(n) + O(1),
f. € [0,e°%], and by Parseval’s identity W1[f,] < O(e?%) for any message z,
leading to

2er,

I((LJ): R(X1.,)) < O (63 ) (5)

Unfortunately, for our choice of e, = In(n) + O(1), (5) is weaker than (4).

To show (4), we depart from the previous approach in the following ways:

(a) We show that the functions f, take values in [0, O(e®%)] for most inputs z;
this uses the (er,dr)-local DP of the local randomizer R (we cannot show
this for all = as in general dz, > 0).

(b) Using the Level-1 inequality from the analysis of Boolean functions [84] (see
Theorem 13 below), we upper bound W1[g.] by O(er), where g, is the
truncation of f, defined by g.(z) = f.(z) if f.(x) < O(n), and g,(x) = 0
otherwise.

(c) We bound I((L,J); R(XL.s)) by Wl[g.], using the fact f, is sufficiently
close to its truncation g,.

The above line of reasoning, formalized in Section B.5, allows us to show

I(L,J); R(X1,5)) <O (‘% +6-(B+ ™)),

which is sufficient to establish that (4) holds.

Having proved a lower bound on the error of any (¢+1nn, §)-local DP protocol
for selection with e = O(1), the final step in the proof is to apply a lemma of
[29] to deduce the desired lower bound in the single-message shuffle model.

4.2 Overview of Multi-Message Protocols

An important consequence of our lower bound in Theorem 1 is that one cannot
achieve an error of polylog(n, B) using single-message protocols. This in partic-
ular rules out any approach that uses the following natural two-step recipe for
getting a private protocol in the shuffle model with accuracy better than in the
local model:

1. Run any known locally differentially private protocol with a setting of pa-
rameters that enables high-accuracy estimation at the analyzer, but exhibits
low privacy locally.

2. Randomly shuffle the messages obtained when each user runs step 1 on their
input, and use the privacy amplification by shuffling bounds [54,9] to improve
the privacy guarantees.
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Thus, shuffled versions of the B-randomized response [97,3], RAPPOR [55,42,3],
the Bassily—Smith protocol [12], TreeHist and Bitstogram [11], and the Hadamard
response protocol [3,2], will still incur an error of £2(min({/n, v B)).

Moreover, although the single-message protocol of Cheu et al. [29] for binary
aggregation (as well as the multi-message protocols given in [60,7,59,8] for the
more general task of real-valued aggregation) can be applied to the one-hot
encodings of each user’s input to obtain a multi-message protocol for frequency
estimation with error polylog(n, B), the communication per user would be 2(B)
bits, which is clearly undesirable.

Recall that the main idea behind (shuffled) randomized response is for each
user to send their input with some probability, and random noise with the re-
maining probability. Similarly, the main idea behind (shuffled) Hadamard re-
sponse is for each user to send a uniformly random index from the support of
the Hadamard codeword corresponding to their input with some probability,
and a random index from the entire universe with the remaining probability.
In both protocols, the user is sending a message that either depends on their
input or is noise; this restriction turns out to be a significant limitation. Our
main insight is that multiple messages allows users to simultaneously send both
types of messages, leading to a sweet spot with exponentially smaller error and
communication.

Our protocols. We design a multi-message version of the private-coin Hadamard
response of Acharya et al. [3,2] where each user sends a small subset of indices
sampled uniformly at random from the support of the Hadamard codeword cor-
responding to their input, and in addition sends a small subset of indices sampled
uniformly at random from the entire universe [B]. To get accurate results it is
crucial that a subset of indices is sampled, as opposed to just a single index (as in
the local model protocol of [3,2]). We show that in the regime where the number
of indices sampled from inside the support of the Hadamard codeword and the
number of noise indices sent by each user are both logarithmic, the resulting
multi-message algorithm is private in the shuffle model, and it has polylogarith-
mic error and communication per user (see Theorem 15, Lemmas 17, 18, and 19
for more details).

A limitation of our private-coin algorithm outlined above is that the time
for the analyzer to answer a single query is O(n). This might be a drawback
in applications where the analyzer is CPU-limited or where it is supposed to
produce real-time answers. In the presence of public randomness, we design an
algorithm that remedies this limitation, having error, communication per user,
and query time all bounded above by polylog(n, B). This algorithm is based on
a multi-message version of randomized response combined in a delicate man-
ner with the Count Min data structure [34] (for more details, see Section D.2).
Previous work [12,11] on DP has used Count Sketch [24], which is a close vari-
ant of Count Min, to reduce heavy hitter computation to frequency estimation.
In contrast, our use of Count Min has the purpose of reducing the amount of
communication per user.
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5 Applications

Heavy Hitters. Another algorithmic task that is closely related to frequency es-
timation is computing the heavy hitters in a dataset distributed across n users,
where the goal of the analyzer is to (approximately) retrieve the identities and
counts of all elements that appear at least 7 times, for a given threshold 7. It
is well-known that in the central DP model, it is possible to compute 7-heavy
hitters for 7 = polylog(n, B) whereas in the local DP model, it is possible to
compute 7-heavy hitters if and only if 7 = ©(y/n). By combining with known re-
ductions (e.g., from Bassily et al. [11]), our multi-message protocols for frequency
estimation yield multi-message protocols for computing the 7-heavy hitters with
7 = polylog(n, B) and total communication of polylog(n, B) bits per user (for
more details, see Section H).

Range Counting. In range counting, each of the n users is associated with a
point in [B]? and the goal of the analyzer is to answer arbitrary queries of the
form: given a rectangular box in [B]?, how many of the points lie in it?'* This
is a basic algorithmic primitive that captures an important family of database
queries and is useful in geographic applications. This problem has been well-
studied in the central model of DP, where Chan et al. [22] obtained an upper
bound of (log B)°(4 on the error (see Section 6 for more related work). It has
also been studied in the local DP model [33]; in this case, the error has to be at
least £2(4/n) even for d = 1.

We obtain private protocols for range counting in the multi-message shuf-
fle model with exponentially smaller error than what is possible in the local
model (for a wide range of parameters). Specifically, we give a private-coin multi-
message protocol with (log B)O(d) messages per user each of length O(logn) bits,
error (log B)°(4) and query time O(n log? B). Moreover, we obtain a public-coin
protocol with similar communication and error but with a much smaller query
time of O(log? B) (see Section F for more details).

We now briefly outline the main ideas behind our multi-message protocols for
range counting. We first argue that even for d = 2, the total number of queries is
O©(B?) and the number of possible queries to which a user positively contributes
is also ©(B?). Thus, direct applications of DP algorithms for aggregation or for
frequency estimation would result in polynomial error and polynomial commu-
nication per user. Instead, we combine our multi-message protocol for frequency
estimation (Theorem 2) with a communication-efficient implementation, in the
multi-message shuffle model, of the space-partitioning data structure used in the
central model protocol of Chan et al. [22]. The idea is to use a collection B of
O(Blog® B) d-dimensional rectangles in [B]? (so-called dyadic intervals) with
the property that an arbitrary rectangle can be formed as the disjoint union
of O(log® B) rectangles from B. Furthermore, each point in [B]? is contained
in O(logd B) rectangles from B. This means that it suffices to release a private
count of the number of points inside each rectangle in B — a frequency esti-
mation task where each user input contributes to O(logd B) buckets. To turn

14 We formally define range queries as a special case of counting queries in Section F.
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this into a protocol with small maximum communication in the shuffle model,
we develop an approach analogous to the matrix mechanism [74,75]. We argue
that the transformation of the aforementioned central model algorithm for range
counting into a private protocol in the multi-message shuffle model with small
communication and error is non-trivial and relies on the specific protocol struc-
ture. In fact, the state-of-the-art range counting algorithm of Dwork et al. [48]
in the central model does not seem to transfer to the shuffle model.

M-FEstimation of Median. A very basic statistic of any dataset of real numbers is
its median. For simplicity, suppose our dataset consists of real numbers lying in
[0,1]. Tt is well-known that there is no DP algorithm for estimating the value of
the median of such a dataset with error o(1) (i.e., outputting a real number whose
absolute distance to the true median is o(1)) [93, Section 3]. This is because the
median of a dataset can be highly sensitive to a single data point when there are
not many individual data points near the median. Thus in the context of DP,
one has to settle for weaker notions of median estimation. One such notion is M-
estimation, which amounts to finding a value T that approximately minimizes
D lzi — Z| (recall that the median is the minimizer of this objective). This
notion has been studied in previous work on DP including by [73,42] (for more on
related work, see Section 6 below). Our private range counting protocol described
above yields a multi-message protocol with communication polylog(n) per user
and that M-estimates the median up to error polylog(n), i.e., outputs a value
y € [0,1] such that }, |z; —y| < minz », |x; — Z| + polylog(n) (see Theorem 23 in
Section I). Beyond M-estimation of the median, our work implies private multi-
message protocols for estimating quantiles with polylog(n) error and polylog(n)
bits of communication per user (see Section I for more details).

6 Related Work

Shuffle Privacy Model. Following the proposal of the Encode-Shuffle-Analyze
architecture by Bittau et al. [16], several recent works have sought to formalize
the trade-offs in the shuffle model with respect to standard local and central
DP [54,9] as well as devise private schemes in this model for tasks such as secure
aggregation [29,9,60,7,59,8]. In particular, for the task of real aggregation, Balle
et al. [9] showed that in the single-message shuffle model, the optimal error is
O(n'/%) (which is better than the error in the local model which is known to
be ©(n'/?)).'> By contrast, recent follow-up work gave multi-message protocols
for the same task with error and communication of polylog(n) [60,7,59,8]'6. Our

5 Although the single-message real summation protocol of Balle et al. [9] uses the B-
ary randomized response, when combined with their lower bound on single-message
protocols, it does not imply any lower bound on single-message frequency estimation
protocols. The reason is that their upper bound doe not use the £ error bound for
the B-ary randomized response as a black box.

16°A basic primitive in these protocols is a “split-and-mix” procedure that goes back
to the work of Ishai et al. [68].

18



work is largely motivated by the aforementioned body of works demonstrating
the power of the shuffle model, namely, its ability to enable private protocols
with lower error than in the local model while placing less trust in a central
server or curator.

Wang et al. [96] recently designed an extension of the shuffle model and
analyzed its trust properties and privacy-utility tradeoffs. They studied the basic
task of frequency estimation, and benchmarked several algorithms, including one
based on single-message shuffling. However, they did not consider improvements
through multi-message protocols, such as the ones we propose in this work.
Very recently, Erlingsson et al. [53] studied multi-message ( “report fragmenting”)
protocols for frequency estimation in a practical shuffle model setup. Though
they make use of a sketching technique, like we do, their methods cannot be
parameterized to have communication and error polylogarithmic in n and B
(which our Theorem 2 achieves). This is a result of using an estimator (based
on computing a mean) that does not yield high-probability guarantees.

(Private) Frequency Estimation, Heavy Hitters, and Median. Frequency esti-
mation (and its extensions considered below) is a fundamental problem that
has been extensively studied in numerous computational models including data
structures, sketching, streaming, and communication complexity, (in particu-
lar, [79,24,56,34,35,31,80,77,63,61,101,70]). Heavy hitters and frequency estima-
tion have also been studied extensively in the standard models of DP, e.g.,
[97,67,12,11,95,20,2]. The other problems we consider in the shuffle model, namely,
range counting, M-estimation of the median, and quantiles, have been well-
studied in the literature on data structures and sketching [37] as well as in
the context of DP in the central and local models. Dwork and Lei [45] initiated
work on establishing a connection between DP and robust statistics, and gave
private estimators for several problems including the median, using the paradigm
of propose-test-release. Subsequently, Lei [73] provided an approach in the cen-
tral DP model for privately releasing a wide class of M-estimators (including
the median) that are statistically consistent. While such M-estimators can also
be obtained indirectly from non-interactive release of the density function [9§],
the aforementioned approach exhibits an improved rate of convergence. Fur-
thermore, motivated by risk bounds under privacy constraints, Duchi et al. [42]
provided private versions of information-theoretic bounds for minimax risk of
M-estimation of the median.

Frequency estimation can be viewed as the problem of distribution estimation
in the £, norm where the distribution to be estimated is the empirical distribu-
tion of a dataset (z1,...,x,). Some works [100,69] have established tight lower
bounds for locally differentially private distribution estimation in the weak pri-
vacy setting with loss instead given by either ¢; or £2. However, their techniques
proceed by using Assouad’s method [42] and are quite different from the ap-
proach we use for the ¢y, norm in the proof of Theorem 1 (specifically, in the
proof of Theorem 6).

We also note that an anti-concentration lemma qualitatively similar to our
Lemma 10 was used by Chan et al. [23, Lemma 3] to prove lower bounds on
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private aggregation, but they operated in a multi-party setting with communi-
cation limited by a sparse communication graph. After the initial release of this
paper, Ghazi et al. [58] proved a similar anti-concentration lemma to establish a
lower bound on private summation for protocols with short messages. The lem-
mas in both of these papers do not apply to the more general case of frequency
estimation with an arbitrary number B of buckets, as is the case throughout this

paper.

Range Counting. Range counting queries have also been an important subject
of study in several areas including database systems and algorithms (see [30]
and the references therein). Early works on differentially private frequency esti-
mation , e.g., [43,64], apply naturally to range counting, though the approach of
summing up frequencies yields large errors for queries with large ranges.

For d = 1, Dwork et al. [47] obtained an upper bound of O (@) and

a lower bound of 2(log B) for obtaining (e,0)-DP. Chan et al. [22] extended
the analysis to d-dimensional range counting queries in the central model, for
which they obtained an upper bound of roughly (log B)O(d). Meanwhile, a lower
bound of Muthukrishnan and Nikolov [81] showed that for n ~ B, the er-
ror is lower bounded by {2 ((log n)d_o(l)). Since then, the best-known upper
bound on the error for general d-dimensional range counting has been (log B +
log(n)©9(®) /e [48], obtained using ideas from [47,22] along with a k-d tree-like
data structure. We note that for the special case of d = 1, it is known how to
get a much better dependence on B in the central model, namely, exponential
in log™ B [14,21].

Xiao et al. [99] showed how to obtain private range count queries by using
Haar wavelets, while Hay et al. [66] formalized the method of maintaining a hi-
erarchical representation of data; the aforementioned two works were compared
and refined by Qardaji et al. [85]. Cormode et al. [33] showed how to trans-
late many of the previous ideas to the local model of DP. We also note that
the matrix mechanism of Li et al. [74,75] also applies to the problem of range
counting queries. An alternate line of work for tackling multi-dimensional range
counting that relied on developing private versions of k-d trees and quadtrees
was presented by Cormode et al. [36].

Secure Multi-Party Computation. If we allow user interaction in the computation
of the queries, then there is a rich theory, within cryptography, of secure multi-
party computation (SMPC) that allows f(x1,...,2,) to be computed without
revealing anything about x; except what can be inferred from f(z1,...,z,) itself
(see, e.g., the book of Cramer et al. [39]). Kilian et al. [72] studied SMPC pro-
tocols for heavy hitters, obtaining near-linear communication complexity with
a multi-round protocol. In contrast, all results in this paper are about non-
interactive (single-round) protocols in the shuffle model (in the multi-message
setting, all messages are generated at once). Though generic SMPC protocols
can be turned into differentially private protocols (see, e.g., Section 10.2 in [93]
and the references therein), they almost always use multiple rounds, and of-
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ten have large overheads compared to the cost of computing f(z1,...,z,) in a
non-private setting.

7 Conclusions and Open Problems

The shuffle model is a promising new privacy framework motivated by the sig-
nificant interest in anonymous communication. In this paper, we studied the
fundamental task of frequency estimation in this setup. In the single-message
shuffle model, we established nearly tight bounds on the error for frequency esti-
mation: while in the local model the error is well-known to be ©(y/n), we proved
that the right bound in the single-message model is the minimum of é(nl/ 4) and
é(\/ﬁ), which interestingly are achieved by shuffling the widely used RAPPOR
and the B-randomized response protocols, respectively. Moreover, we proved a
nearly tight lower bound on the number of users required to solve the selection
problem in the single-message shuffle model. We also obtained communication-
efficient multi-message private-coin protocols with exponentially smaller error
for frequency estimation, heavy hitters, range counting, and M-estimation of
the median and quantiles (and more generally sparse non-adaptive SQ algo-
rithms). We also gave public-coin protocols with, in addition, small query times.
Our work raises several interesting open questions and points to fertile future
research directions.

Our 2(B) lower bound for selection (Theorem 3) holds for single-message
protocols even with unbounded communication. We conjecture that a lower
bound on the error of B(!) should hold even for multi-message protocols (with
unbounded communication) in the shuffle model, and we leave this as a very
interesting open question. Such a lower bound would imply a first separation be-
tween the central and (unbounded communication) multi-message shuffle model.

Another interesting question is to obtain a private-coin protocol for frequency
estimation with polylogarithmic error, communication per user, and query time;
reducing the query time of our current protocol below O(n) seems challenging.
In general, it would also be interesting to reduce the polylogarithmic factors in
our guarantees for range counting as that would make them practically useful.

Another interesting direction for future work is to determine whether our
efficient protocols for frequency estimation with much less error than what is
possible in the local model could lead to more accurate and efficient shuffle model
protocols for fundamental primitives such as clustering [91] and distribution
testing [1], for which current locally differentially private protocols use frequency
estimation as a black box.

Finally, a promising future direction is to extend our protocols for sparse non-
adaptive SQ algorithms to the case of sparse aggregation. Note that the queries
made by sparse non-adaptive SQ algorithms correspond to the special case of
sparse aggregation where all non-zero queries are equal to 1. Extending our proto-
cols to the case where the non-zero coordinates can be arbitrary numbers would,
e.g., capture sparse stochastic gradient descent (SGD) updates, an important
primitive in machine learning. More generally, it would be interesting to study
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the complexity of various other statistical and learning tasks [88,98,13,26,25,27]
in the shuffle privacy model.
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