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Abstract. Recently, Castryck, Lange, Martindale, Panny, and Renes
proposed CSIDH (pronounced “sea-side”) as a candidate post-quantum
“commutative group action.” It has attracted much attention and interest,
in part because it enables noninteractive Diffie-Hellman-like key exchange
with quite small communication. Subsequently, CSIDH has also been
used as a foundation for digital signatures.

In 2003-04, Kuperberg and then Regev gave asymptotically subexpo-
nential quantum algorithms for “hidden shift” problems, which can be
used to recover the CSIDH secret key from a public key. In late 2011,
Kuperberg gave a follow-up quantum algorithm called the collimation
sieve (“c-sieve” for short), which improves the prior ones, in particular by
using exponentially less quantum memory and offering more parameter
tradeoffs. While recent works have analyzed the concrete cost of the
original algorithms (and variants) against CSIDH, nothing of this nature
was previously available for the c-sieve.

This work fills that gap. Specifically, we generalize Kuperberg’s collimation
sieve to work for arbitrary finite cyclic groups, provide some practical
efficiency improvements, give a classical (i.e., non-quantum) simulator,
run experiments for a wide range of parameters up to the actual CSIDH-
512 group order, and concretely quantify the complexity of the c-sieve
against CSIDH.

Our main conclusion is that the proposed CSIDH parameters provide
relatively little quantum security beyond what is given by the cost of
quantumly evaluating the CSIDH group action itself (on a uniform su-
perposition). For example, the cost of CSIDH-512 key recovery is only
about 2'% quantum evaluations using 2%° bits of quantumly accessible
classical memory (plus relatively small other resources). This improves
upon a prior estimate of 23%® evaluations and 23! qubits of quantum
memory, for a variant of Kuperberg’s original sieve.

Under the plausible assumption that quantum evaluation does not cost
much more than what is given by a recent “best case” analysis, CSIDH-512
can therefore be broken using significantly less than 254 quantum T-gates.
This strongly invalidates its claimed NIST level 1 quantum security,
especially when accounting for the MAXDEPTH restriction. Moreover,
under analogous assumptions for CSIDH-1024 and -1792, which target
higher NIST security levels, except near the high end of the MAXDEPTH
range even these instantiations fall short of level 1.

* This material is based upon work supported by the Patrick C. Fischer Development
Chair and the National Science Foundation under Award CNS-1606362. The views
expressed are those of the author and do not necessarily reflect the official policy or
position of the National Science Foundation.



1 Introduction

In 1994, Shor [Sho94] upended cryptography by giving polynomial-time quantum
algorithms for the integer factorization and discrete logarithm problems, which
can be used (on sufficiently large-scale quantum computers) to break all widely de-
ployed public-key cryptography. With the steady progress in engineering quantum
computers, there is an increasing need for viable post-quantum cryptosystems,
i.e., ones which can be run on today’s classical computers but resist attacks
by future quantum ones. Indeed, the US National Institute of Standards and
Technology (NIST) has begun a post-quantum standardization effort [NIS], and
recently selected the second-round candidates.

1.1 TIsogeny-Based Cryptography

One prominent class of candidate post-quantum cryptosystems uses isogenies
between elliptic curves over a common finite field. Isogeny-based cryptography be-
gan with the proposal of Couveignes in 1997, though it was not widely distributed
until 2006 [Cou06]. The approach was independently rediscovered by Stolbunov
(in his 2004 Master’s thesis [Sto04]) and by Rostovtsev and Stolbunov [RS06]
in 2006. The central object in these proposals is a (free and transitive) group
action x: G X Z — Z of a finite commutative group G on a set Z. Group actions
naturally generalize exponentiation in (finite) cyclic multiplicative groups C: we
take G = Z; to be the multiplicative group of integers modulo the order ¢ = |C]|
and Z to be the set of generators of C, and define a x z = z.

The Couveignes—Rostovtsev—Stolbunov (hereafter CRS) proposal very nat-
urally generalizes Diffie-Hellman [DH76] noninteractive key exchange to use a
commutative group action: some z € Z is fixed for use by all parties; Alice
chooses a secret a € G and publishes p4 = a * z; Bob likewise chooses a secret
b € G and publishes pp = b * z; then each of them can compute their shared key
(ab)xz = axpp = bxpa. (Note the essential use of commutativity in the second
equation, where b* (a  z) = (ba) * z = (ab) * z.)

Security. Of course, for the CRS system to have any hope of being secure, the
analogue of the discrete logarithm problem for the group action must be hard, i.e.,
it must be infeasible to recover a (or some functional equivalent) from p4 = ax z.
In 2010, Childs, Jao, and Soukharev [CJISI0] observed that, assuming a suitable
algorithm for the group action, this problem reduces to the (injective) abelian
hidden-shift problem on the group G. It happens that Kuperberg [Kup03] in 2003
and then Regev [Reg04] in 2004 had already given asymptotically subexponential
quantum “sieve” algorithms for this problem. More specifically, Kuperberg’s
algorithm uses exp(O(y/n)) quantum time and space, whereas Regev’s uses
slightly larger exp(O(y/nlogn)) quantum time but only poly(n) quantum space,
where n = log N is the bit length of the group order N = |G|. While these attacks
do not necessarily render CRS-type systems insecure asymptotically, one must
consider their concrete complexity when setting parameters to obtain a desired
level of security.



We mention that these subexponential attacks against CRS motivated Jao
and De Feo [JD11] to give a different approach to isogeny-based cryptography
using supersingular curves, whose full endomorphism rings are non-commutative,
which thwarts the Kuperberg-type attacks. The Jao—De Feo scheme, now known
as Supersingular Isogeny Diffie-Helmman (SIDH), is also not based on a group
action, and is inherently interactive. Most research on isogeny-based cryptography
has focused on SIDH and closely related ideas.

CSIDH. The noninteractive nature and simplicity of the CRS approach are
particularly attractive features, which motivated Castryck, Lange, Martindale,
Panny, and Renes |[CLM™18] to revisit the method recently. They proposed
“Commutative SIDH,” abbreviated CSIDH and pronounced “sea-side.” Like SIDH,
it relies on supersingular curves, but it uses a commutative subring of the full
endomorphism ring, which naturally leads to a commutative group action. This
design choice and other clever optimizations yield an impressive efficiency profile:
for the CSIDH-512 parameters that were claimed in [CLM™ 18] to meet NIST
security level 1, a full key exchange takes only about 80 milliseconds (improving
upon several minutes for prior CRS prototypes), with key sizes of only 64 bytes
(compared to hundreds of bytes for SIDH and derivatives).

In summary, the designers of CSIDH describe it as a primitive “that can serve
as a drop-in replacement for the (EC)DH key-exchange protocol while maintain-
ing security against quantum computers.” As such, it has attracted a good deal of
attention and interest. (For example, it received the 2019 Dutch Cybersecurity Re-
search Paper Award.) In addition, a series of works [StolI/DGIIBKVIIKKP20]
used CSIDH to develop digital signature schemes having relatively small sizes
and reasonable running times. E.g., for the same claimed security levels as above,
the CSI-FiSh signature scheme [BKV19] can have a combined public key and
signature size of 1468 bytes, which is better than all proposals to the NIST
post-quantum cryptography effort.

1.2 Attacking the CSIDH

As mentioned above, when setting parameters for CSIDH and arriving at security
claims, one must take into account known attacks. The main quantum approach
is given by Kuperberg’s abelian hidden-shift algorithm [Kup03|] and descendants,
where the hidden “shift” corresponds to the secret “discrete log” a € G for a given
public key p4 = a* z € Z. Algorithms of this type have two main components:

1. a quantum oracle that, whenever queried, outputs a certain kind of random
“labeled” quantum state, in part by evaluating the group action on a uniform
superposition over the group;

2. a sieving procedure that combines labeled states in some way to generate
“more favorable” ones.

By processing many fresh labeled states from the oracle, the sieve eventually
creates some “highly favorable” states, which are then measured to reveal useful
information about the hidden shift (i.e., the secret key).



The overall complexity of the attack is therefore mainly determined by the
complexities of the quantum oracle and the sieve, where the latter includes the
number of oracle queries. These can be analyzed independently, and for each
there is a line of work with a focus on CRS/CSIDH.

The oracle. To produce a labeled state, the oracle mainly needs to prepare
a uniform superposition over the group G, and apply the group action to a
superposition of the “base” z € Z and the public key axz. (It then does a certain
measurement, takes a Fourier transform, and measures again to get a label.)
In the context of isogenies, evaluating the group action on the superposition is
presently the bottleneck, by a large amount.

The original work of Childs, Jao, and Soukharev [CJSI0] implemented the
oracle in exp(O(n'/?)) quantum time (assuming GRH) and space. Biasse, Tezzi,
and Jacobson [BIJJ18] improved this to an oracle that (under different heuristics)
runs in exp(O(n'/3)) quantum time and polynomial space, though they did not
analyze the factors hidden by the O notation.

More recently, Bernstein, Lange, Martindale, and Panny [BLMP19] analyzed
the concrete cost of quantumly evaluating the CSIDH group action. For the
CSIDH-512 parameters, they arrived at an estimate of less than 24° nonlinear
bit operations (which translates to between 24 and 24* quantum T-gates), with
a failure probability below 2732, to evaluate the group action on a non-uniform
“best, conceivable” (for the attacker) distribution of group elements, namely, the
one used in CSIDH key generation. Recent work by Beullens, Kleinjung, and
Vercauteren [BKV19] suggests that the cost for a uniform superposition may
be quite close to that of the “best conceivable” case; see for further

discussion.

The sieve. Kuperberg’s original algorithm [Kup03] has exp(O(y/n)) complexity
in time, queries, and quantum space. More specifically, he rigorously proved a

query bound of O(23vV"), and a better time and query bound of O(3V Zlogs Ny
when N = r™ for some small radix r (though this is very unlikely to be the case
for CSIDH). As already mentioned, Regev reduced the quantum space to only
polynomial in n, but at the cost of increasing the time and query complexity to
exp(O(v/nlogn)); to our knowledge, precise hidden factors have not been worked
out for this approach.

Bonnetain and Schrottenloher [BS18] provided a variant of Kuperberg’s sieve
for arbitrary cyclic groups, and gave more precise estimates of its query and
quantum-space complexity. Specifically, using simulations up to n = 100 they
estimate that 2'-8vV"+23 queries and nearly the same number of qubits of memory
are needed. For the CSIDH-512 parameters, this translates to 2325 queries and
231 qubits.

Notably, in late 2011 Kuperberg gave a follow-up algorithm [Kup11], called
the collimation sieve (or “c-sieve” for short), which subsumes his original one



and Regev’s variantﬂ Asymptotically, it still uses exp(O(y/n)) quantum time and
classical space, but only linear O(n) quantum space (in addition to the oracle’s).
Moreover, it provides other options and tradeoffs, most notably among classical
time, quantum time, and quantumly accessible classical memory (QRACM, also
known as QROM), i.e., classical memory that is readable (but not writeable)
in superposition. As argued in [BHT98[Kupll], QRACM is plausibly much
cheaper than fully quantum memory, because it does not need to be preserved
in superposition. In particular, Kuperberg describes [Kupll, Proposition 2.2]
how QRACM can be simulated using ordinary classical memory, at the cost of
logarithmic quantum memory and quasilinear quantum time in the number of
data cells; see [BGBT18, Section II1.C] for a realization of this idea which has
modest concrete cost.

Although Kuperberg’s collimation sieve dates to about six years before the
CSIDH proposal, and has been briefly cited in some of the prior literature on
CSIDH, an analysis for concrete parameters was not previously availableﬂ That
is the topic we address in this work.

1.3 Owur Contributions

We analyze the concrete complexity of Kuperberg’s collimation sieve [Kupll],
with a focus on CSIDH and its proposed parameterizations, although our results
apply generally to any CRS-style commutative group action, including recent
CSIDH variants [CD19,FTLX19JE| Our study mainly treats the quantum oracle
as a “black box,” and focuses on the precise number of queries and amount
of quantumly accessible classical memory (QRACM) the sieve uses. Following
a suggestion by Schanck [Sch19], we also give a rough analysis of how these
quantities translate to the quantum complexity of full attacks on proposed
CSIDH parameters.

More specifically, we generalize the c-sieve to work for cyclic groups of arbitrary
finite order (from power-of-two or other smooth orders, which CSIDH groups
typically do not have), provide some practical improvements that extract more
secret-key bits per run of the sieve and maintain better control of the memory
and time complexities, give a classical simulator and run experiments on a wide
range of parameters—including the actual CSIDH-512 group order of N ~ 22571
and concretely quantify the complexity of the c-sieve against proposed CSIDH
parameters. As far as we know, ours is the first work to simulate any kind of
quantum sieve algorithm for groups as large as the actual CSIDH-512 group;
previously, the largest simulations were for group orders N = 2100,

! More recently, Kuperberg has given talks highlighting the virtues of the algorithm
and its relevance to isogenies.

2 Shortly after the announcement of this work, Bonnetain and Schrottenloher posted
an updated version of [BS18], which had been under private review and which does
contain such an analysis. See below for a comparison.

3 Our work has no implications for SIDH [JD11] or the NIST submission STKE, which
do not use commutative group actions.



Conclusions. Our main conclusion is that the proposed CSIDH parameters
provide relatively little quantum security beyond what is given by the cost of the
quantum oracle. For example, for CSIDH-512 the secret key can be recovered
from the public key with only about 2'6 oracle queries and 24° bits of QRACM,
or about 2193 queries and 232 bits of QRACM, plus insignificant other resources.
This improves upon a prior estimate [BSI8] of 232° queries and 23! qubits of
quantum memory, for a variant of Kuperberg’s first sieve algorithm. The key
insight underlying our improvements is that when the oracle is expensive, trading
oracle queries for QRACM can dramatically reduce the overall quantum time,
while keeping the classical costs reasonable. (No such tradeoff is available for the
earlier sieve algorithms.) In addition, we find that for the group orders of interest,
the cost of implementing even substantial amounts of QRACM using [BGB™18§]
is dwarfed by that of the oracle queries (under current estimates for the latter).

See [Section 4] for the full details.

Under the plausible assumption that implementing the oracle does not cost
much more than the “best conceivable case” estimate of [BLMP19], CSIDH-512
can therefore be broken using not much more than 25° quantum T-gates, plus
relatively small other resources. This strongly invalidates its claimed NIST level 1
quantum security, especially when accounting for the MAXDEPTH restriction,
and even under much weaker assumptions about the cost of the oracleﬁ

Similarly, CSIDH-1024 and -1792, which respectively targeted NIST quantum
security levels 2 and 3, can be broken with, e.g., about 226 and 23 oracle queries
and 29 bits of QRACM (plus insignificant other resources)ﬂ Under analogous
assumptions about the cost of their oracles relative to the “best conceivable case,”
CSIDH-1024 therefore falls short of level 1 (and by a large margin for the low
end and middle region of the MAXDEPTH range). Moreover, with the possible

* The main security claim in [CLM™ 18| for CSIDH-512 (which appears in the abstract,
introduction, and security evaluation) is NIST level 1. However, in one location
the paper also mentions, in a passing reference to CSIDH-512, a “conjectured post-
quantum security level of 64 bits.” This would constitute a different, significantly
weaker security claim than NIST level 1, in part because the latter accounts for the
cost of quantumly evaluating AES, and has a MAXDEPTH restriction. No definition
for ‘bits of post-quantum security’ is given in [CLM™ 18], but the security analysis
in Section 7.3 and Table 1 quantifies “costs for the complete attack” in terms of
number of logical qubit operations, and targets 24 or more for CSIDH-512. Under
this implied interpretation of ‘64 bits of post-quantum security,” and our assumption
on the cost of the oracle, our work even falsifies this security claim as well. We point
out that other metrics like “depth times width” can be used to quantify security (see,
e.g., [JS19]), and at present the complexity of our attack in this metric is unclear,
in part because the precise depth and width of the oracle are unknown. However,
under any reasonable metric the oracle calls are presently the bottleneck for sieve
parameters of interest.

We again emphasize that the c-sieve offers a flexible tradeoff among queries, QRACM,
and classical time, so all these example query counts can be reduced somewhat by
increasing these other resources.

ot



exception of the high region of the MAXDEPTH range, even CSIDH-1792 also
fails to reach level 1.

Comparison with [BS18]. Shortly after the initial announcement of this work,
Bonnetain and Schrottenloher posted an update [BS18] to their earlier analysis
of Kuperberg’s first sieve algorithm, which now also analyzes variants of the
collimation sieve. They arrive at similar conclusions, but their analysis is largely
complementary to ours, in the following ways. They give a theoretical analysis
that ignores some polynomial terms, whereas ours is fully concrete and supported
by experiments (which reveal some unexpected phenomena that significantly
affect the polynomial factors). They only consider large collimation arity r (see
below) with correspondingly small fully quantum memory and large classical
work and memory, whereas we mainly limit our attention to the binary case
r = 2 with correspondingly larger QRACM and small classical work. Finally, we
include optimizations that are not considered in [BSI§]|, like the extraction of
many secret-key bits from each run of the sieve. It seems likely that a combination
of ideas from these works would yield additional points on the attack spectrum
and somewhat improved bounds.

1.4 Further Research

A main question that remains to be addressed is the actual concrete cost of the
requisite quantum oracle, i.e., evaluation of the CSIDH group action for a uniform
superposition over the group. The results of [BS18] and even moreso [BKV19)
suggest that for CSIDH-512, the cost may be close to the roughly 2*° nonlinear
bit operations estimate [BLMPI19] for the “best conceivable case”—perhaps even
within a factor of two or less. This is because [BKV19] gives a fast method for
mapping a uniformly random group element to a short exponent vector, whose
norm statistics are very similar to those of the distribution analyzed in [BLMP19).
(In particular, the norm’s expectation is only about 10% larger, and its variance
is actually somewhat smaller.) Also, because the sieve requires so few oracle
queries (e.g., 216 or less for CSIDH-512), some improvement should be obtainable
simply by increasing the oracle’s error probability, from the 2732 considered
in [BLMP19]. Related questions are whether it is possible to accelerate the oracle
computations by amortization, or by directly designing a quantum circuit rather
than converting a Boolean one.

Our study is primarily focused on collimation arity r = 2, which corresponds
to a sieve that produces a binary recursion tree. Using an arity r» > 2 can reduce
the number of queries and/or the needed amount of QRACM, at the cost of more
classical time. In a bit more detail, the main collimation subroutine that for r = 2
takes quasilinear O(L) classical time (in the amount L of QRACM) takes O(L" 1)
classical time in general (or even less time with more memory, using Schroeppel—
Shamir [SS79]), but reduces the depth of the recursion tree by about an r—1 factor,
which can significantly reduce the number of oracle queries. Our experiments
demonstrate that the classical work for r = 2 is cryptanalytically small (on the
order of several core-days), and our model suggests modest improvements in query



complexity for slightly larger arities, so this direction may be worth investigating
further, especially if the quantum oracle remains the main bottleneck.

A final interesting question is how many bits of a CSIDH secret are required
to break the scheme. Our complexity estimates are for running the c-sieve several
times to recover almost all of the secret bits (the remainder can be obtained by
brute force). However, if partial information about the secret suffices to break
the scheme through other means, then the number of sieve invocations and
corresponding query complexity would be reduced.

1.5 Paper Organization

In we describe and analyze our generalization of Kuperberg’s collimation
sieve to arbitrary cyclic groups. In we draw conclusions about the
quantum security of various CSIDH parameters. In we describe our
classical simulator for the collimation sieve, and report on our experiments with
it.
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anonymous EUROCRYPT reviewers for many helpful comments and suggestions.

2 Preliminaries

We let N ={0,1,2,...} denote the set of nonnegative integers, and for a positive
integer L we define [L] := {0,1,...,L — 1}. All logarithms have base 2 unless
otherwise specified. Define x(z) = exp(2mi - ) and observe that x(z)x(y) =

x(z +y).

2.1 CSIDH Group Action

Here we recall sufficient background on CSIDH for our purposes; for full details,
see |[CLM™18]. At its heart is a free and transitive group action x: G x Z — Z,
where the group G is the ideal class group Cl(O) of the order O = Z[,/—p] of
the imaginary quadratic number field Q(1/=p), for a given prime p of a certain
form. (The acted-upon set Z is a certain collection of elliptic curves over Fp,
each of which can be uniquely represented by a single element of IF,,, but this
will not be important for our purposes.) Because O is commutative, its class
group G = Cl(0) is abelian. Heuristically, G is cyclic or “almost cyclic” (i.e., it
has a cyclic component of order nearly as large as |G|), and its order N = |G| is
approximately /p.



CSIDH uses d special ideals [; of the order O. Heuristically, these ideals
generate the class group or a very large subgroup thereof; for simplicity, assume
the former. The ideals [; define an integer lattice of relations

A={z=(2,...,2q) €2 : " - [3% is principal},

so G is isomorphic to Z%/A, via (the inverse of) the map e € Z¢ — [[[, [{], of
which A is the kernel.

A CSIDH secret key is a vector e € Z% of “small” integer exponents repre-
senting a group element; more specifically, the e; are drawn uniformly from some
small interval [—B, B]. One evaluates the group action for the associated ideal
class [[{* - - - [5] by successively applying the action of each [[;] or its inverse, |e;]
times. Therefore, the £; norm of e largely determines the evaluation time. Note
that a group element is not uniquely specified by an exponent vector; any vector
in the same coset of A defines the same group element, but very “long” vectors
are not immediately useful for computing the group action. However, if we have a
basis of A made up of very short vectors, then given any exponent representation
of a group element, we can efficiently reduce it to a rather short representation
of the same element using standard lattice algorithms like Babai’s nearest-plane
algorithm [Bab&5].

In the CSIDH-512 parameterization, for which p ~ 252, the class group
G = Cl(O) has recently been computed [BKV19]: it is isomorphic to the additive
cyclic group Zy = Z/NZ of integers modulo

N =3-37-1407181 - 51593604295295867744293584889
- 31599414504681995853008278745587832204909 ~ 22°7-1,

and is in fact generated by the class of the ideal [;. In addition, the lattice
A C Z™ of relations among the ideals [; is known, along with a very high-quality
(HKZ-reduced) basis. Indeed, the authors of [BKV19] showed that a uniformly
random element of Zy can be quickly reduced to a short exponent vector having
a norm distribution very similar to the CSIDH-512 one. So, in summary, for
CSIDH-512 we can efficiently represent the class group as Zy, and secret keys
using the distinguished representatives {0,1,..., N — 1}.

2.2 Abelian Hidden-Shift Problem

The hidden-shift problem on an additive abelian group G is as follows: given injec-
tive functions fo, f1: G — X (for some arbitrary set X) such that fi(z) = fo(x+s)
for some secret “shift” s € G and all z € G, the goal is to find s. For cyclic
groups G = Zy, this hidden-shift problem is equivalent to the hidden-subgroup
problem on the Nth dihedral group (which has order 2N). Kuperberg [Kup03]
gave the first nontrivial quantum algorithm for this problem, which uses subex-
ponential exp(O(y/log N)) quantum time and space.

As observed by Childs, Jao, and Soukharev [CIS10], there is a simple con-
nection between the abelian hidden-shift problem and the key-recovery prob-
lem for Couveignes—Rostovtsev—Stolbunov-type systems: given the “base value”



zo € Z and a public key z1 = s % 2z for some secret key s € G, where
*: G x Z — Z is a free and transitive group action, define f,: G — Z as
fo(g) = gz, for b =0, 1. These f;, are injective because * is free and transitive,
and fi(z) = w2z =x*(s*20) = (x+5)x20 = fo(z+35), as required. So, solving
the hidden-shift problem for these f;, immediately yields the secret key.

3 Collimation Sieve for Cyclic Groups

In this section we generalize Kuperberg’s collimation sieve [Kupll] to arbitrary
cyclic groups Zy of known order N. (The algorithm can also be made to work even
if we only have a bound on the group order.) The algorithm works very much like
Kuperberg’s for power-of-two group orders N = 2", but with some implementation
differences and optimizations inspired by improvements to Kuperberg’s first sieve
algorithm [Kup03].

The collimation sieve works with quantum states called phase vectors, each
of which has some associated integer (phase) multipliers (see [Section 3.1)). The

ultimate goal of the sieve (see [Section 3.2)) is to construct a length-L phase
vector that is ‘very nice,” meaning its multipliers come from a desired set of small

size S < L, e.g., the interval [S]. (Additionally, the phase multipliers should
be roughly uniformly distributed, which happens automatically.) From such a
nice phase vector one can extract bits of the secret via the quantum Fourier
transform and measurement (see . Initially, the sieve will only be
able to construct very ‘non-nice’ phase vectors whose multipliers come from the
huge set {0,1,..., N —1}. It then repeatedly produces progressively ‘nicer’ phase
vectors whose multipliers lie in successively smaller sets, by combining less-nice
vectors via a process called collimation (see .

The differences between our version of the collimation sieve and Kuperberg’s
are summarized as follows:

1. The sieve creates phase vectors with multipliers in progressively smaller
intervals of the integers, by collimating on the “most-significant bits” of
the multipliers. (By contrast, Kuperberg makes the multipliers divisible by
progressively larger powers of two, by collimating on the least-significant
bits.)

2. After sieving down to an interval of size S, where S can be roughly as large
as the amount of quantumly accessible classical memory (QRACM), the
algorithm applies a quantum Fourier transform of dimension S and measures,
to reveal about log S of the “most-significant bits” of the secret with good
probability. (Kuperberg instead applies a two-dimensional Fourier transform
and measures to recover the single least-significant bit of the secret, with
certainty.)

3. Alternatively, instead of recovering just log(S) bits of the secret, the algorithm
can perform additional independent sieves down to various “scaled” intervals.
By combining the resulting phase vectors, the algorithm can recover about
log(S) different secret bits per sieve, and in particular, it can recover the
entire secret using about log(N)/log(S) = logg(N) sieves. (Kuperberg’s
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algorithm, after recovering the least-significant bit of the secret, effectively
halves the secret and repeats to recover the remaining bits, using log(NV)
total sieves.)

The technique from [[tem 2]is reminiscent of one used by Levieil and Fouque [LF06]
to recover several secret bits at once in the Learning Parity with Noise problem.
The technique from is analogous to one attributed to Hgyer in [Kup03] for
recovering the entire secret from about log(N) qubits obtained via Kuperberg’s
original sieving algorithm.

3.1 Phase Vectors

We first recall from [Kupl1] the notion of a phase vector and some of its essential
properties. Fix some positive integer N and s € Zy. For a positive integer L, a
phase vector of length L is a (pure) quantum state of the form

) = L2 x(b(j) - s/N)1j)
JE[L]

for some function b: [L] — Z, where the b(j) are called the (phase) multipliers.
In all the algorithms considered in this work, the multiplier functions b will
be written down explicitly in a table, in sorted order by b(j) for efficiency of
collimation (see . Note that while this requires classical memory
proportional to L, only log L qubits of quantum memory are needed for |¢). Also
observe that the multipliers are implicitly modulo N (because of the division
by N inside x), so we will use and store their distinguished integer representatives
in {0,1,..., N — 1}. We say that |¢) is ranged on (or just on) a particular set
S C Z if every b(j) € S.

Looking ahead a bit, the collimation sieve uses collimation to combine and
produce phase vectors of roughly equal length L that are ranged on a sequence of
geometrically smaller sets, starting from unrestricted ones on {0,1,..., N—1} and
ultimately yielding one on a set of size S < L (e.g., the interval [S]). Measuring
the quantum Fourier transform of such a vector then yields part of the secret.

Creating and combining phase vectors. Prior (finite) hidden-subgroup and hidden-
shift algorithms use a simple quantum procedure (an “oracle”) Uy that generates
a special kind of one-qubit state, i.e., a length-2 phase vector. Given quantum
procedures for computing injective functions fo, f1: Zy — X (for an arbitrary
set X) such that fi(z) = fo(x + s) for some secret s and all x, the procedure Uy
outputs a uniformly random b € Zy along with a qubit

_ L
V2
i.e., a length-2 phase vector with b(0) = 0,b(1) = b. The details of Uy are
not material here; see [Kup03|Reg04] for accessible descriptions. However, we

note that Uy evaluates the functions f; in superposition, which in our context
corresponds to evaluating the CSIDH group action.

%) (10) + x(b - s/N)[1)),
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Phase vectors can naturally be combined by tensoring: given r phase vec-
tors |1);) respectively having lengths L; and multiplier functions b;, we can form
the following quantum state |¢)') with index set L = [Lq] X -+ X [L,]:

[0) = [r,e by = (L7230 o Y x(bain) - s/N) - x(0r(Gr) - /N s dr)

jle[Ll] j7'€[L7']
(1)

= L7 XV (9) - 5/N)la),

JeEL

where b'(3) = >"._, b;(ji). Therefore, |¢)') can be thought of as a kind of phase
vector of length |L| = []\_, L;, except that its index set is not exactly [|L|]
(although there is a natural bijection between L and [|L|]). We note that in the
context of collimation , we do not explicitly write down the full
multiplier function &', but instead first partially measure [¢)) to lessen its length
before storing its multiplier function.

3.2 Collimation Sieve

We now formally define the collimation sieve, in It constructs a
phase vector on a desired interval by recursively constructing and collimating
phase vectors on suitably larger intervals. The algorithm is essentially the same as
Kuperberg’s from [Kupl1] (which incorporates a key insight of Regev’s [Reg04]),
except that it uses collimation on “high bits,” along with a few tweaks to make

it more practically efficient in simulations (see [Section 3.2 below).

Algorithm 1 Collimation sieve for group Zy and collimation arity r.

Input: Interval sizes Sp < S1 < --- < Sq = N, a desired phase-vector length L, and
oracle access to Uy.
Output: A phase vector on [So] of length ~ L.

Base case. If Sp = N, generate £ =~ log L length-2 phase vectors [¢1), |¥2), ..., |¥e)
using U; (see [Section 3.1). Output the length-2° phase vector 1) = |11, ..., %)
Recursive case. Otherwise:

1. Using r recursive calls for sizes S < --- < Sq = N and appropriate desired
lengths, obtain r phase vectors |11), ..., |¢r) on [S1], the product of whose
lengths is ~ rL - S1/So.

2. Collimate these phase vectors usingto produce a phase vector |1))
on [So], and output it. (Or, if its length is much less than L, discard it and
recompute from Step 1.)

In the base case, when a phase vector of length roughly L on [/V] is desired, the
algorithm simply invokes the oracle Uy some ¢ = log L times to get length-2 phase

12



vectors [1);) o< |0)+x(b;-s/N)|1) for known uniformly random multipliers b; € [N],
then tensors them all together to get a length-2¢ phase vector whose multipliers
are the mod-N subset-sums of the b; values. (See ) In the recursive
case, when a phase vector on [S;] for some S; < N is desired, the algorithm
recursively obtains r phase vectors on [S;11] of appropriate lengths, collimates
them to interval [S;], and returns the result. (See below for the
definition and analysis of the collimation procedure.)

The sieve can traverse the recursion tree in any manner, e.g., depth first,
breadth first, or some hybrid of the two. The choice offers a tradeoff between
the quantum memory cost and parallelism of the sieve. Because each phase
vector uses about log L qubits, a depth-first traversal would require only about
(r — 1)dlog L qubits of memory, but the collimation steps would need to be done
sequentially. On the other extreme, a breadth-first traversal would allow all the
oracle calls and collimation steps at each level of the tree to be done in parallel,
but at the cost of about 7¢log L qubits of memory.

Finally, we can also use the sieve to construct phase vectors on other desired
output ranges, like scaled intervals A - [S], simply by tweaking the collimation
procedure as described in Combining phase vectors on different scaled
intervals enables recovery of more (or even all) bits of the secret with a single
measurement.

Parameters Following the analysis of the collimation procedure (see
and Equation below), a top-level call to |Algorithm 1| for arity r > 2 would

typically be made on a sequence of interval sizes S; where:

— Sp & L, the desired length of the ultimate phase vector (which can be almost
as large as the available amount of QRACM), and
— Siy1 =min{~ S; - L"!/r, N}, where the final S; = N.

The depth d of the recursion tree is therefore given by

log(N/So) -‘ . log1,(N/S)
log(L™=1/r) r—1

So(L""Yr) >N = d= { (2)

Practical Improvements As detailed below in the length of a
phase vector output by collimation is unpredictable, and may be rather longer or
shorter than expected. Because the lengths directly affect the required amount
of QRACM and other resources required by the rest of the sieve, we would like
to keep them under control as much as possible. We do so with two techniques:

1. being adaptive about the requested vector lengths in the recursive calls, and
2. discarding phase vectors that are unusually short, and recomputing from
scratch.

Adaptivity means the following. Recall that to create a phase vector on [S]
of length ~ L, the algorithm recursively creates r phase vectors on [S’] for some
given S’ > S, the product of whose lengths we want to be =~ L' = L (5"/S). So,
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on the first recursive call we request a vector of length (L')'/", and obtain a vector
of some length L. Following that we want the product of the remaining r — 1
vector lengths to be ~ L'/L, so we request a vector of length (L'/L)Y/ ("= and
so on. This immediately compensates for shorter-than-expected vectors, which
helps to avoid cascading short vectors higher in the recursion tree and a useless
final output. And in the fortunate event that we get a longer-than-expected vector,
requesting correspondingly shorter vectors speeds up the remaining computation.
In case there is a hard cap on the available amount of QRACM, it is also trivial
to shorten a longer-than-expected vector via a partial measurement, which also
beneficially shrinks the interval in which the phase multipliers lie.

Vectors that are much shorter than expected present a more significant
problem, however. Compensating for them requires corresponding longer and/or
more phase vectors for collimation, which require correspondingly more QRACM
and computation. Moreover, getting another short vector in that part of the
computation subtree further increases the required resources. Therefore, whenever
a call to produces a candidate output vector that is shorter than
the requested length by some fixed threshold factor, it simply discards it and
computes a fresh one from scratch[f]

Empirically, for arity » = 2 threshold factors of 0.25 or 0.4 seem to work
well, causing a discard in only about 2% or 4.5% of calls (respectively), and
keeping the maximum vector length across the entire sieve to within a factor
of about 24-25 or 22 (respectively) of the desired length L; moreover, that
factor tends to decrease somewhat as L grows. (See for details.) This
modification was very important for the feasibility of our simulations: without
the discard rule, the maximum vector length tended to be several hundreds or
even thousands of times larger than L, yet the ultimate phase vector was often
still much shorter than desired.

Oracle Query Complexity Here we give a model for the number of queries
to the oracle Uy made by the sieve. For the interval sizes S; given above in

Section 3.2} the recursion depth is given in Equation as

i= | |

At the base case (leaf level) of the recursion tree, where S; = N, we typically
need to make a phase vector of length about

L = (TLSd/Sd_l)l/r = (TLN/Sd—l)l/T-

We construct such a vector by making |log L] oracle queries and tensoring the
results.

5 This is roughly analogous to what is done in Kuperberg’s original sieve [Kup03],
where combining two qubits has a 50% chance of producing a “useless” output that
is then discarded.
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Supposing that a random ¢ fraction of recursive calls to result in
a discard (due to insufficient length), the arity of the recursion tree is effectively

r/(1 — §). Therefore, our model for the total number of oracle queries is

Q=(r/(1-6))" logL. (3)

For arity » = 2 our experiments turn out to conform very closely to this
model, especially for moderate and larger values of L. (For r = 2 it is slightly
more accurate to replace r with 2r/3 in the above expressions, but this has a

negligible effect on the predictions.) See for details.

3.3 Collimating Phase Vectors

The heart of the collimation sieve is the collimation procedure, which combines
phase vectors to create a new one on a desired smaller interval. is
our variant of Kuperberg’s collimation procedure; the only significant difference
is that it collimates according to “high bits” (or “middle bits”; see
rather than “low bits,” which allows us to deal with arbitrary group orders N.
More precisely, it collimates phase vectors according to the quotients (ignoring
remainder) of their multipliers with the desired interval size S, yielding a new
phase vector on [S].

Algorithm 2 Collimation procedure for arity r.

Input: Phase vectors |11), [t2), ..., |¢r) of respective lengths L1,..., L., and a desired
interval size S.
Output: A phase vector |¢) on [S].

1. Form the phase vector |¢)') = |1, ...,%,) having index set [L1] X - -+ x [L,] and
phase multiplier function b'(g) = >__; bi(ji)-

2. Measure [¢)') according to the value of ¢ = |[b'(3)/S] to obtain P,|t’) for a certain
subunitary F;.

3. Find the set J of tuples j that satisfy the above. Let L = |J| and choose a
bijection 7: J — [L].

4. Output phase vector 1)) = U, P,|¢)’) with index set [L] and multiplier function
b(j) = b (1 (7).

In more detail, given phase vectors |i;) having lengths L; and multiplier
functions b;: [L;] — Z, the algorithm constructs a combined phase vector [¢)")
having multiplier function ¥ (3) = Y_;_, bi(j;), as shown in Equation above.
It then measures the quotient ¢ = [¥'(3)/S], so that the “surviving” indices j
are exactly those for which ¥'(3) € ¢S + [S]. The common additive ¢S term
corresponds to a global phase that has no effect, so the surviving phase multipliers
can be seen to lie in [S]. Let J be the set of surviving indices 3 and suppose
that |J| = L. Just as described in [Kupll], the algorithm (classically) constructs
a bijection 7: J — [L] and its inverse, then applies a corresponding unitary
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permutation operator U, to the post-measurement state, finally yielding a true
length-L phase vector on [S].

We briefly summarize the main computational costs; see for a
detailed analysis in the case r = 2. Step [2| does a QRACM lookup for each
i=1,...,r to obtain b;(j;), then quantumly adds the results and divides by S.
Step 3| classically performs an r-way merge on the sorted lists of phase multipliers,
and prepares associated lists for the next step. Finally, Step 4 computes 7(3) by
performing QRACM lookups on the entries of 3, and uncomputes 7 and all the
scratch work via one or more additional lookups.

Length Analysis Collimation is guaranteed to output a phase vector on [S],
but the length of the output is a random variable affected by the phase multipliers
of the input vectors and the quantum measurement.

Let r be small, with r = 2 being the main case of interest. Suppose that
the input vectors |¢;) have roughly uniformly distributed multipliers on [S’]
for some S’ > S, and let L' = [], L; be the product of their lengths. Then
the L’ phase multipliers ¥'(3) are also very well distributed on [rS’], so we
expect L = L'-5/(rS’) indices to “survive” collimationm Moreover, the surviving
multipliers are well distributed on [S], because it is a very narrow subinterval
of [rS'].

Because we will want all the input and output vectors to have roughly the
same lengths L, we can therefore take rS'L ~ SL’ where L' = L", i.e.,

S'~S-L"r (4)

In other words, with one level of collimation we can narrow the size of the interval
in which the multipliers lie by roughly an L"~!/r factor, while expecting to
roughly preserve the vector lengths.

Scaled Intervals Collimation naturally generalizes to produce phase vectors on
other sets, such as scaled intervals A - [S] = {0, 4,24, ...,(S — 1)A} for positive
integers A. (We use such sets in below.) Specifically, if we are given r
phase vectors on A - [S’], we can get a phase vector on certain scalings of [S] as
follows:

1. We can collimate according to ¢ = |b'(3)/(AS)], thereby creating a phase
vector on A - [S] (ignoring the global-phase term ¢AS), because all the ¥'(3)
are divisible by A.

2. Alternatively, we can collimate according to ¢ = ¥'(3) mod (AB) for B =
[rS’/S], thereby creating a phase vector on AB-[S] (ignoring the global-phase
term c¢), because all the ¥'(3) are in A - [rS].

" Note that the multipliers b'(3) € [rS’] are not quite uniformly distributed, because
they are biased toward their expectation 7.5’/2, and extreme values are less likely. For
7 = 2, an easy calculation shows that due to this bias, E[L] is very close to 2L - S/5".
This means that the output of the collimation step is slightly better than the above
analysis indicates.
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3. Finally, we can interpolate between the above two techniques, collimating
according to both ¢ = [b/'(7)/(ABS)] and ¢ = b/'(3) mod (AB) for an arbitrary
positive integer B < [rS’/S], thereby creating a phase vector on AB - [S].

By appropriately composing these kinds of collimations, we can obtain any needed
scaling factor. For all these options, adapting the above analyses yields the same
ultimate conclusions, that collimation can decrease the range size by roughly an
L"=1/r factor while keeping the input and output vector lengths roughly equal.

Complexity of Binary Collimation We conclude our treatment of collimation
by analyzing its complexity for the main arity » = 2 of interest, focusing especially
on precise QRACM bounds. We adapt and refine Kuperberg’s analysis [Kupl1]
Proposition 4.2] of his “low bits” collimation procedure. Letting L., denote
the maximum of the lengths of the input and output phase vectors, Kuperberg
proved that low-bits collimation can be done with:

— O(Lmax) classical time, where O hides logarithmic factors in both L.x
and N,

— O(Lmax log N) classical space,

— O(1) lookups into O(Lmax - log max{S’/S, Limax }) bits of QRACM, and

— poly(log Liyax) quantum time and O(log Lyax) quantum space.

The same holds for our high-bits collimation, with one subtlety concerning the
amount of QRACM. Naively, measuring ¢ = |b(3)/S | requires storing the entire b;
vectors in QRACM, which requires up to O(Lpax10g.S") = O(Lmax log N) bits.
This is in contrast to Kuperberg’s method, which requires only O(Lyax log(S’/.5))
bits, namely, the least-significant bits of the multipliers. We can obtain the latter
bound by storing in QRACM only sufficiently many of the “most significant bits”

of the b;(j;), namely, b;(j;) = |bi(j;)/K | for some K moderately smaller than S.
We then measure ¢ = | K - b(3)/S], from which it follows that

b(3) € ¢S/K + 1[0, S/K] = b(3) € ¢S + [0, S + rK].

By taking K = (5/5")* - S for some small positive a like & = 1 or aw = 1/2, each
entry of b;(j;) takes at most (the ceiling of) log(S’/K) < (14 a)log(S’/S) bits.
By Equation , the range size for the collimated output vector is S + rK =
S(1+ 71t /L%), which is insignificantly larger than S for the L > 216 of interest.

Concrete constants for QRACM. A close inspection of [Kupll], Section 4.3] shows
that the constant factor in the QRACM bound, and the associated O(1) number
of QRACM lookups, are small. The entire algorithm can be run with 9 lookups
and as little as

R = Lpax - [max{(1 + a)log(S’/S),10g Liax }] (5)

bits of reusable QRACM, or with as few as 4 lookups and Ly (2(1+«) log(S’/S)+
310g Limax) bits, or with various intermediate combinations. (For our purposes,
minimizing QRACM seems preferable because lookups are much cheaper than
CSIDH evaluation.) This can be done as follows:
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1. First, in new registers we look up each b;(j;) for i = 1,2. As described
above, arrays representing the functions b; can be stored in QRACM with
[(14 «)log(S’/S)] bits per entry. (In all steps, the QRACM can be reused
from one lookup to another.)

2. Following the measurement, in new registers we compute j = 7(j1, j2) € [L]
and a scratch value j5. An array representing the permutation 7: J — [L]
can be stored as a table mapping each j; to the smallest value j} such
that (j1,7%) € J, and the corresponding value of 7(j1,75); each value takes
[log Limax | bits per entry. We look up, either sequentially or both at once,
the appropriate values of j5, m(j1, j5) and then (reversibly) add ja — 75 to the
latter quantity to get j = m(j1, j2)-

3. Lastly, we uncompute the five values j} and ji,l;i(ji) for i = 1,2, leaving
behind just j. One or more arrays (each requiring a lookup) mapping each j
(or alternatively, j; or jo) to one or more of these values can be stored in the
natural way. We do the appropriate lookup(s) to uncompute all the values.

Finally, we remark that for the Ly of interest in this work, the poly(log Liax)
quantum time (which consists of just a few additions and subtractions, and one
division) and O(log Lax) quantum space needed for collimation are insignificant
compared to the estimated complexity of the quantum oracle Uy for CSIDH
parameters of interest [BLMPT19].

3.4 Post-Processing

We now describe how phase vectors output by the collimation sieve can be used
to recover information about the secret.

Regularization A top-level call to |[Algorithm 1| outputs a phase vector |¢)
on [S] = [So] of length L ~ L, which we want to be somewhat larger than S.

Heuristically, for each t € [S] we expect about L/S phase multipliers b(j) to
equal t; however, there is some variation in the number of each multiplier. Ideally,
we would like a regular state, i.e., one which has exactly the same number of
multipliers for each ¢ € [S].

We can obtain one by generalizing [Kup11]: select a maximal subset X C [L]
for which b(X) has an equal number of every ¢ € [S]. Then measure whether |1))
is in C[X] (i.e., the Hilbert space with basis |j) for j € X), which holds with
probability |X|/ L. If not, discard it and run the sieve again. If so, the measured
form of |¢) is regular, so it has a factor of the form

ST2N X - s/N)IG)
JE[S]

which we can extract by reindexing. (This requires almost no work, because the
multipliers are sorted.) Observe that the above state essentially corresponds to
the dimension-S inverse quantum Fourier transform of a point function at sS/N;
see for details.
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The probability of obtaining a regular phase vector is | X |/L = m.S/L, where m
is the frequency of the least-frequent phase multiplier ¢ € [S]. In our experiments,
a length L ~ 645 typically led to success probabilities in the 40-80% range, and
a length L ~ 1285 usually led to an 80% or larger success probability.

Punctured Regularization The above procedure is somewhat wasteful, be-
cause it loses a factor of L/S ~ 27 in the number of basis states |j) in the
fortunate case (and loses all of them in the unfortunate case). Alternatively, we
can use the following method for generating a “punctured” (regular) phase vector,
which works for S as large as L (or even a bit more), and which produces a state
that is almost as good as a regular one on [S]. Empirically, this lets us extract
almost log S bits of the secret.

Again suppose that the sieve produces a phase vector |¢) on [S] of length L.
We make a pass over j € [I~/]7 forming a set X of one index j for each distinct value
of b(j), and ignoring duplicates. (This is trivial to do, because the multipliers are
sorted.) We then measure whether |¢) is in C[X], which holds with probability
|X|/L. If not, we try again with a new choice of X on the leftover phase vector,
as long as it remains long enough. If so, the restriction b: X — [S] is injective,
so by a change of variable and reindexing the basis from j € X to b(j) € [S], we
now have a state of the form

X172 X(00) - s/N)i) = 1XI7V2 D7 x (G- s/N))- (6)

jex JEB(X)

This state is a length-| X | phase vector, except for the “punctured” index set
b(X) C [S]. It is also almost as good as a regular phase vector on [S], in the
following sense. Heuristically, each of the multipliers b(j) for j € [L] is uniformly
random, so the multipliers b(X) C [S] form a random subset of density

1-(1-1/S)E ~1—exp(—L/S).

(For example, this density is approximately 0.632, 0.864, and 0.981 for L=25,
25, and 45, respectively.) Therefore, the state in Equation @ corresponds to a
kind of densely subsampled Fourier transform of a point function encoding the
secret. Empirically, such states have enough information to let us extract about
log S — 2 bits of the secret in expectation; see for details.

Combining (Punctured) Regular Phase Vectors By combining k sepa-
rately generated regular phase vectors for scalings of [S], we can create a regular
phase vector on [T] for T = S*, as shown below. In particular, for k > logg N we
can create a regular phase vector for 7' > N, which is large enough to recover s
exactly (with good probability). Note that it might not be necessary to recover
all of s in this manner; given partial information on s (say, half of its bits) it
might be more efficient to use other methods to recover the rest.
We separately create k regular phase vectors

i) = S7Y2 ST (ST - s/N)1j)

JE[S]
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on the scaled intervals S®-[S] = {0,5%,25¢ ...,(S —1)S%}, for i =0,1,...,k— 1.
Then their tensor product [1)) = |¢g, ..., Pr—1) is

k—1
) _ 172 Z Z X(Zjisi'S/N)UO’""jk_l) —7-1/2 Z x(j-s/N)|7),

Jo€lS] Jr—1€[S] 1=0 JE[T]

where we have re-indexed using 7 = Zi:ol §iS%. Therefore, 1) is a regular phase
vector for [T, as desired.

The same technique works for punctured regular states, where the tensored
state’s index set is the Cartesian product of the original states’ index sets. To
prevent the density from decreasing, we can use a scaling factor slightly smaller
than S, e.g., 4.5 where § is the density of the input states. Then the density of
the resulting state is about (§5)%/(§¥~15%) = 4.

Measurement Now suppose we have a regular phase vector [)) = T~1/2 37 e X (-
s/N)|7) on [T]. Then its T-dimensional quantum Fourier transform is

@ =17 33 (57 ) = X (S0 - 7))

we[T] jE[T] ( )
7

We compute this state and measure, obtaining some w that reveals information
about s, as analyzed next.

If N|(sT), then the amplitude associated with w = sT/N € [T] is nonzero
and the amplitudes associated with all the other w € [T] are zero, so measuring
the state yields w with certainty, from which we recover s = wN/T. Otherwise,
fix some arbitrary w € [T] and let § = s/N —w/T ¢ Z. By summing the finite
geometric series (over j), we see that the amplitude associated with |w) is

— x(T0) ‘ _
1—x(0)

I IO X0 |
x(0/2) - (x(=0/2) — x(0/2))
For |§] < 1/(2T) this value is at least (T sin(7/(27)))~* > 2/7. So when measur-

ing the state, we obtain a w such that |s/N — w/T| < 1/(2T) with probability
at least 4/7r2 > 0.4. In such a case, we have

sin(7T0)
S|

c N n N N
e 277 2T |’
i.e., we know the logT" “most-significant bits” of s. In particular, if T > N then
this defines s uniquely.

Measuring punctured phase vectors. Now suppose instead that we have a punc-
tured regular phase vector i) = |Y|~1/2 > jey X(J - 8/N)[j) on [T7], for a heuris-
tically random index set Y C [T of significant density. Its QFT is exactly as in
Equation (7)), but with normalizing factor (Y7)~%/2 instead of T, and with the
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index j running over Y instead of [T]. As above, when w/T is very close to s/N,
the amplitudes x(j(s/N —w/T)) € C all point in roughly the same direction, and
accumulate. Otherwise, the amplitudes heuristically point in random directions
and mostly cancel out. Therefore, the final measurement is likely to output a w
close to sT/N.

As pointed out by an anonymous reviewer, the above argument can be made
rigorous using the fidelity |{p|y)| between our punctured vector |¢) with index
set |Y'| = §|T'| and a regular phase vector |p) on [T, which by an easy calculation
is seen to be V8. Because the QFT preserves fidelity, with probability & the
outcome of the measurement is the same as measuring a regular vector.

For the values of S we used in our experiments, it is possible to efficiently
compute the probability of obtaining any particular value of w when measuring
(the QFT of) a particular punctured phase vector. Empirically, we usually observe
a total probability (over the first several punctured vectors coming from the final
sieve output) of about 40% or more in recovering the value of w closest to sT'/N.
This corresponds to extracting at least log T — 2 bits of the secret in expectation.

Sce [Figire 3

4 Quantum (In)security of CSIDH

In this section come to some conclusions about the quantum security levels for
various CSIDH parameters proposed in [CLM™18|, based on our model from
and our experiments’ close adherence to it (Section 5f). See [Figure 1
for several representative estimates.

4.1 Oracle Query Complexity for Key Recovery

Our main conclusion is that key recovery for CSIDH-512 can be accomplished
with a binary collimaton sieve using, for example, about 2'° oracle queries and
about 232 bits of QRACM, or about 2'6 oracle queries and about 2*° bits of
QRACM (plus relatively small other resources); see This significantly
improves upon the prior estimate [BSI8] of about 2325 queries plus 23! quantum
bits of memory, for a version of Kuperberg’s original sieve algorithm [Kup03].

Similarly, shows that key recovery for CSIDH-1024 and -1792 (using
the same or somewhat more QRACM as above) requires only 2° oracle queries, for
values of b in the mid-20s and high-30s, respectively. For example, CSIDH-1024
can be broken using less than 224 queries and about 244 bits of QRACM.

According to our model, for arities r = 3 and r = 4 (and the same amounts of
QRACM) the query complexities decrease modestly, by factors of about 22-23-5.
Note that these arities require much more classical computation, but still may
be cryptanalytically feasible. We stress that all these query complexities are for
recovering almost all the bits of the secret. At present it is unclear whether the
number of queries can be reduced even further by breaking the scheme using
only partial information about the secret.

The estimates in are based on the following:
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log p log N log L log QRACM depth log Qo log T’ <

512 257.1 23.6 32 11 18.7 63
27.4 36 9 17.0 61
31.3 40 8 15.7 60
35.1 44 7 14.9 59
39.0 48 6 14.1 58
1024 512 27.4 36 19 27.9 76
31.3 40 16 25.5 74
35.1 44 14 23.5 72
39.0 48 13 22.1 70
42.9 52 12 20.8 69
1792 896  31.3 40 29 39.2 90
35.1 44 25 35.8 87
39.0 48 23 33.2 84
42.9 52 21 30.9 82
46.7 56 19 29.2 80

Fig. 1. Example complexity estimates for secret-key recovery against CSIDH-log p using
the collimation sieve with arity r = 2, for various bit lengths (rounded to the nearest
integer) of the CSIDH parameter p. Each missing entry is equal to the one above it.
Here N is the estimated (or known, in the case of CSIDH-512) group order; L = S
are respectively the desired length and range size of the sieve’s final phase vector;
“QRACM?” is the number of bits of quantumly accessible classical memory, which is
given by Equation with @ = 1/2 for Limax = 8L indexable cells; “depth” is the
depth of the sieve’s recursion tree; Quotal is the total number of queries to the quantum
oracle to recover all but 56 bits of the secret; T" is the total T-gate complexity of the
attack, assuming the complexity of implementing the oracle is not much more than for
evaluating on the “best conceivable” distribution.

— We take S = L and use punctured regularity to obtain several bits of the
secret (see [Section 3.4). We assume that each run of the sieve reveals an

expected log S — 2 bits of the secret, which is consistent with our experiments.

— We quantify the total number Qtotal of oracle queries needed to recover all
but 56 bits of the secret; the remainder can be obtained by classical brute
force. We assume that the actual number of queries Q made by a run of the
sieve is within a 293 factor of the estimated number Q from Equation ,
which is consistent with our experiments.

— We impose a maximum phase-vector length of Linax = 8L. This reflects the
fact that the generated phase vectors are sometimes longer than the desired
length L, but are almost always within a factor of 8, and we can enforce this
as a hard bound by doing a partial measurement whenever a phase vector
happens to be longer. We use Equation for the number of bits of QRACM
as a function of Lyax.
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4.2 T-Gate Complexity and NIST Security Levels

As shown below in for all the sieve parameters appearing in
the quantum work of the collimation sieve itself—mainly, the QRACM lookups

done during each collimation step—can be implemented more cheaply than the
oracle calls, under optimistic estimates for the latter. (Moreover, the classical work
of the sieve scales with the number of collimations, so as long as the quasilinear
classical work of collimation is cheaper than the linear quantum work used to
implement the QRACM, the total classical work is not significant.) So, if we
assume that the actual cost of the oracle is not much more than what is given by
the analysis of [BLMP19] for the “best conceivable” distribution (see
for discussion), we can give T-gate estimates for the full attacks, and compare
them to what is needed to achieve the targeted NIST post-quantum security
levels.

CSIDH-512 and level 1. A CSIDH-512 oracle for the “best conceivable” distribu-
tion can be implemented in about 2%° nonlinear bit operations [BLMPT19], which
translates to between 249 and 2%* T-gates. Under our assumption, CSIDH-512
key recovery therefore costs between roughly 2°6 and 260 T-gates with 24 bits of
QRACM, plus relatively small other resources. (See for other options.)
It would be prudent to expect that something toward the lower end of this range
is attainable.

It follows that CSIDH-512 falls far short of its claimed NIST quantum security
level 1, especially when accounting for the MAXDEPTH restriction, and even
under a substantially weaker assumption about the oracle cost. Specifically, level 1
corresponds to the difficulty of key search for AES-128, and NIST’s estimate for
this is 2'7/MAXDEPTH quantum gates, where suggested plausible values of
MAXDEPTH range between 219 and 2. As seen in the sieve can
almost perfectly parallelize the oracle calls and collimation steps, so the depth of
the full attack can be made quite close to the depth of the oracle, which certainly
cannot exceed its gate count. So, the depth of the full attack can be brought
close to the low end of the MAXDEPTH range or only somewhat larger, if the
sieve works sequentially (which requires fewer qubits). In any case, the attack’s
quantum gate complexity of about 2°6-260 is far below the required 2'3° for the
low end of the MAXDEPTH range, and even significantly below the required 274
for the high end.

Other CSIDH parameters. For a 1030-bit prime CSIDH parameter (namely,
four times the product of the first 130 odd primes and 911, minus 1), using the
software from [BLMP19] we determined that an oracle for the “best conceivable”
distribution can be implemented in less than 244 nonlinear bit operations, which
translates to between 24 and 24® T-gates. Under our assumption, breaking this
parameterization of CSIDH therefore takes no more than about 274 T-gates using
about 240 bits of QRACM, 272 T-gates using about 2% bits, and so on (see
Figure 1)). This is also below NIST quantum security level 1, and well below it
for small and medium choices of MAXDEPTH.
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Similarly, for a 1798-bit prime CSIDH parameter (namely, four times the
product of the first 207 odd primes and 2273, minus 1), an oracle for the “best
conceivable” distribution can be implemented in about 247 nonlinear qubit opera-
tions, which translates to between 247 and 2°! T-gates. Under our assumption, the
attack therefore takes no more than about 287 T-gates using 2** bits of QRACM,
284 T_gates using 2%® bits of QRACM, and so on. While [CLM*18| proposed
a 1792-bit parameterization for NIST quantum security level 3—corresponding
to security against 2233 /MAXDEPTH quantum gates—it falls far short of this
target (even allowing for a much weaker assumption about the oracle). Indeed,
with the possible exception of the high end of the MAXDEPTH range, it does
not even reach level 1.

4.3 Quantum Complexity of the Sieve

Here we estimate the T-gate complexity of the quantum work of the collima-
tion sieve using the QRACM implementation of [BGBT18|, as suggested by
Schanck [Sch1l9]. The main conclusion is that for parameters of interest, the
quantum complexity of the sieve and the QRACM is dwarfed by that of the
oracle calls (under current estimates for the latter).

Fix the collimation arity » = 2. The analysis below shows that the total T-gate
complexity of the collimation sieve (apart from the oracle calls) is essentially

36L - (2/(1—46))%, (8)

where L is (an upper bound on) the typical phase-vector length, § is the discard
probability, and d is the depth of the sieve tree. For § &~ 0.02 and all the sieve
parameters (log L, d) given in this T-gate estimate is comfortably
below even the most optimistic T-gate estimates for all the oracle calls, based
on [BLMP19]. For example, for the sieve parameters given infor CSIDH-
512, the T-gate complexity of the sieve itself is between 23 and 247, which in all
cases is well below the lower bound of about 2°3 for making at least 2'* calls to
an oracle with T-gate complexity at least 23.

The estimate from Equation is obtained as follows. The full sieve is
a traversal of a binary tree (modulo discards), with one collimation at each
non-leaf node, and one or more oracle calls at each leaf node. Therefore, the
T-gate complexity of the sieve itself (apart from the oracle calls) is essentially the
number of non-leaf nodes times the T-gate complexity of collimation. For sieve
tree depth d, the number of internal nodes is about (2/(1 — §))% when accounting
for discards.

The T-gate complexity of a single collimation step can be bounded as follows.
As shown in for input and output phase vectors having lengths
bounded by D, the quantum work is dominated by nine lookups into a QRACM
of D indexable cells. Because [BGB™T18| implements such a QRACM (for cells of
any uniform size) using classical memory plus just 4D T-gates (and only [log D]
ancillary qubits), the claim follows.
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5 Experiments

At present, there are no (publicly available) quantum computers capable of
running the full quantum algorithm for nontrivial parameters. But fortunately,
as pointed out in [Kupll], the collimation sieve itself (apart from the quantum
oracle Uy and the final QFT) is pseudoclassical: it consists entirely of permutations
of the computational basis and measurements in that basis, which are trivial to
simulate classically. In addition, the needed part of the quantum oracle Uy is easy
to simulate, just by generating a uniformly random phase multiplier b + Zx (for
the qubit |¢) o |0) + x(b- s/N)|1), which we do not need to generate).

5.1 Sieve Simulator

Using the above observations, we implemented a classical simulator for our gen-
eralized collimation sieveEI The simulator is currently hard-coded for collimation
arity » = 2, but would be easy to generalize to larger arities. It allows the user
to specify:

— a group order N (including an option for the exact CSIDH-512 group order,
as computed in [BKV19]);

— a desired typical phase vector length L;

— an interval size S for the ultimate phase vector.

The simulator logs its progress in a human-readable form, and finally outputs
various statistics for the full sieve, including:

— the total number Q of queries to the quantum oracle Uy;

— the number @ of queries predicted by the model of Equation from

— the length Luax of the longest created phase vector;

— the probability of obtaining a regular phase vector from the final one, and
the expected number of bits of the secret that can be recovered from the
final phase vector via regularity;

— the probabilities of obtaining punctured regular phase vectors of sufficient
length from the final phase vector, and the total probability of measuring a
value that yields log S secret bits.

5.2 Experimental Results

We ran our simulator for a wide range of group orders N (focusing mainly on the
exact CSIDH-512 group order), desired phase-vector lengths L, and range sizes S.
Our results for the CSIDH-512 group order are given in |[Figure 2| and [Figure 3}

8 The code for the simulator and instructions for running it are at https://github. com/
cpeikert/CollimationSievel The code is written in the author’s favorite functional
language Haskell, and has not been especially optimized for performance, but it
suffices for the present purposes.
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the former concerns full regularization of the final phase vector (Section 3.4)),
while the latter concerns punctured regularization (Section 3.4). In summary, the
experiments strongly support the following conclusions:

For all tested group orders and desired vector lengths L € [216 226] the
required classical resources are cryptanalytically insignificant: at most a few
core-days on a commodity server with 128GB or 512GB of RAM, using only
four CPU cores and less than 100GB RAM per experiment.

The actual number Q of oracle queries conforms very closely to the model
of Equation from especially for relatively larger L > 222,
where Q was almost always within a factor of 204 ~ 1.32 of the predicted Q,
and was usually even closer.

Taking L = 645 suffices to obtain a regular phase vector on [S] with good
probability, usually in the 45-80% range (see [Section 3.4). Halving S, and
hence making L =~ 1285, typically results in a regularity probability of 70%
or more, often yielding slightly more expected number of bits of the secret.
Taking L = S typically suffices to obtain at least log .S — 2 bits of the secret in
expectation, via punctured regularization (see . More specifically,
we can create one or more punctured regular phase vectors that collectively
represent a roughly 40% probability of yielding log S bits of the secret.
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log Q log Q log Limax log L log S Pr[regular| bits threshold discard depth

(%) (%)
194 19.1 239 18 10 78 7.8 0.25 2.8 15
19.4 19.2 238 11 95 10.5 3.6
19.2 19.3 233 12 72 8.6 4.2
18.3 18.2 243 19 11 95 10.5 2.3 14
18.4 181 23.5 12 82 9.8 2.3
18.6 18.1 24.5 13 61 7.9 2.4
17.6 174 243 20 12 84 10.1 2.0 13
17.7 174 25.2 13 56 7.3 2.0
17.6 174 242 14 66 9.2 2.2
17.2 16.7 25.2 21 13 64 8.3 2.1 12
17.2 16.7  25.7 14 71 10.0 2.0
16.8 16.6 25.4 15 73 10.9 1.9
16.6 16.3  26.8 22 14 72 10.0 2.0 12
16.3 16.2  26.6 15 55 8.2 1.9
16.6 16.2  26.6 16 60 9.6 2.3
16.3 15.7 26.4 23 15 79 11.9 2.0 11
15.6 15.6  26.9 16 66 10.5 1.8
15.6 15.6  26.7 17 62 10.6 2.0
15.4 154  28.0 24 16 71 11.3 2.4 11
15.5 15.3  28.6 17 85 14.4 2.1
15.3 15.2  29.1 18 64 11.5 2.1
14.9 14.8 28.7 25 17 62 10.5 1.8 10
14.8 14.8 29.6 17 93 15.7 1.9
15.4 14.8 28.9 18 85 15.3 1.9
14.9 14.8 29.2 19 60 11.4 2.1
15.1 14.8 29.1 19 81 15.4 2.0
15.0 14.7  29.6 26 18 92 16.5 0.40 3.5 10
15.3 14.8 29.3 18 88 15.8 4.1
149 148 294 19 T 14.7 4.6

Fig. 2. Statistics from representative runs of our collimation sieve simulator on the
actual CSIDH-512 group, as computed by [BKVI9]. Here Q and Q are respectively the
actual and predicted (by the model of number of queries to the quantum
oracle; Lmayx is the maximum length of all created phase vectors, and L is the requested
(and typical) vector length; S is the range size for the final phase vector; “Pr[regular]” is
the probability of obtaining a regular vector from the final phase vector (see ;
“bits” is the expected number of bits of the secret that can be recovered from the final
phase vector; “threshold” is the threshold factor used for determining whether a phase
vector is too short (see ; “discard” is the fraction of recursive calls that were
discarded for being below the threshold; “depth” is the recursion depth of the sieve.
Each missing entry is equal to the one above it. Every experiment ran on at most four
CPU cores on a commodity server, and completed in no more than a few core-days.
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log Q log Q 10g Limax log L log S bits threshold discard (%) depth

17.2 170 25.3 20 20 191 0.25 2.2 13
18.1 17.1  24.3 18.1 2.2
16.7 16.4  25.1 21 21 20.1 2.0 12
16.8 16.4 24.9 19.4 1.9
16.6 16.4 24.8 17.7 2.0
15.9 15.7  26.6 22 22 212 1.9 11
16.2 15.8 25.7 20.3 2.0
16.4 15.8 25.8 20.4 2.0
15.6 15.3 26.6 23 23 212 1.7 11
16.0 154  26.3 21.9 2.0
15.9 154  26.7 21.3 1.9
16.1 154  26.1 21.4 1.9
14.9 14.8 26.8 24 24 225 1.8 10
15.6 14.8 273 23.2 1.9
15.0 14.8 27.3 23.1 1.9
15.0 14.6  28.3 25 25 224 2.3 10
14.5 14.5 279 23.5 1.6
15.0 14.6  28.2 23.7 2.4
145 143  29.1 26 26 25.2 3.0 10
14.7 14.2  29.0 24.1 2.4
14.7 14.6 284 25.0 0.40 4.9
14.2 141 29.6 27 27 25.7 4.1 9
14.5 14.1  29.6 25.3 4.6
14.4 14.1  30.0 24.6 4.2
14.0 13.8 304 28 28 25.6 3.9 9
14.3 13.8 304 26.3 3.7
13.9 13.8 30.1 26.4 4.3
14.0 13.9 304 25.5 4.5

Fig. 3. Statistics from representative runs of our collimation sieve simulator on the
actual CSIDH-512 group, as computed by [BKVI9]. The column headers are the same
as in except that “bits” b is the expected number of secret bits obtainable
by using punctured phase vectors obtained from the vector output by the sieve; see
[Section 3.4] and [Section 3.4l Each missing entry is equal to the one above it. Every
experiment ran on at most four CPU cores on a commodity server, and completed
within several core-days.
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