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Abstract. Lattice-based encryption schemes are often subject to the
possibility of decryption failures, in which valid encryptions are decrypted
incorrectly. Such failures, in large number, leak information about the
secret key, enabling an attack strategy alternative to pure lattice reduction.
Extending the “failure boosting” technique of D’Anvers et al. in PKC
2019, we propose an approach that we call “directional failure boosting”
that uses previously found “failing ciphertexts” to accelerate the search
for new ones. We analyse in detail the case where the lattice is defined
over polynomial ring modules quotiented by 〈XN + 1〉 and demonstrate it
on a simple Mod-LWE-based scheme parametrized à la Kyber768/Saber.
We show that for a given secret key (single-target setting), the cost of
searching for additional failing ciphertexts after one or more have already
been found, can be sped up dramatically. We thus demonstrate that, in
this single-target model, these schemes should be designed so that it is
hard to even obtain one decryption failure. Besides, in a wider security
model where there are many target secret keys (multi-target setting), our
attack greatly improves over the state of the art.
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1 Introduction

Algebraic lattices are a powerful tool in cryptography, enabling the many sophisti-
cated constructions such as digital signatures [37,6], zero-knowledge proofs [39,43],
FHE [26] and others. Applications of main interest are public-key encryptions
(PKE) [44,38] and key encapsulation mechanisms (KEM).

The computational problems defined over lattices are believed to be hard
to solve, even with access to large-scale quantum computers, and hence many
of these constructions are considered to be quantum-safe. As industry starts to
make steps forward into the concrete development of small quantum computers,
the US National Institute of Standards and Technology (NIST) begun an open
standardization effort, with the aim of selecting quantum-safe schemes for public-
key encryption and digital signatures [41]. At the time of writing, the process
is in its second round, and 9 out of 17 candidates for PKE or KEM base their
security on problems related to lattices, with or without special structure.

One commonly occurring characteristic of lattice-based PKE or KEM schemes
is that of lacking perfect correctness. This means that sometimes, ciphertexts
generated honestly using a valid public key may lead to decryption failures
under the corresponding private key. Throughout this paper we’ll refer to such
ciphertexs as “failures”, “decryption failures”, or “failing ciphertexts”. While
in practice, schemes are parametrised in such a way that decryption failures do
not undermine overall performance, these can be leveraged as a vehicle for key
recovery attacks against the key pair used to generate them. Such an attack was
described by Jaulmes and Joux [31] against NTRU, after which is was extended
in [30] and [25]. A similar attack on Ring-LWE based schemes was later presented
by Fluhrer [22] and extended by Băetu et. al [5].

However, the aforementioned attacks all use specially crafted ciphertexts
and can therefore be prevented with a transformation that achieves chosen
ciphertext security. This can for example be obtained by means of an off-the-shelf
compiler [23,29] that stops the adversary from being able to freely malleate
honestly generated ciphertexts.

The NIST Post-Quantum Standardization Process candidate Kyber [8] noted
that it was possible to search for ciphertexts with higher failure probability than
average. D’Anvers et al. [16] extended this idea to an attack called “failure boost-
ing”, where ciphertexts with higher failure probability are generated to speedup
the search for decryption failures, and provided an analysis of the effectiveness
of the attack on several NIST candidates. At the same time, Guo et al. [28]
described an adaptive attack against the IND-CCA secure ss-ntru-pke variant
of NTRUEncrypt [10], which used an adaptive search for decryption failures
exploiting information from previously collected ciphertexts.

Our contributions. In this paper, we present a novel attack technique called “direc-
tional failure boosting”, aimed at enhancing the search for decryption failures in
public-key encryption schemes based on the protocol by Lyubashevsky et al. [38],
in the single-target setting. Our technique is an improvement of the “failure
boosting” technique of D’Anvers et al. [16].
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We consider a simple (but realistically parametrized) scheme based on the
Mod-LWE problem as a case study and make some necessary orthogonality and
independance assumptions that are reasonable in our range of parameters. We
show that in this setting, the work and number of decryption queries needed to
obtain multiple failing ciphertexts is only marginally larger than those necessary
to obtain the first decryption failure. For example, obtaining 30 decryption
failures requires only 25% more quantum work and only 58% more queries than
obtaining one decryption failure. As previously shown in [16] and [28], we recall
that having many decryption failures enables more efficient lattice reduction
which leads to key recovery attacks. As a result, we conclude that when protecting
against decryption failure attacks, in the single target setting, designers should
make sure that an adversary can not feasibly obtain even a single decryption
failure.

Our attack outperforms previously proposed attacks based on decryption
failures. In particular, it improves over the multitarget attack of Guo et al. [28]
on ss-ntru-pke, lowering the attack’s quantum complexity from 2139.5 to 296.6.

Paper outline. In §2, we introduce some preliminaries about notation and struc-
tures. In §3, we describe the general idea of lattice-based encryption and how
decryption failures are generated. In §4, we recall the original failure boosting
technique from [12]. In §5, we describe our directional failure boosting technique.
In §6, we show7 how this method impacts the total work and queries overhead.
Finally in §7, we discuss the results by comparing them with the literature and
conclude with possible future work.

2 Preliminaries

Let Zq be the ring of integers modulo q. For N a power of 2, we define Rq the
ring Zq[X]/(XN +1), and Rl1×l2q the ring of l1× l2 matrices over Rq. Vectors and
polynomials will be indicated with bold lowercase letters, eg. v, while matrices
will be written in bold uppercase letters, eg. M. Denote with b·c flooring to
the nearest lower integer, and with b·e rounding to the nearest integer. These
operations are extended coefficient-wise for vectors and polynomials. Throughout,
we abuse notation and identify elements in Zq with their representatives in
[−q/2, q/2), and elements in Rq with their representatives of degree < N , with
index i indicating the coefficient of Xi. This allows us to define the `2-norm ‖x‖2
of a polynomial x ∈ Rq, so that ‖x‖2 =

√∑
i x

2
i where xi ∈ [−q/2, q/2), and

extend this to vectors of polynomials y ∈ Rl×1q as ‖y‖2 =
√∑

i ‖yi‖22. Identically,
we define and extend the `∞-norm.

Let x ← X denote sampling x according to the probability distribution
X. We extend this notation for coefficient-wise sampling of a vector x ∈ Rl×1q

as x ← X(Rl×1q ), and similarly for a matrix. We denote with x ← X(Rl×1q ; r)

sampling x ∈ Rl×1q pseudorandomly from the seed r with each coefficient following

7The software is available at: https://github.com/KULeuven-COSIC/

PQCRYPTO-decryption-failures.
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the distribution X. In algorithms, we also use x← Alg() to mean that the value
x is assigned to be the output of a probabilistic algorithm Alg.

Let U be the uniform distribution over Zq and let Nµ,σ be the normal
distribution with mean µ and standard deviation σ, so that the probability
density function of x← Nµ,σ is defined as:

fNµ,σ (x) =
1

σ
√

2π
e−(x−µ)

2/2σ2

. (1)

The discrete Gaussian distribution Dµ,σ is a discrete restriction to Zq of Nµ,σ,

so that an integer x is sampled with a probability proportional to e−(x−µ)
2/2σ2

and its remainder modulo q in [−q/2, q/2) is returned.
For an event A we define P [A] as its probability. For an element which does

not correspond to an event, a ciphertext ct for example, we abusively write
P [ct] to denote the probability of the event ct′ = ct where ct′ is drawn from a
distribution which will be clear in the context. We will denote with E[A] the
expected value of a variable drawn from a distribution A.

Security definitions. Let Π = (KeyGen,Enc,Dec) be a public-key encryption
scheme, with message space M, and let K = (KeyGen,Encaps,Decaps) be a key
encapsulation mechanism (KEM). When a decapsulation or a decryption oracle
is provided, we assume that the maximum number of ciphertexts that can be
queried to it for each key pair is 2K ; in practice, K = 64 is often considered [41,
§4.A.2]. In this work, we keep the maximum number of queries as a parameter
with no specific value, in order to provide a better granularity in the security
assessement. Indeed, to mount an attack, the adversary trades off between number
of queries and the work.

Definition 1 (IND-CPAA,Π(k) game [34]). Let A be an adversary and Π =
(KeyGen,Enc,Dec) be a public-key encryption scheme. The experiment IND-CPAA,Π(1k)
runs as follows:

1. (pk, sk)← KeyGen(1k)
2. A is given pk. After evaluating Enc(pk, ·) as desired, it outputs

(m0,m1) ∈ M × M.
3. A random bit b←$ {0, 1} is sampled, and c← Enc(pk,mb) is passed to A.
4. A keeps evaluating Enc(pk, ·) as desired, until it returns a bit b′.
5. The experiment outputs 1 if b = b′ and 0 otherwise.

Definition 2 (IND-CCAA,K(k) game [34]). Let A be an adversary and K =
(KeyGen,Encaps,Decaps) be a key encapsulation mechanism. The experiment
IND-CCAA,K(1k) runs as follows:

1. (pk, sk)← KeyGen(1k)
2. (c, k)← Encaps(pk)

3. b←$ {0, 1}. If b = 0, set k̂ = k, else let k̂ ← {0, 1}n.

4. A is given (pk, c, k̂), and access to a decapsulation oracle Decaps(sk, ·). After
evaluating Encaps(pk, ·) and querying Decaps(sk, ·) as desired (except for
decapsulation queries on c), it returns b′ ∈ {0, 1}.
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5. The experiment outputs 1 if b = b′ and 0 otherwise.

Definition 3 (PKE and KEM security [24]). A public-key encryption scheme
Π (resp. a key encapsulation mechanism K) is (t, ε)-GAME secure if for every
t-time adversary A, we have that∣∣∣∣Pr[GAMEA,Π(k) = 1]− 1

2

∣∣∣∣ ≤ ε (
resp.

∣∣∣∣Pr[GAMEA,K(k) = 1]− 1

2

∣∣∣∣ ≤ ε)
For a security parameter 1k, we usually mean t ≈ poly(k) and ε ≤ negl(k).
If GAME is IND-CPA (resp. IND-CCA) we say that Π (resp. K) is (t, ε)-
secure against chosen-plaintext attacks (resp. (t, ε)-secure against adaptive chosen-
ciphertext attacks).

3 Lattice-based encryption

The Module-LWE (or Mod-LWE) problem [35] is a mathematical problem that
can be used to build cryptographic primitives such as encryption [7,13], key
exchange [13] and signatures [20]. It is a generalization of both the Learning
With Errors (or LWE) problem [44], and the Ring-LWE problem [48,38].

Definition 4 (Mod-LWE [35]). Let n, q, k be positive integers, χ be a proba-
bility distribution on Z and s be a secret module element in Rkq . We denote by L
the probability distribution on Rkq ×Rq obtained by choosing a ∈ Rkq uniformly at
random, choosing e ∈ R by sampling each of its coefficients according to χ and
considering it in Rq, and returning (a, c) = (a, 〈a, s〉+ e) ∈ Rkq ×Rq.
Decision-Mod-LWE is the problem of deciding whether pairs (a, c) ∈ Rkq ×Rq are

sampled according to L or the uniform distribution on Rkq ×Rq.
Search-Mod-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉 + e) ∈
Rkq ×Rq sampled according to L.

3.1 Passively and actively secure encryption

Lyubashevsky et al. [38] introduced a simple protocol to build passively se-
cure encryption from the Ring-LWE problem, inspired by Diffie-Hellman key
exchange [19] and ElGamal public-key encryption [21]. Naturally, the protocol
can also be adapted to work based on plain and Module LWE assumptions. A
general extension of the protocol for all aforementioned assumptions is described
in Algorithms 1, 2, and 3, where r ∈ R = {0, 1}256, and where the message space
is defined as M = {polynomials in Rq with coefficients in {0, 1}}.

In order to obtain active security, designers usually use an off-the-shelf
CCA compiler, usually a (post-quantum) variant [18,29,49,45,32] of the Fujisaki-
Okamoto transform [23] (FO). These come with proofs of security in the (quantum)
random oracle model, with explicit bounds about the loss of security caused
by the transformation. We show such transformed KEM Decapsulation and
Encapsulation in Algorithms 4 and 5.
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Algorithm 1: PKE.KeyGen()

1 A← U(Rl×lq )

2 s, e← D0,σs(R
l×1
q )×D0,σe(Rl×1

q )
3 b := As + e
4 return (pk = (b,A), sk = s)

Algorithm 2: PKE.Enc(pk = (b,A),
m ∈M; r)

1 s′, e′ ← D0,σs(R
l×1
q ; r)×D0,σe(Rl×1

q ; r)
2 e′′ ← D0,σe(Rq; r)

3 b′ := AT s′ + e′

4 v′ := bT s′ + e′′ + bq/2c ·m
5 return ct = (v′,b′)

Algorithm 3: PKE.Dec(sk = s, ct = (v′,b′))

1 m′ := bb2/qc(v′ − b′T s)e
2 return m′

Algorithm 4: KEM.Encaps(pk)

1 m← U({0, 1}256)

2 (K, r) := G(pk,m)
3 ct := PKE.Enc(pk,m, r)

4 K := H(K, r)
5 return (ct,K)

In the case of FO for lattice-based schemes, the randomness used during the
encryption is generated by submitting the message (and sometimes also the public
key) to a random oracle. As this procedure is repeatable with knowledge of the
message, one can check the validity of ciphertexts during decapsulation. Hence,
an adversary wanting to generate custom ephemeral secrets s′, e′, e′′ in order to
fabricate weak ciphertexts, would need to know a preimage of the appropriate
random coins for the random oracle. Therefore, their only option is to mount a
(Grover’s) search by randomly generating ciphertexts corresponding to different
messages m, and testing if their predicted failure probability is above a certain
threshold.

Remark 1. Several lattice-based candidates submitted to the NIST Post-Quantum
Cryptography Standardization Process use a variant of the protocol by Lyuba-
shevsky et al. [38]. Deviating from the original design, most candidates perform
an additional rounding of the ciphertext v′, in order to reduce bandwidth. The
designers of New Hope [3] and LAC [36] choose to work directly over rings (or
equivalently, they choose a module of rank l = 1) and add error correction on the
encapsulated message, while the designers of Kyber [7] and Saber [13] choose a
module of rank l > 1 and perform an additional rounding of b′ (and b in case of
Saber). We here focus on the basic version given in Algorithms 1 to 3 and leave
the study of the effect of compression to further work.

We selected the parameters of the studied encryption scheme to ensure a
similar failure probability and security to Kyber and Saber. These parameters
can be found in Table 1. The security estimates are generated using the Core-
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Algorithm 5: KEM.Decaps(sk, pk, ct,K)

1 m′ := PKE.Dec(sk, ct)

2 (K, r′) := G(pk,m′)
3 ct′ := PKE.Enc(pk,m′; r′)
4 if ct = ct′ then

5 return K := (K, r′)
6 else
7 return K :=⊥ // Could return a pseudo-random string to implicitly

reject

l N q σs σe P [F ] Classical Quantum

Chosen parameters 3 256 8192 2.00 2.00 2−119 2195 2177

Saber 3 256 8192 1.41 2.29 2−136 2203 2185

Kyber 768 3 256 3329 1.00 1.00/1.38† 2−164 2181 2164

† Standard deviation of the error term in the public key and ciphertext respectively

Table 1. Comparison between our target scheme and Saber and Kyber 768, as
parametrised in Round 2 of the NIST PQC standardization process. The classical
(resp. quantum) security is evaluated using the Core-SVP [3] methodology, assuming
the cost of BKZ with block size β to be 20.292β (resp. 20.265β).

SVP methodology [3] and the LWE estimator8[2], while the failure probability
of Kyber and Saber is given as reported in their respective the NIST round
2 documentations [47,14]. The failure probability of our chosen parameters is
determined by calculating the variance of the error term and assuming the
distribution to be Gaussian.

Remark 2. We do not consider the case of “plain” LWE based schemes like
FrodoKEM [40] or Round5 [4]. Nonetheless, we believe that the attack methodol-
ogy would easily translate to the LWE setting as the failure condition and the
failure probabilities are similar to the investigated case.

3.2 Decryption failures

Following the execution of the protocol, both messages m′ and m are the same if
the coefficients of the error term eT s′− sTe′+ e′′ are small enough; more exactly
if ‖eT s′ − sTe′ + e′′‖∞ ≤ q/4. This expression can be simplified by defining
the vector S as the vertical concatenation of −s and e, the vector C as the
concatenation of e′ and s′, and by replacing e′′ with G, as shown below:

S =

[
−s
e

]
C =

[
e′

s′

]
G = e′′. (2)

8The estimator can be found at https://bitbucket.org/malb/lwe-estimator/.
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Here, S contains the secret elements of the secret key, and C and G consist
of elements used to construct the ciphertexts9. Using these vectors, the error
expression can be rewritten: a failure occurs when ‖STC + G‖∞ > q/4.

The standard deviation of the terms in the polynomial STC equals
√

2Nσsσe,
versus a standard deviation of σe for the terms of G. Therefore, the influence
of G on the failure rate is limited, i.e. ‖STC + G‖∞ ≈ ‖STC‖∞. Let qt := q/4
denote the failure threshold, we will use

‖STC‖∞ > qt (3)

as an approximation of the failure expression throughout our analysis. However,
with some extra work, one can rewrite a more accurate Equation 3 as ‖STC‖∞ >
qt − ‖G‖∞, and instead of considering qt to be fixed, taking the distribution of
qt − ‖G‖∞ as shown in [16]. For the ease of the implementation and due to the
low influence of G on the failure rate, we prefer to stick with Equation 3. We
now introduce a more handy way of writing the failure condition (Equation 3)
by only using vectors in Zq.

Definition 5 (Coefficient vector). For S ∈ Rl×1q , we denote by S ∈ ZlN×1q ,
the representation of S where each polynomial is decomposed as a list of its
coefficients in10 Zq.

Definition 6 (Rotations). For r ∈ Z and C ∈ Rl×1q , we denote by C(r) ∈ Rl×1q ,
the following vector of polynomials

C(r) := Xr ·C(X−1) mod XN + 1.

Correspondingly, C(r) ∈ ZlN×1q denotes its coefficient vector.

It is easy to show that C(r) is constructed as to ensure that for r ∈ [0, ..., N−1],

the rth coordinate of STC is given by the scalar product S
T
C(r). In other words,

one is now able to decompose STC as a sum of scalar products:

STC =
∑

r∈[0,N−1]

S
T
C(r) ·Xr. (4)

One can observe that this construction is only valid for the modulo XN + 1
ring structure, but it could be adapted for other ring structures. Note that for
any r ∈ Z, C(r+N) = −C(r) and C(r+2N) = C(r). Besides, taking into account
the extension of the norms to vectors of polynomials (defined in §2), one can
make the following remark.

9When talking about ciphertexts throughout the paper, we will sometimes refer to
their underlying elements C and G.

10Recall that, in this paper, all the elements in Zq are represented as integers belonging
in [−q/2, q/2].
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Remark 3. Note that for any r ∈ Z, ‖C(r)‖2 = ‖C‖2 = ‖C‖2 and ‖C(r)‖∞ =
‖C‖∞ = ‖C‖∞.

The decomposition in Equation 4 will allow a geometric interpretation of the
failures as it will be shown in the rest of the paper. First, let us introduce a brief
example to illustrate Definitions 5 and 6.

Example 1. For a secret S and a ciphertext C in Z2×1
q [X]/(X3 + 1):

S =

[
s0,0 + s0,1X + s0,2X

2

s1,0 + s1,1X + s1,2X
2

]
, C =

[
c0,0 + c0,1X + c0,2X

2

c1,0 + c1,1X + c1,2X
2

]
(5)

we get the following vectors:

S =


s0,0
s0,1
s0,2
s1,0
s1,1
s1,2

 , C(0) =


c0,0
−c0,2
−c0,1
c1,0
−c1,2
−c1,1

 C(1) =


c0,1
c0,0
−c0,2
c1,1
c1,0
−c1,2

 C(2) =


c0,2
c0,1
c0,0
c1,2
c1,1
c1,0

 C(3) =


−c0,0
c0,2
c0,1
−c1,0
c1,2
c1,1

 . . .

In case of a failure event, STC satisfies Equation 3. Therefore, at least one
element among all the coefficients

S
T ·C(0) , . . . , S

T ·C(2N−1)

is larger than qt.

Definition 7 (Failure event). A failure event will be denoted with F , while
we use S to indicate a successful decryption.
More precisely, for r ∈ [0, 2N − 1], we denote by Fr the failure event where

S
T ·C(r) > qt.

The event Fr gives a twofold information: it provides the location of the failure
in the STC polynomial and it also provides the sign of the coefficient that caused
the failure.

An assumption on the failing ciphertexts. In the rest of the paper, in order
to predict the results of our attack, we will make the following orthogonality
assumption.

Assumption 1 Let n� 2Nl, and C0 , · · · , Cn be ciphertexts that lead to failure

events Fr0 , · · · , Frn . The vectors C
(r0)
0 , · · · , C

(rn)
n are considered orthogonal

when projected on the hyperplane orthogonal to S.

This assumption is an approximation that is supported by the fact that
vectors in high dimensional space have a strong tendency towards orthogonality,
as can be seen in Figure 2.
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4 Failure Boosting attack technique

Failure boosting is a technique introduced in [16] to increase the failure rate of
(Ring/Mod)-LWE/LWR based schemes by honestly generating ciphertexts and
only querying weak ones, i.e. those that have a failure probability above a certain
threshold ft > 0. This technique is especially useful in combination with Grover’s
algorithm [27], in which case the search for weak ciphertexts can be sped up
quadratically. Failure boosting consists of two phases: a precomputation phase,
and a phase where the decryption oracle is queried.

Precomputation phase. The adversary does an offline search for weak ciphertexts
with the following procedure:

1. Generate a key encapsulation9 ct = (C,G).
2. If P [F | ct] ≥ ft, keep ct in a weak ciphertext list, otherwise go to Step 1.

In Step 2, P [F | ct] is defined as the failure probability given a certain cipher-
text ct. It is computed as follows.

P [F | ct] :=
∑
S

P
[∥∥STC + G

∥∥
∞ > qt | S

]
· P [S] (6)

Given the probability of generating ciphertexts P [ct] = P [C,G], the proba-
bility of finding such a weak ciphertext can be expressed as follows:

αft =
∑

∀ct:P [F |ct]>ft

P [ct]. (7)

An adversary thus needs to perform on average α−1ft work to obtain one weak

ciphertext, or
√
α−1ft assuming Grover’s search achieves a full speed-up.

Decryption oracle query phase. After the precomputation phase, an adversary
has a probability βft that a weak ciphertext results in a failure, where βft can be
calculated as a weighted average of the failure probabilities of weak ciphertexts:

βft =

∑
∀ct:P [F |ct]>ft P [ct] · P [F |ct]∑

∀ct:P [F |ct]>ft P [ct]
. (8)

Thus to obtain one decryption failure with probability 1− e−1, an adversary
needs to perform approximately β−1ft queries and therefore α−1ft β

−1
ft

work (or√
α−1ft β

−1
ft

using a quantum computer).

The better an adversary can predict P [F |ct], the more efficient failure boosting
will be. Having no information about the secret except its distribution, an
adversary is bound to standard failure boosting, where the failure probability is
estimated based on ‖C‖2 and ‖G‖2. For a graphical intuition, a two dimensional
toy example is depicted in Figure 1a below, where the red arrow represents the
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(a) Without directional information, as
in [16], the weak ciphertexts (in blue)
are defined as the ciphertexts with a
probability higher than ft.

(b) With directional information, the
weak ciphertexts (in blue) are found ac-
cording to a refined acceptance criterion,
here represented as an ellipse.

Fig. 1. Simplified diagram trying to provide an intuition on the effect of directional
failure boosting. The red arrow represents the secret vector S. Ciphertexts with C that
lie in the dashed area will provoke a failure as the inner product with S will exceed the
threshold qt. Ciphertexts outside the blue circle are considered weak.

secret vector S. Ciphertexts with C that lie in the dashed area will provoke a
failure as the inner product with S will exceed the threshold qt. The blue circle
is a circle of ciphertexts that have a certain failure probability ft as estimated
by an adversary who does not know the secret. During the failure boosting
procedure, we will generate random ciphertexts, and only select the ciphertexts
with a higher failure probability than ft, i.e. that are outside the blue circle.
One can graphically see in Figure 1a that these ciphertexts will have a higher
failure probability and a higher norm. We refer to [16] for a full description of the
failure boosting technique. Note that Figure 1a is an oversimplified 2-dimension
example that does not take into account the polynomial structure and the high
dimensionality of the space.

5 Directional Failure Boosting

Once n ≥ 1 decryption failures C0, . . . ,Cn−1 are found, additional information
about the secret key S becomes available, and can be used to refine the failure
estimation for new ciphertexts and thus speed up failure boosting. We now
introduce an iterative two-step method to perform directional failure boosting.

Step 1 An estimate, denoted E, of the ‘direction’ of the secret S in ZlNq is obtained
from C0, . . . ,Cn−1.

Step 2 The estimate E is used to inform the search for weak ciphertexts and improve
the failure probability prediction for a new ciphertext Cn. One is able to
refine the criterion P [F | ct] ≥ ft with computing P [F | ct,E] ≥ ft instead.

Once new failing ciphertexts are found in step 2, one can go back to step 1 and
improve the estimate E and thus bootstrap the search for new failures.

11



To give an intuition, a two dimensional toy representation can be found in
Figure 1b. Like in the classical failure boosting technique, the red arrow depicts
the secret S, while the additional blue arrow marks estimate E (as calculated
in step 1, see §5.2). Using this estimate, we can refine the acceptance criterion
to the depicted ellipse to better reflect our knowledge about the secret (step 2,
see §5.3). Ciphertexts outside this ellipse will be flagged as weak ciphertexts,
and while the probability of finding such a ciphertext is the same, the failure
probability of weak ciphertexts is now higher. As in, more of the blue zone lies
in the dashed area.

5.1 Distributions

We now introduce some probability distributions that will be useful in following
sections.

Scaled χ-distribution. The scaled χ-distribution χn,σ is the distribution of the
`2-norm of a vector with n coefficients, each following the normal distribution
N0,σ. Denoting with Γ the gamma function, the probability density function of
χn,σ is given by:

fχn,σ (x) =

(
x
σ

)n−1
e−

x2

2σ2

2(n2−1)Γ
(
n
2

) for x ≥ 0, (9)

which has mean [33, §18.3] Eχ[x] =
√

2Γ ((n+1)/2)
Γ (n/2) σ ≈

√
nσ.

We will approximate the probability distribution of ‖x‖2 where x← D0,σ(Rl×1q )
with a discretized version of the χ(l·N),σ-distribution, which will be denoted with
χD(l·N),σ. Using this distribution, the probability density function of ‖x‖2 is
calculated as:

P [‖x‖2 = x] = C ·
(x
σ

)l·N−1
e−

x2

2σ2 for x ∈
{

0, . . . ,
⌊q

2

√
lN
⌋}
, (10)

with C a normalization constant.

Angle distribution. The distribution of angles between n-dimensional vectors
in Rn with coefficients drawn from a normal distribution N0,σ can be modelled
using the following probability density function [9]:

fΘn(θ) = sinn−2(θ)/

∫ π

0

sinn−2(t)dt, for θ ∈ [0, π]. (11)

Due to the high dimensionality of the vector space used in this paper, vectors
will have a very strong tendency towards orthogonality, i.e. θ is close to π/2, as
can be seen in Figure 2.

For computational reasons, we will use a discretized version ΘDn of this
distribution to model the distribution of the angles between discrete vectors, if no

12
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Fig. 2. Probability density function (pdf) of the angle between two random vectors in
1536-dimensional space. As the dimension increases, the pdf tends to the Dirac delta
function centered at π

2
.

extra directional information is present. Given a uniformly spaced list of angles
between 0 and π, we assign to each angle a probability

P [θ] = C sinn−2(θ) (12)

with C a normalization constant. The higher the number of angles in this list,
the better this distribution approximates the continuous distribution Θn.

Order statistics. The maximal order statistic of a distribution X in n dimensions,
is the distribution of the maximum of n samples drawn from this distribution.
We will denote this distribution with M(X,n). For a discrete distribution X, the
probability mass function of M(X,n) can be computed as:

fM(X,n)(x) =P [x ≥ y|y ← X]n − P [x > y|y ← X]n (13)

≈n · P [x = y|y ← X] · P [x > y|y ← X]n−1, (14)

where the latter approximation gets better for smaller probabilities.

5.2 Step 1: Estimating the direction E

Informally, E should be a vector that has approximately the same direction as S.
Denoting the angle between E and S as θES , the bigger | cos(θES)|, the closer
our estimate is to ±S and the better our estimate of failure probability will be.
Since we focus on estimating the direction of S, E will always be normalized.

In this section, we derive an estimate E of the direction of the secret S given
n ≥ 1 ciphertexts C0, . . . ,Cn−1. Our goal is to find E such that | cos(θES)| is
as big as possible. We will first discuss the case where the adversary has one
ciphertext, then the case where she has two, followed by the more general case
where she has n ciphertexts.

One ciphertext. Assume that a unique failing ciphertext C is given. For a failure

event Fr, E = C(r)/
∥∥∥C(r)

∥∥∥
2

is a reasonable choice as cos(θES) is bigger than

average. This can be seen as follows:

|cos(θES)| =
∣∣∣ST ·E∣∣∣
‖S‖

2
‖E‖

2

=

∣∣∣ST ·C(r)
∣∣∣

‖S‖
2

∥∥∥C(r)
∥∥∥
2

> qt

‖S‖
2

∥∥∥C(r)
∥∥∥
2

. (15)
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Keep in mind that the cosine of angles between random vectors strongly
tend to zero in high dimensional space, so that even a relatively small value of
|cos(θES)| might be advantageous.

One can argue that it is not possible to compute C(r) without knowledge
of r; whereas in the general case, the failure location is unknown. However,

E = C(0)/
∥∥∥C(0)

∥∥∥
2

is an equally good estimate regardless of the value of r.

Indeed, C(0) approximates a rotation of the secret S′ := X−r · S instead of S,

which can be seen using the equality A
T ·B = XiA

T
·XiB:

S
T ·C(r) = X−r · ST ·X−rXrC(0)

= X−r · ST ·C(0).
(16)

Furthermore, multiplicating a polynomial in Rq with a power of X does not
change its infinity norm, as the multiplication only results in the rotation or
negation of coefficients. Thus, using an estimate of the direction of X−r · S is as
good as an estimate of the direction of S when predicting the failure probability

of ciphertexts, and we can use E = C(0)/
∥∥∥C(0)

∥∥∥
2
.

Two ciphertexts. Now, assume that two linearly independent failing ciphertexts
C0 and C1, resulting from failure events Fr0 and Fr1 respectively, are given.

Taking E as the normalized version of an average Cav =
(
C

(0)
0 + C

(0)
1

)
/2 may

not necessarily result in a good estimate. For example, if C0 comes from a failure
event F0 and C1 from a failure event FN , the two directions cancel each other

out as the ciphertexts C
(0)
0 and C

(0)
1 are in opposite directions.

Keeping the convention that C
(0)
0 approximates a rotation of the secret

S′ = X−r0 · S, we will compute the relative error position δ1,0 = r1 − r0 and
show that is enough to build a correct estimate E as E = Crav/

∥∥Crav

∥∥
2

where:

Crav :=

(
C

(0)
0 + C

(δ1,0)
1

)
/2. (17)

The reason why such E is a good estimator of S′ can be seen as follows:

cos(θES′) = 1

2‖Crav‖
2
‖S′‖

2

·
(
X−r0 · ST ·C(0)

0 +X−r0 · ST ·Xr1−r0C
(0)
1

)
= 1

2‖Crav‖
2
‖S′‖

2

·
(
S
T ·C(r0)

0 + S
T ·C(r1)

1

)
> qt

‖Crav‖
2
‖S′‖

2

.

Remark 4. In practice ciphertexts with smaller norm will on average be better
aligned with the secret, as cos(θCS′) > qt/(

∥∥C∥∥
2

∥∥S′∥∥
2
). Therefore they carry

more information than ciphertexts with larger norm. To compensate for this effect

we will calculate Crav as :=

(
C

(0)
0 /

∥∥∥C(0)
0

∥∥∥
2

+ C
(δ1,0)
1 /

∥∥∥∥C(δ1,0)
1

∥∥∥∥
2

)
/2. While it is

possible to further refine the calculation of E using extra directional information,
this heuristic is good enough for our purposes.
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Computation of the relative position δ1,0. One can use the fact that both C
(0)
0

and C
(δ1,0)
1 are expected to be directionally close to S′. Thus, the cosine of the

angle between C
(0)
0 and C

(δ1,0)
1 should be larger than usual. Therefore, δ1,0 can

be estimated with the following distinguisher:

δ′1,0 := argmax
r∈[0,2N−1]

C(r) where C(r) :=
C

(0)
0

T

·C(r)
1∥∥∥C(0)

0

∥∥∥
2

∥∥∥C(r)
1

∥∥∥
2

. (18)

The next paragraph estimates the efficiency of using Equation 18 as a distin-
guisher for deriving δ1,0. We will show that, for Table 1 parameters, we expect

P [δ′1,0 = δ1,0] ≈ 89%. (19)

Experiments run by simulating the sampling 104 failing ciphertexts (refer to
the full version of our paper [15] for the generation technique), and using Equation
18 for finding δ1,0 between pairs of them, return PExp[δ′1,0 = δ1,0] ≈ 84.8%, in
sufficiently good agreement.

To obtain the value (19), the idea is to estimate the distribution of a correct
guess C(δ1,0) and an incorrect guess maxr 6=δ1,0 C(r) and quantify the discrepancy.

First, we decompose the ciphertexts in a component parallel to S′, denoted with
‖, and a component orthogonal, denoted with ⊥, we rewrite C(r) as follows:

C(r) =
C

(0)
0,‖ ·C

(r)
1,‖ + C

(0)
0,⊥ ·C

(r)
1,⊥∥∥∥C(0)

0

∥∥∥
2

∥∥∥C(r)
1

∥∥∥
2

(20)

In the first term, the scalar product of two parallel elements equals the product of
their norms (up to their sign). For the second term, we apply the scalar product

definition and intoduce t as the angle between C
(0)
0,⊥ and C

(r)
1,⊥.

C(r) = ±

∥∥∥C(0)
0,‖

∥∥∥
2∥∥∥C(0)

0

∥∥∥
2

·

∥∥∥C(r)
1,‖

∥∥∥
2∥∥∥C(r)

1

∥∥∥
2

±

∥∥∥C(0)
0,⊥

∥∥∥
2∥∥∥C(0)

0

∥∥∥
2

·

∥∥∥C(r)
1,⊥

∥∥∥
2∥∥∥C(r)

1

∥∥∥
2

· cos(t) (21)

= cos
(
θ
S′C

(0)
0

)
cos
(
θ
S′C

(r)
1

)
+ sin

(
θ
S′C

(0)
0

)
sin
(
θ
S′C

(r)
1

)
cos(t) (22)

The vectors C
(0)
0,⊥ and C

(r)
1,⊥ are orthogonal to S′. This means that they live in

the 2Nl− 1 dimensional space orthogonal to S′. The high dimension of the space
will strongly drive the vectors towards orthogonality as can be seen in Figure

2. Using Assumption 1, the angle t between C
(0)
0,⊥ and C

(r)
1,⊥ is then assumed to

follow the distribution of random angles between vectors in a 2Nl−1 dimensional
space (See Equation 11).

Now, let us study the distribution of C(r) depending of the value r ∈ [0, 2N−1].
One can refer to Figure 3 for a graphical interpretation based on the parameters
of Table 1.
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Fig. 3. Distributions used for find-
ing δ1,0
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– If r = δ1,0, the expected value of C(r) will be higher than average. Indeed, by
definition of Fr1 and Fr0 the cosines forming the first term are positive. The
distribution of C(r) can then be estimated using Equation 22 (blue curve).

– If r = δ1,0 +N mod 2N , the distribution of C(r) is equal to the distribution
of −C(δ1,0) and will be closer to −1 (orange curve).

– If r 6= δ1,0 mod N , C(r) can be assumed to follow the distribution of random
angles in a 2Nl dimensional space Θ2Nl, as given in Equation 11 (green
curve).

– The pdf of maxr 6=δ1,0 C(r) is then calculated as M(Θ2Nl, 2N−1) by definition
of the maximal order statistic (red curve).

Figure 3 assembles the probability density functions of the above distributions
in a plot. The probability of selecting the correct δ′1,0 using argmax

r∈[0,2N−1]
C(r), can

then be computed as:

P [δ′1,0 = δ1,0] = P

[
max
r 6=δ1,0

C(r) < C(δ1,0)

]
.

For our toy scheme’s parameters, this results in Equation 19.

Multiple ciphertexts. In this section, we assume that n linearly independent
failing ciphertexts C0, . . . ,Cn−1, resulting from failure events Fr0 , . . . , Frn−1

respectively, are given. We introduce a generalized method to recover the relative
positions δ1,0, . . . , δn−1,0, based on “loopy belief propagation” [42]. Once these
relative positions are found, they can be combined in an estimate E with E =
Crav/

∥∥Crav

∥∥
2

where

Crav :=

C
(0)
0 /

∥∥∥C(0)
0

∥∥∥
2

+
∑

i∈[1,n−1]

C
(δi,0)
i /

∥∥∥∥C(δi,0)
i

∥∥∥∥
2

 /n. (23)

To find the correct rotations, we construct a weighted graph that models the
probability of different relative rotations, and we will use loopy belief propagation
to obtain the most probable set of these rotations:
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– The nodes represent the obtained failing ciphertexts: (Ci)i∈[0,n−1]. In total,
there are n nodes.

– Each node Ci where i 6= 0 is associated a list with 2N probability values called
beliefs and denoted (bi(0), · · · , bi(2N − 1)) that together define a probability
distribution over [0, 2N − 1]. The rth item in the list represents our belief
that the correct relative position δ0,1 equals r. The correct rotation of the
0th node will be fixed to 0 (i.e. b0(0) = 1 and b0(i) = 0 for all other i) as only
the relative rotations of the ciphertexts is important. These node weights are
initialized as follows:

bi(r) := P [δi,0 = r] (= P [Fr for Ci|F0 for C0])

– For two nodes Ci and Cj , the value of the vertex called message, models
the influence of the beliefs in the rotations s of node j towards the beliefs in
rotation r of node i, which can be formalized as follows:

mi,j(r, s) := P [δi,j = r − s] (= P [Fr−s for Ci|F0 for Cj ])

Loopy belief propagation tries to find the node values r for each node, so
that the probabilities over the whole graph are maximized. This is done in an
iterative fashion by updating the node beliefs according to the messages coming
from all other nodes. Our goal is eventually to find r = δi,0 for each node i.

Example 2. For example, with N = 3 and n = 3, the graph contains the nodes
C0, C1, and C2. In Figure 4, we represent how such a graph could look like
where we arbitrarly instantiate the messages and beliefs. We can see that if one
chooses the ri = argmaxr bi(r) for each node, one would have chosen r1 = 1 and
r2 = 3. Nevertheless, we notice that the influence of the other probabilities allows
for a better choice (underlined in blue in the figure): r1 = 2, r2 = 3.

Fig. 4. Example of the graph for find-
ing the relative rotations where N = 3
and n = 3. The beliefs are in the rect-
angles, the circles represent the nodes
and some messages are represented be-
tween the nodes.

C0

C1

C2

b1(r = 0) = 0.1
b1(r = 1) = 0.4
b1(r = 2) = 0.3
b1(r = 3) = 0
b1(r = 4) = 0.2
b1(r = 5) = 0

b2(r = 0) = 0.1
b2(r = 1) = 0.1
b2(r = 2) = 0.2
b2(r = 3) = 0.4
b2(r = 4) = 0.1
b2(r = 5) = 0.1

m1,2(1,3) = 0.2
m1,2(2,3) = 0.4

b0(r = 0) = 1
b0(r = 1) = 0
b0(r = 2) = 0
b0(r = 3) = 0
b0(r = 4) = 0
b0(r = 5) = 0

m0,1(0,1) = 0.4
m0,1(0,2) = 0.3

m0,2(0,3) = 0.4

⋮
⋮

⋮

⋮

⋮

⋮
⋮

Vertex probabilities. As discussed, the edge between two nodes Ci with rotation
r and Cj with rotation s is weighted with P [δi,j = r − s]. This probability can
be computed using a generalization of the distinguisher technique used for two
ciphertexts as detailed in the full version of our paper [15].
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Algorithm 6: GetRotation()

1 for i ∈ [1, n− 1] do // initialization

2 foreach r do
3 bi(r) := P [δ0,i = r]

4 for # of iterations do // update phase

5 for i ∈ [1, n) do
6 for j ∈ [1, n) if i 6= j do
7 foreach r do
8 inflji(r) :=

∑
smi,j(r, s) · bj(s) // influence of node j on

node i

9 normalize(inflji)

10 foreach r do
11 bi(r) :=

∏n
j=0,j 6=i inflji(r) // calculate new belief

12 normalize(bi)

13 for i ∈ [1, n) do // finally

14 ri := argmaxr∈[0,2N−1] bi(r) // pick the ri with highest belief

15 return (ri)i∈[1,n−1])

2 ciphertexts 3 ciphertexts 4 ciphertexts 5 ciphertexts

P [ri = δi,0 ∀i ∈ [1, n− 1]] 84.0% 95.6% > 99.0% > 99.0%

Table 2. Probability of finding the correct relative rotations and thus building the
correct estimate E with the knowledge of 2, 3, 4 and 5 failing ciphertexts.

Loopy belief propagation. This technique looks for the best set (r1, . . . , rn−1) by
iteratively correcting the beliefs using messages from other nodes. This procedure
is detailed in Algorithm 6, where normalize(f) normalizes the list b() so that∑
x∈supp(b) b(x) = 1. In each iteration, the belief of each node Ci is updated

according to the messages of the other nodes Cj . For each i the belief is updated
as follows:

bi(r) =

n∏
j=0,j 6=i

inflji(r) (24)

where inflji(r) captures the influence of the value of the node Cj to node Ci.
This influence can be calculated as inflji(r)← C

∑
xmi,j(r, x) · bj(x), with C as

normalizing constant.

Experimental verification. With Table 1 parameters, we obtained the correct
values ri = δi,0 for all i ∈ [1, n − 1] after 3 iterations with the probabilities as
reported in Table 2, by generating 1000 times each number of ciphertexts and
trying to find the correct values of the ri.
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Remark 5 (Consistency with the previous section). Note that this procedure also
incorporates the setting where one has only 2 failing ciphertexts, which would
yield exactly the same results as in the previous paragraph.

Finally, once all the rotations are found, recall that the estimate is obtained
by E = Crav/

∥∥Crav

∥∥
2

where

Crav =

C
(0)
0 /

∥∥∥C(0)
0

∥∥∥
2

+
∑

i∈[1,n−1]

C
(ri)
i /

∥∥∥C(ri)
i

∥∥∥
2

 /n. (25)

5.3 Step 2: Finding weak ciphertexts

In this section, we are given an estimate E and we refine the acceptance criterion.
Instead of accepting if P [F | ct] ≥ ft, our condition is slightly changed.

1. Generate a key encapsulation ct = (C,G) with derived key K.
2. If P [F |E, ct] ≥ ft, keep ct in a weak ciphertext list, otherwise go to to Step 1.

In Step 2, P [F |E, ct] is defined as the failure probability, given a certain
ciphertext ct and a certain estimate E. In the following, we explain a way to
compute it.
First, for r ∈ [0, 2N − 1], we will estimate the probability that a ciphertext
leads to an error in the rth location. Decomposing the vectors S and C in a
component orthogonal to E, denoted with subscript ⊥, and a component parallel
to E, denoted with subscript ‖, we obtain the failure expression:

P [Fr |E,C] =P [S
T ·C(r) > qt |E,C] = P [S‖

T ·C(r)
‖ + S⊥

T ·C(r)
⊥ > qt |E,C]

=P

 ∥∥S∥∥
2

∥∥∥C(r)
∥∥∥
2

cos(θSE) cos(θC(r)E) +

‖S‖2
∥∥∥C(r)

∥∥∥
2

sin(θSE) sin(θC(r)E) cos(t)

 > qt |E,C


=P

cos(t) >
qt −

∥∥S∥∥
2

∥∥∥C(r)
∥∥∥
2

cos(θSE) cos(θCrE)∥∥S∥∥
2

∥∥∥C(r)
∥∥∥
2

sin(θSE) sin(θCrE)
|E,C


where θSE and θC(r)E are the angles of S and C(r) with the estimate E

respectively, and where t is the angle between S⊥ and C
(r)
⊥ . We assume no other

knowledge about the direction of the secret apart from the directional estimate
E. In this case, using Assumption 1, t can be estimated as a uniform angle
in a 2Nl − 1 dimensional space. Then t is assumed to follow the probability
distribution Θ2Nl−1 (defined in Equation 11).

The values E, ‖C‖2 and cos(θC(r)E) are known, meanwhile the values ‖S‖
and θSE can be modelled using their probability distribution. Thus, we can
approximate P [Fi|E,C] with P [Fi |E, ‖C‖2, cos(θC(r)E)].

19



Assumption 2 We assume that failures at different locations are independent.

Assumption 2 is a valid assumption for schemes without error correcting
codes, as discussed in [17]. We can then calculate the failure probability of a
certain ciphertext as:

P [F |E,C] = 1−
2N∏
r=0

(
1− P [Fr |E, ‖C‖2, cos(θC(r)E)]

)
(26)

As this expression gives us a better prediction of the failure probability of
ciphertexts by using the information embedded in E, we can more accurately
(Grover) search for weak ciphertexts and thus reduce the work to find the next
decryption failure. Moreover, the better E approximates the direction of S, the
easier it becomes to find a new decryption failure.

5.4 Finalizing the attack with lattice reduction

Once multiple failures are found, the secret key can be recovered with lattice
reduction techniques as presented in [17, §4] and in [28, Step 3 of the attack].
The following Section simply outlines how their technique transposes to our
framework. As shown in §5, an estimate E of the direction of a rotated version of
S′ = XrS with an unknown value r is provided. Therefore, similarly to [28], an
attacker can obtain an estimation of S′ (and not only its direction) by rescaling

E′ := E · nqt ·

∥∥∥∥∥∥C(0)
0 +

∑
i∈[1,n−1]

C
(ri)
i

∥∥∥∥∥∥
2

−1 ,
using the approximation E′

T · 1/n
(
C

(0)
0 +

∑
i∈[1,n−1] C

(ri)
i

)
≈ qt.

Then, for each possible r ∈ [0, 2N − 1], an attacker can perform lattice
reduction and recover candidates for s, e that are accepted if they verify b =
As + e. One caveat is that an attacker may have to run a lattice reduction up
to 2N times. Since E′ − S′ is small, the attacker can construct an appropriate
lattice basis encoding E′ − S′ as a unique shortest target vector, and solves the
corresponding Unique-SVP problem with the BKZ algorithm [46,11,3,1]. The
block size of BKZ will depend on the accuracy of the estimate E. Indeed, the
standard deviation of E′i−S′i is of the order of σs ·sin(θS′E) (assuming that θS′E
is small and ‖S′‖2 ≈ ‖E′‖2). Thus, when many decryption failures are available,
sin(θS′E) gets very small and the complexity of this step is dominated by the
work required for constructing E. For example, in the case of our toy scheme, if
cos(θS′E) > 0.985, using [2], the BKZ block size becomes lower than 363 which
leads to less than 2100 quantum work (in the Core-SVP [3] 0.265β model). As we
will see in §6.3, this is less than the work required to find the first failure.
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Remark 6. One can think that the failures obtained by directional failure boosting
will not be totally independent. It is true that the failing ciphertexts are roughly
following the same direction. But applying our Assumption 1, in high dimensions,
for a reasonable number n of failures (n � 2lN), the hypercone in which the
failures belong is large enough that linear dependency will happen with very low
probability.

6 Efficiency of Directional Failure Boosting

In this section, we experimentally verify the efficiency of the directional failure
boosting technique. We first quantify the accuracy of the estimate E computed
according to §5.2. We then derive the necessary work required to run the direc-
tional failure boosting technique and the optimal number of queries. For the rest
of the section, we focus on minimizing the total work for finding failures and we
will assume there is no upper limit to the number of decryption queries.

Our key takeaway is that, for Table 1 parameters, the more failing ciphertexts
have been found, the easier it becomes to obtain the next one, and that most of
the effort is concentrated in finding the first failure. The final work and query
overheads are stored in Table 4.

6.1 Accuracy of the estimate

Let C0, ...,Cn−1 be n previously found failing ciphertexts and we take the estimate
defined according to Equation 25. Similarly to §5.2, we define S′ = X−r0 · S as
the secret vector for an unknown Fr0 . To estimate the accuracy of E, we compute

cos(θS′E) = S′
T ·E
‖S′‖

2

= S′
T ·Crav

‖S′‖
2
‖Crav‖

2

as

cos(θS′E) =

S′
T ·

 C
(0)
0∥∥∥∥C(0)
0

∥∥∥∥
2

+
∑n−1
i=1

C
(ri)

i∥∥∥∥C(ri)

i

∥∥∥∥
2


n
∥∥S′∥∥

2

∥∥Crav

∥∥
2

(27)

=
cos
(
θ
C

(0)
0 S′

)
+
∑n−1
i=1 cos

(
θ
C

(ri)

i S′

)
∥∥∥∥∥∥ C

(0)
0∥∥∥∥C(0)
0

∥∥∥∥
2

+
∑n−1
i=1

C
(ri)

i∥∥∥∥C(ri)

i

∥∥∥∥
2

∥∥∥∥∥∥
2

(28)

First, we make the following approximation.

Approximation 1 We approximate the cosine with the secret S′ by its expected

value denoted cos(θCS′) := E
[
cos
(
θ
C

(ri)

i S′

)]
. In other words, for all i ∈ [1, n−1]

we assume

cos(θCS′) = cos
(
θ
C

(ri)

i S′

)
= cos

(
θ
C

(0)
0 S′

)
.
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Table 3. Accuracy of the estimate
derived from several failures. Ex-
pected value of cos(θS′E) according
to Equation 29. The closer to 1, the
more accurate E is.

n 1 2 3 5 10 20 30 50 100

theoretical 0.328 0.441 0.516 0.613 0.739 0.841 0.885 0.926 0.961

experimental 0.318 0.429 0.502 0.600 0.727 0.832 0.878 0.921 0.958

To estimate the denominator of Equation 28, we split the ciphertexts in a

component parallel to the secret C
(ri)
i,‖ and a component orthogonal C

(ri)
i,⊥ to the

secret. Following Assumption 1, we will assume orthogonality between the various

C
(ri)
i,⊥ . As the norm of the sum of parallel vectors is the sum of their norm, and

the norm of the sum of orthogonal vectors can be calculated using Pythagoras’
theorem, we can approximate cos(θS′E) as follows:

cos(θS′E) ≈ n cos(θCS′)√
n2 cos(θCS′)2 + n sin(θCS′)2

=
cos(θCS′)√

cos(θCS′)2 + sin(θCS′)2/n
(29)

One can see from this equation that cos(θS′E) gets closer to 1 when n increases.

Experimental verification. The first line of Table 3 gives the expected values
of cos(θS′E) for various n, according to Equation 29, with cos(θCS′) set to

qt/E[‖S‖]E[‖C(0)‖], which is a good approximation of cos(θCS′) as cos(θCS′) >

qt/‖S‖‖C(0)‖ and because angles tend to orthogonality in high dimensional space.

Then, to verify the theory, we implemented a method to simulate the distribu-
tion of random failing ciphertexts. This technique is described in the full version
of our paper [15]. Once the simulated failing ciphertexts are found, we combine
them to build E using their correct rotations, and we compute cos(θS′E). The
latter experiment was repeated 100 times and the average values are reported in
line two of Table 3.

6.2 Estimating αi,ft and βi,ft

To estimate the effectiveness of directional failure boosting given a certain number
i of previously collected failing ciphertexts, we need to find the optimal weak
ciphertext threshold ft for each i. This corresponds to considering how much

time to spend for one precalculation
√
α−1i,ft and the average failure probability

of weak ciphertexts βi,ft after the precalculation. Let us recall the definition of
αn,ft and βn,ft , derived from Equations 7 and 8, where C0, ...,Cn−1 are the n
previously found failing ciphertexts.

αi,ft =
∑

∀ct:P [F |ct,C0,...,Cn−1]>ft

P [ct] (30)

βi,ft =

∑
∀ct:P [F |ct,C0,...,Cn−1]>ft

P [ct] · P [F |ct,C0, ...,Cn−1] > ft]∑
∀ct:P [F |ct,C0,...,Cn−1]>ft

P [ct]
. (31)
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To find the optimal values, we need to calculate Equation 30 and 31 as func-
tions of ft. This requires us to list the probability of all ciphertexts ct := (C,G),
and their failure probability P [F |ct,C0, ...,Ct−1]. As discussed in [16], exhaus-
tively computing both values is not practically feasible, and therefore we will
make some assumptions to get an estimate.

A first simplification is to cluster ciphertexts that have similar ‖C‖2 and
|θC(0)E | · · · |θC(N−1)E | and thus a similar failure probability. To further reduce the
list size, we only take into account the largest value of | cos(θC(i)E)| denoted

maxcos(θCE) := max
i

(| cos(θC(i)E)|,

which results in a slight underestimation of the effectiveness of the attack. In
other words,

P [ct] becomes P [‖C‖2,maxcos(θCE)] ,
P [F |ct,C0, ...,Cn−1] becomes P [F | ‖C‖2,maxcos(θCE)] .

Assuming independence between the norm of C and its angle with E,
P [‖C‖2,maxcos(θCE))] can be estimated using the distributions defined with
Equations 10 and 13 as follows:

P [‖C‖2,maxcos(θCE)] = P [‖C‖2]︸ ︷︷ ︸
χNl,σ

·P [maxcos(θCE)]︸ ︷︷ ︸
M(Θ2Nl,2N)

. (32)

Denoting with r the position of the maximum angle, we can rewrite P [F | ‖C‖2,maxcos(θCE)]
as follows:

P [F | ‖C‖2,maxcos(θCE)] = 1−
∏
i

(
1− P

[
Fi | ‖C‖2, | cos(θC(r)E)|

])
, (33)

= 1−

(1− P
[
Fr | ‖C‖2, | cos(θC(r)E)|

])
·∏

i 6=r

(
1− P

[
Fi | ‖C‖2, | cos(θC(i)E)| ≤ | cos(θC(r)E)|

])
 , (34)

where 1 − P
[
Fr | ‖C‖2, | cos(θC(r)E)|

]
can be estimated using Equation 26,

and P
[
Fi | ‖C‖2, | cos(θC(i)E)| ≤ | cos(θC(r)E)|

]
using an integral over Equation

26. The estimated failure probability of ciphertexts given ‖C‖2 and cos(θCE) for
the parameters listed in Table 1 is depicted in figure 5a.

Verification experiment. We verified these results experimentally by generating
5 · 106 failing ciphertexts and 5 · 106 successful ciphertexts, and calculating their
norm and angle with 1000 estimates, or in this case other ciphertexts. The failing
ciphertexts were produced using the methodology detailed in the full version of
our paper [15]. Once they are generated, we estimate their failure probability
with a procedure also detailed in the full version of our paper [15]. We combined
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Fig. 5. Failure probability of ciphertexts as a function of ‖C‖2 and cos(θCE). A zoomed
version of Figure 5a for easier comparison can be found the full version of our paper
[15].

these results into Figure 5b. These experimental results confirm our theoretical
estimates given in Figure 5a.

With the estimation of P [F | ‖C‖2,maxcos(θCE)] and P [‖C‖2,maxcos(θCE)],
αi,ft and βi,ft can be estimated as functions of i and ft. Let us now define the
optimal threshold ft as a function of i as :

fi := argminft
(√
αi,ft · βi,ft

)−1
.

6.3 Total amount of work and queries

In this section, we will derive the optimal work and queries for an adversary to
perform, in order to obtain n ciphertexts with probability 1− e−1. We introduce
the following notation: to find the (i+ 1)th ciphertext, the adversary performs
Qi queries. Using a Poisson distribution, the success probability of finding the
(i+ 1)th ciphertext in Qi queries is 1− e−Qiβi,fi . The probability of obtaining
n failures can then be calculated as the product of the success probabilities of
finding ciphertexts 0 to n− 1:

Pn =

n−1∏
i=0

(1− e−Qiβi,fi ). (35)

This is a slight underestimation of the success probability of the attack,
because if an adversary finds a failing ciphertext in less than Qi samples, she
can query more ciphertexts in the next stages i+ 1, . . . , n. However, this effect is
small due to the large value of Qi.

The total amount of precomputation quantum work, and the total amount
of queries to obtain the n failing ciphertexts by performing Qi tries for each
ciphertext, can be expressed as
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ciphertexts n 1 2 3 5 10 20 30

log2(Wtot
n ) 112.45 112.77 112.78 112.78 112.78 112.78 112.78

log2(Wtot
n /Wtot

1 ) — 0.32 0.33 0.33 0.33 0.33 0.33

log2(Qtot
n ) 102.21 102.86 102.87 102.87 102.87 102.87 102.87

log2(Qtot
n /Qtot

1 ) — 0.65 0.66 0.66 0.66 0.66 0.66

Table 4. Quantum work Wtot
n and queries Qtot

n required to find n failing ciphertexts
with probability 1− e−1. Finding the first ciphertext requires the heaviest amount of
computation. After the third failing ciphertext is found, the following ones are essentially
for free.

Wtot
n :=

n−1∑
i=0

Qi√
αi,fi︸ ︷︷ ︸

:=Wi

Qtot
n :=

n−1∑
i=0

Qi. (36)

Recall that for now we assume there is no upper limit to the number of
decryption queries that can be made, and we focus on minimizing the amount of
work. The values of Qi that minimizes the total quantum workWtot

n can be found
using the following Lagrange multiplier, minimizing the total amount of work to
find n failures with probability 1− e−1 using the above probability model:

L(Q0, · · · , Qn−1, λ) =

n−1∑
t=0

Qi√
αi,fi

+ λ

(
(1− e−1)−

n−1∏
i=0

(1− e−Qiβi,fi )

)
(37)

By equating the partial derivative of L in Q0, · · · , Qn−1 and λ to zero
and solving the resulting system of equations, we obtain the optimal values
of Q0, · · · , Qn−1 to mount our attack.

The resulting total work and queries of obtaining n ciphertext using directional
failure boosting are given in Table 4 and Figure 6. One can see that the majority
of the work lies in obtaining the first ciphertext, and that obtaining more than
one ciphertext can be done in less than double the work and queries, or less
than one extra bit of complexity. For schemes with a lower failure probability,
failing ciphertexts will be more correlated to the secret, so that the directional
information is higher and directional failure boosting will be more effective.

In conclusion, the security of a scheme with low failure probability under
a single target decryption failure attack can be approximated by the amount
of work and queries that an adversary needs to do in order to obtain the first
decryption failure. We emphasize the fact that obtaining many failures for a low
overhead threatens the security of the scheme (See §5.4).

7 Discussion and variants

7.1 Comparison with D’Anvers et al. [16]

In figure 7, the total work and queries needed to obtain n ciphertexts with
probability 1 − e−1 is plotted for both the traditional failure boosting, and
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Fig. 6. Quantum work Wi and number of
decryption queries Qi required to find a
new failing ciphertext, given the i failing
ciphertexts found previously.
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20 21 22 23 24 25

ciphertexts

2113

2114

2115

2116

2117

to
ta

l w
or

k

work to obtain n ciphertexts
work
work - traditional

(a) Quantum work Wtot
n

20 21 22 23 24 25

ciphertexts

2102

2103

2104

2105

2106

2107

to
ta

l q
ue

rie
s

queries to obtain n ciphertexts
queries
queries - traditional

(b) Queries Qtot
n

Fig. 7. Quantum work Wtot
n and number of decryption queries Qtot

n required to obtain
n failing ciphertexts with probability 1− e−1, given the number of previously found
failing ciphertexts.

7.2 Minimizing the number of queries instead

In case there is a maximal number of decryption queries is imposed, say 2K , the
same attack strategy can be followed. However, to limit the number of queries

Qtot
n necessary in the attack, a stronger preprocessing

√
α−1i,ft might be necessary

to increase the failure probability βi,ft of weak ciphertexts over 2−K . The only
change to accomplish this is selecting the threshold ft for each i appropriately.
Note that for most practical schemes (e.g. Kyber, Saber, New Hope), increasing
the failure probability β0,ft over 2−K is not practically feasible or would require

too much preprocessing
√
α−10,ft

.
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Figure 8 depicts the amount of work
√
α−1i,ftβ

−1
i,ft

needed to increase the failure

probability βi,ft to a certain failure probability (e.g. 2−K) for the parameters
given in Table 1. The various curves correspond to different numbers of available
failing ciphertexts. From this figure, one can see that also in this case, the work is
dominated by finding the first decryption failure. Another observation is that the
attack gets much more expensive as the maximal number of decryption queries
2K gets smaller.

Fig. 8. Quantum work Wtot
n required to

find a new failing ciphertext, as a function
of the decryption failure probability of a
Mod-LWE scheme.
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7.3 Application to ss-ntru-pke and improvement of Guo et al. [28]

In [28], an adaptive multitarget attack is proposed on the ss-ntru-pke version of
NTRUEncrypt [10], a Ring-LWE based encryption scheme that claims security
against chosen ciphertext attacks. The parameters of this scheme are given in
Table 5. The attack performs at most 264 queries on at most 264 targets and has
a classical cost of 2216 work, and a quantum cost of 2140 when speeding up the
offline phase with Grover’s search. We adapt directional failure boosting to this
attack model and propose both a single and multitarget attack.

For the single target attack, our proposed methodology in subsection 6.3 needs
more than 264 queries to obtain a ciphertext. To mitigate this, we increase the
precomputational work

√
α−1 so that the failure probability of weak ciphertexts

β increases over a certain ft, which is chosen as 2−57 to make sure the total
queries are below 264. The effect is a bigger overall computation, but a reduction
in the number of necessary decryption queries. The rest of the attack proceeds
as discussed in Subsection 6.3. The work or queries needed to obtain an extra
ciphertexts with n ciphertexts can be seen in Figure 9a. The cost of this single
target attack is 2139.6, which is close to the cost of their multitarget attack 2139.5,
as can be seen in Table 6.

l N q σs σe P [F ] Claimed
Security

ss-ntru-pke 1 1024 230 + 213 + 1 724 724 > 2−80 2198

Table 5. Parameters of the ss-ntru-pke [10] scheme.
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scheme claimed multitarget our single target our multitarget
security attack [28] attack attack

ss-ntru-pke 2198 2139.5 2139.6 296.6

Table 6. Comparison of costs for different attacks against ss-ntru-pke [10].

In the multitarget case, we can use a maximum of 264 · 264 queries to find the
first failing ciphertext, after which we use the methodology of the single target
attack to obtain further ciphertext with limited amount of queries. In practice
we stay well below the query limit to find the first failure. In this case, the work
is dominated by finding the second decryption failure, as we need to do this in
under 264 queries. The resulting work to obtain an extra ciphertext is depicted in
Figure 9b. The cost of this attack is 296.6, which is well below the cost of 2139.5

reported by Guo et al.
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Fig. 9. Quantum work Wtot
n and number of decryption queries Qtot

n required to find a
new failing ciphertext for ss-ntru-pke, given the ones found previously.
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