
PSI from PaXoS:
Fast, Malicious Private Set Intersection?

Benny Pinkas1, Mike Rosulek2, Ni Trieu2, and Avishay Yanai3

1 Bar-Ilan University benny.pinkas@biu.ac.il
2 Oregon State University {rosulekm,trieun}@oregonstate.edu

3 VMware Research yanaia@vmware.com

Abstract. We present a 2-party private set intersection (PSI) protocol
which provides security against malicious participants, yet is almost as
fast as the fastest known semi-honest PSI protocol of Kolesnikov et al.
(CCS 2016).

Our protocol is based on a new approach for two-party PSI, which can be
instantiated to provide security against either malicious or semi-honest
adversaries. The protocol is unique in that the only difference between
the semi-honest and malicious versions is an instantiation with different
parameters for a linear error-correction code. It is also the first PSI
protocol which is concretely efficient while having linear communication
and security against malicious adversaries, while running in the OT-hybrid
model (assuming a non-programmable random oracle).

State of the art semi-honest PSI protocols take advantage of cuckoo
hashing, but it has proven a challenge to use cuckoo hashing for malicious
security. Our protocol is the first to use cuckoo hashing for malicious-
secure PSI. We do so via a new data structure, called a probe-and-XOR of
strings (PaXoS), which may be of independent interest. This abstraction
captures important properties of previous data structures, most notably
garbled Bloom filters. While an encoding by a garbled Bloom filter is
larger by a factor of Ω(λ) than the original data, we describe a significantly
improved PaXoS based on cuckoo hashing that achieves constant rate
while being no worse in other relevant efficiency measures.

? The first and fourth authors are supported by the BIU Center for Research in
Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office and by a grant from the Israel Science
Foundation. The second and third authors are supported by NSF award 1617197, a
Google faculty award, and a Visa faculty award. Part of the work was done while the
fourth author is at Bar-Ilan University. This research is based upon work supported
in part by the Office of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via 2019-19-020700006. The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies, either expressed or implied, of ODNI,
IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes notwithstanding any copyright
annotation therein.

1 Introduction

Private set intersection (PSI) allows two parties with respective input sets X
and Y to compute the intersection of the two sets without revealing anything
else about their inputs. PSI and its variants have numerous applications, such
as for contact discovery, threat detection, advertising, etc. (see e.g., [14,32] and
references within). Privately computing the size of the intersection (known as
‘PSI cardinality’) is also important for computing conditional probabilities, which
are useful for computing different analytics of private distributed data.

While there are generic methods for secure multi-party computation of any
function (MPC), finding a specific protocol for PSI is interesting in its own sake
since generic MPC protocols are relatively inefficient for computing PSI: generic
MPC operates on a circuit representation of the computed functionality, while
the intersection functionality can be represented only by relatively large circuits
(the naive circuit for computing the intersection of two sets of size n is of size
O(n2); a circuit based on sorting networks is of size O(n log n) [12]; and new
results reduce the circuit to size O(n) by utilizing different hashing schemes, but
seem to be hard to be adapted to the malicious setting [30,29].)

There has been tremendous progress in computing PSI in the semi-honest
model, where the parties are assured to follow the protocol (see [29,27,20]).
However, protocols for the malicious setting, where parties can behave arbitrarily,
are much slower, with the protocol of Rosulek and Rindal [35] being the best in
terms of concrete efficiency. Protocols in both settings reduce the computation
of PSI to computing many oblivious transfers (OT), which can be implemented
extremely efficiently using oblivious transfer extension [15,1]. The protocols also
benefit from hashing the items of the input sets to many bins, and computing
the intersection separately on each bin. In the semi-honest setting it was possible
to use Cuckoo hashing, which is a very efficient hashing method that maps each
item to one of two possible locations [26,18]. However, it was unknown how to
use Cuckoo hashing in the malicious setting: the problem was that a malicious
party Alice can learn the location to which an input element of Bob is mapped.
The choice of this location by Bob leaks information about the other inputs of
Bob, including items which are not in the intersection.

1.1 Our Contributions

Our protocol is the first to use Cuckoo hashing for PSI in the malicious setting.
This is done by introducing a new data structure, called a probe-and-XOR of
strings (PaXoS). This is a randomized function, mapping n binary strings to m
binary strings, where each of the n original strings can be retrieved by XOR’ing
a specific subset of the m strings. PaXoS can be trivially implemented using a
random m×n matrix, but then the encoding and decoding times are prohibitively
high when n is large. We show how to implement PaXoS using a Cuckoo graph
(a graph representing the mapping in Cuckoo hashing), with efficient encoding

2

and decoding algorithms. This is essentially equivalent to Cuckoo hashing where
instead of storing an item in one of two locations, we set the values of these two
locations such that their XOR is equal to the stored value. As a side-effect, this
does away with the drawback of using Cuckoo hashing in malicious PSI. Namely,
parties do not need to choose one of two locations in which an input item is
stored, and thus there is no potential information leakage by Cuckoo hashing.

Our protocol uses a PaXoS data structure D as a key-value store, mapping
the inputs values (aka keys) of one of the parties to values which are encoded as
linear combinations of the string in D. It then uses the OT extension protocol of
Orrù et al. [24] (OOS), to build a PSI protocol from this data structure. The
OOS protocol is secure against malicious adversaries, and is parameterized by
a linear error-correcting code. Our PSI construction is unique in that the only
difference between the semi-honest and malicious instantiations is only in the
parameters of this code.

The semi-honest instantiation improves over the state of the art KKRT
protocol [20] by 25% in concrete communication cost, while having a comparable
running time. More importantly, the malicious instantiation has only slightly
higher overhead than the best semi-honest protocol, and significantly better
performance than the state of the art for malicious security [35] (about 8×
less communication, and 3× faster computation). Source code is available at
github.com/cryptobiu/PaXoS PSI

From a theory perspective, we introduce the first concretely efficient protocol
in the the OT-hybrid model (assuming a non-programmable random oracle),
which is secure in the malicious setting and has linear communication. The
previous state-of-the-art [35] has O(n log n) communication complexity.

1.2 Related Work

We focus on the discussion of the state-of-the-art of semi-honest PSI protocols.
We note that the earliest PSI protocols, based on Diffie-Hellman assumptions,
can be traced back to the 1980s [36,21,13], and refer the reader to [31] for an
overview of the different PSI paradigms for PSI. Protocols [27] based on oblivious
transfer extension have proven to be the fastest in practice.

A more popular public-key based approach to low-communication PSI is
based on Diffie-Hellman key agreement, and presented in the 1980s [22,13] in
the random oracle model. The high-level idea is for the parties to compute the
intersection of {(H(xi)

k)r | x ∈ X} and {(H(yi)
r)k | y ∈ Y } in the clear, where

r and k are secrets known by receiver and sender, respectively. However, This
protocol requires O(n) exponentiations.

Current state-of-the-art semi-honest PSI protocols in the two-party setting
are [20,32,27]. They all rely on oblivious transfer. Most work on concretely efficient
PSI is in the random oracle model, and with security against semi-honest, rather
than malicious, adversaries. Some notable exceptions are [7,17,11] in the standard
model, and [7,35,34,4] with security against malicious adversaries.

3

github.com/cryptobiu/PaXoS_PSI

We refer the reader to the full paper [28] for a detailed and technical compar-
ison of the many different protocol paradigms for PSI.

1.3 Organization

In Section 2 we present the preliminaries required in order to understand our
techniques (linear codes, correlation-robustness, oblivious transfer and PSI). We
then introduce the notion of Probe and Xor of Strings (PaXoS) in Section 3 and
show an efficient construction of a PaXoS in Section 5. In section 4 we present
and prove our PSI protocol, which is obtained from any PaXoS. We show our
main construction of an efficient PaXoS in Section 3.2 (and an alternative, more
compact one, in the full paper [28]). We present a detailed, qualitative as well
as experimental, comparison to previous work in Sections 6 and Section 7.

2 Preliminaries

We denote the computational and statistical security parameters by κ and λ
respectively. We say that a function µ : N→ N is negligible if for every positive
polynomial p(·) and all sufficiently large κ it holds that µ(κ) < 1

p(κ) . For a bit

string x (or a vector) of length m, we refer to the j-th coordinate of x by xj . A
matrix is denoted by a capital letter. For a matrix X, we refer to the j-th row of
X by xj and the j-th column of X by xj . For two bit strings a, b with |a| = |b|,
a ∧ b (resp. a⊕ b) denotes the bitwise-AND (resp. bitwise-XOR) of a and b.

Error-correcting codes. A binary linear code C with length nC, dimension kC
and minimum distance dC is denoted [nC , kC , dC]. So C : FkC2 → FnC

2 is a linear
map such that for every nonzero m ∈ FkC2 , the Hamming weight of C(m) is at
least dC .

Code-correlation-robustness of random oracles. Our construction uses the fact
that when H is a random oracle, C is a linear code with minimum distance κ,
and s is secret, terms of the form H(a⊕ C(b) ∧ s) look random. This property
was introduced in [19] as a generalization of correlation-robust hashing (from
[16]), and a variant is also used in the context of PSI in [20]. It is described in
the following lemma.

Lemma 1 ([19]). Let C be a linear error correcting code [n, k, d] with d ≥ κ.
Let H be a random oracle and let s← {0, 1}n be chosen uniformly at random.
Then for all a1, . . . , am ∈ {0, 1}n and nonzero b1, . . . , bm ∈ {0, 1}k, the following
values are indistinguishable from random :

H(a1 ⊕ C(b1) ∧ s), . . . ,H(am ⊕ C(bm) ∧ s),

4

Proof (Proof Sketch). If C has minimum distance κ, then any nonzero codeword
C(bi) has hamming weight at least κ, so the term C(bi) ∧ s involves at least κ
unknown bits of the secret s. Hence, each argument of the form H(ai⊕C(bi)∧ s)
has at least κ bits of entropy, from the point of view of the distinguisher, so it is
negligibly likely that the distinguisher will ever query H at such a point.

Oblivious transfer. Oblivious Transfer (OT) is a central cryptographic primitive
in the area of secure computation. It was introduced by Rabin [33,6]. 1-out-of-2
OT is a two-party protocol between a sender, who inputs two messages v0, v1,
and a receiver who inputs a choice bit b and learns as output vb and nothing
about v1−b. The sender remains oblivious as what message was received by the
receiver. The general case of 1-out-of-N OT on τ -bit strings is defined as the
functionality:

FτN-OT [(v0, . . . , vN−1) , c]→ [⊥, vc]
where v0, . . . , vN−1 ∈ {0, 1}τ are the sender’s inputs and c ∈ {0, . . . , N − 1} is
the receiver’s input. We denote by Fτ,mN-OT the functionality that runs FN-OT

for m times on messages in {0, 1}τ . An important variant is the random OT
functionality, denoted Fτ,mN-ROT in which the sender provides no input, but receives
from the functionality as output random messages (v0, . . . , vN−1) (or a key which
enables to compute these messages).

The OOS oblivious transfer functionality. We will use a specific construction, by
Orrù, Orsini and Scholl [24] (hereafter referred to as OOS) that realizes Fτ,mN-ROT,
and supports an exponentially large N , e.g. N = 2τ . OOS is parameterized with
a binary linear code [nC , kC , dC] where kC = τ and dC ≥ κ. OOS features a useful
homomorphism property that we use in our PSI construction (see Section 4).

Specifically, we describe OOS as the functionality:

FOOS [s, (d1, . . . , dm)]→
[

(q1, . . . , qm) ,
(
r1, . . . , rm

)]
where ri = qi ⊕ s ∧ C(di), s, qi ∈ FnC

2 and di ∈ FkC2 for every i ∈ [m].

These outputs can be used for m instances of 1-out-of-N OT as follows. The
random OT values for the ith OT instance are H(qi ⊕ s ∧ C(x)), where H is a
random oracle and x ranges over all N possible τ -bit strings. The sender can
compute any of these values as desired, whereas the receiver can compute only
H(ri) = H(qi⊕s∧C(di)), which is the OT value corresponding to choice index di.
The fact that other OT values H(qi ⊕ s ∧ C(d′)), for d′ 6= di, are pseudorandom
is due to Lemma 1. Specifically, we can write

qi ⊕ s ∧ C(d′) = qi ⊕ s ∧
[
C(di)⊕ C(di ⊕ d′)

]
= ri ⊕ s ∧ C(di ⊕ d′)

and observe that C(di ⊕ d′) has Hamming weight at least dC ≥ κ. Hence
Lemma 1 applies. Note that the “raw outputs” of the OOS functionality are
XOR-homomorphic in the following sense: for every i, j ∈ [m],

ri ⊕ rj =
(
qi ⊕ s ∧ C(di)

)
⊕
(
qj ⊕ s ∧ C(dj)

)
= qi ⊕ qj ⊕ s ∧ C(di ⊕ dj)

5

In this expression we use the fact that C is a linear code.

Secure computation and 2-party PSI. Informally, security is defined in the
real/ideal paradigm [9, Chapter 7]. A protocol is secure if, for any attack against
the protocol, there is an equivalent attack in an ideal world where the function is
computed by a trusted third party. More formally, a functionality is a trusted
third party who cannot be corrupted and who carries out a specific task in
response to invocations (with arguments) from parties. This is considered as
the ideal world. Parties interact with each other according to some prescribed
protocol; in other words, the parties execute a protocol in the real world. Par-
ties, who execute some protocol, may interact/invoke functionalities as well,
in which case we consider this to be a hybrid world. A semi-honest adversary
may corrupt parties and obtain their entire state and all subsequent received
messages; a malicious adversary may additionally cause them deviate, arbitrarily,
from their interaction with each other and with a functionality (i.e. modify/omit
messages, etc.). In this work there are only two parties, sender and receiver, and
the adversary may statically corrupt one of them (at the onset of the execution).

We denote by idealf,A(x, y) the joint execution of some task f by an ideal
world functionality, under inputs x and y of the receiver and sender, resp., in the
presence of an adversary A. In addition, we denote by realπ,A(x, y) the joint
execution of some task f by a protocol π in the real world, under inputs x and y
of the receiver and sender, resp., in the presence of an adversary A.

Definition 2. A protocol π is said to securely compute f (in the malicious model)
if for every probabilistic polynomial time adversary A there exists a probabilistic
polynomial time simulator S such that

{idealf,S(x, y)}x,y
c≡ {realπ,A(x, y)}x,y

We consider a 2-party PSI functionality, described in Figure 1, that does not
strictly enforce the size of a corrupt party’s input set. In other words,
while ostensibly running the protocol on sets of size n, an adversary may learn
as much as if he used a set of bounded size n′ > n in the ideal world (typically,
n′ = c ·n for some constant c, This is the case in this work as well). This property
is shared by several other 2-party malicious PSI protocols [35,34].

3 Probe-and-XOR of Strings (PaXoS)

3.1 Definitions

Our main tool is a mapping which has good linearity properties.

Definition 3. A (n,m, 2−λ)-probe and XOR of strings (PaXoS) is an oracle
function vH : {0, 1}∗ → {0, 1}m such that for any distinct x1, . . . , xn ∈ {0, 1}∗,

Pr[vH(x1), . . . ,vH(xn) are linearly independent] ≥ 1− 1/2λ

6

Parameters:

– Two parties: a sender and receiver.
– Set size n for honest parties and n′ for corrupt parties.

Functionality:

1. Wait for input Y = {y1, y2, . . .} from the receiver. Abort if the receiver is
corrupt and |Y | > n′.

2. Wait for input X = {x1, x2, . . .} from the sender. Abort if the sender is
corrupt and |X| > n′.

3. Give output X ∩ Y to the receiver.

Fig. 1: Ideal functionality for 2-party PSI.

where the probability is over choice of random function H, and linear independence
is over the vector space (Z2)m, i.e. for x ∈ {0, 1}∗ we look at vH(x) as a vector
from (Z2)m. We often let H be implicit and eliminate it from the notation.

In other words, this is a randomized function mapping n binary strings to
binary vectors of length m, satisfying the property that the output strings are
independent except with probability 2−λ.

We would like the output/input rate, m/n, to be as close as possible to 1. A
random mapping would satisfy the PaXoS definition and will have a good rate,
but will be bad in terms of encoding/decoding efficiency properties that will be
defined in Section 3.4.

A PaXoS has the implicit property that the mapping is independent of the
inputs. Namely, the goal is not to find a function that works well for a specific
set of inputs, but rather to find a function that works well with high probability
for any input set. This is crucial in terms of privacy, since the function must not
depend on any input, as this would leak information about the input.

3.2 PaXoS as Key-Value Mapping

A key-value store, or mapping, is a database which maps a set of keys to
corresponding values.4 A PaXoS leads to a method for encoding a key-value
mapping into a concise data structure, as follows:

Encode((x1, y1), . . . , (xn, yn)): Given n items (xi, yi) with xi ∈ {0, 1}∗ and yi ∈
{0, 1}`, denote by M the n×m matrix where the ith row is v(xi). One can
solve for a data structure (matrix) D = (d1, . . . , dm)> ∈ ({0, 1}`)m such that
M × D = (y1, . . . , yn)>. Namely, the following linear system of equations

4 A hash table is a simple key-value mapping, but it encounters issues such as collisions.
More importantly for our application, a hash table explicitly reveals whether an item
is encoded in it and therefore has a privacy leakage.

7

(over the field of order 2`) is satisfied:
− v(x1) −
− v(x2) −

...
− v(xn) −

×

d1
d2
...
dm

 =


y1
y2
...
yn


When the v(xi)’s are linearly independent, a solution to this system of
equations must exist. Therefore, when v(·) is a PaXoS, the system has a
solution except with probability 1/2λ.

Decode(D,x): Given a data structure D ∈ ({0, 1}`)m and a “key” x ∈ {0, 1}∗,
we can retrieve its corresponding “value” via

y = 〈v(x), D〉 def=
⊕

j:v(x)j=1

dj

In other words, probing D for a key x amounts to computing the XOR of
specific positions in D, where the choice of positions is defined by v(x) and
depends only on x (not D). It is easy to see that when x is among the xi
values that was used to create D as above, then y obtained this way is equal
to the corresponding yi. However, the PaXoS can be probed on any key x.

It is often more convenient to discuss PaXoS in terms of the corresponding
Encode/Decode algorithms than the v mapping.

3.3 Homomorphic Properties

The Decode algorithm enjoys the following homomorphic properties. Let
D = (d1, . . . , dm) ∈ ({0, 1}`)m. Then:

– For any linear map L : {0, 1}` → {0, 1}`′ , extend the notation L(D) to mean
(L(d1), . . . , L(dm)). Then we have

Decode(L(D), x) = L(Decode(D,x)).

– If D and D′ have the same dimension, then define D⊕D′ = (d1⊕d′1, . . . , dm⊕
d′m). Then we have

Decode(D,x)⊕ Decode(D′, x) = Decode(D ⊕D′, x).

– With s ∈ {0, 1}`, define D ∧ s = (d1 ∧ s, d2 ∧ s, . . . , dm ∧ s), where “∧” refers
to bitwise-AND. Then we have

Decode(D ∧ s, x) = Decode(D,x) ∧ s.

8

3.4 Efficiency Measures

The following measures of efficiency are relevant in our work, and are crucial for
the efficiency of the resulting PSI protocols:

– Rate: The Encode algorithm must encode n values (y1, . . . , yn), which have
total length n` bits, into a data structure D of total length m` bits. The
ratio n/m defines the rate of the PaXoS scheme, with rate 1 being optimal
and constant rate being desirable.

– Encoding complexity: What is the computational cost of the Encode
algorithm, as a function of the number n of key-value pairs? In general,
solving a system of n linear equations requires O(n3) computation using
Gaussian elimination. However, the structure of the v(x) constraints may
lead to a more efficient method for solving the system. We strive for an
encoding procedure that is linear in n, for example O(nλ) where λ is the
statistical security parameter.

– Decoding complexity: What is the computational cost of the Decode
algorithm? The cost is proportional to the Hamming weight of the v(k)
vectors — i.e., the number of positions of D that are XOR’ed to give the
final result. We strive for decoding which is sublinear in n, for example O(λ)
or O(log n).5

3.5 Examples and Simple Constructions

Below are some existing concepts that fall within the abstraction of a PaXoS:

Random Boolean Matrix. A natural approach is to let v(x) simply be a random
vector for each distinct x.6 It is elementary to show that a random boolean matrix
of dimension n× (n+ λ) has full rank with probability at least 1− 1/2λ. This
leads to a (n,m, 2−λ)-PaXoS scheme with m = n+ λ.

This scheme has excellent rate n/(n+ λ) (which is likely optimal), but poor
efficiency of encoding/decoding. Encoding corresponds to solving a random linear
system of equations, requiring O(n3) if done via Gaussian elimination. Decoding
one item requires computing the XOR of ∼ n/2 positions from the data structure.

Garbled Bloom Filter. A garbled Bloom filter works in the following way: Let
h1, . . . , hλ be random functions with range {1, . . . ,m}. To query the data struc-
ture at a key x, compute the XOR of positions h1(x), . . . , hλ(x) in the data
structure. In our terminology, v(x) is the vector that is 1 at position i if and
only if ∃j : hj(x) = i.

5 When defining the cost of encoding and decoding we ignore the length (m) of the
y-values.

6 I.e., vH(x) = H(x) where H is a random oracle with m output bits.

9

Garbled Bloom Filters were introduced by Dong, Chen, Wen in [5]. They
showed that if the Bloom filter has size m = Θ(λn) then the Encode algorithm
succeeds with probability 1− 1/2λ. The concrete error probability is identical to
the false-positive probability of a standard Bloom filter.

Garbled Bloom filters are an instance of (n,m, 2−λ)-PaXoS with m = Θ(λn)
and therefore rate Θ(1/λ). Items can be inserted into the garbled Bloom filter in
an online manner, leading to a total cost of O(nλ) to encode n items. Decoding
requires taking the XOR of at most λ positions per item.

Garbled Cuckoo table. We introduce in Section 5 a new PaXoS construction,
garbled Cuckoo table, with a size which is almost optimal, and optimal encoding
and decoding times.

It is also worth mentioning a variant of Bloomier filters that was introduced
in [3], is similar to our garbled Cuckoo table construction, and yet is insecure for
our purposes. The construction of [3] works for a specific input set S. It chooses
random hash functions and generates a graph by mapping the items of S to
edges. The construction works well if the graph is acyclic. If the graph contains
cycles then a new set of hash functions is chosen, until finding hash functions
which map S to an acyclic graph. This construction is not a PaXoS since the
choice of hash functions depends on the input and therefore leaks information
about it. (Our garbled Cuckoo table construction, on the other hand, chooses
the hash functions independently of the inputs, and works properly, except with
negligible probability, even if the graph has cycles.)

scheme size m encoding (n items) decoding (single item)
random matrix n+ λ O(n3) Θ(n)
garbled Bloom filter O(λn) O(λn) λ
garbled Cuckoo (2 + ε)n+ d+ λ O((λ+ d)n) (λ+ d+ 2)/2 in avg.

Fig. 2: A comparison between the different PaXoS schemes, where n is the number
of items, λ is a statistical security parameter (e.g., λ = 40), ε is the a Cuckoo
hash parameter (typically ε = 0.4), and d is an upper bound the number of
cycles of a Cuckoo hash graph (d = log n except with negligible probability, and
therefore for all reasonable input sizes d < λ).

4 PSI from PaXoS

In this section we describe a generic construction of PSI from PaXoS.

4.1 Overview

The fastest existing 2-party PSI protocols [20,35] are all based on efficient OT
extension and its variants. The leading OT extension protocol for malicious

10

security is due to Orrù et al. [24] (hereby called OOS), and it serves as the basis
of our PSI protocol.

The OOS OT extension protocol implements the OOS functionality defined
in Section 2, and provides many instances of 1-out-of-N OT of random strings,
where N can even be exponentially large. Our PSI protocol involves the internals
of the OOS protocol to some extent, so let us start by reviewing the relevant
details. Suppose we are interested in 1-out-of-N OT for N = 2t. In OOS, the
sender chooses a string s and receives a string qi for each OT instance. In this
OT instance, the sender can derive N random values as follows:

H
(
qi⊕C(00 · · · 0)∧s

)
; H

(
qi⊕C(00 · · · 01)∧s

)
; · · · H

(
qi⊕C(11 · · · 1)∧s

)
;

where C is a linear error-correcting code with t input/data bits, H is a correlation-
robust hash function, and “∧” denotes bitwise-AND (whenever we write a⊕ b∧ s
we mean a⊕ (b ∧ s)).

The receiver has a “choice string” di ∈ {0, 1}t for each instance, and as a
result of the OOS protocol he receives

ri = qi ⊕ C(di) ∧ s (1)

Clearly H(ri) is one of the N random values that the sender can compute
for this OT instance. The security of the OOS protocol is that the N − 1 other
values look pseudorandom to the receiver, given ri, despite the fact that the same
s is used in all OT instances.

One important property of the OOS values is that they enjoy an XOR-
homomorphic property:

ri ⊕ rj = (qi ⊕ C(di) ∧ s)⊕ (qj ⊕ C(dj) ∧ s) = qi ⊕ qj ⊕ C(di ⊕ dj) ∧ s

Note that we use the fact that C is a linear code. The fact that these values
have such a homomorphic property was already pointed out and used in the
OOS protocol as a way to check consistency for a corrupt receiver. Our main
contribution is to point out how to leverage this homomorphic property for PSI
as well.

Suppose the receiver uses the strings of a PaXoS D = (d1, . . . , dm) as its OOS
inputs, and the parties further interpret their OOS outputs Q = (q1, . . . , qm) (for
the sender) and R = (r1, . . . , rm) (for the receiver) as PaXoS data structures as
well. Then we find that the identity ri = qi⊕C(di)∧s facilitates the homomorphic
properties of PaXoS:

Decode(R, x) = Decode(Q⊕ C(D) ∧ s, x)

= Decode(Q, x)⊕ C(Decode(D,x)) ∧ s

Suppose the receiver encodes the PaXoS D so that Decode(D,x) is something
“recognizable” (say, x itself) for every item x in his PSI input set. Then the
expression above is something that both parties can compute: the receiver

11

computes it as Decode(R, x), and the sender computes it as Decode(Q, x) ⊕
C(x) ∧ s.

Hence, we can obtain a PSI protocol by having the sender sendH(Decode(Q, x)⊕
C(x) ∧ s) for each of her items x. The receiver compares these values to
H(Decode(R, y)) for each of his items y, to determine the intersection.

4.2 Protocol Details

Our full protocol follows the general outline described above, but with some
minor technical changes to facilitate the security proof.

One change is that instead of generating a PaXoS D where Decode(D,x) = x,
the receiver arranges for Decode(D,x) = H1(x) (for x in his input set) where H1

is a random oracle. This modification allows the simulator to extract a malicious
receiver’s effective input set by observing D (used as input to OOS) and the
receiver’s queries to H1.

Also, instead of sending values of the form H(Decode(Q, x)⊕ C(H1(x)) ∧ s),
we have the sender send values of the form H(x,Decode(Q, x) · · ·). That is, the
item x is included in the clear as an additional argument to H (named H2 in
our construction to avoid confusion with H1). Additionally, H (H2) is a (non-
programmable) random oracle. As above, this allows the simulator to extract a
malicious sender’s effective input by observing its random-oracle queries.

The protocol is described formally in Figure 3.

4.3 Security Analysis

Recall that we are using as our definition an ideal PSI functionality (Figure 1)
that does not strictly enforce the size of a corrupt party’s set. In other words,
a corrupt party may provide more items (n′) than they claim (n). We prove
security of our construction without making explicit reference to the relationship
between n′ and n. That is, in the proofs below we show that a simulator is able
to extract some set (of size polynomial in the security parameter) in the ideal
interaction, but the proofs do not explicitly bound the size of these sets.

The protocol contains several parameters `1 and `2 which affect the value
of n′ that can be proven. We discuss how to choose these parameters, and the
resulting n′ that one obtains, in section 4.4.

Theorem 4. The protocol of Figure 3 is a secure 2-party PSI protocol against
malicious adversaries in the random oracle model.

We prove the theorem in the following two lemmas:

Lemma 5. The protocol of Figure 3 is secure against a malicious receiver in the
random oracle model.

12

Parameters:

– Computational and statistical security parameters κ and λ
– Sender with set X ⊆ {0, 1}∗ of size n
– Receiver with set Y ⊆ {0, 1}∗ of size n
– (n,m, 2−λ)-PaXoS scheme (Encode,Decode)
– Random oracles H1 : {0, 1}∗ → {0, 1}`1 and H2 : {0, 1}∗ → {0, 1}`2 ,

where `2, `1 ≥ λ+ 2 log n
– Linear error correcting code C : [t, `1, κ]

Protocol:

1. The receiver generates a PaXoS D = Encode({(y,H1(y)) | y ∈ Y }).
2. The parties run the OOS functionality (as defined in Section 2) where

the receiver uses as input D = (d1, . . . , dm) and the sender uses a
random string s as input. As a result, the sender obtains output
strings Q = (q1, . . . , qm) and the receiver obtains output strings
R = (r1, . . . , rm) that follow Eq, (1). We interpret both D,Q and R
as PaXoS data structures.

3. The sender computes and sends the set

M =
{
H2

(
x,Decode(Q, x)⊕ C(H1(x)) ∧ s

) ∣∣∣ x ∈ X}
randomly permuted.

4. The receiver coutputs {y ∈ Y | H2(y,Decode(R, y)) ∈M}.

Fig. 3: Our PaXoS-PSI protocol

Proof. The simulator for a corrupt receiver behaves as follows:

– It observes the receiver’s input D to OOS, and also observes all of the
receiver’s queries to random oracle H1.

– The simulator computes Ỹ = {y | y was queried to H1 and Decode(D, y) =
H1(y)} and sends this to the ideal functionality as the receiver’s effective
input.

– Upon receiving from the ideal functionality the intersection Z = X ∩ Ỹ , the
simulator simulates the sender’s message M as {H2(z,Decode(R, z)) | z ∈ Z}
along with |X \ Z| additional random values.

We prove the indistinguishability of this simulation in the following sequence of
hybrids:

– Hybrid 1: Same as the real protocol interaction, but the simulator maintains a
list L of all queries that the adversary makes to random oracle H1. When the
adversary selects its OOS input D, the simulator checks all y ∈ L and defines
the set Ỹ = {y ∈ L | Decode(D, y) = H1(y)}. This hybrid is indistinguishable
from the real protocol interaction, since the only difference is in internal
bookkeeping information that is not used.

13

– Hybrid 2: Same as Hybrid 1, except that immediately after defining Ỹ , the
simulator aborts if the honest sender holds an x ∈ X where Decode(D,x) =
H1(x) but x 6∈ Ỹ . It suffices to show that the probability of this artificial
abort is negligible.
• Case x ∈ L: then H1(x) was known at the time Ỹ was defined. Therefore

it is by construction that x ∈ Ỹ ⇔ Decode(D,x) = H1(x). In other
words, the abort does not happen in this case
• Case x 6∈ L: then H1(x) is independent of D, and thus Decode(D,x) =
H1(x) with probability 1/2`1 where `1 is the output length of H1.

If `1 = λ + log2 n then by a union bound over at most n possible sender’s
values x ∈ X, the abort probability is indeed bounded by 1/2λ.

– Hybrid 3: Same as Hybrid 2, except we can rewrite the computation that
defines the sender’s message M . Observe that

Decode(Q, x)⊕ C(H1(x)) ∧ s
= Decode(R⊕ C(D) ∧ s, x)⊕ C(H1(x)) ∧ s

=
[
Decode(R, x)⊕ Decode(C(D), x) ∧ s

]
⊕ C(H1(x)) ∧ s

= Decode(R, x)⊕
[
C(Decode(D,x))⊕ C(H1(x))

]
∧ s

= Decode(R, x)⊕ C
(
Decode(D,x)⊕H1(x)

)
∧ s

In particular, the term inside C is zero if and only if Decode(D,x) = H1(x).
Furthermore, because of the artificial abort introduced in the previous hybrid,
this happens for x ∈ X if and only if x ∈ X ∩ Ỹ . Hence, we can rewrite the
sender’s message M as:

M = {H2(x,Decode(Q, x)⊕ C(H1(x)) ∧ s) | x ∈ X}
= {H2(x,Decode(R, x)) | x ∈ X ∩ Ỹ }
∪ {H2(x,Decode(R, x)⊕ C(δx) ∧ s) | x ∈ X \ Ỹ }

where the δx := Decode(D,x)⊕H1(x) values are guaranteed to be nonzero.
This hybrid is identical to the previous one, as we have only rewritten the
same computation in an equivalent way.

– Hybrid 4: Same as Hybrid 3, except we replace every term of the form
H2(x,Decode(R, x) ⊕ C(δx) ∧ s) with random. The two hybrids are indis-
tinguishable by Lemma 1 since C(δx) are nonzero codewords and hence
have Hamming weight at least κ. Now note that the sender’s message M is
generated as:

M = {H2(x,Decode(R, x)) | x ∈ X ∩ Ỹ } ∪ {m1, . . . ,m|X\Ỹ |}

where each mi is uniformly chosen in {0, 1}`2 .
– Hybrid 5: Same as Hybrid 4, except the simulator no longer artificially aborts

in the manner introduced in Hybrid 2. The hybrids are indistinguishable for

14

the same reasoning as before. Now the simulator does not use the items of
X \ Ỹ at all. We conclude the proof by observing that this hybrid exactly
describes the final ideal-world simulation: the simulator extracts Ỹ , sends it
to the ideal PSI functionality, receives Z = X ∩ Ỹ , and uses it to simulate
the sender’s message M .

Lemma 6. The protocol of Figure 3 is secure against a malicious sender in the
random oracle model.

Proof. The simulator for a corrupt sender behaves as follows:

– It observes the sender’s input s and output Q from OOS, and also observes
all of the sender’s queries to random oracle H2.

– When the sender produces protocol message M , the simulator computes

X̃ = {x | x was queried to H2 and H2(x,Decode(Q, x)⊕C(H1(x))∧s) ∈M}

and sends this to the ideal functionality as the sender’s effective input.

We prove the indistinguishability of this simulation in the following sequence of
hybrids:

– Hybrid 1: Same as the real protocol interaction, except that the simulator
observes the sender’s input s and output Q for OOS, and additionally observes
all queries made to random oracle H2. The simulator defines a set L of all
the values x such that the adversary queried H2 on the “correct” value
(x,Decode(Q, x)⊕C(H1(x))∧s). When the sender gives protocol message M ,
the simulator defines the set X̃ := {x ∈ L | H2(x,Decode(Q, x)⊕C(H1(x))∧
s) ∈M}. This hybrid is identical to the real protocol interaction, since the
only change is to record bookkeeping information that is not used.

– Hybrid 2: Same as Hybrid 1, except the simulator aborts if the honest receiver
holds y ∈ Y \ X̃ where H2(y,Decode(Q, y)⊕ C(H1(y)) ∧ s) ∈M . There are
two cases for why such a y may not be in X̃:
• Case y ∈ L: then the value H2(y,Decode(Q, y) ⊕ C(H1(y)) ∧ s) was

defined at the time X̃ was computed, and y was excluded because the
correct value was not in M . The simulator will never abort in this case.

• Case y 6∈ L: the adversary never queried H2 at H2(y,Decode(Q, y) ⊕
C(H1(y)) ∧ s) before sending M , so this output of H2 is random and
independent of M . The probability that this H2-output appears in M is
thus |M |/2`2 where `2 is the output length of H2.

Overall, the probability of such an artificial abort is bounded by n|M |/2`2 ≤
n2/2`1 ≤ 1/2λ (since `1 < `2 and `1 ≥ λ + 2 log n). Hence the two hybrids
are indistinguishable.

– Hybrid 3: Same as Hybrid 2, except we change the way the honest receiver’s
output is computed. In Hybrid 2, the honest receiver computes output as in
the protocol specification:

{y ∈ Y | H2(y,Decode(R, y)) ∈M}

15

In this hybrid we make the honest receiver compute its output as, simply,
X̃ ∩Y . These two expressions are in fact equivalent, from the definition of X̃,
the artificial abort introduced in the previous expression, and the equivalence
of Decode(R, y) and Decode(Q, y)⊕ C(H1(y)) ∧ s discussed in the previous
proof.

– Hybrid 4: Same as Hybrid 3, except we remove the artificial abort condition
that was introduced in Hybrid 2. The hybrids are indistinguishable for the
same reason as before. Note that in this hybrid, the simulator does not use
the honest receiver’s input Y except to compute the receiver’s final output.
We conclude the proof by observing that this hybrid exactly describes the
ideal world simulation: The simulator observes s,Q and the sender’s oracle
queries to determine a set X̃. It sends X̃ to the ideal functionality and X̃ ∩Y
is delivered to the receiver.

4.4 Choosing Parameters

The protocol contains several parameters:

– A linear binary code C : {0, 1}`1 → {0, 1}t.
– Random oracle output lengths `1, `2.

As shown in the security proof, the following facts must be true in order for
security to hold:

– C must have minimum distance at least κ (the computational security
parameter).

– `1, `2 ≥ λ+ 2 log n, where λ is the statistical security parameter.

However, the parameters `1, `2 also have an effect on the size of the corrupt
party’s set, as extracted by the simulator. In particular, increasing these values
causes the protocol to more tightly enforce the size (n′) of the corrupt party’s
input set.

We note that the communication cost of the protocol is roughly `2 bits per
item from the sender and roughly t bits per item from the receiver (sent as part
of the OOS protocol, where t is the length of the code used in the OOS protocol).

Semi-honest security. To instantiate our protocol for semi-honest security, it is
enough to set `1 = `2 = λ + 2 log n, the minimum possible value for security.
The issue of extracting a corrupt party’s input, which involves further increasing
`1, `2, is not relevant in the semi-honest case.

It therefore suffices to identify linear (binary) codes with suitable minimum
distance, for the different values of `1 that result. We identify good choices in
Figure 4, all of which are the result of concatenating a Reed-Solomon code with
a small (optimal) binary code.

16

n `1 = `2 = λ+ 2 log n codeword lengh t choice of code
212 64 448 RS[28, 13, 16]32 composed with (16, 5, 8)2
216 72 473 RS[42, 12, 32]64 composed with (11, 6, 4)2
220 80 495 RS[45, 14, 32]64 composed with (11, 6, 4)2
224 88 506 RS[46, 15, 32]64 composed with (11, 6, 4)2

Fig. 4: Parameters for semi-honest instantiation of PaXoS-PSI, with κ = 128 and
λ = 40.

Malicious sender’s set size. Consider a malicious sender and recall how the
simulator extracts an effective input for that sender. The sender gives protocol
message M and the simulator extracts via

X̃ := {x ∈ L | H2(x,Decode(Q, x)⊕ C(H1(x)) ∧ s) ∈M}

where L is the set of x values such that the adversary has queried H2(x, ·). The
protocol limits the protocol message M to have n items, but still X̃ may have
many more than n items if the adversary manages to find collisions in H2. If we
set `2 (the output length of H2) to be 2κ, then collisions are negligibly likely and
indeed |X̃| ≤ n except with negligible probability.

While it is possible to set `2 < 2κ, doing so has less impact on the protocol
than the other parameters (`1 and hence t). One can reduce `2 only very slightly
before the adversary can find a very large amount (e.g., superlinear in n) of
collisions. For these reasons, we recommend setting `2 = 2κ in our malicious
instantiation.

Malicious receiver’s set size. Consider a malicious receiver and recall how the
simulator extracts an effective input for that receiver. The simulator observes
the receiver’s input D (a PaXoS) to OOS and also observes all queries made to
the random oracle H1. Then the simulator extracts via:

Ỹ := {y ∈ L | Decode(D, y) = H1(y)}

where L is the set of queries made to H1. The question becomes: as a function of
|D| and `1 (the output length of H1), what is an upper bound on the number of
items in Ỹ ?

In the full version [28]we prove the following, using an information-theoretic
compression argument:

Claim. Suppose an adversary makes q queries to random oracle H1 with output
length `1 and then generates a PaXoS D of size m (hence m`1 bits) total. Fix
a value n′ and let E denote the event that Decode(D, y) = H1(y) for at least n′

values y that were queried to H1. Then

Pr[E] ≤
(
q

n′

)
/2(n

′−m)`1 .

17

The idea behind the proof is that if a PaXoS D happens to encode many
H1(y) values, then D could be used to compress H1. However, this is unlikely
due to H1 being a random object and therefore incompressible.

For reference, we have computed some concrete parameter settings so that
Pr[E] < 2−40 (the probability that the simulator extracts more than n′ items).
The values are given in Figure 5. We consider an adversary making q = 2128

queries to H1, which is rather conservative (in terms of security). In practice
significantly smaller parameters may be possible.7 Note that if the PaXoS has
size m, then a compression argument such as the one we use only starts to apply
when n′ > m. Hence all of our bounds are expressed as n′ = cm where c > 1 is a
small constant.

Recall that `1 is the input length to the linear code C, so increasing it has
the effect of increasing t (the codeword length) as well. We include good choices
of codes (achieving minimum distance κ = 128) in the figure as well.

m n′ `1 codeword len t choice of code
212 2m 233 776 RS[97, 34, 64]128 composed with (8, 7, 2)2
212 3m 174 660 RS[60, 29, 32]64 composed with (11, 6, 4)2
212 4m 154 627 RS[57, 26, 32]64 composed with (11, 6, 4)2
212 5m 144 605 RS[55, 24, 32]64 composed with (11, 6, 4)2
216 2m 225 768 RS[64, 33, 32]128 composed with (12, 7, 4)2
216 3m 168 649 RS[59, 28, 32]64 composed with (11, 6, 4)2
216 4m 149 616 RS[56, 25, 32]64 composed with (11, 6, 4)2
216 5m 139 605 RS[55, 24, 32]64 composed with (11, 6, 4)2
220 2m 217 744 RS[62, 31, 32]128 composed with (12, 7, 4)2
220 3m 162 638 RS[58, 27, 32]64 composed with (11, 6, 4)2
220 4m 144 605 RS[55, 24, 32]64 composed with (11, 6, 4)2
220 5m 134 594 RS[54, 23, 32]64 composed with (11, 6, 4)2
224 2m 209 732 RS[61, 30, 32]128 composed with (12, 7, 4)2
224 3m 156 627 RS[57, 26, 32]64 composed with (11, 6, 4)2
224 4m 138 594 RS[54, 23, 32]64 composed with (11, 6, 4)2
224 5m 129 583 RS[53, 22, 32]64 composed with (11, 6, 4)2

Fig. 5: Parameters for malicous PaXoS-PSI with κ = 128 and
Pr[simulator extracts > n′ items from malicious receiver] < 1/240, where
adversary makes 2128 queries to H1.

5 Garbled Cuckoo Table

We introduce a new approach for PaXoS that enjoys the best of all worlds: it has
the same asymptotic encoding and decoding costs as a garbled Bloom filter, but

7 For example, considering an adversary who makes q = 280 queries to H1 leads to `1
in the range of 70 to 90, and codeword length t in the range of 460 to 510.

18

with constant rate (e.g., ∼ 1/(2 + ε)) rather than a O(1/λ) rate. Furthermore, it
has a linear time construction, just like the modified Bloomier filter of [3], but
with the advantage of having the hash function(s) independent of the keys/values.

5.1 Overview

Our construction uses ideas from both garbled Bloom filters as well as Cuckoo
hashing. Recall that in Cuckoo hashing, it is typical to have only 2 hash functions
h1, h2, where an item x is associated with positions h1(x) and h2(x) in the data
structure.

So as a starting point, consider a garbled Bloom filter with just 2 hash
functions rather than λ. Such a data structure corresponds to the decoding
function Decode(D,x) = dh1(x) ⊕ dh2(x).

8 (Using the PaXoS key-value mapping
terminology of Section 3.2, the vector v(x) has only two non-zero entries, in
locations h1(x) and h2(x).) Given n key-value pairs (xi, yi), how can we generate
a data structure D = (d1, . . . , dm) that encodes them in this way?

An important object in analyzing our construction is the cuckoo graph.
The vertices in the cuckoo graph are numbered 1 through m, and correspond
to the positions in the data structure D. The (undirected) edges of the graph
correspond to items that are meant to be inserted. An item x corresponds to
the edge {h1(x), h2(x)}. (The graph may contain self-loops and repeated edges.)
We refer to such graphs with m vertices and n edges as (n,m)-cuckoo graphs
and note that the distribution over such graphs is independent of X. We write
Gh1,h2,X to refer to the specific (n,m)-cuckoo graph corresponding to a particular
set of hash functions and keys X. All properties of our PaXoS can be understood
in terms of properties of random (n,m)-cuckoo graphs.

In the simplest case, suppose that Gh1,h2,X happens to be a tree. Our goal
is to encode the items X into the data structure D. Each node g in the graph
corresponds to a row dg of D. Then we can do this encoding in linear time as
follows: We choose an arbitrary root vertex r of the tree and set dr of the data
structure arbitrarily. We then traverse the tree, say, in DFS or BFS order. Each
time we visit a vertex j for the first time, we set its corresponding value dj in the
data structure, to agree with the edge we just traversed. This is done as follows.

Recall that each edge ij corresponds to a key-value pair (x, y) in the sense
that {i, j} = {h1(x), h2(x)} and our goal is to arrange that di ⊕ dj = y. As we
cross an edge from i to j in the traversal, we have the invariant that position di
in the data structure has been already fixed but dj is still undefined. Hence, we
can always set dj := di ⊕ y.

Handling Cycles. When m = O(n), corresponding to a PaXoS of constant rate,
the corresponding Cuckoo graph is unlikely to be acyclic [10]. In this case the
encoding procedure that we just outlined does not work, since when the graph

8 For now, we ignore the case where h1(x) = h2(x).

19

traversal closes a circuit it encounters a vertex whose value has already been
defined and cannot be set to satisfy the constraint imposed by the current edge.

We can handle acyclic Cuckoo graphs by adding d+λ additional entries to the
data structure D. We first describe an analysis where d is an upper bound on the
size χ of the 2-core of the graph, and then an analysis where d is an upper bound
on the cyclomatic number σ of the graph. (These bounds are O((log n)1+ω(1))
and log n, respectively.) We recall below the definitions of both these values, and
note that σ < χ always.

The 2-core of a graph is the maximum subgraph where each node has
degree at least 2 (namely, the subgraph containing all cycles, as well as all paths
connecting cycles). We use χ to denote the number of edges in the 2-core. The
cyclomatic number of a graph is the minimum number of edges to remove to
leave an acyclic graph. Equivalently, it is the number of non-tree edges (back
edges) in a DFS traversal of the graph. We use σ to denote the cyclomatic number.
The cyclomatic number is equal to the minimal number of independent cycles in
the graph, and is therefore smaller than or equal to the number of cycles. It is
also always strictly less than the size of the 2-core.

The construction. D will be structured as D = L‖R, where |L| = m (the number
of vertices in the Cuckoo graph) and |R| = d+λ. Each decoding/constraint vector
v(x) then has the form v(x) = l(x)‖r(x), where l(x) determines the positions of
L to be XOR’ed and r(x) determines the positions of R to be XOR’ed. We will
let L correspond to the simple Cuckoo hashing idea above, so each l(x) vector is
zeroes everywhere except for two 1s. We will let r(x) be determined uniformly at
random for each x (similar to the random matrix construction of a PaXoS).

To encode n key-value pairs into the data structure in this way, first consider
the system of linear equations induced by the constraints 〈v(xi), D〉 = yi, re-
stricted to only the χ items (edges) in the 2-core. (Once we set values
that encode the items in the 2-core, we will be able to encode the other items
using graph traversal as in an acyclic graph.) These constraints refer to a vertex
u of G only if that vertex is in the 2-core. We get χ equations over m+ d+ λ
variables, where the coefficients of the last d + λ variables (the r(x) part) are
random. If we set d to be an upper bound on χ then we get that the system has
a solution with probability 1− 2−λ.

So, using a general-purpose linear solver we can find values for R and for
the subset of L corresponding to the vertices in the 2-core, that satisfies these
constraints. This can be done in O((d + λ)3) time. For vertices u outside of
the 2-core, the value of du in the data structure remains undefined. But after
removing the 2-core, the rest of the graph is such that these values in the data
structure can be fixed according to a tree traversal process:

Every edge not in the 2-core can be oriented away from all cycles (if an edge
leads to a cycle in both directions, then that edge would have been part of the
2-core). We traverse those edges following the direction of their orientation. Let
edge i → j correspond to a key-value pair (x, y). Let dj denote the position

20

in D (in its “L region”) corresponding to vertex j. By our invariant, dj is not
yet fixed when we traverse i→ j. Yet it is the only undefined value relevant to
the constraint 〈v(x), D〉 = y, so we can satisfy the constraint by solving for dj .
Hence with a linear pass over all remaining items, we finish constructing the data
structure D.

The total cost of encoding is therefore O((d+ λ)3 + nλ). We explained above
that we can set d to be an upper bound on the size of the 2-core.9 As we shall
see (in Section 5.2), it is possible to set d to be the cyclomatic number of the
Cuckoo graph, which is logarithmic in n. Therefore the dominating part of the
expression is nλ.

5.2 Details

The garbled-cuckoo construction is presented formally in Figure 6.

Analysis & Costs In the full version of the paper [28] we show that the number σ
of cycles is smaller than log n+O(1) except with negligible probability. Therefore
we can set d = (1 + ε) log n.10 This bound also applies to the cyclomatic number
(which is always smaller than or equal to the number of cycles). Theorem 7 shows
that it is sufficient to set d to be equal to this upper bound on the cyclomatic
number.

Recall that each item is mapped to a row l(xi)‖r(xi) which contains an l(xi)
part with two 1 entries, and a random binary vector r(xi) of length λ+ d. We set
λ = 40, and therefore for all practical input sizes we get that d < λ. We conclude
that the number of 1 entries in the row vector is O(λ).

The encoding processes each of n edges once during the traversal. The com-
putation involves XORing the locations pointed to by 1 entries in the row. The
overhead of encoding all rows is O(nλ). The decoding of a single item involves
XORing the rows pointed by the two rows to which it is mapped, and is O(λ).

Theorem 7. When setting d = (1+ε) log n, the garbled cuckoo PaXoS of Figure 6
with parameter λ is a (n,m, ε+ 2−λ)-PaXoS where

ε = Pr[the cyclomatic number of a random (n,m)-cuckoo graph > log n+O(1)]

Proof. As discussed above, we use here an upper bound d for the cyclomatic
number of the graph. Setting the bound to d = (1 + ε) log n works excepts with
a negligible failure probability.

9 Such an upper bound for the case of Cuckoo hashing can be derived from [25, Lemma
3.4], but that analysis assumes that the graph has 8n edges, and shows that an upper
bound of size d fails with probability n/2−Ω(d). Therefore we must set d = (logn)1+ε

to get a negligible failure probability.
10 The parameter ε used here is independent of the parameter ε used in Cuckoo hashing.

21

Parameters:

– upper bound d on the cyclomatic number of the Cuckoo graph
– error parameter λ
– random functions h1, h2 : {0, 1}∗ → {1, . . . ,m}
– random function r : {0, 1}∗ → {0, 1}d+λ

Decode(D,x):

1. Parse D as D = L‖R where |L| = m and |R| = d+ λ
2. Set l(x) ∈ {0, 1}m to be all zeroes except 1s at positions h1(x) and h2(x)
3. Return 〈l(x), L〉 ⊕ 〈r(x), R〉

Encode((x1, y1), . . . , (xn, yn)):

1. Construct the Cuckoo graph Gh1,h2,X for X = {x1, . . . , xn} and let Ṽ , Ẽ
be the vertices and edges of its 2-core. If the number of cycles is greater
than d then abort.

2. Initialize variables L = (l1, . . . , lm) and R = (r1, . . . , rd+λ).
3. Solve (e.g., with Gaussian elimination) for variables {lu | u ∈ Ṽ } ∪ R

that satisfy:
〈l(xi)‖r(xi), L‖R〉 = yi, ∀xi ∈ Ẽ

where l(·), r(·) are as above.
4. For each connected component which is a tree, pick an arbitrary vertex
v as the root of the tree. Set the variable lv to a random value.

5. For each item/edge xi 6∈ Ẽ, in order of a DFS traversal directed away
from the 2-core (in connected components which include a cycle), or
directed away from the root (in connected components which do not
include a cycle)
(a) Let {u, v} = {h1(xi), h2(xi)} so that lu is already defined and lv is

not.
(b) Set lv := lu ⊕ 〈r(xi), R〉 ⊕ yi

6. Output D = L‖R

Fig. 6: Garbled Cuckoo PaXoS

The proof bounds the probability that the Encode algorithm fails to satisfy the
linear constraints 〈v(xi), D〉 = yi for every i. For items xi that do not correspond
to edges in the 2-core, Step 4 of Encode satisfies the appropriate linear constraint,
by construction. For items in the 2-core, their linear constraints are fixed all at
once in Step 3 of Encode. Hence, the construction only fails if Step 3 fails. Step 3
solves for the following system of equations:

〈l(xi)‖r(xi), L‖R〉 = yi, ∀xi ∈ Ẽ

We interpret {l(xi)‖r(xi)}xi∈Ẽ as a matrix ML|MR where the first m columns
(i.e., ML) are {l(xi)}xi∈Ẽ and the remaining d + λ columns (i.e., MR) are

22

{r(xi)}xi∈Ẽ . We therefore ask whether the rows of the matrix ML|MR are
linearly independent.

There are up to d cycles in the graph, denoted as C1, . . . , Cd. Let us focus
on the matrix ML, and more specifically on the rows corresponding an arbitrary
cycle Ci (each of these rows has two 1 entries, at the locations of the vertices
touching the corresponding edge). It is easy to see that there is a single linear
combination Di of these rows which is 0 (the XOR of all these rows). Any linear
combination of D1, . . . , Dd is 0, and these are the only linear combinations of
rows which are equal to 0. Therefore there are at most 2d such combinations and
the kernel of ML is of dimension at most d.

Our goal is to find the probability of the existence of a zero linear combination
of the rows of ML|MR, rather than the rows of ML alone. Since in MR each row
contains d+ λ random bits, this probability is at most 2−λ. ut

5.3 Comparison

Our construction shares many features with garbled Bloom filters (GBF), and
indeed is somewhat inspired by them. Both our construction and GBF involve
probing about the same number of positions per item (λ+χ+2

2 in average vs.
O(λ)), however we are able to obtain constant rate while GBFs have rate O(1/λ).
We point out that GBFs inherit from standard Bloom filters their support for
fully online insertion; that is, their analysis proves that items can be added to a
GBF in any order. Our approach builds the data structure in a very particular
order (according to a global tree or tree-like structure of a graph). This qualitative
difference seems important for achieving constant rate.

We also use much of the analysis techniques and terminology from cuckoo
hashing (especially cuckoo hashing with a stash). However, one important differ-
ence with typical cuckoo hashing is that our construction can handle multiple
cycles in a connected component of the cuckoo graph. Indeed, usual cuckoo
hashing (without a stash) succeeds if each connected component of the graph has
at most one cycle. The items in a cycle can be handled by arbitrarily assigning an
orientation to the cycle, and assigning each edge (item) to its forward endpoint
(position in the table). In our case, if some items form a cycle, their corresponding
constraint vectors become linearly dependent and we cannot solve the system
of linear equations. In general, our approach has a larger class of subgraphs
which present a “barrier” to the process (where graphs with only 1 cycle are a
barrier for us but not for standard cuckoo hashing), making the analyses slightly
different.

5.4 An Alternative Construction

In the full version of the papre [] we describe a modified construction which
is based on a DFS traversal of the graph, and has a similar overhead to the
construction described in this section.

23

6 A Theoretical Comparison

In table 1 we show the theoretical communication complexity of our protocol
compared with the Diffie-Hellman based PSI, the KKRT protocol [20] and the
SpoT protocol [27] in the semi-honest setting, and the Rindal-Rosulek [35] and
Ghosh-Nilges [8] protocols in the malicious setting. This comparison measures
how much communication the protocols require on an idealized network where
we do not care about protocol metadata, realistic encodings, byte alignment, etc.
In practice, data is split up into multiples of bytes (or CPU words), and different
data is encoded with headers, etc. — empirical measurements of such real-world
costs are given later in Section 7.

Protocol Communication
n = n1 = n2

216 220 224

Semi Honest

DH-PSI φn1z + (φ+ λ+ log(n1n2))n2 584n 592n 600n
KKRT [20] (3 + s)(λ+ log(n1n2))n1 + 1.2`n2 1042n 1018n 978n
SpOT-low-comm [27] 1.02(λ+ log2(n2) + 2)n1 + `n2 488n 500n 512n
SpOT-fast [27] 2(λ+ log(n1n2))n1 + `(1 + 1/λ)n2 583n 609n 634n
ours (λ+ log2(n1n2))n1 + `(2.4n2 + λ+ χ) ∼ 1207n ∼ 1268n ∼ 1302n

Malicious

RR (EC-ROM) [35] 3κn+ n(2κ+ κ logn+ log2 n) 10112n 10576n 11024n
RR (SM) [35] 3κn+ n(2κ+ σκ logn+ log2 n) (200k)n (220k)n > (240k)n
GN [8] at least 8(n+ 1)(κ+ 2σ) > 3072n > 3072n > 3072n
ours (λ+ log2(n1n2))n1 + `(2.4n2 + 2λ+ χ) + λ(2.4n2 + 2`) ∼ 1623n ∼ 1621n ∼ 1602n

Table 1: Theoretical communication costs of PSI protocols (in bits), calculated using
computational security κ = 128 and statistical security λ = 40. Ignores cost of base
OTs (in our protocol,KKRT, Sp) which are independent of input size. n1 and n2 are
the input sizes of the sender and receiver respectively. φ is the size of elliptic curve
group elements (256 is used here). ` is width of OT extension matrix (depends on n1

and protocol. χ is the upper bound on the number of cycles in a cuckoo graph. σ is the
length of items (σ = 64 in the concrete numbers). “SH” and “M” denotes semi-honest
and malicious setting. In RR protocols, EC-ROM and SM respectively denote their
encode-commit model and the standard model dual execution variant.

PaXoS PSI has linear communication complexity. Let us clarify our claim of
linear communication. Consider the insecure intersection protocol where Alice
sends H(x) for every x in her set. H could have output length equal to security
parameter, giving O(n · κ) communication. But with semi-honest parties H
can also have output length as small as λ + 2 log(n) to ensure correctness
with probability 1− 1/2λ. When viewed this way, it looks like the protocol has
complexity O(n log n)! However, if 1/2λ is supposed to be negligible then certainly
log n� λ, so one could still write O(n · λ).

If we let L be a length that depends on the security parameters and log n
(which is inherent to all intersection protocols, secure or not), then insecure PSI
and PaXoS-PSI have complexity O(L · n), while previous OT-based malicious

24

PSI [35] has complexity O(L · n log n) or even O(L · nκ) [34]. For comparison,
semi-honest KKRT [20] protocol has complexity ω(L ·n) (from the stash growing
as ω(1)) and semi-honest PRTY [27] has complexity O(L · n).

In [27] and in this work, L can depend on the security parameter alone,
leading to a O(n · κ) communication, which we would characterize as linear in
n. But when choosing concrete parameters (just like in the insecure protocol) L
can be made smaller by involving a O(log n) term. Again, this is endemic to all
intersection protocols.

7 Implementation & Evaluation

7.1 Implementation Details

We now present a comparison based on implementations of all protocols. We
used the implementation of KKRT [20], RR [35], HD-PSI, spot-low, spot-fast [27]
from the open source-code11 provided by the authors.

We evaluate the DH-PSI protocol, instantiated with two different elliptic
curves: Curve25519 [2] and Koblitz-283. Curve25519 elements are 256 bits while
K-283 elements are 283 bits. Using the Miracl library, K-283 operations are faster
than Curve25519, giving us a tradeoff of running time vs. communication for
DH-PSI.

All OT-based PSI protocols [20,35,27] (including our protocols) require the
same underlying primitives: a Hamming correlation-robust function H, a pseu-
dorandom function F , and base OTs for OT extension. We instantiated these
primitives exactly as in previous protocols (e.g, KKRT, RR): both H and F
instantiated using AES, and base OTs instantiated using Naor-Pinkas [23]. We
use the implementation of base OTs from the libOTe library12. All protocols
use a computational security parameter of κ = 128 and a statistical security
parameter λ = 40.

For our own protocols, we implemented two variants of our PaXoS. We
implemented the DFS traversal of the cuckoo graph (see the full version [28]
) using the boost library. We used additional libraries linbox, gmp, ntl, givaro
iml, blas for solving systems for linear equations and generating the required
concatenated linear codes needed for the 2-core based variant of Section 5. We
use 2n bins in our DFS based PaXoS, and 2.4n bin in our 2-core based variant.

7.2 Experimental setup

We performed a series of benchmarks on the Amazon web services (AWS) EC2
cloud computing service. We used the M5.large machine class with 2.5GHz Intel
Xeon and 8 GB RAM.6
11 https://github.com/osu-crypto
12 https://github.com/osu-crypto/libOTe

25

https://github.com/osu-crypto
https://github.com/osu-crypto/libOTe

We tested the protocols over three different network settings: LAN – two
machines in the same region (N.Virginia) with bandwidth 4.97 GiB/s; WAN1 –
one machine in N.Virginia and the other in Oregon with bandwidth 155 MiB/s;
and WAN2 – one machine in N.Virginia and the other in Sydney with bandwidth
55 MiB/s. All experiments are performed with a single thread (with an additional
thread used for communication). Find the result of the WAN2 setting in the full
version of the paper [28].

7.3 Experimental Results

A detailed benchmark for set sizes n = {212, 216, 220} is given in Table 2.

Semi-honest PSI Comparison. Our best protocol in terms of communication is
PaXoS-DFS. The communication of this protocol is less than 10% larger than
that of KKRT [20], and slightly more than twice the communication of SpOT-low.

Our best protocol in terms of run time is PaXoS 2-core. In the LAN setting
for 220 inputs, it runs only 18% slower than KKRT. In the two WAN settings it
is about 80% slower.

Malicious PSI Comparison. The communication of both implementations of our
protocol is better than that of RR. For 220 items, PaXoS-DFS uses almost 8
times less communication, and PaXoS 2-core uses 6.5 less communication.

In terms of run time, PaXoS 2-core is faster than RR by a factor of about 2.5
on a LAN, and factors of 3.7-4 in the two WAN settings. The larger improvement
in the WAN settings is probably due to the larger effect that the improvement in
the communication has over a WAN.

Semi-honest vs. Malicious. In both our implementations of PaXoS the malicious
implementation uses only about 25% more communication than the semi-honest
implementation. In the LAN setting, our malicious protocols run about 4% slower
than our corresponding semi-honest protocols.

References

1. G. Asharov, Y. Lindell, T. Schneider, and M. Zohner. More efficient oblivious
transfer and extensions for faster secure computation. In ACM CCS, pages 535–548,
2013.

2. D. J. Bernstein. Curve25519: New diffie-hellman speed records. In PKC, pages
207–228, 2006.

3. D. X. Charles and K. Chellapilla. Bloomier filters: A second look. In Algorithms -
ESA, pages 259–270, 2008.

4. H. Chen, Z. Huang, K. Laine, and P. Rindal. Labeled PSI from fully homomorphic
encryption with malicious security. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 1223–1237, 2018.

26

Protocol
comm (MB) LAN WAN

212 216 220 212 216 220 212 216 220

Semi Honest
DH-PSI (K-283) 0.32 5.2 84.0 4597 73511 6529 75839
DH-PSI (25519) 0.29 4.7 76.1 8797 140507 12558 142922
KKRT [20] 0.53 8.06 127 177 339 4551 586 1361 9809
SpOT-low [27] 0.25 3.9 63.1 898 10173 3693 18068
SpOT-fast [27] 0.3 4.71 76.4 460 1964 24442 6464 11602 31944
PaXoS 2-core (Sec. 5) 0.65 10.19 163.63 16 235 5378 641 1664 17628

Malicious
RR (EC-ROM) [35] 4.8 79 1322 144 828 13996 1723 5061 69003
RR (SM, σ = 64) [35] 92 1317 22183 596 7330 6190 67310
PaXoS 2-core (Sec. 5) 0.81 12.59 202.04 120 257 5598 644 1800 18621

Table 2: Communication in MB and run time in milliseconds for related works over
n = {212, 216, 220} items and over three network settings as described in the text.
DH-PSI has two versions, with two different curves: K-283 and 25519. EC-ROM is the
encode-commit version in [35] and σ is the input length of the parties. All protocols
run with σ = 128 except RR (SM) that can run with 64 at most bit items. The upper
part of the table refers to semi-honest (SH) protocols whereas the lower part refers to
malicious (M) protocols. Missing entries refer to experiment that failed due to lack of
memory or they took too much time.

5. C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: an
efficient and scalable protocol. In ACM CCS 2013, pages 789–800, 2013.

6. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28:637–647, 1985.

7. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

8. S. Ghosh and T. Nilges. An algebraic approach to maliciously secure private set
intersection. In EUROCRYPT, pages 154–185, 2019.

9. O. Goldreich. Foundations of Cryptography, Volume 2: Basic Applications. Cam-
bridge University Press, 2004.

10. G. Havas, B. S. Majewski, N. C. Wormald, and Z. J. Czech. Graphs, hypergraphs
and hashing. In Graph-Theoretic Concepts in Computer Science, 19th International
Workshop, WG ’93, Utrecht, The Netherlands, June 16-18, 1993, Proceedings, pages
153–165, 1993.

11. C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern
matching with security against malicious and covert adversaries. J. Cryptology,
23(3):422–456, 2010.

12. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits
better than custom protocols? In NDSS, 2012.

13. B. A. Huberman, M. K. Franklin, and T. Hogg. Enhancing privacy and trust in
electronic communities. In EC, pages 78–86, 1999.

14. M. Ion, B. Kreuter, E. Nergiz, S. Patel, S. Saxena, K. Seth, D. Shanahan, and
M. Yung. Private intersection-sum protocol with applications to attributing aggre-
gate ad conversions. ePrint Archive 2017/738, 2017.

15. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In CRYPTO, pages 145–161, 2003.

16. Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending oblivious transfers
efficiently. In D. Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages
145–161. Springer, Heidelberg, Aug. 2003.

27

17. S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to
adaptive OT and secure computation of set intersection. In Theory of Cryptography,
6th Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA,
March 15-17, 2009. Proceedings, pages 577–594, 2009.

18. A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo hashing
with a stash. SIAM J. Comput., 39(4):1543–1561, 2009.

19. V. Kolesnikov and R. Kumaresan. Improved OT extension for transferring short
secrets. In R. Canetti and J. A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 54–70. Springer, Heidelberg, Aug. 2013.

20. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched OPRF
with applications to PSI. In ACM CCS, 2016.

21. C. Meadows. A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In IEEE S&P, 1986.

22. C. A. Meadows. A more efficient cryptographic matchmaking protocol for use in
the absence of a continuously available third party. In Proceedings of the 1986
IEEE Symposium on Security and Privacy, Oakland, California, USA, April 7-9,
1986, pages 134–137, 1986.

23. M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In S. R. Kosaraju,
editor, 12th SODA, pages 448–457. ACM-SIAM, Jan. 2001.

24. M. Orrù, E. Orsini, and P. Scholl. Actively secure 1-out-of-N OT extension with
application to private set intersection. In H. Handschuh, editor, CT-RSA 2017,
volume 10159 of LNCS, pages 381–396. Springer, Heidelberg, Feb. 2017.

25. A. Pagh and R. Pagh. Uniform hashing in constant time and optimal space. SIAM
J. Comput., 38(1):85–96, 2008.

26. R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004.
27. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. Spot-light: Lightweight private set

intersection from sparse OT extension. In CRYPTO, pages 401–431, 2019.
28. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. PSI from PaXoS: Fast, malicious

private set intersection. ePrint archive 2020/193, 2020.
29. B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Efficient circuit-based PSI

with linear communication. In EUROCRYPT, pages 122–153, 2019.
30. B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient circuit-based PSI via

cuckoo hashing. In Advances in Cryptology - EUROCRYPT 2018, Part III, pages
125–157, 2018.

31. B. Pinkas, T. Schneider, and M. Zohner. Faster private set intersection based on
OT extension. In USENIX 2014, pages 797–812, 2014.

32. B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection based on
ot extension. ACM Trans. Priv. Secur., 21, 2018.

33. M. O. Rabin. How to exchange secrets with oblivious transfer. ePrint Archive
2005/187, 2005, 2005.

34. P. Rindal and M. Rosulek. Improved private set intersection against malicious
adversaries. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, Part I,
volume 10210 of LNCS, pages 235–259. Springer, Heidelberg, May 2017.

35. P. Rindal and M. Rosulek. Malicious-secure private set intersection via dual
execution. In B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM
CCS 17, pages 1229–1242. ACM Press, Oct. / Nov. 2017.

36. A. Shamir. On the power of commutativity in cryptography. In Automata, Languages
and Programming, 1980.

28

	PSI from PaXoS: Fast, Malicious Private Set Intersection

