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Abstract. We study the problem of achieving statistical privacy in interactive
proof systems and oblivious transfer – two of the most well studied two-party
protocols – when limited rounds of interaction are available.

– Statistical Zaps: We give the first construction of statistical Zaps, namely,
two-round statistical witness-indistinguishable (WI) protocols with a public-
coin verifier. Our construction achieves computational soundness based on
the quasi-polynomial hardness of learning with errors assumption.

– Three-Round Statistical Receiver-Private Oblivious Transfer: We give
the first construction of a three-round oblivious transfer (OT) protocol – in
the plain model – that achieves statistical privacy for receivers and computa-
tional privacy for senders against malicious adversaries, based on polynomial-
time assumptions. The round-complexity of our protocol is optimal.

We obtain our first result by devising a public-coin approach to compress sigma
protocols, without relying on trusted setup. To obtain our second result, we devise
a general framework via a new notion of statistical hash commitments that may
be of independent interest.

1 Introduction

We study the problem of achieving statistical privacy in two-party cryptographic proto-
cols. Statistical privacy is very appealing in cryptography since it guarantees everlasting
security – even if the adversary is computationally unbounded during the protocol exe-
cution and later post-processes the protocol transcript for as long as it wants, it cannot
violate the privacy guarantee. For this reason, perhaps unsurprisingly, statistical privacy
is typically much harder to achieve than computational privacy. For example, achieving
statistical privacy for both participants in two-party protocols is impossible in general.

Nevertheless, in many scenarios, “one-sided” statistical privacy is possible to achieve.
In other words, it is typically possible to design protocols that guarantee statistical pri-
vacy for one participant and computational privacy for the other. In this work, we inves-
tigate the possibility of achieving such asymmetric guarantees when limited rounds of
interaction are available. We narrow the focus of our study on interactive proof systems
[24,2] and oblivious transfer [39,17], two of the most well-studied two-party protocols
in the cryptography literature.



Statistical Zaps. The notion of witness-indistinguishable (WI) proofs [19] allows a
prover to convince a verifier about the validity of a statement (say) x in a manner such
that the proof does not reveal which one of possibly multiple witnesses that attest to
the validity of x was used in the computation. More specifically, if w1, w2 are both
witnesses for x, then the verifier should not be able to distinguish between an honest
prover using w1 from an honest prover using w2. Despite offering a weaker privacy
guarantee than zero-knowledge (ZK) proofs [24], WI has found wide applications in
cryptography. One reason for its appeal is that most known round-complexity lower
bounds for ZK do not apply to WI.

The seminal work of Dwork and Naor [15] proved that unlike ZK [23], WI can
be achieved in two rounds, without relying on a trusted setup. They constructed two-
round WI protocols with a public-coin verifier message, which they termed Zaps, from
non-interactive zero-knowledge (NIZK) proofs in the common random string model
[12,18]. By relying on known constructions of such NIZKs, their methodology can be
used to obtain Zaps from quadratic residuosity [12], trapdoor permutations [18] and the
decisional linear assumption over bilinear groups [26]. More recently, Zaps were also
constructed based on indistinguishability obfuscation [6].

Over the years, Zaps have found numerous applications in cryptography. Part of
their appeal is due to the public-coin verifier property which is crucial to many appli-
cations. In particular, it implies public verifiability, a property which is often used in
the design of round-efficient secure multiparty computation protocols (see, e.g., [27]).
Moreover, it also allows for the verifier message to be reusable across multiple proofs,
a property which is often used, for example, in the design of resettably-secure protocols
(see, e.g., [13]).

Remarkably, all known constructions of Zaps (as well as non-interactive WI [5,25,6])
only achieve computational WI property. Despite several years of research, the follow-
ing fundamental question has remained open:

Do there exist statistical Zaps?

In fact, even two-round statistical WI that only satisfy public-verifiability or reusabil-
ity, in isolation, are not known currently. This is in contrast to NIZKs, which are indeed
known with statistical privacy [8,38] or even perfect privacy [26]. One reason for this
disparity is that the methodology of [15] for constructing Zaps is not applicable in the
statistical case.

The recent work of Kalai, Khurana and Sahai [31] comes close to achieving this
goal. They constructed two round statistical WI with private-coin verifier message
based on two round statistical sender-private oblivious transfer (OT) [36,1,30,28,7]. The
use of a private-coin verifier message is, in fact, instrumental to their approach (which
builds on [29,4]). As such, a different approach is required for constructing statistical
Zaps with a public-coin verifier.

Statistical Receiver-Private Oblivious Transfer. An oblivious transfer (OT) [39,17]
protocol allows a “sender” to transfer one of its two inputs to a “receiver” without
learning which of the inputs was obtained by the receiver. OT is of special importance
to the theory and practice of secure computation [41,22] since OT is both necessary and
complete [33].
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Nearly two decades ago, the influential works of works of Naor and Pinkas [36] and
Aiello et. al. [1] constructed two-round OT protocols that achieve game-based security
against malicious adversaries in the plain model. An important property of these proto-
cols is that they guarantee statistical privacy for senders (and computational privacy for
receivers). Subsequent to these works, new constructions of such protocols were pro-
posed based on a variety of assumptions (see, e.g., [30,28,7]). Over the years, such OT
protocols have found many applications such as constructions of two-round (statistical)
WI [29,4,31], non-malleable commitments [32], and more.

A natural question is whether it is possible to construct such OT protocols with a “re-
verse” guarantee, namely, statistical privacy for receivers (and computational privacy
for senders). As observed in [31], two rounds are insufficient for this task: statistical
receiver privacy implies that there exists different randomness tapes for receiver that
explains a fixed receiver message for both input bits 0 and 1. Thus, a non-uniform ma-
licious PPT receiver could simply start a two-round protocol with non-uniform advice
that consists of such a message and randomness tapes, and then use both random tapes
to learn both inputs of the sender, thereby violating sender privacy.

In the same work, [31] also proved that three rounds are sufficient for this task.
Namely, they constructed three round statistical receiver-private OT with game-based
security against malicious adversaries, in the plain model. However, they achieve this
result by relying upon super-polynomial-time hardness assumptions. In contrast, two-
round statistical sender-private OT protocols are known from polynomial-time assump-
tions. This leaves open the following important question:

Does there exist three-round statistical receiver-private OT in the plain model
based on polynomial-time assumptions?

1.1 Our Results

In this work, we resolve both of the aforementioned questions in the affirmative.

I. Statistical Zap Arguments. We give the first construction of statistical Zaps with
computational soundness, a.k.a. statistical Zap arguments. The soundness of our pro-
tocol is based on the quasi-polynomial hardness of the learning with errors (LWE) as-
sumption. While we focus on achieving statistical privacy, we note that our construc-
tion, in fact, also yields the first computational Zap argument system based on (quasi-
polynomial) LWE.

Theorem 1 (Informal). Assuming quasi-polynomial LWE, there exists a statistical Zap
argument system.

In order to obtain our result, we depart significantly from prior approaches for con-
structing Zaps. Specifically, our approach combines the recent statistical NIZK argu-
ments of Peikert and Shiehian [38] in a non-black-box manner with a two-round public-
coin statistically-hiding extractable commitment scheme (see Section 4.1). Previously,
such a commitment scheme in the private-coin setting was constructed by [31].

Roughly speaking, while the work of [38] (following [8]) instantiates the Fiat-
Shamir methodology [19] for compressing sigma protocols [10] into a NIZK using
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collision-intractable hash (CIH) functions [9], our approach can be seen as a way to
compress sigma protocols into statistical Zaps using CIH and two-round public-coin
statistically-hiding extractable commitments, without using a trusted setup. Importantly,
while prior approaches for compressing sigma protocols into two-round WI [29,4,31]
lose the public-coin property of the sigma protocol, our approach retains it. We refer
the reader to Section 2.1 for more details on our technical approach.

Related work. In a concurrent and independent work, Badrinarayanan et al. [3] also
construct statistical Zap arguments from quasi-polynomial LWE. In another concurrent
and independent work, Lombardi et al. [34] construct computational Zap arguments
from quasi-polynomial LWE. In a follow up work, Lombardi et al. [35] construct sta-
tistical Zaps with private verifier randomness from quasi-polynomial decisional linear
assumption over groups with bilinear maps.

II. Three-Round Statistical Receiver-Private Oblivious Transfer. We devise a gen-
eral framework for constructing three-round statistical receiver-private OT via a new
notion of statistical hash commitments (SHC). This notion is inspired by hash proof
systems [11] that were previously used to design two-round statistical sender-private
OT [30,28]. Roughly speaking, an SHC scheme is a two-round statistically hiding com-
mitment scheme where the opening verification simply involves an equality check with
a hash output (computed w.r.t. a hashing algorithm associated with the scheme).

We devise a generic transformation from any SHC scheme with statistical hid-
ing property to three-round statistical receiver-private OT. The resulting OT scheme
achieves game-based security against malicious adversaries in the plain model. For the
case of senders, we in fact, achieve a stronger notion of distinguisher-dependent simu-
lation security [16,29]. Next, we provide two instantiations of an SHC scheme:

– A direct construction based on a search assumption, specifically, the computational
Diffie-Hellman (CDH) problem. This construction, in fact, achieves perfect hiding
property.

– We provide another construction of SHC based on any two-round statistical sender-
private OT. Such schemes are known based on a variety of assumptions, including
DDH, Quadratic (or N th) Residuosity, and LWE. This yields a new approach for
OT reversal [40] in the context of game-based security.

Putting these together, we obtain the following result:

Theorem 2 (Informal). Assuming the existence of any two-round statistical sender-
private OT (resp., polynomial hardness of CDH), there exists a three-round statistical
(resp., perfect) receiver-private OT in the plain model.

2 Technical Overview

2.1 Statistical Zap Arguments

We now prove a high-level overview of the main ideas underlying our construction of
statistical Zaps. Roughly speaking, we devise a strategy to compress sigma protocols
into statistical Zaps. While the idea of compressing sigma protocols to two-round WI
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arguments has been considered before [29,4,31], the resulting protocol in these works
were inherently private coin as they use oblivious transfer to “hide” the verifier message
in the underlying sigma protocol. To obtain a public-coin protocol, we take a different
approach.

Our starting point is the recent construction of NIZKs from LWE [38,8] that com-
presses any “trapdoor” sigma protocol into a NIZK by instantiating the Fiat-Shamir
transformation [19] in the CRS model. We start by briefly recalling these constructions.

Recent Constructions of NIZKs from LWE. The main tool underlying the construc-
tions of NIZK in [38,8] is the notion of Correlation Intractable Hash (CIH) functions.
Roughly speaking, correlation intractability means that for any multi-bit-output circuit
f , if we sample a hash function Hk(·) from the CIH function family, it is hard to find
an input x such that Hk(x) coincides with f(x).

The work of [38] construct a NIZK for the Graph Hamiltonian Language4 starting
from a sigma protocol for the same language. Recall that the first round prover mes-
sage in the sigma protocol consists of commitments to some random cycle graphs. Let
α denote the cycle graphs. The compression strategy works as follows: first, the prover
prepares commitments to α by using a public-key encryption scheme, where the public-
key is a part of the CRS setup. Next, the prover computes the verifier’s challenge in the
sigma protocol by evaluating the CIH function over the first round message, where the
CIH key is also fixed by the CRS setup. Given this challenge, the prover finally com-
putes the third round message of the sigma protocol. The NIZK proof simply consists
of this transcript.

Roughly speaking, the zero knowledge property of this construction relies on the
semantic security of the public key encryption scheme (used to commit α) as well as
the programmability of the CIH. Moreover, when the public key is lossy, then the NIZK
in fact achieves statistical zero knowledge property.

The soundness property crucially relies upon the ability to extract the values α from
the commitments by using the secret key corresponding to the public-key fixed by the
CRS, as well as the correlation intractability of the CIH. Specifically, for any instance
that is not in the language, given the secret key of the public key encryption, one can
extract α from the commitment by decrypting it using the secret key, and then check if
α corresponds to cycle graphs or not. Note that this checking procedure can be viewed
as a function f . Then, if the malicious prover can find an accepting proof for the false
statement, it implies that the output of the function f (with the secret key hardwired)
evaluated over first round prover message coincides with the verifier’s challenge bits,
which are outputted by the CIH function. However, from the correlation intractability
of CIH, such a prover shouldn’t exist.

Starting Observations. Towards constructing statistical Zaps in the plain model, a
naive first idea would be to simply let the verifier generate and send the CRS of the
(statistical) NIZK in the first round, and then require the prover to compute and send
the NIZK proof based on this CRS in the second round. This attempt, however, fails
immediately since the verifier may use the trapdoor corresponding to the CRS (specifi-

4 Their construction, in fact, works for any trapdoor sigma protocol.
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cally, the secret key corresponding to the public-key encryption) to extract the prover’s
witness.

One natural idea to address this issue is to replace the public-key encryption scheme
with a two-round statistically-hiding commitment scheme. However, while this seems
to address witness privacy concerns, it is no longer clear how to argue soundness since
the proof of soundness (as discussed above) crucially requires the ability to extract the
α values.

Achieving Weak Privacy. In order to devise a solution to the above problems, let
us first consider a significantly weaker goal of constructing a two-round protocol that
achieves computational soundness but only a very weak form of privacy guarantee,
namely, that the verifier can learn the prover’s witness with probability at most one-
half. Moreover, we do not require the protocol to be public-coin, but only satisfy the
weaker property of public verifiability.

To obtain such a protocol, we rely on a 2-round statistical sender-private oblivious
transfer protocol in plain model [36,30,28,7]. In such an OT scheme, even if the receiver
is malicious, at least one of the sender’s messages remains statistically hidden from the
receiver. Given such an OT scheme, we construct the desired two-round protocol as
follows:

– In the first round, the verifier acts as the OT receiver, and sends a first round OT
message with a random input bit b.

– In the second round, the prover prepares a transcript of the sigma protocol in the
same manner as in the NIZK construction earlier, with the following key differ-
ence: it flips a coin b′ and instead of computing the first round prover message as
encryptions of α values, it computes OT sender messages where in each message,
he uses inputs m0,m1, where mb′ = α and m1−b′ = ⊥.

With probability one-half, the random bit b of the verifier and the random coin b′ of
the prover are different. In this case, the statistical sender-privacy of the OT ensures that
the α values remain hidden from the verifier. As such, the construction satisfies weak
privacy, as required.

For computational soundness, consider any instance that is not in the language.
Suppose we have an efficient cheating prover that can generate an accepting proof with
non-negligible probability. In this case, we can run the cheating prover multiple times to
estimate the distribution of the random coin b′. Note that at least one side of the random
coin appears with probability no less than half. Without loss of generality, let assume
such side is 0. Now we can switch the verifier’s random hidden bit b in the first round
message of OT to 0. Since the first round message of OT computationally hides b, the
efficient cheating prover should not notice the switch, and hence the two random bits
coincide with constant probability. However, when the two bits coincide, we can extract
α by using the receiver’s trapdoor of the OT. This allows us to contradict the correlation
intractability of CIH, in the same manner as before.

Finally, note that the verifier does not need to use the randomness of the OT receiver
to verify the proof; as such the above construction is publicly verifiable.

Amplifying Privacy. In order to amplify the privacy guarantee of the above scheme,
we consider a modified approach where we replace the random bits b and b′ – which
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collide with probability one-half – with random strings of length ` that collide with 1
2`

probability. Specifically, consider a two-round protocol where the receiver’s input is a
random string b of length `, while the sender also chooses a random string b′ of length
and “encrypts” some message m. Suppose that the protocol satisfies the following “ex-
tractability” property, namely, if b and b′ are equal, then the receiver can extract the
encrypted message; otherwise, m remains statistically hidden.

Now consider a modified version of our weakly-private two-round argument system
where we replace the two-round OT with the above “string” variant. Note that with
probability 1 − 2`, b and b′ chosen by the prover and the verifier would be different,
in which case, the α values would remain statistically hidden. This observation can, in
fact, be turned into a formal proof for statistical witness indistiguishability.

The proof of computational soundness, however, now requires more work. Specifi-
cally, we now run the cheating prover for≈ 2` times, and estimate a b′0 that the cheating
prover is most likely to output (with probability ≥ 1/2`). We then switch b to b′0. If
the first round message of the receiver is secure against 2`-time adversaries, then the
cheating prover would not notice the switch. We can now extract α values and derive a
contradiction in a similar manner as before.

Two Round Public-Coin Statistical-Hiding Extractable Commitments. A two-round
protocol that achieves statistical hiding property for the sender as well as extractability
property of the aforementioned form was first formalized as a statistical-hiding ex-
tractable commitment scheme in the work of [31]. Their construction, however, is pri-
vate coin for the receiver. Below, we briefly recall their construction, and then discuss
how it can be adapted to the public-coin setting.

– In the first round, the receiver samples a uniformly random string b of length `. For
each bit of the b, the receiver sends a first round 1-out-of-2 OT message with the
input bit specified by b.

– The committer first samples a uniformly random string b′ of length `. To commit
to a message m, the committer firstly uses the xor secret sharing to share m to `
shares. It then generates ` second round OT messages: for the i-th second round OT
message, if the the i-th bit of b′ is 0, then the committer puts the share in the first
input slot, and puts a random value in the second slot. Otherwise, the committer
puts the share in the second slot, and put a random value in the first slot.

From statistical sender-privacy of the underlying OT, the above construction achieves
statistically hiding with probability 1 − 2`, even if the first round messages are mali-
ciously generated.

Let us now explain the extractability property. For any committer, there exists a
string b0 of length `, such that the second string coincides with b0 with probability no
less than 2−`. Therefore, we can switch the first round message of the commitment to
hide b0. If we set ` to be sub-linear, and assume the first round message is secure against
sub-exponential-time adversaries, then the committer would not notice the switching.
Hence, when the two strings coincide, we can extract the committed message.

The aforementioned statistical-hiding extractable commitment scheme is a private
coin scheme. To obtain a public-coin scheme, we rely on the fact that in many known
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statistical sender-private OT schemes, the first round message is pseudorandom. For ex-
ample, in the recent construction of two-round statistical sender-private OT from LWE
[7], the first round message is either statistical close to uniformly random, or is an LWE
instance, which is computationally indistinguishable from the uniform distribution.

Putting it all together. Our final construction combines the above ideas to obtain a
statistical Zap argument system:

– In the first round, the receiver simply sends the first round message of a two-round
public-coin statistical-hiding extractable commitment scheme.

– Next, the prover samples a random string b′ and computes a transcript of the sigma
protocol in the same manner as before, except that it commits to α values within
the second round messages of the public-coin statistical-hiding extractable com-
mitment scheme.

We argue the statistical WI property by relying on the statistical-hiding property of
the commitment scheme. The proof of soundness relies on the ideas discussed above. In
order to base security on quasi-polynomial hardness assumptions, we set the parameter
` for the commitment scheme to be super-logarithmic rather than sub-linear. Given any
cheating prover with inverse polynomial advantage, we run the cheating prover several
times to estimate a string b0 of length ` such that the string chosen by the prover co-
incides with b0 with some inverse quasi-polynomial probability. This estimation takes
quasi-polynomial time. Next, we switch the first round verifier message to one that is
computed using b0. This switch is not noticeable to the prover since the first round
message hides b0 even from adversaries that run in time 2`. This allows us to extract
the α values and then invoke the correlation intractability of the CIH function as be-
fore. Note that we can construct the function f for CIH explicitly by using the receiver
randomness for the first round message.

2.2 Three Round Statistical Receiver-Private OT

In this section, we describe our main ideas for constructing statistical receiver-private
OT in three rounds in the plain model.

Prior work based on super-polynomial time assumptions. We start by briefly re-
calling the recent work of [31] who investigated the problem of statistical receiver-
private OT in three rounds. Since security w.r.t. black-box polynomial-time simulation
is known to be impossible to achieve in three rounds [20], [31] settled for the weaker
goal of achieving security w.r.t. super-polynomial time simulation [37]. To achieve their
goal, [31] implemented an OT reversal approach, starting from a two-round statisti-
cal sender-private OT to obtain a three-round statistical receiver-private OT based on
super-polynomial-time hardness assumptions. In fact, the use of super-polynomial-time
hardness assumptions seems somewhat inherent to their approach.

Motivated by our goal of basing security on standard polynomial-time hardness
assumptions, we take a different approach, both in our security definition as well as
techniques. On the definitional side, we consider distinguisher-dependent simulation
security [16,29] for senders. On the technical side, we develop a general framework for
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three round statistical receiver-private OT via a new notion of statistical hash commit-
ment. We elaborate on both of these aspects below.

Defining Security. In the setting of interactive proof systems, a well-studied security
notion is weak zero-knowledge [16] which relaxes the standard notion of zero knowl-
edge by reversing the order of quantifiers, namely, by allowing the simulator to de-
pend upon the distinguisher. A recent work of [29] dubbed this idea as distinguisher-
dependent simulation and studied it for proof systems and some other two-party func-
tionalities. Following their approach, in this work, we formalize security for senders in
three round OT via distinguisher-dependent simulation. Roughly speaking, this notion
requires that for every malicious PPT receiver and PPT distinguisher, there must exist a
PPT simulator that can simulate an indistinguishable view of the receiver.

Towards achieving distinguisher-dependent simulation security for senders, we first
consider (computational) game-based security definition for senders. Interestingly, it
is not immediately clear how to define game-based security for senders when we also
require statistical receiver privacy. This is because in any protocol that achieves sta-
tistical receiver privacy, the protocol transcript does not fix the receiver message in
an information-theoretic sense. As such, unlike the case of two-round computational
receiver-private OT (where the receiver’s input is information-theoretically fixed by the
transcript), we cannot simply require indistinguishability of views generated using (say)
sender inputs (mb,m1−b) and (mb,m

′
1−b), where b is presumably the input bit of the

receiver.
We resolve this conundrum by using an observation from [29]. In order to build

proof systems with distinguisher-dependent simulation security, the work of [29] used
the following natural property of two-round OT with computational privacy for senders
and receivers – the distribution over receiver views generated using (say) sender inputs
(m0,m1) must be indistinguishable from at least one of the following:

– Distribution over receiver views generated using sender inputs (m0,m0).
– Distribution over receiver views generated using sender inputs (m1,m1)

Intuitively, the first case corresponds to receiver input bit 0, while the second case
corresponds to receiver input bit 1.

It is not difficult to see that the above stated property is, in fact, meaningful even
when the receiver’s input is only fixed in a computational sense by the protocol tran-
script, which is the case in our setting. A recent work of [14] formulated a game-based
security definition for senders that captures the above intuition, and we adopt it in this
work. We also show that for our three round setting, game-based security for senders
can be used to achieve distinguisher-dependent simulation security for senders.

So far, we have focused on formalizing security for senders. Formalizing security
for receivers is easier; we consider game-based security that requires statistical/perefect
indistinguishability of views generated with receiver inputs 0 and 1, against unbounded-
time malicious senders.

In the remainder of this section, we describe our main ideas for constructing three-
round OT with game-based security for senders and receivers.

A General Framework via Statistical Hash Commitment. We introduce a new no-
tion of an statistical hash commitment (SHC) scheme – a two-round statistically hiding
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commitment scheme where the decommitment verification simply involves an equal-
ity check with a hash output (computed w.r.t. a hashing algorithm associated with the
scheme). We start by informally defining this notion and then discuss how it can be used
to construct three-round OT with our desired security properties.

An SHC scheme is a two-round commitment scheme between a committer C and
a receiver R, that comes equipped with three additional algorithms – a key generation
algorithm KGen, a commitment algorithm Com, and a hash algorithm H.

– In the first round, the ReceiverR samples a key pair (pk, k)← KGen and sends pk
to the committer C.

– In the second round, to commit a bit b ∈ {0, 1}, the committer C executes (c, ρ)←
Com(pk, b), and sends c to the receiverR.

– In the opening phase, the committer C sends (b, ρ) to the receiverR.
– The verification algorithm only involves an equality check: R computes the hash

algorithm H using the private key k on input (c, b) and then matches the resulting
value against ρ. If the check succeeds, thenR accepts the opening, else it rejects.

– Computational Binding This property requires that no PPT malicious committer
C can successfully compute a commitment c, and a opening ρ0 and ρ1 for both bits
b = 0 and b = 1. Put differently, for an instance x and a second round message α,
a PPT malicious committer cannot compute H(k, c, b) for both b = 0 and b = 1.

– Statistical (Perfect) Hiding This property requires that, every (possibly maliciously
computed) public key pk, the commitment of 0 and 1 are statistically close.

Looking ahead, we use computational binding property of SHC to achieve com-
putational game-based security for senders in our construction of three-round OT. The
statistical (resp., perfect) hiding property, on the other hand, is used to achieve statistical
(resp., perfect) game-based security for receivers.

From SHC to Three-Round OT. We next describe a generic transformation from
an SHC scheme statistical/perfect receiver-private OT. In our protocol design, the OT
sender plays the role of the receiver in SHC, while the OT receiver plays the role of the
committer for SHC. In the discussion below, let b denote the input bit of the OT receiver
and let (m0,m1) denote the input bits of the OT sender.

– In the first round, the sender samples a key pair (pk, k) using the key generation
algorithm KGen for SHC, and sends pk to the sender.

– In the second round, it runs the commitment algorithm Com for SHC on input
(pk, b) to compute a second round message c and an opening ρ, and sends c to the
sender.

– In the last round, the sender samples two random strings (r0, r1) and then com-
putes two “mask” bits z0 and z1, one each for its inputs m0,m1. The mask zi (for
i ∈ {0, 1}) is computed as hc

(
H(k, c, i), ri

)
, where hc(·, ·) is the Goldreich-Levin

universal hardcore predicate [21].

To argue computational game-based security for senders, we crucially rely upon the
strong soundness of SHC. In particular, the strong soundness of SHC, coupled with the
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security of the hardcore predicate ensures that at least one of the two mask bits zi must
be hidden from a malicious PPT receiver when the instance x is sampled from a hard
distribution. Statistical (resp., perfect) security for receivers, on the other hand, follows
from the statistical (resp., perfect) hiding property of the commitment.

We next discuss two different constructions of SHC.

Instantiating SHC from CDH. We first describe a construction of SHC that achieves
perfect hiding property, based on CDH.

Let M =

(
1 0
y 1

)
, which must be full rank. Note that gM can be computed using gy .

– In the first round, the receiver R samples a random 2-by-1 column vector k as the
secret key of the hash function, and sets the public key pk to be pk = (gy, gM·k). It
then sends pk to the committer C.

– The committer C (with input bit b ∈ {0, 1}) samples a random 2-by-1 matrix α,
and uses pk to compute c = gα

T ·M · g[0,b]. The committer sends c to the verifier,
and then compute ρ = gα

TM·k

– The receiverR parse c = gz, and computes H(k, c, b) = g(z−[0,b])·k. If H(k, c, b) =
ρ, then accept, otherwise reject.

We next informally argue the security of the above construction. Let us first consider
computational binding property. Intuitively, for any prover who wants to compute two
accepting last round messages ρ0, ρ1 for both b = 0 and b = 1, it must compute the
inverse of M, which requires that the prover knows the witness y. More formally, to
prove the computational binding property, we build a PPT extractor that extracts y to
derive a contradiction. Specifically, for any cheating committer who can output two
accepting ρ0, ρ1 for b = 0 and b = 1, we can divide them to derive g[0,1]·k. If we parse
k as k = (s, t), then this implies that given (gy, gMk̇) = (gy, gsy, gsy+t), an efficient
algorithm can compute g[0,1]·k = gt. We can then divide it from gsy+t and derive gsy .
This gives us an efficient adversary for CDH.

To prove statistical hiding property, for any (potentially maliciously computed) pk,
the commitment of bit b ∈ {0, 1} is c = gα

T ·M+[0,b]. Since the matrix M is full
rank, and α is uniformly random, we have that c is uniformly random. Hence, the
commitment statistically hides b.

Instantiating SHC from Statistical Sender-Private 2-round OT. We next show a
construction of SHC from any statistical sender-private 2-round OT protocol (OT1,OT2,
OT3), where OT3 denotes the receiver output computation algorithm.

– In the first round, the receiver R samples a random string r of length `. Then for
each bit r[i], it invokes OT1 to generate a first round OT messsage (ot1,i, sti) ←
OT1(1

λ, r[i]). The public key pk is set to be the tuple of messages {ot1,i}i∈[`],
while the private key k is set to be the tuple of private states {sti}i∈[`].

– The committer C receives pk, and its input is a bit b. It first samples a random string
r′ of length `. For each position i ∈ [`], it generates the second round OT messages
ot2,i = OT2(ot1,i, r

′[i], r′[i]⊕b). The commitment c is set to be the tuple of second
round OT messages {ot2,i}i∈[`], and the opening ρ = r′.
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– The verification process first computes H(k, c, b) as follows: parse k as {sti}i∈[`],
and the commitment c as {ot2,i}i∈[`]. Then, compute ρ0,i ← OT3(ot2,i, sti), set
ρ1,i = ρ0,i ⊕ r[i] for each i ∈ [`], and set {ρb,i}i∈[`] to be the output of H(k, c, b).
If this output equals ρ, accept, otherwise, reject.

To show the completeness of this protocol, from the construction of the committer,
we know that ρ0,i = r′[i]⊕ (r[i] · b). From the computation of H(k, c, b), we have that
ρb,i = ρ0,i⊕ (r[i] · b) = (r′[i]⊕ (r[i] · b))⊕ (r[i] · b) = r′[i] = ρ. The statistical hiding
property follows from the statistical hiding property of the underlying OT. Finally, to
show the construction is computational binding, our observation is that the construction
of H always satisfies H(k, c, 0) ⊕ H(k, c, 1) = r. Hence, any adversary breaking the
computational binding property can also find ρ0 ⊕ ρ1 = H(k, c, 0) ⊕ H(k, c, 1) = r,
given only the first round messages ot1,i. This breaks the computational receiver privacy
of the OT.

3 Preliminaries

For any two (discrete) probability distributions P andQ, let SD(P,Q) denote statistical
distance between P,Q. Let Z denote the set containing all integers. For any positive
integer q, let Zq denote the set Z/qZ. Let S be a discrete set, and let U(S) denote the
uniform distribution over S. Throughout the paper, unless specified otherwise, we use
λ to denote the security parameter.

3.1 Learning with Errors

We first recall the learning with errors (LWE) distribution.

Definition 1 (LWE distribution). For positive integer n and modulus q, and an error
distribution χ over Z, the LWE distribution As,χ is the following distribution. First
sample a uniform random vector a← Znq , and an error e← χ, then output (a, 〈a, s〉+
e) ∈ Znq × Zq .

Standard instantiations of LWE distribution usually choose χ to be discrete Gaus-
sian distribution over Z.

Definition 2 (Quasi-polynomial LWE Assumption). There exists a polynomial n =
n(λ) and a small real constant c ∈ (0, 1/2) such that for any non-uniform probabilistic
oracle adversary D(·)(·) that runs in time 2O(log4 λ), we have

Advλ(D) =
∣∣∣Pr [DU(Znq×Zq)(1λ) = 1

]
− Pr

[
s← Znq : DAs,χ(1λ) = 1

]∣∣∣ < c

Where the adversary is given oracle access to the uniform distribution U(Znq × Zq) or
the LWE distribution As,χ.

In the following Lemma 1, we show that quasi-polynomial LWE assumption implies
that any adversary running in a slower quasi-polynomial time can only have inverse
quasi-polynomial advantage. We defer the proof to the full version.
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Lemma 1. Assuming quasi-polynomial hardness of LWE, for any non-uniform proba-
bilistic adversary D that runs in time 2O(log2 λ), we have

Advλ(D) =
∣∣∣Pr [DU(Znq×Zq)(1λ) = 1

]
− Pr

[
s← Znq : DAs,χ(1λ) = 1

]∣∣∣ < 2−Ω(log4 λ)

3.2 Computational Diffie-Hellman Assumption

Definition 3. Let G be a cyclic group of order q generated by g, where each element
of G can represented in a polynomial n = n(λ) number of bits. The CDH assumption
states that for any non-uniform PPT adverrsary A, there exists an negligible function
ν(λ) such that

Pr[x← Zq, y ← Zq, z ← A(1λ, gx, gy) : z = gxy] < ν(λ)

3.3 Goldreich-Levin Hardcore Predicate

Definition 4. Let f be an one-way function from {0, 1}n → {0, 1}m, where n = n(λ)
and m = m(λ) are polynomials of λ. The Goldreich-Levin hardcore predicate hc is
defined as hc(x, r) = 〈x, r〉2, where x, r ∈ {0, 1}n, and 〈·, ·〉2 is the inner product
function modulo 2.

Theorem 3 (Goldreich-Levin Theorem [21], modified). If there exists an PPT adver-
sary A such that

Pr[x← {0, 1}n, r ← {0, 1}n, b← A(1λ, (f(x), r)) : b = hc(x, r)] > 1/2 + ε(λ)

where ε(λ) is an non-negligible function of λ, then there exits a PPT inverter A′ s.t.

Pr[x← {0, 1}n, x′ ← A′(1λ, f(x)) : x′ = x] > ε′(λ)

where ε′(λ) is also an non-negligible function λ.

3.4 Statistical Zap Arguments

Zaps [15] are two-round witness indistinguishable proof systems with a public-coin
verifier message. Below, we define statistical Zap arguments, i.e., Zaps that achieve
statistical WI property and computational soundness.

Let P denote the prover and V denote the verifier. We use Trans(P(1λ, x, ω) ↔
V(1λ, x)) to denote the transcript of an execution between P and V , where P and V
both have input a statement x and P also has a witness ω for x.

Definition 5. Let L be a language in NP. We say that a two round protocol 〈P,V〉
with a public-coin verifier message is a statistical Zap argument for L if it satisfies the
following properties:

Completeness For every x ∈ L, and witness ω for x, we have that

Pr
[
Trans(P(1λ, x, ω)↔ V(1λ, x)) is accepted by V

]
= 1
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Computational Soundness For any non-uniform probabilistic polynomial time (cheat-
ing) prover P∗, there exists a negligible function ν(·) such that for any x /∈ L, we
have that Pr

[
Trans(P∗(1λ, x)↔ V(1λ, x)) is accepted by V

]
< ν(λ).

Statistical Witness Indistinguishability For any (unbounded cheating) verifier V∗,
there exists a negligible function ν(·) such that for every x ∈ L, and witnesses
ω1, ω2 for x, we have that

SD
(
Trans(P(1λ, x, ω1)↔ V∗(1λ, x)),Trans(P(1λ, x, ω2)↔ V∗(1λ, x))

)
< ν(λ)

3.5 Statistical Sender-Private Oblivious Transfer

Definition 6. A statistical sender-private oblivious transfer (OT) is a tuple of algo-
rithms (OT1,OT2,OT3):

OT1(1
λ, b): On input security parameter λ, a bit b ∈ {0, 1}, OT1 outputs the first

round message ot1 and a state st.
OT2(1

λ, ot1,m0,m1): On input security parameter λ, a first round message ot1, two
bits m0,m1 ∈ {0, 1}, OT2 outputs the second round message ot2.

OT3(1
λ, ot2, st): On input security parameter λ, the second round message ot2, and

the state generated by OT1, OT3 outputs a message m.

We require the following properties:

Correctness For any b,m0,m1 ∈ {0, 1},

Pr
[
(ot1,st)←OT1(1

λ,b),ot2←OT2(1
λ,ot1,m0,m1),

m←OT3(1
λ,ot2,st)

: m = mb

]
= 1

Statistical Sender Privacy There exists a negligible function ν(λ) and an determinis-
tic exponential time extractor OTExt such that for any (potential maliciously gener-
ated) ot1, OTExt(1λ, ot1) outputs a bit b ∈ {0, 1}. Then for any m0,m1 ∈ {0, 1},
we have SD

(
OT2(1

λ, ot1,m0,m1),OT2(1
λ, ot1,mb,mb)

)
< ν(λ).

Quasi-polynomial Pseudorandom Receiver’s Message For any b ∈ {0, 1}, let ot1 be
the first round message generated by OT1(1

λ, b). For any non-uniform probabilistic
adversary D that runs in time 2O(log2 λ), we have

Advλ(D) =
∣∣∣∣Pr [D(1λ, ot1) = 1

]
−

Pr
[
u← {0, 1}|ot1| : D(1λ, u) = 1

] ∣∣∣∣ < 2−Ω(log4 λ)

Lemma 2. Assuming quasi-polynomial hardness of LWE, there exists a statistical sender
private oblivious transfer scheme.

A statistical sender-private OT scheme from LWE was recently constructed by [7].
Their construction satisfies correctness and statistical sender-privacy. Further, the re-
ceiver’s message in their scheme is pseudorandom, assuming LWE. We observe that
assuming quasi-polynomial LWE and using Lemma 1, their scheme also satisfies quasi-
polynomially pseudorandom receiver’s message property.
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3.6 Correlation Intractable Hash Function

The following definition is taken verbatim from [38].

Definition 7 (Searchable Relation [38]). We say that a relation R ⊆ X ×Y is search-
able in size S if there exists a function f : X → Y that is implementable as a Boolean
circuit of size S, such that if (x, y) ∈ R then y = f(x).

Correlation intractable hash function is a family of keyed hash functions satisfying
the following property: for any searchable relation R, it is hard for a computationally
unbounded adversary to find an element x such that (x, f(x)) ∈ R.

Definition 8 (Correlation Intractable Hash Function, slightly modified from [38]).
Correlation Intractable Hash Function (CIH) is a triple of algorithms (KGen,FakeGen,
H(·)(·)), with the following properties:

Let s = s(λ), ` = `(λ), d = d(λ) be poly(λ)-bounded functions. Let {Rλ,s,`,d}λ
be a family of searchable relations, where each relation R ∈ Rλ,s,`,d is searchable by
a circuit of size s(λ), output length `(λ) and depth d(λ).

Statistical Correlation Intractable There exists a negligible function ν(·) such that,
for any relation R ∈ Rλ,s,`,d, and circuit Cλ that searches for a witness for R, we
have Pr

[
k ← FakeGen(1λ, 1|Cλ|, Cλ) : ∃x s.t. (x,Hk(x)) ∈ R

]
< ν(λ).

Quasi-polynomial Pseudorandom Fake Key For any circuit Cλ with size s, output
length `, and depth d, KGen(1λ, 1|Cλ|) outputs an uniform random string. Further-
more, for any non-uniform adversary D that runs in time 2O(log2 λ), we have∣∣∣∣Pr [D(1λ, 1|Cλ|,KGen(1λ, 1|Cλ|)) = 1

]
−

Pr
[
D(1λ, 1|Cλ|,FakeGen(1λ, 1|Cλ|, Cλ)) = 1

] ∣∣∣∣ ≤ 2−Ω(log4 λ)

Theorem 4. Assuming quasi-polynomial hardness of LWE, there exists a construction
of correlation intractable hash function with quasi-polynomial pseudorandom fake key.

The construction of such a function is given in [38,8]. Specifically, we use the con-
struction of [38], which satisfies statistical correlation intractability. Moreover, the
FakeGen algorithm in their construction simply consists of some ciphertexts that are
pseudorandom assuming LWE. Thus, if we assume quasi-polynomial hardness of LWE,
their construction satisfies quasi-polynomial pseudorandom fake key property.

For our application, we require a slightly stronger property than statistical corre-
lation intractability as defined above. Specifically, we require that the distinguishing
probability in statistical correlation intractability is 2−λ for a special class of relations.

We show in Lemma 3 that by using parallel repetition, we can construct a CIH with
the above property from any CIH.

Lemma 3 (Amplification of Statistical Correlation Intractability). There exists a
correlation intractable hash function (KGen,FakeGen,H(·)(·)) such that the following
additional property holds.
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2−λ-Statistical Correlation Intractability Let {Cλ}λ be a family of Boolean circuits,
where Cλ has polynomial size s(λ), polynomial depth d(λ), and outputs a single
bit. There exists a polynomial ` = `(λ) such that the following holds. Let

−−→
Cλ,`

be the circuit
−→
Cλ(c1, c2, . . . , c`) = (Cλ(c1), Cλ(c2), . . . , Cλ(c`)), then for large

enough λ,

Pr
[
k ← FakeGen

(
1λ, 1|

−−→
Cλ,`|,

−−→
Cλ,`

)
: ∃x s.t. Hk(x) =

−−→
Cλ,`(x)

]
< 2−λ

The CIH in [38] already satisfies the above property. In the full version, we describe
a generic transformation from any CIH to one that achieves the above property.

4 Statistical Zap Arguments

4.1 Public Coin Statistical-Hiding Extractable Commitments

In this section, we start by defining and constructing a key building block in our con-
struction of statistical Zaps, namely, a statistical-hiding extractable commitment scheme.
The notion and its construction are adapted from [31], with some slight modifications
to fit in our application. The main difference between our definition and that of [31] is
that we require the first round message to be public coin as opposed to private-coin.

Our syntax departs from the classical definition of commitment schemes. We con-
sider a tuple of four algorithms (Com1,FakeCom1,Com2,Dec), where Com1 corre-
sponds to the honest receiver’s algorithm that simply outputs a uniformly random string.
Com2 corresponds to the committer’s algorithm that takes as input a messagem as well
as a random string b′ of length µ and outputs a commitment string. We require two ad-
ditional algorithms: (1) FakeCom1 that takes a binary string b of length µ as input and
produces a first round message that “hides” the string b, and (2) Dec that takes as input
a transcript generated using FakeCom1 and Com2 and outputs the committed message
if the strings b and b′ used for computing the transcript are equal.

Let C, R denote the committer and the receiver, respectively. We now proceed to
give a formal definition.

Definition 9. A public coin statistical-hiding extractable commitment is a tuple (Com1,
FakeCom1,Com2,Dec). The commit phase and open phase are defined as follows.

Commitment Phase

Round 1 On input parameters (1λ, 1µ),R executes Com1 to sample a uniform random
string com1.R sends com1 to C.

Round 2 On input (1λ,m), C chooses b′ ← {0, 1}µ uniformly at random and com-
putes com2 ← Com2(1

λ, 1µ, com1,b
′,m; r) with randomness r. C sends (b′, com2)

toR.

Opening Phase
C sends the message and the randomness (m, r) toR.R checks if com2 = Com2(1

λ,
1µ, com1,b

′,m; r).

We require the following properties of the commitment scheme.
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Statistical Hiding There exists a negligible function ν(·), a deterministic exponen-
tial time algorithm ComExt, and a randomized simulator Sim, such that for any
fixed (potentially maliciously generated) com1, ComExt(1λ, 1µ, com1) outputs b ∈
{0, 1}µ, and for any b′ 6= b, and m ∈ {0, 1}, we have

SD
(
Com2(1

λ, 1µ, com1,b
′,m),Sim(1λ, 1µ, com1)

)
< µ · ν(λ) (1)

Quasi-polynomial Pseudorandom Receiver’s Message For any b ∈ {0, 1}µ, FakeCom1(
1λ, 1µ,b) and a uniform random string outputted by Com(1λ, 1µ) are quasi-polynomially
indistinguishable. Specifically, for any non-uniform adversary D that runs in time
2O(log2 λ), we have∣∣∣∣Pr[D(1λ, 1µ,Com1(1

λ, 1µ)) = 1]−

Pr[D(1λ, 1µ,FakeCom1(1
λ, 1µ,b)) = 1]

∣∣∣∣ ≤ µ · 2−Ω(log4 λ)

Extractable FakeCom1 and Dec satisfy the following property. For any b ∈ {0, 1}µ,
we have

Pr
[
(com1,st)←FakeCom1(1

λ,1µ,b),

com2←Com2(1
λ,1µ,com1,b,m)

: Dec(1λ, 1µ, st, com2) = m
]
= 1

Lemma 4. Assuming quasi-polynomial hardness of LWE, there exists a public coin
statistical-hiding extractable commitment scheme.

In the full version, we construct a public coin statistical hiding extractable com-
mitment by slightly modifying the commitment scheme of [31]. Their construction al-
ready satisfies extractability and statistical hiding properties. However, their construc-
tion, as originally described, is private coin. We note that the receiver’s message in their
scheme simply consists of multiple receiver messages of a statistical sender-private OT
scheme. Then, by instantiating their construction with an OT scheme that satisfies quasi-
polynomial pseudorandom receiver’s message property (see Section 3.5), their scheme
can be easily adapted to obtain a public coin statistical-hiding extractable commitment.
Specifically, in the modified construction, the honest receiver’s algorithm Com(1λ, 1µ)
simply computes a uniform random string, while FakeCom1 corresponds to the receiver
algorithm in the construction of [31].

4.2 Our Construction

In this section, we describe our construction of a statistical Zap argument system for
Graph Hamiltonicity, which is an NP-Complete problem.

Notation. We describe some notation that is used in our construction. Let LHAM denote
the Graph Hamiltonicity language over graphs G = (V,E) of n vertices, where V
denotes the set of vertices and E denotes the set of edges in G. We slightly abuse
notation and use G to denote its adjacency matrix G = (Gi[s, t])s,t∈[n].

Let (Com1,FakeCom1,Com2,Dec) be a public coin statistical-hiding extractable
commitment scheme (Definition 9). We set the parameter µ of the commitment scheme
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as Θ(log2 λ). Let (KGen,FakeGen,H(·)(·)) be a family of CIH (Definition 8). We
choose the polynomial ` = `(λ) in Lemma 3 such that the CIH is 2−λ-statistical corre-
lation intractable.

Circuit Cst. Let Cst denote the following Boolean circuit.
Input: a n× n matrix c = (cs,t)s,t∈[n].
Output: a boolean value.

1. For any s, t ∈ [n], execute G[s, t] = Dec(1λ, 1µ, st, cs,t).
2. If G = (Gi[s, t])s,t∈[n] is a cycle graph, then output 0. Otherwise output 1.

For ease of exposition, we extend the notationCst to a series of matrices (c1, c2, . . . , c`).
Specifically, Cst(c1, c2, . . . , c`) is defined as (Cst(c1), Cst(c2), . . . , Cst(c`)).

Construction. The verifier V and prover P are both given input the security parameter
λ and a graph G = (V,E) of n vertices. The prover is additionally given as input a
witness ω for G.

Round 1 Verifier V computes and sends uniform random strings (com1 ← Com1(1
λ, 1µ),

k ← KGen(1λ, 1|Cst|), where Cst takes ` separate n× n matrices as input, and out-
puts ` bits.

Round 2 Prover P does the following:
1. Choose a random b′ ← {0, 1}µ.
2. Compute ` first round messages of Blum’s sigma protocol for Graph Hamil-

tonicity. Specifically, for every i ∈ [`], first sample a random cycle graph
Gi = (Gi[s, t])s,t∈[n]. Next, for each s, t ∈ [n], compute ci[s, t]← Com2(1

λ,

1µ, com1,b
′, Gi[s, t]; r

(s,t)
i ) using randomness r(s,t)i . Finally let ci = (ci[s, t])s,t∈[n].

3. Compute (b1, b2, . . . , b`) = Hk(c1, . . . , c`).
4. For every i ∈ [`], compute the answer to challenge bi in Blum’s sigma protocol.

Specifically, if bi = 0, then set zi = (Gi, (r
(s,t)
i )s,t∈[n]). Else, if bi = 1, then

compute a one-to-one map φ : G→ Gi such that φ(w) is the cycle Gi, and set
zi = (φ, (r

(s,t)
i )(s,t)=φ(e),e/∈E).

5. Send Π = (b′, (ci)i∈[`], (zi)i∈[`]) to the verifier.
Verification Upon receiving the proof Π = (b′, (ci)i∈[`], (zi)i∈[`]), the verifier first

computes (b1, b2, · · · , b`) = Hk(c1, c2, . . . , c`), and then verifies each copy (ci, bi, zi)
of the proof as in Blum’s protocol. Specifically, if bi = 0, then parse zi = (Gi,

(r
(s,t)
i )s,t∈[n]) and check if ci = (Com2(1

λ, 1µ, com1,b
′, Gi[s, t]; r

(s,t)
i )s,t∈[n] and

Gi is a cycle graph. Otherwise if bi = 1, then parse zi = (φ, (r
(s,t)
i )(s,t)=φ(e),e/∈E)

and check if φ is a one-to-one map, and for each e /∈ E, and (s, t) = φ(e), check
if ci[s, t] = Com2(1

λ, 1µ, com1,b
′, 0; r

(s,t)
i ). If all of the checks succeed, then

accept the proof, otherwise reject.

This completes the description of our construction. We defer the proof of complete-
ness and statistical witness indistinguishability to the full version. We next prove that
our construction satisfies computational soundness.

Theorem 5. The construction in Section 4.2 satisfies computational soundness.
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Suppose G /∈ LHAM and there exists a cheating prover P∗ such that Pr[P∗ succeeds]
≥ 1/λc for infinite many λ. Then for each such λ, there must exist a b′0 such that
Pr[P∗ succeeds ∧ b′ = b′0] ≥ λ−c2−µ, where b′ is outputted by the cheating prover
P∗ in the second round.

b′0-Extractor Ext. We first describe an algorithm Ext that extracts a b′0 from any
cheating prover P∗, such that Pr[P∗ succeeds ∧ b′ = b′0] ≥ λ−c2−µ−1. Ext receives
oracle access to P∗.

1. Initialize an empty multiset S = {}.
2. For j ∈ [21.5µ], set fresh random tape for P∗. Compute and send uniformly random

first round message (Com1(1
λ, 1µ), k ← KGen(1λ, 1|Cst|)) toP∗. Let (b′(j), (c(j)i )i∈[`],

(z
(j)
i )i∈[`]) be the response of P∗. Execute the verifier algorithm; if verification

suceeds, then append multiset S = S ∪ {b′(j)}.
3. Output b′0 that appears for the maximum number of times in the multiset S.

In the sequel, we denote pλ = Pr[P∗ succeeds].

Lemma 5. The algorithm Ext runs in time O(21.5µ) = 2O(log2 λ). Furthermore, with
probability 1 − exp(−Ω(20.5µpλ)), it outputs a b′0 such that Pr[P∗ succeeds ∧ b′ =
b′0] ≥ pλ/2−µ−1.

We defer the proof of the Lemma 5 to the full version. Now we use the extractor
Ext to build the following hybrids.

Hybrid H0 : Compute b′0 ← Ext(P∗). Generate uniformly random string (com1 ←
Com1(1

λ, 1µ), k ← KGen(1λ, 1|Cst|)). Send (com1, k) to P∗. Let (b′, (ci)i∈[`],
(zi)i∈[`]) be the output of P∗.
If b′ = b′0 and (b′, (ci)i∈[`], (zi)i∈[`]) passes the verification, then the hybrid out-
puts 1, otherwise outputs 0.

Hybrid H1 : Compute b′0 ← Ext(P∗). Generate (com1, st)← FakeCom(1λ, 1µ,b′0),
k ← KGen(1λ, 1|Cst|). Send (com1, k) to P∗. Let (b′, (ci)i∈[`], (zi)i∈[`]) be the
output of P∗.
If b′ = b′0 and (b′, (ci)i∈[`], (zi)i∈[`]) passes the verification, then the hybrid out-
puts 1, otherwise output 0.

Hybrid H2 : Compute b′0 ← Ext(P∗). Generate (com1, st)← FakeCom(1λ, 1µ,b′0),
k ← FakeGen(1λ, 1|Cst|, Cst). Send (com1, k) to P∗. Let (b′, (ci)i∈[`], (zi)i∈[`]) be
the output of P∗.
If b′ = b′0 and (b′, (ci)i∈[`], (zi)i∈[`]) passes the verification, then the hybrid out-
puts 1, otherwise outputs 0.

This completes the description of the hybrids. We now prove Lemmas 6 and 7 to
establish the indistinguishability of the hybrids.

Lemma 6. |Pr[H0 = 1]− Pr[H1 = 1]| < 2−Ω(log4 λ).
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Proof. We prove this Lemma by relying on quasi-polynomial pseudorandom receiver’s
message property of the commitment scheme (Definition 9). We build the following
adversary D trying to distinguish the receiver’s message of commitment scheme from
random string.
D takes as input (1λ, 1µ, com1). Firstly, D computes b′0 ← Ext(P∗). Then, it gen-

erates k ← KGen(1λ, 1|Cst|) and sends (com1, k) to P∗. Let (b′, (ci)i∈[`], (zi)i∈[`]) be
the response of P∗. If b′ = b′0 and (b, (ci)i∈[`], (zi)i∈[`]) passes the verification, then
output 1. Otherwise output 0.

Now D(1λ, 1µ,Com1(1
λ, 1µ)) simulates the environment of H0 for P∗. Hence,

Pr
[
D(1λ, 1µ,Com1(1

λ, 1µ)) = 1
]
= Pr[H0 = 1] Also,D(1λ, 1µ,FakeCom(1λ, 1µ,b′0))

simulates the environment of H1. Hence, Pr
[
D(1λ, 1µ,FakeCom1(1

λ, 1µ,b′0)) = 1
]
=

Pr[H1 = 1].
From Lemma 5, D runs in time 2O(log2 λ). Since the distributions Com(1λ, 1µ) and

FakeCom(1λ, 1µ,b′0) are quasi-polynomially indistinguishable,

|Pr
[
D(1λ, 1µ,Com1(1

λ, 1µ)) = 1
]
−

Pr
[
D(1λ, 1µ,FakeCom1(1

λ, 1µ,b′0) = 1
]
| < 2−Ω(log4 λ)

Thus, we derive that |Pr[H0 = 1]− Pr[H1 = 1]| ≤ 2−Ω(log4 λ).

Lemma 7. |Pr[H1 = 1]− Pr[H2 = 1]| < 2−Ω(log4 λ).

Proof. We prove this lemma by relying on quasi-polynomial pseduorandom fake key
property of CIH. We build adversary D trying to distinguish the fake CIH key from
uniform random string.
D takes as input (1λ, 1µ, k). It first computes b′0 ← Ext(P∗). Next, it generates

com1 ← FakeCom1(1
λ, 1µ,b′0) and sends (com1, k) to P∗. Let (b′, (ci)i∈[`], (zi)i∈[`])

be the response of P∗. If b′ = b′0 and (b, (ci)i∈[`], (zi)i∈[`]) passes the verification,
then output 1. Otherwise output 0.

Now D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) simulates the environment of H1 for P∗.
Hence, Pr[D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) = 1] = Pr[H1 = 1].

Also, D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) simulates the environment of H2.
Hence, Pr[D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) = 1] = Pr[H2 = 1].

From Lemma 5, D runs in time 2O(log2 λ). Since the distributions KGen(1λ, 1|Cst|)
and FakeGen(1λ,
1|Cst|, Cst) are quasi-polynomially indistinguishable, we have

|Pr[D(1λ, 1|Cst|, k ← KGen(1λ, 1|Cst|)) = 1]−

Pr[D(1λ, 1|Cst|, k ← FakeGen(1λ, 1|Cst|, Cst)) = 1]| < 2−Ω(log4 λ)

Thus, we derive |Pr[H1 = 1]− Pr[H2 = 1]| ≤ 2−Ω(log4 λ).

We now prove the following lemma to lower bound the probability that the output
of H2 is 1.

Lemma 8. Pr[H2 = 1] ≥ λ−c2−µ−2 − 2 · 2−Ω(log4 λ)
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Proof. From Lemma 5, we have

Pr[H0 = 1] = Pr[b′0 ← Ext(P∗) : P∗ succeeds ∧ b′ = b′0]

≥ Pr
[
b′0 ← Ext(P∗) : P∗ succeeds ∧ b′ = b′0∧

Pr[P∗ succeeds ∧ b′ = b′0] > pλ2
−µ−1]

= Pr[P∗ succeeds ∧ b′ = b′0|Pr[P∗ succeeds ∧ b′ = b′0] > pλ2
−µ−1]

· Pr[b′0 ← Ext(P∗) : Pr[P∗ succeeds ∧ b′ = b′0] > pλ2
−µ−1]

> λ−c2−µ−1 ·
(
1− exp

(
−Ω(20.5µpλ)

))
≥ λ−c2−µ−2

Combining the above with the Lemma 6 and Lemma 7, we have Pr[H2 = 1] ≥
λ−c2−µ−2 − 2 · 2−Ω(log4 λ).

In the remainder of the proof, we use the 2−λ-correlation intractability property of
the CIH to reach a contradiction. Towards this, we first show in the following lemma
that H2 = 1 implies that there exists a ‘collision’ for CIH and Cst. Specifically, we
show that any accepting proof in hybrid H2 such that b′ = b′0, we can find a ‘collision’
for CIH and Cst.

Lemma 9. If hybrid H2 outputs 1, denote COM = (c1, c2, . . . , c`) in the accepting
proof. Then Hk(COM) = Cst(COM).

Proof. We will prove by contradiction. Denote (b1, b2, . . . , b`) = Hk(COM). Suppose
there is an i ∈ [`] such that bi 6= Cst(ci). Now we consider two cases: (1). bi =
0, Cst(ci) = 1, (2). bi = 1, Cst(ci) = 0.

For case (1), since bi = 0, zi must be of the form (Gi, (r
(s,t)
i )s,t∈[n]), where Gi is

a cycle graph, and ci[s, t] = Com2(1
λ, 1µ, com1,b

′, Gi[s, t]; r
(s,t)
i ) for each s, t ∈ [n].

From the extractability property of the commitment scheme and b′ = b′0, we have
Dec(1λ, 1µ, st, ci[s, t]) = Gi[s, t]. Since Gi is a cycle graph, Cst(ci) = 0. Therefore,
we reach a contradiction.

For case (2), since bi = 1, zi must be the form (φ, (r
(s,t)
i )e/∈E,(s,t)=φ(e)), where

φ is a one-to-one map, and ci[s, t] = Com2(1
λ, 1µ, com1,b

′, 0; r
(s,t)
i ) for each e /∈

E, (s, t) = φ(e). Let Gi[s, t] = Dec(1λ, 1µ, st, ci[s, t]) for each s, t ∈ [n]. Since
Cst(ci) = 0, Gi is a cycle graph. For each edge e′ = (s′, t′) of the cycle graph,
Gi[s

′, t′] = 1. Now we will show that (φ−1(s′), φ−1(t′)) ∈ E. We show this by contra-
diction. Suppose (φ−1(s′), φ−1(t′)) /∈ E, then ci[s

′, t′] = Com2(1
λ, 1µ, com1,b

′, 0; r
(s′,t′)
i ).

From extractable property of commitment scheme, Dec(1λ, 1µ, st, ci[s′, t′]) = 0, which
implies Gi[s′, t′] = 0. Thus, we find a contradiction. Hence, for each edge e in cycle
graph Gi, φ−1(e) is an edge in G. Now we have found a Hamiltonian cycle φ−1(Gi) ⊆
G, which is a contradiction to G /∈ LHAM.

Combining Lemmas 8 and Lemma 9, we derive that

Pr
[
k ← FakeGen(1λ, 1|Cst|, Cst) : ∃COM,Hk(COM) = Cst(COM)

]
≥λ−c2−µ−2 − 2 · 2−Ω(log4 λ)

However, the above contradicts the 2−λ-statistical correlation intractability of CIH.
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5 Statistical Hash Commitments

Intuitively speaking, a statistical hash commitment (SHC) scheme is a two-round sta-
tistical hiding commitment scheme, where the verification of the decommitment is a
simple equality check with a hash output (computed w.r.t. a hashing algorithm associ-
ated with the scheme).

Definition 10. A statistical hash commitment scheme is a tuple of algorithms (KGen,Com,
H, C,R). It proceeds as follows.

Round 1 R executes (pk, k)← KGen(1λ), and sends pk to C.
Round 2 C’s input is a bit b ∈ {0, 1}. Compute (c, ρ)← Com(pk, b) and send c toR.
Opening C sends (b, ρ) to theR.
Verification R accepts iff ρ is equal to H(k, c, b).

We require the scheme to satisfy the following properties.

Completeness For any b ∈ {0, 1}, we have

Pr
[
(pk, k)← KGen(1λ), (c, ρ)← Com(pk, b) : ρ = H(k, c, b)

]
= 1

Computational Binding We say that the commitment scheme is computational bind-
ing, if for any non-uniform probabilistic polynomial time adversary A, there exists
a negligible function ν(·) such that

Adv(A) ∆= Pr
[
(pk, k)← KGen(1λ), (c, ρ0, ρ1)← A(1λ, pk) : ρ0=H(k,c,0)∧

ρ1=H(k,c,1)

]
< ν(λ)

Statistical Hiding For any (maliciously generated) pk, there exists a negligible func-
tion ν(λ) such that SD (c0, c1) ≤ ν(λ), where (cb, ρb) ← Com(pk, b) for every
b ∈ {0, 1}. If ν(λ) = 0, then we say that the scheme is perfectly hiding.

5.1 Construction from CDH

Let q be an integer, and G = 〈g〉 be a cyclic group generated by g of order q.

Construction. We describe our construction of the SHC scheme.

KGen(1λ) Randomly sample s, t← Zq , and x← G. Output (pk = (x, gs, xs ·gt), k =
(s, t)).

Com(pk, b) Parse pk as (x, a1, a2) ∈ G × G. Randomly sample u, v ← Zq . Output
(c = (gu · xv, gv · gb), ρ = au1 · av2).

H(k, c, b) Parse c as (z1, z2) ∈ G×G, and parse k as (s, t). Output zs1 · (z2 · g−b)t.

We now prove the properties of this construction. We defer the proof of complete-
ness to the full version.

Lemma 10 (Computational Binding). Assuming CDH, the above construction of SHC
is computational binding.
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Proof. For any n.u. probabilistic polynomial time adversary A, we construct the fol-
lowing adversary A′ for CDH problem.

Adversary A′(1λ, gs, gy) Sample u ← Zq uniformly at random. Set x = gy, pk =
(x, gs, gu). Execute (c, ρ0, ρ1)← A(1λ, pk). Output gu · ρ−10 · ρ1.

We now prove that Pr[a ← A′(1λ, gs, gy) : a = gsy] ≥ Adv(A). Since in our
construction, pk = (x, gs, xs ·gt), where t is uniformly random. The second component
of pk is uniformly random over G. Hence, the distributions of pk in real execution and
the adversary A′ are identical.

Now for any u ∈ Zq , there exists an unique t′ ∈ Zq such that xs · gt′ = gu. Then,
for adversary A′, we have

Pr[a = gsy] =Pr[gu · ρ−10 · ρ1 = gsy] = Pr[gt
′
= ρ0 · ρ−11 ]

≥Pr [ρ0 = H(k, c, 0) ∧ ρ1 = H(k, c, 1)] = Adv(A)

where k = (s, t′). By the hardness of CDH, we conclude that Adv(A) is negligible.

Lemma 11 (Perfect Hiding). The Construction 5.1 is perfect hiding.

Proof. For any fixed pk = (x, a1, a2), since v is uniformly random, gv ·gb is uniformly
random. Furthermore, conditioned on gv · gb, since u is uniformly random, gu · xv is
also uniformly random. Hence, c is uniformly random over G×G.

5.2 Construction from any 2-round Statistical Sender-Private OT

We now describe our construction of SHC from statistical sender-private OT. Let ` =
`(λ) be a polynomial in λ, and let (OT1,OT2,OT3) be any statistical sender private
2-round OT scheme.

KGen(1λ) Randomly sample r ← {0, 1}`.
For i ∈ [`], execute (ot1,i, sti)← OT1(1

λ, r[i]).
Output pk = ((ot1,i)i∈[`], k = (sti)i∈[`]).

Com(pk, b ∈ {0, 1}) Parse pk as (ot1,i)i∈[`]. Randomly sample r′ ← {0, 1}`.
For i ∈ [`], execute ot2,i ← OT2(ot1,i, r

′[i], r′[i]⊕ b).
Output (c = (ot2,i)i∈[`], ρ = r′).

H(k, c, b) Parse k = (sti)i∈[`], c = (ot2,i)i∈[`].
For i ∈ [`], Let ρ0,i ← OT3(sti, ot2,i).
Let ρb = (ρ0,i ⊕ (r[i] · b))i∈[`].
Output ρb.

We defer the proof of completeness and statistical hiding property to the full version
Below, we prove computational binding.

Lemma 12 (Computational Binding). Assuming computational indistinguishability
of OT1, the above construction of SHC is computational binding.

Proof. For any PPT adversary A trying to break the computational binding property,
we construct the following hybrids.
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Hybrid H0 Randomly sample r ← {0, 1}`. For i ∈ [`], execute (ot1,i, sti)← OT1(1
λ, r[i]).

Let pk = (ot1,i)i∈[`]. Execute (c, ρ0, ρ1)← A(1λ, pk). If ρ0⊕ ρ1 = r, then output
1, otherwise output 0.

Hybrid Hi
∗

0.5 Randomly sample r ← {0, 1}`. For 1 ≤ i ≤ i∗, execute (ot1,i, sti)← OT1(1
λ, 0).

For i∗ < i ≤ `, execute (ot1,i, sti)← OT1(1
λ, r[i]). Let pk = (ot1,i)i∈[`]. Exe-

cute (c, ρ0, ρ1) ← A(1λ, pk). If ρ0 ⊕ ρ1 = r, then output 1, otherwise output
0.

Hybrid H1 Randomly sample r ← {0, 1}`. For i ∈ [`], execute (ot1,i, sti)← OT1(1
λ, 0).

Let pk = (ot1,i)i∈[`]. Execute (c, ρ0, ρ1)← A(1λ, pk). If ρ0⊕ ρ1 = r, then output
1, otherwise output 0.

Lemma 13. Pr[H0 = 1] ≥ Adv(A).

Proof. From the construction of H, we now that H(k, c, 0) ⊕ H(k, c, 1) = r. Hence,
when A wins the security game, (c, ρ0, ρ1) ← A(1λ, pk) with ρ0 = H(k, x, 0) ∧ ρ1 =
H(k, x, 1) implies ρ0 ⊕ ρ1 = H(k, x, 0)⊕ H(k, x, 1) = r.

Lemma 14. Hybrid H0 and Hybrid H0
0.5 are identical. Furthermore, there exits a neg-

ligible function ν(λ) such that for each i = 0, . . . , `− 1, |Pr[Hi∗0.5 = 1]− Pr[Hi
∗+1
0.5 =

1]| < ν(λ).

Proof. When i∗ = 0, all ot1,i are generated in the same way as in Hybrid H0, for all
i ∈ [`]. Hence, Hybrid H0 and Hybrid H0

0.5 are identical.
To show Hi

∗

0.5 ≈ Hi
∗+1
0.5 , we consider the following adversary D for receiver’s com-

putational privacy.

D(1λ, ot1) Randomly sample r ← {0, 1}`. For i ∈ [`] \ {i∗ + 1}, let (ot1,i, sti) ←
OT1(1

λ, r[i]). If r[i∗+1] = 0, then let (ot1,i∗+1, sti∗+1)← OT1(1
λ, 0), otherwise

let ot1,i∗+1 = ot1. Let pk = (ot1,i)i∈[`]. Execute (c, ρ0, ρ1) ← A(1λ, pk). If
ρ0 ⊕ ρ1 = r, then output 1, otherwise output 0.

If ot1 is generated from OT1(1
λ, 0), thenD simulates the environment of Hi

∗+1
0.5 for

A. Hence, Pr[Hi
∗+1
0.5 = 1] = Pr[(ot1, st)← OT1(1

λ, 0) : D(1λ, ot1) = 1].
If ot1 is generated from OT1(1

λ, 1), then D simulates the environment of Hi
∗

0.5 for
A. Hence, Pr[Hi

∗

0.5 = 1] = Pr[(ot1, st)← OT1(1
λ, 1) : D(1λ, ot1) = 1].

From the indistinguishability of ot1, we know that the right hand ot01 generated by
OT1(1

λ, 0) and ot11 generated by OT1(1
λ, 1) are indistinguishable. Hence, there exits

a negligible function ν(λ) such that |Pr[Hi∗0.5 = 1]− Pr[Hi
∗+1
0.5 = 1]| < ν(λ).

Lemma 15. Hybrid H`0.5 is identical to H1. Furthermore, Pr[H1 = 1] = 1/2`.

Proof. When i∗ = `, we know that all ot1,i are generated in the same way as in Hybrid
H1. Hence, H`0.5 and H1 are identical.

In Hybrid H1, pk is completely independent of r. Hence, Pr[H1 = 1] = Pr[ρ0 ⊕
ρ1 = r] = 1/2`.

By the hybrid argument, combining Lemma 13, Lemma 14, and Lemma 15, we
have Adv(A) < neg(λ).

We defer the proof of statistical hiding property to the full version.
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6 Three Round Statistical Receiver-Private Oblivious Transfer

We start by presenting the definition for 3-round statistical receiver-private oblivious
transfer. We capture statistical receiver privacy via a game-based definition. We consider
two definitions to capture computational sender privacy: a game-based definition that
intuitively requires that any malicious receiver who interacts with an honest sender
can only learn one of its two inputs, and a distinguisher-dependent simulation based
definition. We defer the formal treatment of the latter as well as the proof of implication
from the former to the latter definition to the full version.

Definition 11 (3-round Statistical Receiver-Private Oblivious Transfer). A 3-round
oblivious transfer is a tuple of algorithms (OT1,OT2,OT3,OT4), which specify the
following protocol.

Round 1 The sender S computes (ot1, stS)← OT1(1
λ) and sends ot1 to the receiver

R.
Round 2 The receiverRwith input β ∈ {0, 1}, computes (ot2, stR)← OT2(1

λ, ot1, β)
and sends ot2 to S.

Round 3 S with input (m0,m1) ∈ {0, 1}2 computes ot3 ← OT3(1
λ, ot2, stS ,m0,m1)

and sends ot3 to the receiver.
Message Decryption The receiver computes m′ ← OT4(1

λ, ot1, ot3, stR).

We require the protocol to satisfy the following properties.

Correctness 5 For any β ∈ {0, 1}, (m0,m1) ∈ {0, 1}2, we have

Pr

 (ot1,stS)←OT1(1
λ)

(ot2,stR)←OT2(1
λ,ot1,β)

ot3←OT3(1
λ,ot2,stS ,m0,m1)

m′←OT4(1
λ,ot1,ot3,stR)

: m′ = mβ

 = 1

Game-Based Statistical Receiver-Privacy For any (potentially maliciously generated)
ot∗1, denote (ot(0)2 , st

(0)
R )← OT2(1

λ, ot∗1, 0), and (ot
(1)
2 , st

(1)
R )← OT2(1

λ, ot∗1, 1).
Then we have SD(ot

(0)
2 , ot

(1)
2 ) < ν(λ), where ν(·) is a negligible function.

Game-Based Computational Sender-Privacy For any probabilistic polynomial time
distinguisher A0,A1, and any probabilistic polynomial time malicious receiver
R∗, we define the following games.
Interact withR∗ The challenger plays the role of an honest sender for the first

round and the second round with the malicious receiver R∗. Specifically, the
challenger executes (ot1, stS) ← OT1(1

λ). Then send ot1 to R∗. Then the
receiverR∗ sends ot∗2 to the challenger.

Game G0(m0,m1) This game interact with adversary A0. In the beginning, the
adversary A0 is given input View(R∗). Then the challenger samples b0 ←
{0, 1} at random, and send ot3 ← OT3(1

λ, ot∗2, stS ,mb,m1) to A0. Finally
A0 outputs a bit b′0. If b0 = b′0, then we say A0 wins the game.

5 We can relax the definition to be statistical correctness, which only requires the probability to
be 1− negl(λ)

25



Game G1(m0,m1) This game interact with adversary A1. In the beginning, the
adversary A1 is given input View(R∗). Then the challenger samples b1 ←
{0, 1} at random, and send ot3 ← OT3(1

λ, ot∗2, stS ,m0,mb) to A1. Finally
A1 outputs a bit b′1. If b1 = b′1, then we say A1 wins the game.

We define the following advantage

Adv(A0,A1,R∗)
∆
=EView(R∗)

[
min

{
max

m0,m1∈{0,1}

(∣∣∣∣Pr[A0(View(R∗)) wins G0(m0,m1)]−
1

2

∣∣∣∣) ,
max

m0,m1∈{0,1}

(∣∣∣∣Pr[A1(View(R∗)) wins G1(m0,m1)]−
1

2

∣∣∣∣)}]
We say the oblivious transfer scheme is game-based computational sender-secure,
if for any probabilistic polynomial time distinguisherA0,A1, and any probabilistic
polynomial time malicious receiver R∗, there exist a negligible function ν(·) such
that Adv(A0,A1,R∗) < ν(λ).

6.1 Our Construction

We now describe a generic transformation from SHC scheme to three-round statistical
receiver-private oblivious transfer.

Construction. Let (KGen,Com,H, C,R) be an SHC scheme. Let hc denote the Goldreich-
Levin hardcore predicate [21]. The 3-round statistical receiver-private oblivious transfer
proceeds as follows.

OT1(1
λ) Execute (pk, k)← KGen(1λ). Let ot1 = pk, stS = k.

OT2(1
λ, ot1, β) Parse ot1 = pk. Run (c, ρ)← Com(pk, β). Output ot2 = c, stR = ρ.

OT3(1
λ, ot2, stS ,m0,m1) Parse ot2 = c, and stS = k. For any b ∈ {0, 1}, sample

rb ← {0, 1}λ, encrypt mb as cb = (hc(H(k, c, b), rb) ⊕ mb, rb). Output ot3 =
(c0, c1).

OT4(1
λ, ot1, ot3, stR) Parse ot1 = pk, ot3 = (c0, c1), and stR = ρ. Parse cβ as

cβ = (uβ , rβ). Output m′ = uβ ⊕ hc(ρ, rβ).

We now prove the required properties of the protocol. We defer the proof of correct-
ness to the full version.

Lemma 16 (Statistical Receiver-Privacy). If the underlying SHC is statistical (resp.
perfect) hiding, then the construction above is statistical (resp. perfect) receiver-private.

Proof. From the statistical hiding property of the SHC scheme, for any pk, we have
SD(ot02, ot

1
2) ≤ neg(λ), where (otb2, ρ

b) ← Com(pk, b) for any b ∈ {0, 1}. Hence, for
any ot1, OT2(1

λ, ot1, 0) and OT2(1
λ, ot1, 1) are statistically (resp. perfectly) close.

Lemma 17 (Game-based Computational Sender-Privacy). If the underlying SHC
scheme is computational binding, then the 3-round oblivious transfer constructed above
is game-based computational sender-private.
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Proof. For any probabilistic polynomial time adversary A0,A1 and any probabilistic
polynomial time malicious receiver R∗ with Adv(A0,A1,R∗) > δ, where δ is a non-
negligible function of λ. Then, with probability at least δ/2 over View(R∗),

∃m0 ∈ {0, 1}2,m1 ∈ {0, 1}2 :

∣∣∣∣Pr[A0(View(R∗)) wins G0(m0)]−
1

2

∣∣∣∣ > δ

2
∧∣∣∣∣Pr[A1(View(R∗)) wins G1(m1)]−

1

2

∣∣∣∣ > δ

2

Denote this fraction of View(R∗) as GOOD. Randomly sample m0,m1 ← {0, 1}2.
With probability 1/16, we have m0 = m0 ∧m1 = m1.

From Goldreich-Levin Theorem [21], there exits two inverters A′0,A′1 such that
A′0 takes input (View(R∗), r0, hc(H(k, c, 1), r1) ⊕ m1, r1), output x′0. A′1 takes in-
put (View(R∗), r1, hc(H(k, c, 0), r0) ⊕ m0, r0), output x′1. Furthermore, the inverters
A′0,A′1 satisfy the property that for any v ∈ GOOD and m0 = m0 ∧ m1 = m1,
Pr[x′0 = H(k, c, 0)] > δ′ and Pr[x′1 = H(k, c, 1)] > δ′, where δ′ = δ′(λ) is a non-
negligible function. We construct the following adversaryA to attack the computational
binding property of the SHC scheme.

Adversary A(1λ, pk) Set random coins and execute R∗. Send R∗ the first round
message ot1 = pk, then R∗ replies ot∗2. Sample r0 ← {0, 1}λ, b1 ← {0, 1}, r1 ←
{0, 1}λ, then execute x′0 ← A′0(View(R∗), r0, b1, r1). Sample r′1 ← {0, 1}λ, b0 ←
{0, 1}, r′0 ← {0, 1}λ, then execute x′1 ← A′1(View(R∗), r′1, b0, r′0). Output (c =
ot∗2, x

′
0, x
′
1). We now prove that the advantage of A satisfies

Adv(A) = Pr
[
(pk, k)← KGen(1λ), (c, ρ0, ρ1)← A(1λ, pk) : ρ0=H(k,c,0)∧

ρ1=H(k,c,1)

]
≥ δ · δ′2

128

Hybrids H0 (pk, k) ← KGen(1λ). Set random coins and execute R∗. R∗ replies ot∗2.
Sample r0 ← {0, 1}λ, r1 ← {0, 1}λ. Let b1 = hc(H(k, c, 1), r1) ⊕ m1. Ex-
ecute x′0 ← A′0(View(R∗), r0, b1, r1). Sample r′0 ← {0, 1}λ, r′1 ← {0, 1}λ.
Let b0 = hc(H(k, c, 0), r′0) ⊕ m0. Execute x′1 ← A′1(View(R∗), r′1, b0, r′0). If
ρ0 = H(k, c, 0) ∧ ρ1 = H(k, c, 1), then output 1; else output 0.

Hybrids H1 (pk, k) ← KGen(1λ). Set random coins and execute R∗. R∗ replies ot∗2.
Sample r0 ← {0, 1}λ, r1 ← {0, 1}λ. Let b1 ← {0, 1}. Execute x′0 ← A′0(View(R∗),
r0, b1, r1). Sample r′0 ← {0, 1}λ, r′1 ← {0, 1}λ. Let b0 ← {0, 1}. Execute x′1 ←
A′1(View(R∗), r′1, b0, r′0). If ρ0 = H(k, c, 0) ∧ ρ1 = H(k, c, 1), then output 1; else
output 0.

Hybrids H2 (pk, k) ← KGen(1λ), (c, ρ0, ρ1) ← A(1λ, pk). If ρ0 = H(k, c, 0) ∧ ρ1 =
H(k, c, 1), then output 1; else output 0.

From the construction ofA, the hybrids H1 and H2 are identical. Hence, Adv(A) =
Pr[H2 = 1] = Pr[H1 = 1]. Furthermore, in hybrids H1, with probability 1/4, b1 =
hc(H(k, c, 1), r1)⊕m1 ∧ b0 = hc(H(k, c, 0), r′0)⊕m0. Conditioned on such event, H0

and H1 are identical. Hence, Pr[H1 = 1] ≥ Pr[H0 = 1]/4. In hybrid H0, the fraction
of View(R∗) ∈ GOOD is at least δ/2. With probability 1/16, the guess of m0,m1

is correct. With probability δ′2, both A′0 and A′1 inverts correctly. Hence, Adv(A) ≥
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δ
2 ·

1
16 ·δ

′2 · 14 = δ ·δ′2/128. If δ(λ) is non-negligible, then Adv(A) is also non-negligible.
This contradicts with the computational binding property of the SHC scheme.
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