
Tornado: Automatic Generation of
Probing-Secure Masked Bitsliced

Implementations
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Abstract. Cryptographic implementations deployed in real world de-
vices often aim at (provable) security against the powerful class of side-
channel attacks while keeping reasonable performances. Last year at Asi-
acrypt, a new formal verification tool named tightPROVE was put for-
ward to exactly determine whether a masked implementation is secure
in the well-deployed probing security model for any given security order
t. Also recently, a compiler named Usuba was proposed to automatically
generate bitsliced implementations of cryptographic primitives.
This paper goes one step further in the security and performances achieve-
ments with a new automatic tool named Tornado. In a nutshell, from the
high-level description of a cryptographic primitive, Tornado produces a
functionally equivalent bitsliced masked implementation at any desired
order proven secure in the probing model, but additionally in the so-
called register probing model which much better fits the reality of soft-
ware implementations. This framework is obtained by the integration of
Usuba with tightPROVE+, which extends tightPROVE with the ability to
verify the security of implementations in the register probing model and
to fix them with inserting refresh gadgets at carefully chosen locations
accordingly.
We demonstrate Tornado on the lightweight cryptographic primitives se-
lected to the second round of the NIST competition and which somehow
claimed to be masking friendly. It advantageously displays performances
of the resulting masked implementations for several masking orders and
prove their security in the register probing model.
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1 Introduction

Cryptographic implementations susceptible to power and electromagnetic side-
channel attacks are usually protected by masking. The general principle of mask-
ing is to apply some secret sharing scheme to the sensitive variables processed



by the implementation in order to make the side-channel information either neg-
ligible or hard to exploit in practice. Many masked implementations rely on
Boolean masking in which a variable x is represented as n random shares x1,
. . . , xn satisfying the completeness relation x1 ⊕ · · · ⊕ xn = x (where ⊕ denotes
the bitwise addition).

The probing model is widely used to analyze the security of masked (software)
implementations vs. side-channel attacks. This model was introduced by Ishai,
Sahai and Wagner in [26] to construct circuits resistant to hardware probing
attacks. It was latter shown that this model and the underlying construction were
instrumental to the design of efficient practically-secure masked cryptographic
implementations [32, 15, 18, 19]. A masking scheme secure against a t-probing
adversary, i.e. who can probe t arbitrary variables in the computation, is indeed
secure by design against the class of side-channel attacks of order t [17].

Most masking schemes consider the implementation to be protected as a
Boolean or arithmetic circuit composed of gates of different natures. These gates
are then replaced by gadgets processing masked variables. One of the important
contributions of [26] was to propose a multiplication gadget secure against t-
probing attacks for any t, based on a Boolean masking of order n = 2t+ 1. This
was reduced to the tight order n = t + 1 in [32] by constraining the two input
sharings to be independent, which could be ensured by the application of a mask
refreshing gadget when necessary. The design of secure refresh gadgets and, more
generally, the secure composition of gadgets were subsequently subject to many
works [18, 16, 5, 6]. Of particular interest, the notion of Non-Interference (NI)
and Strong Non-Interference (SNI) introduced in [5] provide a practical frame-
work for the secure composition of gadgets which yields tight probing-secure
masked implementations. In a nutshell, such implementations are composed of
ISW multiplication and refresh gadgets (from the names of their inventors Ishai,
Sahai, and Wagner [26]) achieving the SNI property, and of sharewise addition
gadgets. The main technical challenge in such a context is to identify the number
of required refresh gadgets and their (optimal) placing in the implementation to
obtain a provable t-probing security. Last year at Asiacrypt, a formal verifica-
tion tool called tightPROVE was put forward by Beläıd, Goudarzi, and Rivain [8]
which is able to clearly state whether a tight masked implementation is t-probing
secure or not. Given a masked implementation composed of standard gadgets
(sharewise addition, ISW multiplication and refresh), tightPROVE either pro-
duces a probing-security proof (valid at any order) or exhibits a security flaw
that directly implies a probing attack at a given order. Although nicely answer-
ing a relevant open issue, tightPROVE still suffers two important limitations.
First it only applies to Boolean circuits and does not straightforwardly general-
ize to software implementation processing `-bit registers (for ` > 1). Secondly,
it does not provide a method to place the refresh whenever a probing attack is
detected.

In parallel to these developments, many works have focused on the efficient
implementation of masking schemes with possibly high orders. For software im-
plementations, it was recently demonstrated in several works that the use of
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bitslicing makes it possible to achieve (very) aggressive performances. In the
bitsliced higher-order masking paradigm, the ISW scheme is applied to secure
bitwise and instructions which are significantly more efficient than their field-
multiplication counterparts involved in the so-called polynomial schemes [25, 27].
Moreover, the bitslice strategy allows to compute several instances of a crypto-
graphic primitive in parallel, or alternatively all the s-boxes in parallel within
an instance of the primitive. The former setting is simply called (full) bitslice
in the present paper while the latter setting is referred to as n-slice. In both
settings, the high degree of parallelization inherited from the bitslice approach
results in important efficiency gains. Verifying the probing security of full bit-
slice masked implementation is possible with tightPROVE since the different bit
slots (corresponding to different instances of the cryptographic primitive) are
mutually independent. Therefore, probing an `-bit register in the bitslice imple-
mentation is equivalent to probing the corresponding variable in ` independent
Boolean circuits, and hence tightPROVE straightforwardly applies. For n-slice
implementations on the other hand, the different bit slots are mixed together
at some point in the implementation which makes the verification beyond the
scope of tightPROVE. In practice for masked software implementations, the reg-
ister probing model makes much more sense than the bit probing model because
a software implementation works on `-bit registers containing several bits that
leak all together.

Another limitation of tightPROVE is that it simply verifies an implemen-
tation under the form of an abstract circuit but it does not output a secure
implementation, nor provide a sound placing of refresh gadgets to make the im-
plementation secure. In practice one could hope for an integrated tool that takes
an input circuit in a simple syntax, determine where to place the refresh gadgets
and compile the augmented circuit into a masked implementation, for a given
masking order on a given computing platform. Usuba, introduced by Mercadier
and Dagand in [29], is a high-level programming language for specifying sym-
metric block ciphers. It provides an optimizing compiler that produces efficient
bitsliced implementations. On high-end Intel platforms, Usuba has demonstrated
performance on par with several, publicly available cipher implementations. As
part of its compilation pipeline, Usuba features an intermediate representation,
Usuba0, that shares many commonalities with the input language of tightPROVE.

It is therefore natural to consider integrating both tools in a single pro-
gramming environment. We aim at enabling cryptographers to prototype their
algorithms in Usuba, letting tightPROVE verify or repair its security and letting
the Usuba back-end perform masked code generation.

Our Contributions. The contributions of our work are threefold:

Extended probing-security verification tool. We tackle the limitations of tight-
PROVE and propose an extended verification tool, that we shall call tightPROVE+.
This tool can verify the security of any masked bitslice implementation in the
register probing model (which makes more sense than the bit probing model

3



w.r.t. masked software implementations). Given a masked bitslice/n-slice imple-
mentation composed of standard gadgets for bitwise operations, tightPROVE+

either produces a probing-security proof or exhibits a probing attack.

New integrated compiler for masked bitslice implementations. We present (and
report on the development of) a new compiler Tornado3 which integrates Usuba
and tightPROVE+ in a global compiler producing masked bitsliced implemen-
tations proven secure in the bit/register probing model. This compiler takes as
input a high-level, functional specification of a cryptographic primitive. If some
probing attacks are detected by tightPROVE+, the Tornado compiler introduces
refresh gadgets, following a sound heuristic, in order to thwart these attacks.
Once a circuit has been identified as secure, Tornado produces bitsliced C code
achieving register probing security at a given input order. To account for the
limited resources available on embedded systems, Tornado exploits a general-
ization of bitslicing – implemented by Usuba – to reduce register pressure and
implements several optimizations specifically tailored for Boolean masking code.

Benchmarks of NIST lightweight cryptography candidates. We evaluate Tornado
on 11 cryptographic primitives from the second round of the ongoing NIST
lightweight cryptography standardization process.4 The choice of cryptographic
primitives has been made on the basis that they were self-identified as being
amenable to masking. These implementation results give a benchmark of these
different candidates with respect to masked software implementation for a num-
ber of shares ranging between 1 and 128. The obtained performances are pretty
satisfying. For instance, the n-slice implementations of the tested primitives
masked with 128 shares takes from 1 to a few dozen megacycles on an Cortex-
M4 processor.

2 Technical Background

2.1 Usuba

Usuba is a domain-specific language for describing bitsliced algorithms. It has
been designed around the observation that a bitsliced algorithm is essentially a
combinational circuit implemented in software. As a consequence, Usuba’s design
is inspired by high-level synthesis languages, following a dataflow specification
style. For instance, the language offers the possibility to manipulate bit-level
quantities as well as to apply bitwise transformations to compound quantities.
A domain-specific compiler then synthesizes an efficient software implementation
manipulating machine words.

Figure 1 shows the Usuba implementation of the Ascon cipher. To structure
programs, we use node’s (Figure 1b, 1c & 1d) , of which table’s (Figure 1a)

3 Tornado ambitions to be the workhorse of those cryptographers that selflessly protect
their ciphers through provably secure mask ing and precise bitslicing.

4 https://csrc.nist.gov/Projects/lightweight-cryptography/

round-2-candidates
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are a special case of a node specified through its truth table. A node specifies
a set of input values, output values as well as a system of equations relating
these variables. To streamline the definition of repeating systems (e.g. , the
12 rounds of Ascon), Usuba offers bounded loops, which simply desugar into
standalone equations. A static analysis ensures that the system of equations
admits a solution. The semantics of an Usuba program is thus straightforward:
it is the (unique) solution to the system of equations.

table Sbox(x:v5) returns (y:v5) {
0x4, 0xb, 0x1f, 0x14, 0x1a, 0x15,
0x9, 0x2, 0x1b, 0x5, 0x8, 0x12,
0x1d, 0x3, 0x6, 0x1c, 0x1e, 0x13,
0x7, 0xe, 0x0, 0xd, 0x11, 0x18,
0x10, 0xc, 0x1, 0x19, 0x16, 0xa,
0xf, 0x17

}

(a) S-box specified by its truth table.

node AddConstant(state:u64x5,c:u64)
returns (stateR:u64x5)

let
stateR = (state[0,1], state[2] ^ c,

state[3,4]);
tel

(b) Node manipulating a 5-uple

node LinearLayer(state:u64x5)
returns (stateR:u64x5)

let
stateR[0] = state[0]

^ (state[0] >>> 19)
^ (state[0] >>> 28);

stateR[1] = state[1]
^ (state[1] >>> 61)
^ (state[1] >>> 39);

stateR[2] = state[2]
^ (state[2] >>> 1)
^ (state[2] >>> 6);

stateR[3] = state[3]
^ (state[3] >>> 10)
^ (state[3] >>> 17);

stateR[4] = state[4]
^ (state[4] >>> 7)
^ (state[4] >>> 41);

tel

(c) Node involving rotations and xors

node ascon12(input:u64x5)
returns (output:u64x5)

vars
consts:u64[12],
state:u64x5[13]

let
consts = (0xf0, 0xe1, 0xd2, 0xc3,

0xb4, 0xa5, 0x96, 0x87,
0x78, 0x69, 0x5a, 0x4b);

state[0] = input;
forall i in [0, 11] {

state[i+1] = LinearLayer
(Sbox
(AddConstant
(state[i],consts[i])))

}
output = state[12]

tel

(d) Main node composing the 12 rounds

Fig. 1: Ascon cipher in Usuba

Aside from custom syntax, Usuba features a type system that documents and
enforces parallelization strategies. Traditionally, bitslicing [12] consists in treat-
ing an m-word quantity as m variables, such that a combinational circuit can
be straightforwardly implemented by applying the corresponding bitwise logical
operations over the variables. On a 32-bit architecture, this means that 32 cir-
cuits are evaluated “in parallel”: for example, a 32-bit and instruction is seen
as 32 Boolean and gates. To ensure that an algorithm admits an efficient bit-
sliced implementation, Usuba only allows bitwise operations and forbids stateful
computations [30].
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However, bitslicing can be generalized to n-slicing [29] (with n > 1). Whereas
bitslicing splits an m-word quantity into m individual bits, we can also treat it at
a coarser granularity5, splitting it into k variables of n bits each (preserving the
invariant that m = k× n). The register pressure is thus lowered, since we intro-
duce k variables rather than m, and, provided some support from the underlying
hardware or compiler, we may use arithmetic operations in addition to the usual
Boolean operations. Conversely, certain operations become prohibitively expen-
sive in this setting, such as permuting individual bits. The role of Usuba’s type
system is to document the parallelization strategy decided by the programmer
(e.g. , u64x5 means that we chose to treat a 320-bit block at the granularity of
64-bit atoms) and ensure that the programmer only used operations that can be
efficiently implemented on a given architecture.

The overall architecture of the Usuba compiler is presented in Figure 2. It
involves two essential steps. Firstly, normalization expands the high-level con-
structs of the language to a minimal core language called Usuba0. Usuba0 is
the software equivalent of a netlist: it represents the sliced implementation in a
flattened form, erasing tuples altogether. Secondly, optimizations are applied at
this level, taking Usuba0 circuits to (functionally equivalent) Usuba0 circuits. In
particular, scheduling is responsible for ordering the system of equations in such
a way as to enable sequential execution as well as maximize instruction-level
parallelism. To obtain a C program from a scheduled Usuba0 circuit, we merely
have to replace the Boolean and arithmetic operations of the circuit with the
corresponding C operations. The resulting C program is in static single assign-
ment (SSA) form, involving only operations on integer types: we thus solely rely
on the C compiler to perform register allocation and produce executable code.

Usuba Usuba0 C assembly
Normalization

bitslicing/n-slicing

Optimizations
scheduling, inlining, etc.

Vectorization
Transpilation Register

allocation

Fig. 2: High-level view of the Usuba compiler

At compile-time, a specific node is designated as the cryptographic primitive
of interest (here, ascon12): the Usuba compiler is then tasked to produce a C
file exposing a function corresponding to the desired primitive. In this case, the
bitsliced primitive would have type

void Ascon12 (uint32_t plain[320], uint32_t cipher[320])

whereas the 64-sliced primitive would have type

5 The literature [29, Fig.2] distinguishes vertical from horizontal n-slicing: lacking the
powerful SIMD instructions required by horizontal n-slicing, we focus here solely on
vertical n-slicing, which we abbreviate unambiguously to “n-slicing”.
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void Ascon12 (uint64_t plain[5], uint64_t cipher[5])

Usuba targets C so as to maximize portability: it has been successfully used
to deploy cryptographic primitives on Intel, PowerPC, Arm and Sparc archi-
tectures. However, a significant amount of optimization is carried by the Usuba
compiler: because this programming model is subject to stringent invariants,
the compiler is able to perform far-reaching, whole program optimizations that
a C compiler would shy away from. For example, it features a custom instruc-
tion scheduling algorithm, aimed at minimizing the register pressure of bitsliced
code. On high-end Intel architectures featuring Single Instruction Multiple Data
(SIMD) extensions, Usuba has demonstrated performance on par with hand-
optimized reference implementations [29].

Usuba offers an ideal setting in which to automate Boolean masking. Indeed,
ciphers specified in Usuba are presented at a suitable level of abstraction: they
consist in combinational circuits, by construction. As a result, the Usuba compiler
can perform a systematic source-to-source transformation, automating away the
tedious introduction of masking gadgets and refreshes. Besides, the high-level
nature of the language allows us to extract a model of an algorithm, analyzable
by static analysis tools such as SAT solvers – to check program equivalence, which
is used internally to validate the correctness of optimizations – or tightPROVE
– to verify probing security.

2.2 tightPROVE

tightPROVE is a verification tool which aims to verify the probing security of
a shared Boolean circuit. It takes as input a list of instructions that describes
a shared circuit made of specific multiplication, addition and refresh gadgets
and outputs either a probing security proof or a probing attack. To that end, a
security reduction is made through a sequence of four equivalent games. In each
of them, an adversary A chooses a set of probes P (indices pointing to wires in
the shared circuit) in the target circuit C, and a simulator S wins the game if
it successfully simulates the distribution of the tuple of variables carried by the
corresponding wires without knowledge of the secret inputs.

Game 0 corresponds to the t-probing security definition: the adversary can
choose t probes in a t + 1-shared circuit, on whichever wires she wishes. In
Game 1, the adversary is restricted to only probe gadget inputs: one probe on
an addition or refresh gadget becomes one probe on one input share, one probe
on a multiplication gadget becomes one probe on each of the input sharings. In
Game 2, the circuit C is replaced by another circuit C ′ that has a multiplicative
depth of one, through a transformation called Flatten, illustrated in the original
paper [8]. In a nutshell, each output of a multiplication or refresh gadget in the
original circuit gives rise to a new input with a fresh sharing in C ′. Finally, in
Game 3, the adversary is only allowed to probe pairs of inputs of multiplication
gadgets. The transition between these games is mainly made possible by an
important property of the selected refresh and multiplication gadgets: in addition
to being t-probing secure, they are t-strong non interfering (t-SNI for short) [5].
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Satisfying the latter means that t probed variables in their circuit description
can be simulated with less than t1 shares of each input, where t1 ≤ t denotes
the number of internal probes i.e. which are not placed on output shares.

Game 3 can be interpreted as a linear algebra problem. In the flattened
circuit, the inputs of multiplication gadgets are linear combinations of the circuit
inputs. These can be modelled as Boolean vectors that we call operand vectors,
with ones at indexes of involved inputs. From the definition of Game 3, the 2t
probes made by the adversary all target these operand vectors for chosen shares.
These probes can be distributed into t + 1 matrices M0, . . . ,Mt, where t + 1
corresponds to the (tight) number of shares, such that for each probe targeting
the share i of an operand vector v, with i in {0, . . . , t}, v is added as a row to
matrix Mi. Deciding whether a circuit is t-probing secure can then be reduced to
verifying whether 〈MT

0 〉∩ · · ·∩ 〈MT
t 〉 = ∅ (where 〈·〉 denotes the column space of

a matrix). The latter can be solved algorithmically with the following high-level
algorithm for a circuit with m multiplications:

For each operand vector w,

1. Create a set G1 with all the multiplications for which w is one of the operand
vectors.

2. Create a set O1 with the co-operand vectors of w in the multiplications in
G1.

3. Stop if w ∈ 〈O1〉 (O1’s linear span), that is if w can be written as a linear
combination of Boolean vectors from O1.

4. For i from 2 to m, create new sets Gi andOi by adding to Gi−1 multiplications
that involve an operand w′ verifying w′ ∈ (w⊕〈Oi−1〉), and adding to Oi−1
the other operand vectors of these multiplications. Stop whenever i = m or
Gi = Gi−1 or w ∈ 〈Oi〉.

If this algorithm stops when w ∈ 〈Oi〉 for some i, then there is a probing
attack on w, i.e., from a certain t, the attacker can recover information on x ·w
(where x denote the vector of plain inputs), with only t probes on the (t + 1)-
shared circuit. In the other two scenarios, the circuit is proven to be t-probing
secure for any value of t.

3 Extending tightPROVE to the Register-Probing Model

3.1 Model of Computation

Notations. In this paper, we denote by K = F2 the field with two elements
and by V = Ks the vector space of dimension s over K, for some given integer s
(which will be used to denote the register size). Vectors, in any vector space, are
written in bold. Ji, jK denotes the integer interval Z∩ [i, j] for any two integers i
and j. For a finite set X , we denote by |X | the cardinality of X and by x← X
the action of picking x from X independently and uniformly at random. For
some (probabilistic) algorithm A, we further denote x ← A(in) the action of
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running algorithm A on some inputs in (with fresh uniform random tape) and
setting x to the value returned by A.

Basic Notions. We call register-based circuit any directed acyclic graph, whose
vertices either correspond to an input gate, a constant gate outputting an ele-
ment of V or a gate processing one of the following functions:

– XOR and AND, the coordinate-wise Boolean addition and multiplication over
Ks, respectively. For the sake of intelligibility, we write a+b and a·b instead
of XOR(a,b) and AND(a,b) respectively when it is clear from the context
that we are performing bitwise operations between elements of V.

– (ROTLr)r∈J1,s−1K, the family of vector Boolean rotations. For all r ∈ J1, s−
1K,

ROTLr : V → V
(v1, . . . , vs) 7→ (vr+1, . . . , vs, v1, . . . , vr)

– (SHIFTLr)r∈J1,s−1K and (SHIFTRr)r∈J1,s−1K, the families of vector Boolean
left and right shifts. For all r ∈ J1, s− 1K,

SHIFTLr : V → V
(v1, . . . , vs) 7→ (vr+1, . . . , vs, 0, . . . , 0)

SHIFTRr : V → V
(v1, . . . , vs) 7→ (0, . . . , 0, v1, . . . , vs−r)

A randomized circuit is a register-based circuit augmented with gates of fan-
in 0 that output elements of V chosen uniformly at random.

Translation to the Masking World. A d-sharing of x ∈ V refers to any
random tuple [x]d = (x0,x1 . . . ,xd−1) ∈ Vd that satisfies x = x0+x1+· · ·+xd−1.
A d-sharing [x]d is uniform if it is uniformly distributed over the subspace of
tuples satisfying this condition, meaning that for any k < d, any k-tuple of the
shares of x is uniformly distributed over Vk. In the following, we omit the sharing
order d when it is clear from the context, so a d-sharing of x is denoted by [x].
We further denote by Enc a probabilistic encoding algorithm that maps x ∈ V
to a fresh uniform sharing [x].

In this paper, we call a d-shared register-based circuit a randomized register-
based circuit working on d-shared variables as elements of V that takes as inputs
some d-sharings [x1], . . . , [xn] and performs operations on their shares with the
functions described above. Assuming that we associate an index to each edge
in the circuit, a probe refers to a specific edge index. For such a circuit C, we
denote by C([x1], . . . , [xn])P the distribution of the tuple of values carried by
the wires of C of indexes in P when the circuit is evaluated on [x1], . . . , [xn].

We consider circuits composed of subcircuits called gadgets. Gadgets are d-
shared circuits performing a specific operation. They can be seen as building
blocks of a more complex circuit. We furthermore say that a gadget is sharewise
if each output share of this gadget can be expressed as a deterministic function of
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its input shares of the same sharing index. In this paper, we specifically consider
the following gadgets:

– The ISW-multiplication gadget [⊗] takes two d-sharings [a] and [b] as inputs
and outputs a d-sharing [c] such that c = a · b as follows:
1. for every 0 ≤ i < j ≤ d− 1, ri,j ← V;
2. for every 0 ≤ i < j ≤ d− 1, compute rj,i ← (ri,j + ai · bj) + aj · bi;
3. for every 0 ≤ i ≤ d− 1, compute ci ← ai · bi +

∑
j 6=i ri,j .

– The ISW-refresh gadget [R] is the ISW-multiplication gadget in which the
second operand [b] is set to the constant sharing (1,0, . . . ,0), where 0 ∈ V
and 1 ∈ V denote the all 0 and all 1 vector respectively.

– The sharewise addition gadget [⊕] computes a d-sharing [c] from sharings
[a] and [b] such that c = a + b by letting ci = ai + bi for i ∈ J0, d− 1K.

– The sharewise left shift, right shift and rotation gadgets ([�n], [�n] and
[≪n] respectively) take a sharing [a] as input and output a sharing [c]
such that c = f(a) by letting ci = f(ai) for i ∈ J0, d − 1K, f being the
corresponding function described in the section above.

– The sharewise multiplication by a constant [⊗k] takes a sharing [a] and a
constant k ∈ V as inputs and outputs a sharing [c] such that c = k · a by
letting ci = k · ai for i ∈ J0, d− 1K.

– The sharewise addition with a constant [⊕k] takes a sharing [a] and a con-
stant k ∈ V as input and outputs a sharing [c] such that c = a + k by
letting ci = ai for i ∈ J0, d−1K and c0 = a0 +k. The coordinate-wise logical
complement NOT is captured by this definition with k = (1, . . . , 1).

3.2 Security Notions

In this section, we recall the t-probing security originally introduced in [26] as
formalized through a concrete security game in [8]. It is based on two experi-
ments described in Figure 3 from [8] in which an adversary A, modelled as a
probabilistic algorithm, outputs of set of t probes P and n inputs x1, . . . , xn in a
set K. In the first experiment, ExpReal, the inputs are encoded and given as in-
puts to the shared circuit C. The experiment then outputs a random evaluation
of the chosen probes (v1, . . . , vt). In the second experiment, ExpSim, the simula-
tor outputs a simulation of the evaluation C([x1], . . . , [xn])P without the input
sharings. It wins the game if and only if the distributions of both experiments
are identical.

Definition 1 ([8]). A shared circuit C is t-probing secure if and only if for
every adversary A, there exists a simulator S that wins the t-probing secu-
rity game defined in Figure 3, i.e. the random experiments ExpReal(A, C) and
ExpSim(A,S, C) output identical distributions.

In [8], the notion of t-probing security was defined for a Boolean circuit, with
K = F2, that is with x1, . . . , xn ∈ F2 and v1, . . . , vt ∈ F2. We further refer to
this specialized notion as t-bit probing security.
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ExpReal(A, C):

1. (P, x1, . . . , xn)← A()
2. [x1]← Enc(x1), . . . , [xn]← Enc(xn)
3. (v1, . . . , vt)← C([x1], . . . , [xn])P
4. Return (v1, . . . , vt)

ExpSim(A,S, C):

1. (P, x1, . . . , xn)← A()
2. (v1, . . . , vt)← S(P)
3. Return (v1, . . . , vt)

Fig. 3: t-probing security game from [8].

While the notion of t-bit probing security is relevant in a hardware scenario,
in the reality of masked software embedded devices, variables are manipulated
in registers which contain several bits that leak all together. To capture this
model, in this paper, we extend the verification to what we call the t-register
probing model in which the targeted circuit manipulates variables on registers of
size s for some s ∈ N+ and the adversary is able to choose t probes as registers
containing values in V = Fs

2. Notice that the t-bit probing model can be seen as
a specialization of the t-register probing model with s = 1.

Cautionary note. In software implementations, we may also face transition leak-
ages, modeled as functions of two `-bit variables when they are successively
stored in the same register. In that scenario, the masking order t might be
halved [2, 31]. While specific techniques can be settled to detect and handle such
leakages, we leave it for future work and focus on simple register probing model
in this paper, in which one observation reveals the content of a single register.

3.3 Security Reductions in the Register Probing Model

Just like for the bit-probing version of tightPROVE, the security notions are
formalized through games. Similar notions are used which only differ in the fact
that the probes in the new model now point to wires of register-based circuits,
which carry vectors of V. In this section, we present the differences between the
security games in the bit-probing model and the register-probing model. The
games are still equivalent to one another, and we give a sketch of proof for each
transition (as well as a full proof in the full version). We then give a description
of the linear algebra problem induced by the last game.

Sequence of Games. Similarly to the bit-probing case, Game 0 corresponds
to the probing security definition for a register-based circuit, and still features
an adversary A that chooses a set of probes P in a circuit C, and a simulator
S that wins the game if it successfully simulates C([x1], . . . , [xn])P , for inputs
x1, . . . , xn ∈ V.

Game 1. In Game 1, the adversary returns a set of probes P ′ = P ′r ∪ P ′m ∪
P ′sw, where |P ′| = t and the sets P ′r, P ′m and P ′sw contain probes pointing
to refresh gadgets’ inputs, pairs of probes pointing to multiplication gadgets’
inputs and probes pointing to sharewise gadgets’ inputs or outputs respectively.
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C([x1], . . . , [xn])P′ is then a q-tuple for q = 2|P ′m| + |P ′r ∪ P ′sw|. Besides the
definition set of variables, the only difference with the bit-probing case stands
in the fact that the sharewise gadgets are not restricted to addition gadgets.

Game 2. In Game 2, the circuit C is replaced by an equivalent circuit C ′ of
multiplicative depth 1, just like in the bit-probing case. The Flatten operation
can be trivially adapted to register-based circuits, as the outputs of refresh and
multiplication gadgets can still be considered as uniform sharings.

Game 3. In this last game, the adversary is restricted to only position its t probes
on multiplication gadgets, i.e. A returns a set of probes P ′′ = P ′r∪P ′m∪P ′sw such
that P ′sw = P ′r = ∅ and P ′′ = P ′m. C([x1], . . . , [xn])P′′ thus returns a q-tuple for
q = 2t since all the elements in P ′′ are pairs of inputs of multiplication gadgets.

Theorem 1. Let C be a shared circuit. We have the following equivalences:

∀A0,∃S0,S0 wins Game 0. ⇐⇒ ∀A1,∃S1,S1 wins Game 1.

⇐⇒ ∀A2,∃S2,S2 wins Game 2.

⇐⇒ ∀A3,∃S3,S3 wins Game 3.

For the sake of clarity, we define one lemma per game transition. The corre-
sponding proofs are available in the full version of this paper, but an informal
reasoning that supports these ideas is given in the following, as well as the dif-
ferences with the proofs established in [8].

Lemma 1. ∀A0,∃S0,S0 wins Game 0. ⇐⇒ ∀A1,∃S1,S1 wins Game 1.

Proof (sketch). The proof for the first game transition is based on the fact that
multiplication and refresh gadgets are t-SNI gadgets, and that each probe on such
gadgets can be replaced by one probe on each input sharing. The reason why this
still works in the new model is that the ISW multiplication and refresh gadgets
are still SNI for register-based circuits performing bitwise operations on V. This
transition can thus be reduced to the original transition.

Lemma 2. ∀A1,∃S1,S1 wins Game 1. ⇐⇒ ∀A2,∃S2,S2 wins Game 2.

Proof (sketch). The proof for the second game transition relies on the fact that
just as the output of a Boolean multiplication gadget is a random uniform Boolean
sharing, independent of its input sharings, the outputs of the multiplication gad-
gets we consider can be treated as new, fresh input encodings. Thus, a circuit C
is t-probing secure if and only if the circuit C ′ =Flatten(C) is t-probing secure.

Lemma 3. ∀A2,∃S2,S2 wins Game 2. ⇐⇒ ∀A3,∃S3,S3 wins Game 3.

Proof (sketch). A cross product of shares ai · bj carries informations on both
shares ai and bj, as each of the s slots in the cross product carries information
about each share. Thus, placing probes on multiplication gadgets only is optimal
from the attacker point of view. The complete proof for Lemma 3 makes use of
formal notions which are introduced in the next paragraph.
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Translation to Linear Algebra. From now on, the column space of a matrix
M is denoted by 〈M〉 and the column space of the concatenation of all the
matrices in a set E is denoted by 〈E〉.

From Lemma 1 and Lemma 2, checking the t-probing security of a shared
circuit C has been reduced to verifying the t-probing security of a shared cir-
cuit C ′ = Flatten(C), for which the attacker is restricted to use probes on its
multiplication and refresh gadgets’ inputs. We can translate this problem into a
linear algebra problem that we can solve algorithmically. In the following, let us
denote by xi,j ∈ V the jth share of the ith input sharing [xi], so that

∀i ∈ J1, NK, [xi] = (xi,0,xi,1, . . . ,xi,t) ∈ Vt+1

We also denote by x||j the concatenation of the jth shares of the input sharings:

∀j ∈ J0, tK,x||j = x1,j ||x2,j || . . . ||xN,j ∈ KsN

The probed variables in the flattened circuit C ′ form a q-tuple (v1, . . . ,vq) =
C ′([x1], . . . , [xN ])P′ . It can be checked that all these variables are linear combi-
nations of inputs shares’ coordinates since (1) the circuit C ′ has a multiplicative
depth of one, (2) the adversary can only place probes on inputs for multiplication
and refresh gadgets, and (3) other types of gadgets are linear. Since the gadgets
other than multiplication and refresh are sharewise, we can assert that for every
k ∈ J1, qK, there exists a single share index j for which vk only depends on the
jth share of the input sharings and thus only depends on x||j . Therefore there
exists a Boolean matrix Ak ∈ KsN×s, that we refer to as a block from now on,
such that

vk = x||j ·Ak ∈ V.

Let us denote by v||j the concatenation of all nj probed variables vi with i ∈
J1, qK such that vi only depends on share j. Similarly, we denote by Mj ∈
KsN×snj the matrix obtained from the concatenation of all the corresponding
blocks Ai (in the same order). We can now write

v||0 = x||0 ·M0 , v||1 = x||1 ·M1 , . . . , v||t = x||t ·Mt

which leads us to the following proposition.

Proposition 1. For any (x1, . . . ,xN ) ∈ VN , the q-tuple of probed variables
(v1, . . . ,vq) = C([x1], [x2],. . . , [xN ])P′ can be perfectly simulated if and only if
the Mj matrices satisfy

〈M0〉 ∩ 〈M1〉 ∩ · · · ∩ 〈Mt〉 = ∅ .

Proof. Let us denote by x = (x1‖x2‖ . . . ‖xN ) the concatenation of all the inputs.
We split the proof into two parts to handle both implications.
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From left to right. Let us assume that there exist a non-null vector w ∈ KsN

and vectors u0 ∈ Ksn0 , . . . ,ut ∈ Ksnt that verify w = M0 · u0 = · · · = Mt · ut.
This implies the following sequence of equalities:

t∑
j=0

v||j · uj =

t∑
j=0

x||j ·Mj · uj =

t∑
j=0

x||j ·w = x ·w

which implies that the distribution of (v1, . . . ,vq) depends on x, and thus cannot
be perfectly simulated.

From right to left. Since the sharings [x1], . . . , [xN ] are uniform and independent,
the vectors x||1, . . . ,x||t are independent uniform random vectors in KsN , and
can thus be perfectly simulated without the knowledge of any secret value. As
a direct consequence, the distribution of (v||1, . . . ,v||t) can be simulated. From
the definition v||0 = x||0 ·M0, each coordinate of v||0 is the result of a product
x||0 ·c where c is a column of M0. By assumption, there exists j ∈ {1, . . . , t} such
that c /∈ 〈Mj〉. Since x||1, . . . ,x||t are mutually independent, x||j · c is a random
uniform bit independent of x||1 ·M1, . . . ,x||j−1 ·Mj−1,x||j+1 ·Mj+1, . . . ,x||t ·Mt,
and since c /∈ 〈Mj〉, it is also independent of x||j ·Mj. This means that x||j · c is
a random uniform bit independent of v||1, . . . ,v||t, and so is x||0 · c, as x||0 · c =
x||j · c + (x||1 · c + · · · + x||j−1 · c + x||j+1 · c + · · · + x||t · c + x · c). Since
v||0 = x||0 ·M0, we can then perfectly simulate v||0. As a result, (v1, . . . ,vq) can
be perfectly simulated. ut

3.4 Verification in the Register Probing Model

In this section, we present a method based on Proposition 1 that checks whether
a (t + 1)-shared circuit C achieves t-register probing security for every t ∈ N∗.
We start by introducing some notations and formalizing the problem, then we
give a description of the aforementioned method, along with a pseudocode of the
algorithm. The method is finally illustrated with some examples.

Formal Definitions. Now that the equivalence between the t-register probing
security game was proven to be equivalent to Game 3, in which the adversary
can only probe variables that are inputs of multiplication gadgets in a flattened
circuit C ′, we formally express the verification of the t-register probing security
as a linear algebra problem. For a given multiplication gadget of index g, let us
denote by [ag] and [bg] its input sharings, i.e.

[ag] = (x||0 ·Ag , . . . , x||t ·Ag) and [bg] = (x||0 ·Bg , . . . , x||t ·Bg)

for some constant blocks Ag and Bg that we now call operand blocks. The adver-
sary outputs a set of t pairs of probes P = {(p11, p12), (p21, p

2
2), . . . , (pt1, p

t
2)}, where

for i in {1, . . . , t}, pi1 and pi2 are wire indices corresponding to one element of
each input sharings of the same multiplication. For all j ∈ J0, tK, we define the
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matrix Mj as the concatenation of all the blocks corresponding to probed shares
of share index j.

By Proposition 1, there is a register probing attack on C if and only if⋂t
i=0〈Mj〉 6= ∅. For an attack to exist, the matrices must be non-empty, and

since these matrices contain 2t blocks, at least one of them is made of a single
block D that belongs to the set of operand blocks {Ag, Bg}g. We can now say
that there exists a register probing attack on C if and only if there exists a
non-empty subspace S of KsN such that S =

⋂t
i=0〈Mj〉 ⊆ 〈D〉. In that case,

there is an attack on the subset S that we now refer to as the attack span.

tightPROVE+. When s = 1 (i.e., in the t-bit probing model case), the dimension
of S =

⋂t
i=0〈Mj〉 is at most 1, so checking whether an operand block W leads

to an attack or not reduces to verifying whether there exists a set of probes for
which S = 〈W 〉. However, for s > 1, there can be many possible subspaces of
〈W 〉 for an operand block W , so that any non-null subspace of 〈W 〉 ∩ S leads
to an attack. That is why the new method not only has to determine whether
there is an attack, but also which subsets of 〈W 〉 could possibly intersect with
the attack span S.

Our method loops over all the operand blocks W ∈ {Ag, Bg}g of multiplica-
tion gadgets and checks whether there is a probing attack on a subset of 〈W 〉.
For each W ∈ {Ag, Bg}g, we create a layered directed acyclic graph GW for
which each node is associated with a permissible attack span that represents the
subspace of 〈W 〉 in which an attack could possibly be found. The permissible
attack span in a node is a subset of the permissible attack span in its parent
node. Each node is indexed by a layer number i and a unique index b. Besides,
the permissible attack span denoted Si,b, the node contains some information in
the form of three additional sets Gi,b, Oi,b and Qi,b. Gi,b is a list of multiplication
gadgets which could be used to find an attack. Qi,b contains the operand blocks
of the multiplications in Gi,b that can be combined with other operands to obtain
elements of 〈W 〉. And then Oi,b, called the set of free operand blocks, contains
the other operand blocks of Gi,b. If there is a way to combine free operands to
obtain an element of 〈W 〉, then a probing attack is found.

We start with the first node root. We assign to S1,root the span 〈W 〉, to
G1,root the set of multiplications for which W is an operand and to Q1,root the
operand W . O1,root can then be deduced from G1,root and Q1,root:

S1,root = 〈W 〉
G1,root = {g |Ag = W} ∪ {g |Bg = W}
O1,root = {Bg |Ag = W} ∪ {Ag |Bg = W}
Q1,root = {W}

At each step i (from i = 1) of the algorithm, for each node b in the ith layer,
if Si,b ∩ 〈Oi,b〉 6= ∅, the method stops and returns False: the circuit is not tight
t-register probing secure for any t. If not, for each node b in the ith layer, for each
operand block A ∈ {Ag, Bg}g\Qi,b, if Si,b∩(〈A〉+〈Oi,b〉) 6= ∅ (where 〈A〉+〈Oi,b〉

15



denotes the Minkowski sum of 〈A〉 and 〈Oi,b〉), then we connect b to a new node
b′ in the next layer i + 1, containing the following information:

Si+1,b′ = Si,b ∩ (〈A〉+ 〈Oi,b〉)
Gi+1,b′ = Gi,b ∪ {g |A is an operand block of the multiplication gadget g}
Oi+1,b′ = Oi,b ∪ {B |A is a co-operand block of B in a multiplication gadget}
Qi+1,b′ = Qi,b ∪ {A}

If no new node is created at step i, then the algorithm stops and returns True:
the circuit is tight t-register probing secure for any t. The method eventually
stops, as the number of nodes we can create for each graph is finite. Indeed, at
each step i, each node b can only produce |{Ag, Bg}g| − |Qi,b| new nodes, and
for each of them the set Q grows by one. In total, each graph can contain up to
(|{Ag, Bg}g| − 1)! nodes.

The pseudocode of Algorithm 1 gives a high-level description of our method.
In this algorithm, each edge on the graph corresponds to adding an operand
in Q. Multiple operands can be added at once if the corresponding permissible
attack span is the same for all of those operands. For the sake of simplicity, we
decide to omit this optimization in the algorithm.

Proposition 2. Algorithm 1 is correct.

Proof (sketch). The proof is organized in two parts. First, we show that there are
no false negatives: if the algorithm returns False, then there is a probing attack
on the input circuit C. This is done with a constructive proof. Assuming that the
algorithm returns False, we construct from the graph a set of matrices (as defined
in section 3.3) such that the intersection of their images is non-empty. Then we
prove that there are no false positives by showing that if there is a probing attack
on a circuit C, then the algorithm cannot stop as long as no attack is found.
Since the algorithm has been proven to terminate, it must return False. ut

The complete proof is provided in the full version.

Complete Characterization. The verification algorithm can be slightly mod-
ified to output all the existing t-register probing attack paths on the input cir-
cuit. This extension mostly amounts to continuing to add new nodes to the graph
even when an attack has been detected until no new node can be added, and
slightly changing the condition to add a node. The new condition can be written
Si,b ∩ (〈A〉∗ + 〈Oi,b〉) 6= ∅, where 〈A〉∗ denotes the set of non-null vectors of the
column space of A. And with this, it is possible to determine the least attack
order, which is the least amount of probes tmin that can be used to recover a
secret value in a (tmin + 1)-shared circuit.

Toy example. We provide in the full version of the paper a comprehensive
illustration of tightPROVE+ on a toy example.
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Algorithm 1: tightPROVE+

input : A description of a circuit C
output: True or False, along with a proof (and possibly a list of attacks)

foreach operand W do
/* create root for the new graph GW */
S1,root = 〈W 〉
G1,root = {g |Ag = W} ∪ {g |Bg = W}
O1,root = {Bg |Ag = W} ∪ {Ag |Bg = W}
Q1,root = {W}
foreach step i do

foreach branch b in layer i do
if Si,b ∩ 〈Oi,b〉 6= ∅ then return False;

end
foreach branch b in layer i do

foreach operand A /∈ Qi,b do
if Si,b ∩ (〈A〉+ 〈Oi,b〉) 6= ∅ then

/* add new branch b′ */
Si+1,b′ = Si,b ∩ (〈A〉+ 〈Oi,b〉)
Gi+1,b′ = Gi,b ∪ {g |A is an operand of the mult. gadget g}
Oi+1,b′ = Oi,b ∪ {B |A is an operand of a mult. gadget}
Qi+1,b′ = Qi,b ∪ {A}

end

end

end

end

end
return True

Concrete Example. We now present an example that shows how tightPROVE+

applies to real-life implementations of cryptographic primitives. We take as ex-
ample an Usuba implementation of the Gimli [10] cipher, a 384-bit permutation,
with 32-bit registers. When applying tightPROVE+ on this circuit, register prob-
ing attacks are identified. Let us describe one of them and display the subgraph
of the circuit it is based on in Figure 4.

The subcircuit uses 5 input blocks I1, I2, I3, I4, I5. We denote by [x] the shar-
ing obtained after the rotation of I2 and [y] the one after the rotation of I1. By
probing the multiplication g1, one can get the values x32,0 and y32,1 (the first
index denotes the bit slot in the register and the second one denotes the share).
Due to the left shifts, one can get the values x32,2 and x32,1+y32,1 by probing g2.
The following values can thus be obtained: x32,0, x32,1 = (x32,1 + y32,1) + y32,1,
and x32,2. This implies that x32, the last slot of the secret value x, can be re-
trieved with t probes when the circuit is (t + 1)-shared for any t ≥ 2.
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I1 I2 I3 I4 I5

[≪9] [≪24] [�1] [�1] [�2]

[⊗] g1 [⊕]

[⊕] [⊕]

[≪9] [⊕]

[⊗] g2

Fig. 4: Graph representation of a sub-circuit of Gimli.

4 Tornado: Automating Slicing & Masking

Given a high-level description of a cryptographic primitive, Tornado synthesizes
a masked implementation using the ISW-based multiplication and refresh gad-
gets. The gadgets are provided as C functions, presented in Figure 5 and where
the macro MASKING_ORDER is instantiated at compile time to the desired masking
order. The key role of Usuba is to automate the generation of a sliced implemen-
tation, upon which tightPROVE+ is then able to verify either the bit probing
or register probing security, or identify the necessary refreshes. By integrating
both tools, we derive a masked implementation from the sliced one. This is done
by mapping linear operations over all shares, by using isw_mult for bitwise and

operations and by calling isw_refresh where necessary.

static void isw_mult(uint32_t *res,
const uint32_t *op1,
const uint32_t *op2) {

for (int i=0; i<=MASKING_ORDER; i++)
res[i] = 0;

for (int i=0; i<=MASKING_ORDER; i++) {
res[i] ^= op1[i] & op2[i];

for (int j=i+1; j<=MASKING_ORDER; j++) {
uint32_t rnd = get_random();
res[i] ^= rnd;
res[j] ^= (rnd ^ (op1[i] & op2[j]))

^ (op1[j] & op2[i]);
}

}
}

static void isw_refresh(uint32_t *res,
const uint32_t *in) {

for (int i=0; i<=MASKING_ORDER; i++)
res[i] = in[i];

for (int i=0; i<=MASKING_ORDER; i++) {
for (int j=i+1; j<=MASKING_ORDER; j++) {

uint32_t rnd = get_random();
res[i] ^= rnd;
res[j] ^= rnd;

}
}

}

Fig. 5: ISW gadgets.
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Usuba Usuba0 Usuba0 Usuba0 C assembly

tightPROVE+

Normalization
bitslicing/n-slicing

Verification Refresh points

cache hit Masking

Optimizations
loop fusion, mult. by constant,

scheduling, inlining, etc.

Transpilation Register
allocation

Fig. 6: High-level view of the Tornado compiler.

The overall architecture of the Tornado compiler is shown in Figure 6. It con-
sists essentially in the integration of Usuba and tightPROVE+ within a single,
unified framework. This integration is reasonably simple since the Usuba0 inter-
mediate representation amounts essentially to a register-based circuit extended
with a notion of function node (for code reuse), whereas the input language of
tightPROVE+ consists in unrolled inlined register-based circuits. We therefore
easily obtain an input suitable for tightPROVE+ by inlining all the nodes within
the Usuba0 generated by Usuba. We also need to specify the probing model to
use when carrying the analysis in tightPROVE+: this corresponds exactly to the
typing information specified in Usuba, whether we are considering a bitsliced
implementation (in which case we select the bit probing model), or an n-sliced
implementation (in which case we select the register probing model, registers
whose size is m).

Having sent a register-based circuit to the extended tool tightPROVE+, it may
either be accepted as-is or tightPROVE+ may have identified necessary refresh
points to achieve bit or register probing security. In the latter case, Tornado maps
these refresh points back into the initial, non-inlined Usuba0 code: each refresh
point is turned into a custom refresh operator that is treated specifically by the
Tornado backend (in particular, it cannot be optimized out). Upon emitting C
code, this operator turns into a call to the isw_refresh gadget of Figure 5.

4.1 Addition of Refresh Gadgets

In order to make the generation of secure masked implementations fully auto-
matic, we use heuristic methods to determine a set of operands to be refreshed
in order to make the resulting circuit secure in the considered probing model.

When a circuit is built from the combination of several instances of the same
subcircuit, the description of the subcircuit is analyzed first, assuming that it
has random, uniform and independent inputs. If probing attacks are found, an
exhaustive search of the placement of refresh gadgets can be done if the size
of the subcircuit is not too big. The same placement of refresh is then applied
every time this subcircuit appears. Doing so is relevant, as any attack that can
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be done on a subfunction alone also exists when that subfunction is part of a
wider circuit.

Then, tightPROVE+ verifies that the resulting circuit is secure. If probing
attacks are still found, then tightPROVE+ is called in full characterization mode
which yields the complete list of multiplications involved in each attack. We
then select an operand of the multiplication that appears the most in that list,
and apply a refresh to this operand. This step is repeated until no more attacks
can be found. This method is bound to stop and yield a secure circuit since,
as proven in the original paper describing tightPROVE, refreshing one input per
multiplication guarantees that the resulting circuit is secure.

We stress that this method is not optimal in the sense that it does not always
find the minimal number of refresh gadgets needed to make a circuit secure, but
it provides a sound heuristic. Finding an optimal and efficient method to place
refresh gadgets is left open for future research.

4.2 Optimizations

Whereas this compilation scheme is functionally sufficient to guarantee security,
further optimizations are beneficial to make it scale to large masking orders
on a typical embedded platform. Tornado therefore integrates a modicum of
optimizations to optimize stack usage (especially for bitsliced implementations),
to reduce the overhead of repeatedly iterating over shares and to minimize the
number of masked multiplications. Note that the objective of the present work is
not to demonstrate best-in-class performance results: we are instead interested
in 1. the asymptotic performance of a given primitive across a sizable choice of
masking orders; and 2. the comparative performance of sizable number primitives
at a given masking order.

To this end, Tornado has proved to be a valuable tool. We enable the first
point by minimizing the impact that the C compiler can have on the quality (or
lack thereof) of the resulting code. For example and as the masking order grows,
the compiler tends to shy away from certain loop-related optimizations that are
beneficial. We therefore systematically carry these optimizations in Tornado. We
enable the second point by subjecting all the primitives to the same, predictable
(even if imperfect) compilation process tailored to the platform of interest.

We have therefore identified two optimizations that are necessary to scale
to large masking orders: aggressive constant propagation for multiplications and
loop fusion. Masked multiplication being expensive, we strive to spot the case
where the operand of a multiplication is in fact a constant value. We do so
through a constant propagation analysis in Usuba0 followed by a specific compi-
lation rule in this case: we directly multiply all the shares with the constant.

To mask a sequence of instructions, Tornado replaces each of them with a
masked gadget. Gadgets for linear operations consist in a loop applying itera-
tively a basic operation over each share, such as

for (int i=0; i<=MASKING_ORDER; i++) A(i);

for (int i=0; i<=MASKING_ORDER; i++) B(i);
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for (int i=0; i<=MASKING_ORDER; i++) C(i);

where A, B and C are linear operations storing their results in a number of variables
linear with MASKING_ORDER. As a result, stack usage increases linearly with the
masking order, which means that, when considering implementations as register-
hungry as bitslicing ones, even small masking orders can be too heavy. Besides,
operating each loop (increment, comparison, branching) impedes an overhead
that the C compiler is something heuristically willing to optimize out at small
orders, leading to confusing threshold effects when benchmarking. To address
both issues, we systematically perform loop fusion, thus obtaining

for (int i=0; i<=MASKING_ORDER; i++) {

A(i); B(i); C(i);

}

on the above example, followed by instruction scheduling, which will strive to
reduce the live range [29] (and thus the number of temporaries) of, for example,
the variables set in A and used in B.

This optimization allows us to reduce stack usage of our bitsliced implemen-
tations by 11kB on average whereas this saves us, on average, 3kB of stack for
our n-sliced implementations (recall that our platform offers a measly 96kB of
SRAM). It also positively impacts performance, with a 16% average speedup for
bitslicing and a 21% average speedup for n-slicing.

5 Evaluation

We evaluated Tornado on 11 cryptographic primitives from the second round of
the NIST lightweight cryptography competition6. The choice of cryptographic
primitives was made on the basis that they were self-identified as being amenable
to masking. We stress that we do not focus on the full authenticated encryp-
tion, message authentication, or hash protocols but on the underlying primitives,
mostly block ciphers and permutations.

Table 1 provides an overview of these primitives. Whenever possible, we
generate both a bitsliced and an n-sliced implementation for each primitive,
which allows us to exercise the bit-probing and the register-probing models of
tightPROVE+. However, 4 primitives do not admit a straightforward n-sliced
implementation. The Subterranean permutation involves a significant amount
of bit-twiddling across its 257-bit state, which makes it a resolutely bitsliced
primitive (as confirmed by its reference implementation). Photon, Skinny,
Spongent rely on lookup tables that would be too expansive to emulate in n-
sliced mode. In bitslicing, these tables are simply implemented by their Boolean
circuit, either provided by the authors (Photon, Skinny) or generated through
SAT [34] with the objective of minimizing multiplicative complexity (Spongent,

6 See https://csrc.nist.gov/Projects/lightweight-cryptography/

round-2-candidates for the list of candidates together with specifications
and reference implementations.
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with 4 ANDs and 28 XORs). Spook and Elephant respectively rely on the Clyde
and Spongent primitives, which we therefore include in our evaluation.

Note that the n-sliced implementations, when they exist, are either 32-sliced
or 64-sliced. This means in particular that, unlike bitslicing that processes mul-
tiple blocks in parallel, these implementations process a single block at once on
our 32-bit Cortex M4.

In Subsection 5.1, we present the results of tightPROVE+ on the considered
primitives using the refresh placement strategy explained in Subsection 4.1. Fi-
nally, we benchmark our unmasked implementations against reference implemen-
tations in Subsection 5.2, and compare their masked versions in Subsection 5.3.

Table 1: Overview of the selected cryptographic primitives.

primitive
state size multiplications mult./bits

n-sliceable
slice

(bits) n-slice bitslice n-slice bitslice size

Ace [1] 320 384 12288 1.2 38 3 32
Ascon [23] 320 60 3840 0.19 12 3 64
Clyde [9] 128 48 1536 0.37 12 3 32
Gift [3] 128 160 5120 1.25 40 3 32

Gimli [11] 384 288 9216 0.75 24 3 32
Photon [4] 256 - 3072 - 12 7 -

Pyjamask [24] 128 56 1792 0.44 14 3 32
Skinny [7] 128 - 6144 - 48 7 -

Spongent [13, 14] 160 - 12800 - 80 7 -
Subterranean [22] 257 - 2056 - 8 7 -
Xoodoo [21, 20] 384 144 4608 0.37 12 3 32

5.1 tightPROVE+

Table 2 contains the results of tightPROVE+ for the aforementioned primitives.
We display the output of our algorithm for each circuit, along with the size of
the registers used and the time it takes for tightPROVE+ to output the results.
Table 3 provides additional information about the implementations that are not
secure in the register probing model. This includes the size of the registers, the
time it takes to find the first attack, the time it takes to find all the operands
that can be retrieved, then the least attack order, the optimal number of re-
fresh gadgets needed to make the implementation secure in the register probing
model, and finally the time tightPROVE+ takes to verify that the refreshed im-
plementation is indeed secure. All calculations were made on an iMac with an
intel Core i7 processor (4 GHz) and 16 GB of DDR3 RAM (1600 MHz), with
parallel computing on its 8 CPUs.

Following the method described in Section 4.1, tightPROVE+ places refresh
gadgets for the considered implementations of Ace, Clyde and Gimli. For the
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Table 2: Results of tightPROVE+ on all the implementations.

submissions primitive
time

(bitslice)

bit
probing
security

register
size

time
(n-slice)

register
probing
security

block ciphers
Gift-COFB,
HYENA,
SUNDAE-
Gift

Gift-128 55 H 40 min 3 32 2 H 15 min 3

Pyjamask Pyjamask-128 30 min 3 32 6 min 3

Skinny,
Romulus

Skinny-128-256 10 H 3 - - -

Spook Clyde-128 10 min 3 32 32 s 7

permutations
Ace Ace 54 H 30 min 3 32 10 min 7

Ascon p12 1 H 45 min 3 64 1 H 13 min 3

Elephant
Spongent-
π[160](1
round)

6 s 3 - - -

Elephant
Spongent-
π[160](10
rounds)

20 min 40 s 3 - - -

Gimli Gimli-36 22 H 45 min 3 32 1 H 10 min 7

ORANGE,
Photon-
BEETLE

Photon-256 2 H 3 - - -

Xoodyak Xoodoo[12] 2 H 50 min 3 32 4 H 5 min 3

others
Subterranean blank(8) 17 min 3 - - -

two first primitives, there is exactly one subcircuit which is responsible for the
identified register probing attacks, which can be fixed by adding only one refresh
gadget. This gives us a lower bound for the optimal number of refresh gadgets,
and since tightPROVE+ does not find any further attack after the addition of
refresh gadgets, it is also an upper bound. Gimli, however, is made of 6 sub-
sequent identical subcircuits that are subject to register probing attacks, but
the method uses 20 refresh gadgets per subcircuits to make the implementation
secure. We can thus only conclude that we have an upper bound of 120 for the
optimal number of gadgets, and that it is a multiple of 6, but in the current
method, we cannot ascertain that it is optimal without setting up an exhaustive
search.

5.2 Baseline Performance Evaluation

In the following, we benchmark our implementations – in Usuba and compiled
with Tornado – of the NIST submissions against the reference implementation
provided by the contestants. This allows us to establish a performance baseline

23



Table 3: Complementary information on flawed implementations.

primitive
register

first attack all operands
least attack refresh refreshed

size order gadgets needed circuit

Ace 32 10 min 25 min 1 384 70 H
Clyde-128 32 32 s 2 min 10 s 2 6 3 min 10 s
Gimli-36 32 1 H 10 min 66 H 20 min 2 ≤ 120 8 H 50 min

(without masking), thus providing a common frame of reference for the per-
formance of these primitives based on their implementation synthesized from
Usuba. In doing so, we have to bear in mind that the reference implementations
provided by the NIST contestants are of varying quality: some appear to have
been finely tuned for performance while others focus on simplicity, acting as an
executable specification.

In an effort to level the playing field, we ran our benchmark on an Intel
i5-6500 @ 3.20GHz, running Linux 4.15.0-54. The implementations were com-
piled with Clang 7.0.0 with flags -O3 -fno-slp-vectorize -fno-vectorize.
These flags prevent Clang from trying to produce vectorized code, which would
artificially advantage some implementations at the expense of others because of
brittle, hard-to-predict vectorization heuristics. Besides, vectorized instructions
remain an exception in the setting of embedded devices (e.g. , Cortex M). At
the exception of Subterranean (which is bitsliced), the reference implementations
follow a n-sliced implementation pattern, representing the state of the primitive
through a matrix of 32-bit values, or 64-bit in the case of Ascon. To evaluate
bitsliced implementations, we simulate a 32-bit architecture, meaning that the
throughput we report corresponds to the parallel encryption of 32 independent
blocks.

The results are shown in Table 4. We notice that Usuba often delivers perfor-
mance that is on par or better than the reference implementations. Note that this
does not come at the expense of intelligibility: our Usuba implementations are
written in a high-level language, which is amenable to formal reasoning thanks
to its straightforward semantic model (unlike any implementation in C). The
reference implementations of Skinny and Photon use lookup tables, which do
not admit a straightforward implementation in terms of constant-time, combi-
national operations. As a result, we are unable to implement a constant-time
n-sliced version in Usuba and to, in Section 5.3, mask such an implementation.

We now turn our attention specifically to a few implementations that exhibit
interesting performance with the following observations:

– The reference implementation of Subterranean is an order of magnitude
slower than in Usuba because its implementation is bit-oriented (each bit
is stored in a distinct 8-bit variable) but only a single block is encrypted at
a time. Switching to 32-bit variables and encrypting 32 blocks in parallel, as
Usuba does, significantly improves performance.
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– The reference implementation of Spongent is slowed down by a prohibitively
expensive bit-permutation over 160 bits, which is spread across 20 8-bit vari-
ables. Thanks to bitslicing, Usuba turns this permutation into a purely static
renaming of variable, which occurs purely at compile-time.

– On Ascon, our n-sliced implementation is twice slower than the refer-
ence implementation. Unlike the reference implementation, we have refrained
from performing aggressive function inlining and loop unrolling to keep code
size in check, since we target embedded systems. However, if we instruct
the Usuba compiler to perform these optimizations, the performance of our
n-sliced implementation is on par with the reference one.

– Ace reference implementation suffers from significant performance issues,
relying on an excessive number of temporary variables to store intermediate
results.

– Finally, Gimli offers two reference implementations, one being a high-performance
SSE implementation with the other serving as an executable specification on
general-purpose registers. We chose the general-purpose one here (which had
not been subjected to the same level of optimizations) because our target
architecture (Cortex M) does not provide a vectorized instruction set.

Table 4: Comparison of Usuba vs reference implementations.

primitive
Performances (cycles/bytes)

(lower is better)
Usuba n-slice Usuba bitslice reference

Ace 34.25 55.89 276.53
Ascon 9.84 4.94 5.18
Clyde 33.72 21.99 37.69
Gimli 15.77 5.80 44.35
Gift 565.30 45.51 517.27

Photon - 44.88 214.47
Pyjamask 246.72 131.33 267.35
Skinny - 46.87 207.82

Spongent - 146.93 4824.97
Subterranean - 17.64 355.38

Xoodoo 14.93 6.47 10.14

5.3 Masking Benchmarks

We now turn to the evaluation of the masked implementations produced by
Tornado using the Usuba implementations presented in the previous section. Our
benchmarks are run on a Nucleo STM32F401RE offering an Arm Cortex-M4
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with 512 Kbytes of Flash memory and 96 Kbytes of SRAM. We used the GNU
C compiler arm-none-eabi-gcc version 9.2.0 at optimization level -O3.

We considered two modes regarding the Random Number Generator (RNG):

– Pooling mode: The RNG generates random numbers at a rate of 32 bits
every 64 clock cycles. Fetching a random number can thus take up to 65
clock cycles.

– Fast mode: The RNG only takes a few clock cycles to generate a 32-bit
random word. The RNG routine thus can simply read a register containing
this 32-bit random word without checking for its availability.

Those two modes were chosen because they are the ones used in the submission
of Pyjamask, which is the only submission detailing the question of how to get
random numbers for a masked implementation.

Of these 11 NIST submissions, only Pyjamask provides a masked implemen-
tation. Our implementation is consistently (at every order, and with both the
pooling and fast RNGs) 1.8 times slower than their masked implementation. The
reason is twofold. First, their reference implementation has been heavily opti-
mized to take advantage of the barrel shifter on the Cortex M4, which we do not
exploit. Second, our implementation uses the generic ISW multiplication (Fig-
ure 5) whereas the reference implementation employs a specialized, hand-tuned
implementation in assembly.

n-sliced implementations. Table 5a gives the performances of the n-sliced im-
plementations produced by Tornado in terms of cycles per byte. Note that these
implementations are provably secure, with refreshing gadgets being inserted if
necessary.

Since masking a multiplication has a quadratic cost in the number of shares,
we expect performance at high orders to be mostly proportional with the number
of multiplications used by the primitives. We thus report the number of multi-
plications involved in our implementation normalized to the block size (in bytes)
of the primitive. This is confirmed by our results with 128 shares (on the Cor-
tex M4). This effect is less pronounced at small orders since the execution time
remains dominated by linear operations. Using the pooling RNG increases the
cost of multiplications compared to the fast RNG, which results in performances
being proportional to the number of multiplications at smaller order than with
the fast RNG.

Pyjamask illustrates the influence of the number of multiplications on scaling.
Because of its use of dense binary matrix multiplications, it involves a significant
number of linear operations for only a few multiplications. As a result, it is slower
than Gimli and Ace at order 3, despite the fact that they use respectively 2×
and 6× more multiplications. With the fast RNG, the inflection point is reached
at order 7 for Ace and order 31 for Gimli, only to improve afterward. Similarly
when compared to Clyde, Pyjamask goes from 5× slower at order 3 to 50%
slower at order 127 with the fast RNG and 20% slower at order 127 with the
pooling RNG. The same analysis applies to Gift and Ace, where the linear
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primitive mult./bytes TRNG
Performances (cycles/bytes)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31 d = 63 d = 127

Ascon 1.375
pooling 49 1.34k 4.57k 20.54k 79.24k 324k 1.30m

fast 49 1.05k 3.08k 11.61k 42.48k 163k 640k

Xoodoo 1.5
pooling 63 1.71k 6.96k 29.07k 113k 448k 1.73m

fast 63 889 3.26k 10.84k 39.43k 143k 555k

Clyde 3
pooling 92 1.88k 7.58k 31.43k 121k 483k 1.87m

fast 92 961 3.53k 11.84k 41.88k 161k 653k

Pyjamask 3
pooling 994 5.93k 17.16k 59.66k 194k 646k 2.27m

fast 994 4.97k 12.84k 38.40k 108k 297k 950k

Gimli 6
pooling 56 3.97k 17.35k 73.42k 293k 1.17m 4.56m

fast 56 1.77k 7.14k 24.71k 95.20k 356k 1.40m

Gift 10
pooling 1.12k 15.27k 44.68k 138k 532k 1.82m 6.40m

fast 1.13k 12.53k 32.27k 77.61k 285k 819k 2.64m

Ace 19.2
pooling 92 7.55k 32.94k 114k 495k 1.96m 7.77m

fast 92 3.88k 13.29k 40.06k 190k 746k 2.84m

(a) cycles per byte

primitive mult. TRNG
Performances (cycles)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31 d = 63 d = 127

Clyde 48
pooling 1.47k 30.08k 121.28k 502.88k 1.94m 7.73m 29.92m

fast 1.47k 15.38k 56.48k 189.44k 670.08k 2.58m 10.45m

Pyjamask 56
pooling 15.90k 94.88k 274.56k 954.56k 3.10m 10.34m 36.32m

fast 15.90k 79.52k 205.44k 614.40k 1.73m 4.75m 15.20m

Ascon 60
pooling 1.96k 53.60k 182.80k 821.60k 3.17m 12.96m 52.00m

fast 1.96k 42.00k 123.20k 464.40k 1.70m 6.52m 25.60m

Xoodoo 144
pooling 3.02k 82.08k 334.08k 1.40m 5.42m 21.50m 83.04m

fast 3.02k 42.67k 156.48k 520.32k 1.89m 6.86m 26.64m

Gift 160
pooling 17.92k 244.32k 714.88k 2.21m 8.51m 29.12m 102.40m

fast 18.08k 200.48k 516.32k 1.24m 4.56m 13.10m 42.24m

Gimli 288
pooling 2.69k 190.56k 832.80k 3.52m 14.06m 56.16m 218.88m

fast 2.69k 84.96k 342.72k 1.19m 4.57m 17.09m 67.20m

Ace 384
pooling 3.68k 302.00k 1.32m 4.56m 19.80m 78.40m 310.80m

fast 3.68k 155.20k 531.60k 1.60m 7.60m 29.84m 113.60m

(b) cycles per bloc

Table 5: Performances of Tornado generated n-sliced masked implementations.

overhead of Gift is only dominated at order 63 with the pooling RNG and at
order 127 with the fast RNG.

One notable exception is Ascon with the fast RNG, compared in particular
to Xoodoo and Clyde. Whereas Ascon uses a smaller number of multiplications,
it involves a 64-sliced implementation (Table 1), unlike its counterparts that are
32-sliced. Running on our 32-bit Cortex-M4 requires GCC to generate 64-bit
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emulation code, which induces a significant operational overhead and prevents
further optimization by the compiler. When using the pooling RNG however,
Ascon is faster than both Xoodoo and Clyde at every order, thanks to its
smaller number of multiplications.

For scenarios in which one is not interested in encrypting a lot of data but
rather a single block, possibly short, then it makes more sense to look at the
performances of a single run of a cipher, rather than its amortized performances
over the amount of bytes it encrypts. This is shown in Table 5b. The ciphers that
use the least amount of multiplications have the upper hand when masking order
increases: Clyde is clearly the fastest primitive at order 127, closely followed by
Pyjamask. Ascon, which is the fastest one when looking at the cycles/bytes
actually owns its performances to his low number of multiplications compared
to its 320-bit block size. Therefore, when looking at a single run, it is actually
1.7× slower than Clyde at order 127. Similarly, Xoodoo performs well on the
cycles/bytes metric, but has a block size of 384 bits, making it 2.5× slower.

Bitsliced implementations. The key limiting factor to execute bitslice code on
an embedded device is the amount of memory available. Bitsliced programs tend
to be large and to consume a significant amount of stack. Masking such imple-
mentations at high orders becomes quickly impractical because of the quadratic
growth of the stack usage.

To reduce stack usage and allow us to explore high masking orders, our bit-
sliced programs manipulate 8-bit variables, meaning that 8 independent blocks
can be processed in parallel. This trades memory usage for performance, as we
could have used 32-bit variables and improved our throughput by a factor 4.
However, doing so would have put an unbearable amount of pressure on the
stack, which would have prevented us from considering masking orders beyond
7. Besides, it is not clear whether there is a use-case for such a massively parallel
(32 independent blocks) encryption primitive in a lightweight setting. As a result
of our compilation strategy, we have been able to mask all primitives with up to
16 shares and, additionally, reach 32 shares for Photon, Skinny, Spongent
and Subterranean.

As for the n-sliced implementations, we observe a close match between the
asymptotic performance of the primitive and their number of multiplications per
bits (Table 6), which becomes even more prevalent as order increases and the
overhead of linear operations becomes comparatively smaller. Pyjamask remains
a good example to illustrate this phenomenon, the inflection point being reached
at order 15 with respect to Ace (which uses 3× more multiplications).

The performance of Ascon with the fast RNG, which was slowed down by its
suboptimal use of 64-bit registers in n-slicing, is streamlined in bitslicing: here,
it exhibits the same number of multiplication per bits as Xoodoo and, indeed,
their performance match remarkably well.

Finally, we observe that with the pooling RNG, already at order 15, the
performances of our implementations is in accord with their relative number
of multiplications per bits. In bitslicing (more evidently than in n-slicing), the
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primitive mult./bits TRNG
Performances (cycles/bytes)

(lower is better)
d = 0 d = 3 d = 7 d = 15 d = 31

Subterranean 8
pooling 94 4.46k 19.13k 79.63k 312k

fast 94 2.15k 7.18k 27.03k 95.19k

Ascon 12
pooling 101 7.33k 30.33k 125k -

fast 101 3.07k 11.45k 42.39k -

Xoodoo 12
pooling 112 6.69k 28.79k 120k -

fast 112 3.12k 10.49k 39.35k -

Clyde 12
pooling 177 7.88k 31.04k 127k -

fast 161 3.44k 13.57k 45.34k -

Photon 12
pooling 193 10.47k 31.77k 126k 476k

fast 193 7.66k 14.28k 44.99k 154k

Pyjamask 14
pooling 1.59k 20.33k 52.81k 193k -

fast 1.59k 16.52k 31.74k 97.88k -

Gimli 24
pooling 127 12.14k 53.64k 236k -

fast 127 5.51k 19.15k 76.91k -

Ace 38
pooling 336 19.94k 89.12k 395k -

fast 336 8.22k 35.29k 123k -

Gift 40
pooling 358 21.38k 93.92k 405k -

fast 358 11.08k 36.79k 136k -

Skinny 48
pooling 441 34.28k 131k 525k 1.97m

fast 441 18.19k 61.75k 200k 664k

Spongent 80
pooling 624 44.04k 188k 816k 3.15m

fast 624 19.45k 64.78k 259k 948k

Table 6: Performances of Tornado generated bitslice masked implementations.

number of multiplications is performance critical, even at relatively low masking
order.

6 Conclusion

In this paper, we have introduced tightPROVE+, an extension of tightPROVE
that operates on the register-probing model. Stepping beyond the bit-probing
model allows us to establish provable security in a purely software context.
By combining tightPROVE+ with the Usuba programming language, we have
obtained an integrated development environment, called Tornado, that stream-
lines the definition of symmetric ciphers and automates their compilation into
provably-secure masked implementations. Thanks to this framework, we have
been able to systematically evaluate 11 NIST lightweight cryptography round-2
submissions that are amenable to masking. We have identified 3 ciphers (Ace,
Clyde, Gimli) that are not safe in the register probing model and proposed some
refresh points to repair them. We have also carried out an extensive perfor-
mance evaluation, studying the asymptotic behavior of these ciphers across a
large range of masking orders.
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As part of future work, we intend to further enrich our compiler backend
with optimizations specific to embedded architectures (Cortex M and/or Risc-
V), systematizing various primitive-specific optimizations documented in the
literature [35, 28, 33]. Previous results on Intel architecture [29] has demonstrated
that Usuba can produce code whose performance is on par with hand-optimized,
assembly implementations.
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