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Abstract. The Schnorr blind signing protocol allows blind issuing of
Schnorr signatures, one of the most widely used signatures. Despite its
practical relevance, its security analysis is unsatisfactory. The only known
security proof is informal and in the combination of the generic group
model (GGM) and the random oracle model (ROM) assuming that the
“ROS problem” is hard. The situation is similar for (Schnorr-)signed
ElGamal encryption, a simple CCA2-secure variant of ElGamal.
We analyze the security of these schemes in the algebraic group model
(AGM), an idealized model closer to the standard model than the GGM.
We first prove tight security of Schnorr signatures from the discrete
logarithm assumption (DL) in the AGM+ROM. We then give a rigorous
proof for blind Schnorr signatures in the AGM+ROM assuming hardness
of the one-more discrete logarithm problem and ROS.
As ROS can be solved in sub-exponential time using Wagner’s algorithm,
we propose a simple modification of the signing protocol, which leaves the
signatures unchanged. It is therefore compatible with systems that already
use Schnorr signatures, such as blockchain protocols. We show that the
security of our modified scheme relies on the hardness of a problem related
to ROS that appears much harder. Finally, we give tight reductions, again
in the AGM+ROM, of the CCA2 security of signed ElGamal encryption
to DDH and signed hashed ElGamal key encapsulation to DL.

Keywords: Schnorr signatures, blind signatures, algebraic group model,
ElGamal encryption, blockchain protocols

1 Introduction

Schnorr Signatures. The Schnorr signature scheme [Sch90, Sch91] is one
of the oldest and simplest signature schemes based on prime-order groups. Its
adoption was hindered for years by a patent which expired in February 2008, but
it is by now widely deployed: EdDSA [BDL+12], a specific instantiation based
on twisted Edward curves, is used for example in OpenSSL, OpenSSH, GnuPG
and more. Schnorr signatures are also expected to be implemented in Bitcoin



[Wui18], enabling multi-signatures supporting public key aggregation, which will
result in considerable scalability and privacy enhancements [BDN18, MPSW19].

The security of the Schnorr signature scheme has been analyzed in the random
oracle model (ROM) [BR93], an idealized model which replaces cryptographic
hash functions by truly random functions. Pointcheval and Stern [PS96b, PS00]
proved Schnorr signatures secure in the ROM under the discrete logarithm
assumption (DL). The proof, based on the so-called Forking Lemma, proceeds by
rewinding the adversary, which results in a loose reduction (the success probability
of the DL solver is a factor qh smaller than that of the adversary, where qh is the
number of the adversary’s random oracle queries). Using the “meta reduction”
technique, a series of works showed that this security loss is unavoidable when the
used reductions are either algebraic [PV05, GBL08, Seu12] or generic [FJS19].
Although the security of Schnorr signatures is well understood (in the ROM), the
same cannot be said for two related schemes, namely blind Schnorr signatures
and Schnorr-signed ElGamal encryption.

Blind Schnorr Signatures. A blind signature scheme allows a user to obtain
a signature from a signer on a messagem in such a way that (i) the signer is unable
to recognize the signature later (blindness, which in particular implies that m
remains hidden from the signer) and (ii) the user can compute one single signature
per interaction with the signer (one-more unforgeability). Blind signature schemes
were introduced by Chaum [Cha82] and are a fundamental building block for
applications that guarantee user anonymity, e.g. e-cash [Cha82, CFN90, OO92,
CHL05, FPV09], e-voting [FOO93], direct anonymous attestation [BCC04], and
anonymous credentials [Bra94, CL01, BCC+09, BL13a, Fuc11].

Constructions of blind signature schemes range from very practical schemes
based on specific assumptions and usually provably secure in the ROM [PS96a,
PS00, Abe01, Bol03, FHS15, HKL19] to theoretical schemes provably secure in
the standard model from generic assumptions [GRS+11, BFPV13, GG14].

The blind Schnorr signature scheme derives quite naturally from the Schnorr
signature scheme [CP93]. It is one of the most efficient blind signature schemes and
increasingly used in practice. Anticipating the implementation of Schnorr signa-
tures in Bitcoin, developers are already actively exploring the use of blind Schnorr
signatures for blind coin swaps, trustless tumbler services, and more [Nic19].

While the hardness of computing discrete logarithms in the underlying groupG
is obviously necessary for the scheme to be unforgeable, Schnorr [Sch01] showed
that another problem that he named ROS, which only depends on the order p of
the group G, must also be hard for the scheme to be secure. Informally, the ROS`
problem, parameterized by an integer `, asks to find `+ 1 vectors ~ρi = (ρi,j)j∈[`]
such that the system of `+ 1 linear equations in unknowns c1, . . . , c` over Zp∑`

j=1 ρi,jcj = Hros(~ρi) , i ∈ [`+ 1]

has a solution, where Hros : (Zp)` → Zp is a random oracle. Schnorr showed that
an attacker able to solve the ROS` problem can produce `+1 valid signatures while
interacting (concurrently) only ` times with the signer. Slightly later, Wagner
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[Wag02] showed that the ROS` problem can be reduced to the (`+1)-sum problem,
which can solved with time and space complexity O

(
(`+1)2λ/(1+blg(`+1)c)), where

λ is the bit size of p. For example, for λ = 256, this attack yields 16 valid
signatures after ` = 15 interactions with the signer in time and space close to 255.
For ` + 1 = 2

√
λ, the attack has sub-exponential time and space complexity

O(22
√
λ), although the number of signing sessions becomes arguably impractical.

Asymptotically, this attack can be thwarted by increasing the group order, but
this would make the scheme quite inefficient.

From a provable-security point of view, a number of results [FS10, Pas11,
BL13b] indicate that blind Schnorr signatures cannot be proven one-more un-
forgeable under standard assumptions, not even in the ROM. The only positive
result by Schnorr and Jakobsson [SJ99] and Schnorr [Sch01] states that blind
Schnorr signatures are secure in the combination of the generic group model and
the ROM assuming hardness of the ROS problem.

The recent analysis by Hauck, Kiltz, and Loss [HKL19] of blind signatures
derived from linear identification schemes does not apply to Schnorr. The reason
is that the underlying linear function family F : Zp → G, x 7→ xG lacks the
property of having a pseudo torsion-free element from the kernel (see [HKL19,
Def. 3.1]). In particular, F is one-to-one, whereas Hauck et al. reduce blind
signature unforgeability to collision resistance of the underlying function family.

The Algebraic Group Model. The generic group model (GGM) [Nec94,
Sho97] is an idealized model for the security analysis of cryptosystems defined
over cyclic groups. Instead of receiving concrete group elements, the adversary
only gets “handles” for them and has access to an oracle that performs the group
operation (denoted additively) on handles. This implies that if the adversary
is given a list of (handles of) group elements (X1, . . . , Xn) and later returns (a
handle of) a group element Z, then by inspecting its oracle calls one can derive a
“representation” ~z = (z1, . . . , zn) such that Z =

∑n
i=1 ziXi.

Fuchsbauer, Kiltz, and Loss [FKL18] introduced the algebraic group model
(AGM), a model that lies between the standard model and the GGM. On the one
hand, the adversary has direct access to group elements; on the other hand, it is
assumed to only produce new group elements by applying the group operation
to received group elements. In particular, with every group element Z that it
outputs, the adversary also gives a representation ~z of Z in terms of the group
elements it has received so far. While the GGM allows for proving information-
theoretic guarantees, security results in the AGM are proved via reductions to
computationally hard problems, like in the standard model.

Our starting point is the observation that in the combination5 AGM+ROM
Schnorr signatures have a tight security proof under the DL assumption. This
is because we can give a reduction which works straight-line, i.e., unlike the
forking-lemma-based reduction [PS96b, PS00], which must rewind the adversary,
it runs the adversary only once.6 Motivated by this, we then turn to blind Schnorr
5 This combination was already considered when the AGM was first defined [FKL18].
6 A similar result [ABM15] shows that Schnorr signatures, when viewed as non-
interactive proofs of knowledge of the discrete logarithm of the public key, are
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signatures, whose security in the ROM remains elusive, and study their security
in the AGM+ROM.

Our Results on Blind Schnorr Signatures. Our first contribution is a
rigorous analysis of the security of blind Schnorr signatures in the AGM+ROM.
Concretely, we show that any algebraic adversary successfully producing `+ 1
forgeries after at most ` interactions with the signer must either solve the one-
more discrete logarithm (OMDL) problem or the ROS` problem. Although this
is not overly surprising in view of the previous results in the GGM [SJ99, Sch01],
this gives a more satisfying characterization of the security of this protocol.
Moreover, all previous proofs [SJ99, Sch01] were rather informal; in particular,
the reduction solving ROS was not explicitly described. In contrast, we provide
precise definitions (in particular for the ROS problem, whose exact specification
is central for a security proof) and work out the details of the reductions to both
OMDL and ROS, which yields the first rigorous proof.

Nevertheless, the serious threat by Wagner’s attack for standard-size group
orders remains. In order to remedy this situation, we propose a simple modification
of the scheme which only alters the signing protocol (key generation and signature
verification remain the same) and thwarts (in a well-defined way) any attempt at
breaking the scheme by solving the ROS problem. The idea is that the signer
and the user engage in two parallel signing sessions, of which the signer only
finishes one (chosen at random) in the last round. Running this tweak takes
thus around twice the time of the original protocol. We show that an algebraic
adversary successfully mounting an (`+ 1)-forgery attack against this scheme
must either solve the OMDL problem or a modified ROS problem, which appears
much harder than the standard ROS problem for large values of `, which is
precisely when the standard ROS problem becomes tractable.

Our results are especially relevant to applications that impose the signature
scheme and for which one then has to design a blind signing protocol. This is the
case for blockchain-based systems where modifying the signature scheme used for
authorizing transactions is a heavy process that can take years (if possible at all).
We see a major motivation for studying blind Schnorr signatures in its real-world
relevance for protocols that use Schnorr signatures or will in the near future,
such as Bitcoin. For these applications, Wagner’s attack represents a significant
risk, which can be thwarted by using our modified signing protocol.

Chosen-Ciphertext-Secure ElGamal Encryption. Recall the ElGamal
public-key encryption (PKE) scheme [ElG85]: given a cyclic group (G,+) of prime
order p and a generator G, a secret/public key pair is of the form (y, yG) ∈ Zp×G.
A messageM ∈ G is encrypted as (X := xG,M+xY ) for a random x←$ Zp. This
scheme is IND-CPA-secure under the decisional Diffie-Hellman (DDH) assumption
[TY98], that is, no adversary can distinguish encryptions of two messages. Since
the scheme is homomorphic, it cannot achieve IND-CCA2 security, where the
adversary can query decryptions of any ciphertext (except of the one it must

simulation-sound extractable, via a straight-line extractor. Our proof is much simpler
and gives a concrete security statement.
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distinguish). However, ElGamal has been shown to be IND-CCA1-secure (where
no decryption queries can be made after receiving the challenge ciphertext) in
the AGM under a “q-type” variant of DDH [FKL18].7

A natural way to make ElGamal encryption IND-CCA2-secure is to add
a proof of knowledge of the randomness x used to encrypt. (Intuitively, this
would make the scheme plaintext-aware [BR95].) The reduction of IND-CCA2
security can then extract x to answer decryption queries. Since x together with
the first part X of the ciphertext form a Schnorr key pair, a natural idea is to
use a Schnorr signature [Jak98, TY98], resulting in (Schnorr-)signed ElGamal
encryption. This scheme has a number of attractive properties: ciphertext validity
can be checked without knowledge of the decryption key, and one can work
homomorphically with the “core” ElGamal ciphertext (a property sometimes
called “submission-security” [Wik08]), which is very useful in e-voting.

Since Schnorr signatures are extractable in the ROM, one would expect that
signed ElGamal can be proved IND-CCA2 under, say, the DDH assumption (in the
ROM). However, turning this intuition into a formal proof has remained elusive.
The main obstacle is that Schnorr signatures are not straight-line extractable in
the ROM [BNW17]. As explained by Shoup and Gennaro [SG02], the adversary
could order its random-oracle and decryption queries in a way that makes the
reduction take exponential time to simulate the decryption oracle.

Schnorr and Jakobsson [SJ00] showed IND-CCA2 security in the GGM+ROM,
while Tsiounis and Yung [TY98] gave a proof under a non-standard “knowledge
assumption”, which amounts to assuming that Schnorr signatures are straight-
line extractable. On the other hand, impossibility results tend to indicate that
IND-CCA2 security cannot be proved in the ROM [ST13, BFW16].

Our Results on Signed ElGamal Encryption. Our second line of contri-
butions is twofold. First, we prove (via a tight reduction) that in the AGM+ROM,
Schnorr-signed ElGamal encryption is IND-CCA2-secure under the DDH as-
sumption. While intuitively this should follow naturally from the straight-line
extractability of Schnorr proofs of knowledge for algebraic adversaries, the formal
proof is technically quite delicate: since messages are group elements, the “basis”
of group-element inputs in terms of which the adversary provides representations
contains not only the three group elements of the challenge ciphertext but also
grows as the adversary queries the decryption oracle.8

We finally consider the “hashed” variant of ElGamal (also known as DHIES)
[ABR01], in which a key is derived as k = H(xY ). In the ROM, the corresponding
key-encapsulation mechanism (KEM) is IND-CCA2-secure under the strong
Diffie-Hellman assumption (i.e, CDH is hard even when given a DDH oracle)
7 [FKL18] showed IND-CCA1 security for the corresponding key-encapsulation mech-
anism, which returns a key K = xY and an encapsulation X = xG. The ElGamal
PKE scheme is obtained by combining it with the one-time-secure DEMM 7→M+K.
Generic results on hybrid schemes [HHK10] imply IND-CCA1 security of the PKE.

8 Bernhard et al. [BFW16] hastily concluded that, in the AGM+ROM, IND-CCA2-
security of signed ElGamal followed from straight-line extractability of Schnorr
signatures showed in [ABM15]. Our detailed proof shows that this was a bit optimistic.
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[CS03]. We propose to combine the two approaches: concretely, we consider the
hashed ElGamal KEM together with a Schnorr signature proving knowledge of
the randomness used for encapsulating the key and give a tight reduction of the
IND-CCA2 security of this scheme to the DL problem in the AGM+ROM.

2 Preliminaries

General Notation. We denote the (closed) integer interval from a to b by
[a, b] and let [b] := [1, b]. A function µ : N→ [0, 1] is negligible (denoted µ = negl)
if ∀ c ∈ N ∃λc ∈ N ∀λ ≥ λc : µ(λ) ≤ λ−c. A function ν is overwhelming if
1 − ν = negl. The logarithm in base 2 is denoted lg and x ≡p y denotes x ≡ y
(mod p). For a non-empty finite set S, sampling an element x from S uniformly at
random is denoted x←$S. All algorithms are probabilistic unless stated otherwise.
By y ← A(x1, . . . , xn) we denote running algorithm A on inputs (x1, . . . , xn)
and uniformly random coins and assigning the output to y. If A has oracle
access to some algorithm Oracle, we write y ← AOracle(x1, . . . , xn). A list
~z = (z1, . . . , zn), also denoted (zi)i∈[n], is a finite sequence. The length of a list ~z
is denoted |~z|. The empty list is denoted ( ).

A security game GAMEpar (see e.g. in Fig. 1) indexed by a set of parameters
par consists of a main and oracle procedures. The main procedure has input the
security parameter λ and runs an adversary A, which interacts with the game
by calling the provided oracles. When the adversary stops, the game computes
its output b, which we write b ← GAMEApar(λ). For truth values we identify
false with 0 and true with 1. Games are either computational or decisional. The
advantage of A in GAMEpar is defined as Advgame

par,A(λ) := Pr[1 ← GAMEApar(λ)]
if the game is computational and as Advgame

par,A(λ) := 2 · Pr[1← GAMEApar(λ)]− 1
if it is decisional, where the probability is taken over the random coins of the
game and the adversary. We say that GAMEpar is hard if Advgame

par,A(λ) = negl(λ)
for any probabilistic polynomial-time (p.p.t.) adversary A.

Algebraic Algorithms. A group description is a tuple Γ = (p,G, G) where p
is an odd prime, G is an abelian group of order p, and G is a generator of G. We
use additive notation for the group law and denote group elements with uppercase
letters. We assume the existence of a p.p.t. algorithm GrGen which, on input the
security parameter 1λ in unary, outputs a group description Γ = (p,G, G) where
p is of bit-length λ. Given an element X ∈ G, we let logG(X) denote the discrete
logarithm of X in base G, i.e., the unique x ∈ Zp such that X = xG. We write
logX when G is clear from context.

An algebraic security game (w.r.t. GrGen) is a game GAMEGrGen that (among
other things) runs Γ ← GrGen(1λ) and runs the adversary on input Γ = (p,G, G).
An algorithm Aalg executed in an algebraic game GAMEGrGen is algebraic if
for all group elements Z that it outputs, it also provides a representation of
Z relative to all previously received group elements: if Aalg has so far received
~X = (X0, . . . , Xn) ∈ Gn+1 (where by convention we let X0 = G), then Aalg must
output Z together with ~z = (z0, . . . , zn) ∈ (Zp)n+1 such that Z =

∑n
i=0 ziXi. We
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Game DLAGrGen(λ)

(p,G, G)←GrGen(1λ)
x←$ Zp ; X := xG

y ← A(p,G, G,X)
return (y = x)

Game OMDLAGrGen(λ)

(p,G, G)←GrGen(1λ)
~x := ( ) ; q := 0

~y ← AChal,DLog(p,G, G)

return
(
~y = ~x ∧ q < |~x|

)

Oracle Chal()

x←$ Zp ; X := xG

~x := ~x ‖ (x)
return X

Oracle DLog(X)

q := q + 1 ; x := logG(X)
return x

Fig. 1. The DL and OMDL problems.

let Z[~z] denote such an augmented output. When writing ~z explicitly, we simply
write Z[z0,...,zn] (rather than Z[(z0,...,zn)]) to lighten the notation.

Algebraic Algorithms in the Random Oracle Model. The original pa-
per [FKL18] considered the algebraic group model augmented by a random oracle
and proved tight security of BLS signatures [BLS04] in this model. The random
oracle in that work is of type H : {0, 1}∗ → G, and as the outputs are group
elements, the adversary’s group element representations could depend on them.

In this work the RO is typically of type H : G×{0, 1}∗ → Zp. Thus, an algebraic
adversary querying H on some input (Z,m) must also provide a representation ~z
for the group-element input Z. In a game that implements the random oracle by
lazy sampling, to ease readability, we will define an auxiliary oracle H̃, which is
used by the game itself (and thus does not take representations of group elements
as input) and implements the same function as H.

The One-More Discrete Logarithm Problem. We recall the discrete log-
arithm (DL) problem in Fig. 1. The one-more discrete logarithm (OMDL) problem,
also defined in Fig. 1, is an extension of the DL problem and consists in finding
the discrete logarithm of q group elements by making strictly less than q calls to
an oracle solving the discrete logarithm problem. It was introduced in [BNPS03]
and used for example to prove the security of the Schnorr identification protocol
against active and concurrent attacks [BP02].

3 Schnorr Signatures

3.1 Definitions

A signature scheme SIG consists of the following algorithms:

– par← SIG.Setup(1λ): the setup algorithm takes as input the security para-
meter λ in unary and outputs public parameters par;

– (sk,pk)← SIG.KeyGen(par): the key generation algorithm takes parameters
par and outputs a secret key sk and a public key pk;
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Game EUF-CMAASIG(λ)

par← SIG.Setup(1λ)
(sk, pk)← SIG.KeyGen(par) ; Q := ( )

(m∗, σ∗)← ASign(pk)

return
(
m∗ /∈ Q ∧ SIG.Ver(pk,m∗, σ∗)

)

Oracle Sign(m)

σ ← SIG.Sign(sk,m)
Q := Q ‖ (m)
return σ

Fig. 2. The EUF-CMA security game for a signature scheme SIG.

– σ ← SIG.Sign(sk,m): the signing algorithm takes as input a secret key sk
and a message m ∈ {0, 1}∗ and outputs a signature σ;

– b← SIG.Ver(pk,m, σ): the (deterministic) verification algorithm takes pk, a
message m, and a signature σ; it returns 1 if σ is valid and 0 otherwise.

Correctness requires that for any λ and any message m, when running
par ← SIG.Setup(1λ), (sk,pk) ← SIG.KeyGen(par), σ ← SIG.Sign(sk,m), and
b← SIG.Ver(pk,m, σ), one has b = 1 with probability 1. The standard security
notion for a signature scheme is existential unforgeability under chosen-message
attack (EUF-CMA), formalized via game EUF-CMA, which we recall in Fig. 2.
The Schnorr signature scheme [Sch91] is specified in Fig. 3.

3.2 Security of Schnorr Signatures in the AGM

As a warm-up and to introduce some of the techniques used later, we reduce
security of Schnorr signatures to hardness of DL in the AGM+ROM.

Theorem 1. Let GrGen be a group generator. Let Aalg be an algebraic adversary
against the EUF-CMA security of the Schnorr signature scheme Sch[GrGen]
running in time at most τ and making at most qs signature queries and qh queries

Sch.Setup(1λ)

(p,G, G)← GrGen(1λ)
Select H : {0, 1}∗ → Zp
return par := (p,G, G,H)

Sch.Sign(sk,m)

(p,G, G,H, x) := sk ; r←$ Zp ; R := rG

c := H(R,m) ; s := r + cx mod p
return σ := (R, s)

Sch.KeyGen(par)

(p,G, G,H) := par ; x←$ Zp ; X := xG

sk := (par, x) ; pk := (par, X)
return (sk,pk)

Sch.Ver(pk,m, σ)

(p,G, G,H, X) := pk ; (R, s) := σ

c := H(R,m)
return (sG = R+ cX)

Fig. 3. The Schnorr signature scheme Sch[GrGen] based on a group generator GrGen.
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to the random oracle. Then there exists an algorithm B solving the DL problem
w.r.t. GrGen, running in time at most τ +O(qs + qh), such that

Adveuf-cma
Sch[GrGen],Aalg

(λ) ≤ Advdl
GrGen,B(λ) + qs(qs + qh) + 1

2λ−1 .

We start with some intuition for the proof. In the random oracle model,
Schnorr signatures can be simulated without knowledge of the secret key by
choosing random c and s, setting R := sG − cX and then programming the
random oracle so that H(R,m) = c. On the other hand, an adversary that returns
a signature forgery (m∗, (R∗, s∗)) can be used to compute the discrete logarithm
of the public key X. In the ROM this can be proved by rewinding the adversary
and using the Forking Lemma [PS96b, PS00], which entails a security loss.

In the AGM+ROM, extraction is straight-line and the security proof thus
tight: A valid forgery satisfies R∗ = s∗G − c∗X, with c∗ := H(R∗,m∗). On
the other hand, since the adversary is algebraic, when it made its first query
H(R∗,m∗), it provided a representation of R∗ in basis (G,X), that is (γ∗, ξ∗)
with R∗ = γ∗G+ ξ∗X. Together, these equations yield

(ξ∗ + c∗)X = (s∗ − γ∗)G .

Since c∗ was chosen at random after the adversary chose ξ∗, the probability
that ξ∗ + c∗ 6≡p 0 is overwhelming, in which case we can compute the discrete
logarithm of X from the above equation.

Proof of Theorem 1. Let Aalg be an algebraic adversary in EUF-CMASch[GrGen]
and making at most qs signature queries and qh RO queries. We proceed by a
sequence of games specified in Fig. 4.

Game0. The first game is EUF-CMA (Fig. 2) for the Schnorr signature scheme
(Fig. 3) with a random oracle H. The game maintains a list Q of queried messages
and T of values sampled for H. To prepare the change to Game1, we have written
the finalization of the game in an equivalent way: it first checks that m∗ /∈ Q and
then runs Sch.Ver(pk,m∗, (R∗, s∗)), which we have written explicitly. Since the
adversary is algebraic, it must provide a representation (γ∗, ξ∗) for its forgery
(m∗, (R∗[γ∗,ξ∗], s

∗) such that R∗ = γ∗G+ ξ∗X, and similarly for each RO query
H(R[γ,ξ],m). By definition,

Advgame0
Aalg

(λ) = Adveuf-cma
Sch[GrGen],Aalg

(λ) . (1)

Game1. We introduce an auxiliary table U that for each query H(R[γ,ξ],m)
stores the representation (γ, ξ) of R. Second, when the adversary returns its
forgery (m∗, (R∗[γ∗,ξ∗], s

∗)) and previously made a query H(R∗[γ′,ξ′],m∗) for some
(γ′, ξ′), then we consider this previous representation of R∗, that is, we set
(γ∗, ξ∗) := (γ′, ξ′). The only actual difference to Game0 is that Game1 returns 0
in case ξ∗ ≡p −T(R∗,m∗) (line (I)).

We show that this happens with probability 1/p ≤ 1/2λ−1. First note that
line (I) is only executed if m∗ /∈ Q, as otherwise the game would already have

9



Game0
(
EUF-CMAAalg

Sch[GrGen]

)
, Game1

Game2
(p,G, G)← GrGen(1λ)
x←$ Zp ; X := xG

Q := ( ) ; T := ( ) ; U := ( )(
m∗, (R∗[γ∗,ξ∗], s

∗)
)
← AH,Sign

alg (p,G, G,X)
// R∗ = γ

∗
G + ξ

∗
X

if m∗ ∈ Q then return 0

c∗ := H̃(R∗,m∗)

if U(R∗,m∗) 6= ⊥ then
(γ∗, ξ∗) := U(R∗,m∗)

if ξ∗ ≡p −T(R∗,m∗) then
return 0 (I)

return (s∗G = R∗ + c∗X)

Oracle H̃(R,m)

if T(R,m) = ⊥ then
T(R,m)←$ Zp

return T(R,m)

Oracle H(R[γ,ξ],m) // R = γG + ξX

if T(R,m) = ⊥ then
T(R,m)←$ Zp

U(R,m) := (γ, ξ)

return T(R,m)

Oracle Sign(m) // in Game0 and Game1

r←$ Zp ; R := rG

c := H̃(R,m) ; s := r + cx mod p
Q := Q‖(m)
return (R, s)

Oracle Sign(m) // in Game2

c, s←$ Zp ; R := sG− cX
if T(R,m) = ⊥ then T(R,m) := c

else abort game and
return 0 (II)

Q := Q‖(m)
return (R, s)

Fig. 4. Games in the proof of Theorem 1. Game0 is defined by ignoring all boxes; boxes
are included in Game1 and Game2; Gray boxes are only included in Game2.

returned 0. Hence T(R∗,m∗) can only have been defined either (1) during a call
to H or (2), if it is still undefined when Aalg stops, by the game when defining c∗.
In both cases the probability of returning 0 in line (I) is 1/p:

(1) If T(R∗,m∗) was defined during a H query of the form H(R∗[γ′,ξ′],m∗)
then T(R∗,m∗) is drawn uniformly at random and independently from ξ′. Since
then U(R∗,m∗) 6= ⊥, the game sets ξ∗ := ξ′ and hence ξ∗ ≡p −T(R∗,m∗) holds
with probability exactly 1/p. (2) If T(R∗,m∗) is only defined after the adversary
output ξ∗ then again we have ξ∗ ≡p −T(R∗,m∗) with probability 1/p. Hence,

Advgame1
Aalg

(λ) ≥ Advgame0
Aalg

(λ)− 1
2λ−1 . (2)

Game2. In the final game we use the standard strategy of simulating the Sign
oracle without the secret key x by programming the random oracle. Game1 and
Game2 are identical unless Game2 returns 0 in line (II). For each signature query,
R is uniformly random, and the size of table T is at most qs + qh, hence the
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game aborts in line (II) with probability at most (qs + qh)/p ≤ (qs + qh)/2λ−1.
By summing over the at most qs signature queries, we have

Advgame2
Aalg

(λ) ≥ Advgame1
Aalg

(λ)− qs(qs + qh)
2λ−1 . (3)

Reduction to DL. We now construct an adversary B solving DL with the
same probability as Aalg wins Game2. On input (p,G, G) and X, the adversary
runs Aalg on input (p,G, G,X) and simulates Game2, which can be done without
knowledge of logG(X). Assume that the adversary wins Game2 by returning
(m∗, R∗, s∗) and let c∗ := T(R∗,m∗) and (γ∗, ξ∗) be defined as in the game. Thus,
ξ∗ 6= −c∗ mod p and R∗ = γ∗G+ ξ∗X; moreover, validity of the forgery implies
that s∗G = R∗ + c∗X. Hence, (s∗ − γ∗)G = (ξ∗ + c∗)X and B can compute
logX = (s∗ − γ∗)(ξ∗ + c∗)−1 mod p. Combining this with Eqs. (1)–(3), we have

Advdl
GrGen,B(λ) = Advgame2

Aalg
(λ) ≥ Adveuf-cma

Sch[GrGen],Aalg
(λ)− qs(qs + qh) + 1

2λ−1 .

Assuming that scalar multiplications in G and assignments in tables T and U
take unit time, the running time of B is τ +O(qs + qh).

4 Blind Schnorr Signatures

4.1 Definitions
We start with defining the syntax and security of blind signature schemes and focus
on schemes with a 2-round (i.e., 4 messages) signing protocol for concreteness.

Syntax. A blind signature scheme BS consists of the following algorithms:
– par ← BS.Setup(1λ) and (sk,pk) ← BS.KeyGen(par) and b ← BS.Ver(pk,
m, σ) are defined as for regular signature schemes (Sect. 3.1).

– (b, σ)← 〈BS.Sign(sk),BS.User(pk,m)〉: an interactive protocol is run between
the signer with private input a secret key sk and the user with private
input a public key pk and a message m; the signer outputs b = 1 if the
interaction completes successfully and b = 0 otherwise, while the user outputs
a signature σ if it terminates correctly, and ⊥ otherwise. For a 2-round
protocol the interaction can be realized by the following algorithms:

(msgU,0, stateU,0)← BS.User0(pk,m)
(msgS,1, stateS)← BS.Sign1(sk,msgU,0)

(msgU,1, stateU,1)← BS.User1(stateU,0,msgS,1)
(msgS,2, b)← BS.Sign2(stateS ,msgU,1)

σ ← BS.User2(stateU,1,msgS,2)

(Typically, BS.User0 just initiates the session, and thus msgU,0 = ( ) and
stateU,0 = (pk,m).)
Correctness requires that for any λ and m, when running par← BS.Setup(1λ),

(sk,pk) ← BS.KeyGen(par), (b, σ) ← 〈BS.Sign(sk),BS.User(pk,m)〉, and b′ ←
BS.Ver(pk,m, σ), we have b = 1 = b′ with probability 1.
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Game UNFABS(λ)

par← BS.Setup(1λ)
(sk, pk)← BS.KeyGen(par)
k1 := 0 ; k2 := 0 ; S := ∅

(m∗i , σ∗i )i∈[n] ← ASign1,Sign2 (pk)

return
(
k2 < n

∧ ∀ i 6= j ∈ [n] : (m∗i , σ∗i ) 6= (m∗j , σ∗j )

∧ ∀ i ∈ [n] : BS.Ver(pk,m∗i , σ∗i ) = 1
)

Oracle Sign1(msg)

k1 := k1 + 1 // session id

(msg′, statek1 )← BS.Sign1(sk,msg)
S := S ∪ {k1} // open sessions

return (k1,msg′)

Oracle Sign2(j,msg)

if j /∈ S then return ⊥
(msg′, b)← BS.Sign2(statej ,msg)
if b = 1 then S := S \ {j} ; k2 := k2 + 1
return msg′

Fig. 5. The (strong) unforgeability game for a blind signature scheme BS with a 2-round
signing protocol.

Unforgeability. The standard security notion for blind signatures demands
that no user, after interacting arbitrary many times with a signer and k of these
interactions were considered successful by the signer, can produce more than k
signatures. Moreover, the adversary can schedule and interleave its sessions with
the signer in any arbitrary way.

In game UNFABS defined in Fig. 5 the adversary has access to two oracles
Sign1 and Sign2 corresponding to the two phases of the interactive protocol.
The game maintains two counters k1 and k2 (initially set to 0), where k1 is used
as session identifier, and a set S of “open” sessions. Oracle Sign1 takes the user’s
first message (which for blind Schnorr signatures is empty), increments k1, adds
k1 to S and runs the first round on the signer’s side, storing its state as statek1 .
Oracle Sign2 takes as input a session identifier j and a user message; if j ∈ S, it
runs the second round on the signer’s side; if successful, it removes j from S and
increments k2, which thus represents the number of successful interactions.

BS satisfies unforgeability if Advunf
BS,A(λ) is negligible for all p.p.t. adversaries A.

Note that we consider “strong” unforgeability, which only requires that all pairs
(m∗i , σ∗i ) returned by the adversary (rather than all messages m∗i ) are distinct.

Blindness. Blindness requires that a signer cannot link a message/signature
pair to a particular execution of the signing protocol. Formally, the adversary
chooses two messages m0 and m1 and the experiment runs the signing protocol
acting as the user with the adversary, first obtaining a signature σb on mb and
then σ1−b on m1−b for a random bit b. If both signatures are valid, the adversary
is given (σ0, σ1) and must determine the value of b. A formal definition can be
found in the full version [FPS19].

Blind Schnorr signatures. A blind signature scheme BlSch is obtained from
the scheme Sch in Fig. 3 by replacing Sch.Sign with the interactive protocol
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BlSch.Sign((p,G, G,H), x) BlSch.User(((p,G, G,H), X),m)
r←$ Zp ; R := rG R−−−−−−−−→ α, β←$ Zp

R′ := R+ αG+ βX
c′ := H(R′,m)
c := c′ + β mod pc←−−−−−−−−

s := r + cx mod p s−−−−−−−−→

return 1

if sG 6= R+ cX then return ⊥
s′ := s+ α mod p
return σ := (R′, s′)

Fig. 6. The signing protocol of the blind Schnorr signature scheme.

specified in Fig. 6 (the first message msgU,0 from the user to the signer is empty
and is not depicted). Correctness follows since a signature (R′, s′) obtained by
the user after interacting with the signer satisfies Sch.Ver:

s′G = sG+ αG = (r + cx)G+ αG = R+ αG+ βX + (−β + c)X
= R′ + c′X = R′ + H(R′,m)X .

Moreover, Schnorr signatures achieve perfect blindness [CP93].

4.2 The ROS Problem

The security of blind Schnorr signatures is related to the ROS (Random inhomo-
geneities in an Overdetermined, Solvable system of linear equations) problem,
which was introduced by Schnorr [Sch01]. Consider the game ROSGrGen,`,Ω in
Fig. 7, parameterized by a group generator GrGen,9 an integer ` ≥ 1, and a set Ω
(we omit GrGen and Ω from the notation when they are clear from context). The
adversary A receives a prime p and has access to a random oracle Hros taking
as input (~ρ, aux) where ~ρ ∈ (Zp)` and aux ∈ Ω. Its goal is to find ` + 1 dis-
tinct pairs (~ρi, auxi)i∈[`+1] together with a solution (cj)j∈[`] to the linear system∑`
j=1 ρi,jcj ≡p Hros(~ρi, auxi), i ∈ [`+ 1].10

The lemma below, which refines Schnorr’s observation [Sch01], shows how
an algorithm A solving the ROS` problem can be used to break the one-more
unforgeability of blind Schnorr signatures. The proof is deferred to the full
version [FPS19] due to space constraints.

Lemma 1. Let GrGen be a group generator. Let A be an algorithm for game
ROSGrGen,`,Ω, where Ω = (Zp)2 × {0, 1}∗, running in time at most τ and making

9 The group generator GrGen is only used to generate a prime p of length λ; the group
G is not used in the game.

10 The original definition of the problem by Schnorr [Sch01] sets Ω := ∅. Our more
general definition does not seem to significantly modify the hardness of the problem
while allowing to prove Theorem 2.
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Game ROSAGrGen,`,Ω(λ)

(p,G, G)← GrGen(1λ) ; Tros := ( )(
(~ρi, auxi)i∈[`+1], (cj)j∈[`]

)
← AHros (p)

// ~ρi = (ρi,1, . . . , ρi,`)

return
(
∀ i 6= i′ ∈ [`+ 1] : (~ρi, auxi) 6= (~ρi′ , auxi′)

∧ ∀ i ∈ [`+ 1] :
∑`

j=1 ρi,jcj ≡p Hros(~ρi, auxi)
)

Oracle Hros(~ρ, aux)

if Tros(~ρ, aux) = ⊥ then
Tros(~ρ, aux)←$ Zp

return Tros(~ρ, aux)

Fig. 7. The ROS game, where Hros : (Zp)` ×Ω → Zp is a random oracle.

at most qh random oracle queries. Then there exists an (algebraic) adversary B
running in time at most τ +O(`+ qh), making at most ` queries to Sign1 and
Sign2 and qh random oracle queries, such that

Advunf
BlSch[GrGen],B(λ) ≥ Advros

GrGen,`,Ω,A(λ)− q2
h + (`+ 1)2

2λ−1 .

The hardness of ROS critically depends on `. In particular, for small values
of `, ROS is statistically hard, as captured by the following lemma.

Lemma 2. Let GrGen be a group generator, ` ≥ 1, and Ω be some arbitrary set.
Then for any adversary A making at most qh queries to Hros,

Advros
GrGen,`,Ω,A(λ) ≤

(
qh
`+1
)

+ 1
2λ−1 .

Proof. Consider a modified game ROS*
GrGen,`,Ω that is identical to ROS, except

that it returns 0 when the adversary outputs ((~ρi, auxi)i∈[`+1], (cj)j∈[`]) such
that for some i ∈ [`+ 1] it has not made the query Hros(~ρi, auxi). Games ROS
and ROS∗ are identical unless in game ROS the adversary wins and has not
made the query Hros(~ρi, auxi) for some i, which happens with probability at most
1/p ≤ 1/2λ−1. Hence,

Advros
GrGen,`,Ω,A(λ) ≤ Advros∗

GrGen,`,Ω,A(λ) + 1
2λ−1 .

In order to win the modified game ROS∗, A must in particular make `+1 distinct
random oracle queries (~ρi, auxi)i∈[`+1] such that the system∑`

j=1 ρi,jcj ≡p Hros(~ρi, auxi), i ∈ [`+ 1] (4)

with unknowns c1, . . . , c` has a solution. Consider any subset of ` + 1 queries
(~ρi, auxi)i∈[`+1] made by the adversary to the random oracle and let M denote
the (`+ 1)× ` matrix whose i-th row is ~ρi and let t ≤ ` denote its rank. Then,
Eq. (4) has a solution if and only if the row vector ~h := (Hros(~ρi, auxi))T

i∈[`+1] is
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in the span of the columns of M . Since ~h is uniformly random, this happens with
probability pt/p`+1 ≤ 1/p ≤ 1/2λ−1. By the union bound,

Advros∗
GrGen,`,Ω,A(λ) ≤

(
qh
`+1
)

2λ−1 ,

which concludes the proof.

On the other hand, the ROS` problem can be reduced the (`+1)-sum problem,
for which Wagner’s generalized birthday algorithm [Wag02, MS12, NS15] can be
used. More specifically, consider the (`+ 1)× ` matrix

(ρi,j) =
[ 1 0 ··· 0

0 1 ··· 0
. . .

0 ··· 0 1
1 ··· ··· 1

]

and let ~ρi denote its i-th line, i ∈ [` + 1]. Let q := 2λ/(1+blg(`+1)c). The solv-
ing algorithm builds lists Li = (Hros(~ρi, auxi,k))k∈[q] for i ∈ [`] and L`+1 =
(−Hros(~ρ`+1, aux`+1,k))k∈[q] for arbitrary values auxi,k and uses Wagner’s algo-
rithm to find an element ei in each list Li such that

∑`+1
i=1 ei ≡p 0. Then, it is easily

seen that ((~ρi, auxi)i∈[`+1], (ej)j∈[`]), where auxi is such that ei = Hros(~ρi, auxi), is
a solution to the ROS problem. This algorithm makes qh = (`+ 1)2λ/(1+blg(`+1)c)

random oracle queries, runs in time an space O((` + 1)2λ/(1+blg(`+1)c)), and
succeeds with constant probability.

4.3 Security of Blind Schnorr Signatures

We now formally prove that blind Schnorr signatures are unforgeable assuming
the hardness of the one-more discrete logarithm problem and the ROS problem.

Theorem 2. Let GrGen be a group generator. Let Aalg be an algebraic adversary
against the UNF security of the blind Schnorr signature scheme BlSch[GrGen]
running in time at most τ and making at most qs queries to Sign1 and qh queries
to the random oracle. Then there exist an algorithm Bros for the ROSqs problem
making at most qh + qs + 1 random oracle queries and an algorithm Bomdl for
the OMDL problem w.r.t. GrGen making at most qs queries to its oracle DLog,
both running in time at most τ +O(qs + qh), such that

Advunf
BlSch[GrGen],Aalg

(λ) ≤ Advomdl
GrGen,Bomdl

(λ) + Advros
`,Bros

(λ) .

We start with explaining the proof idea. Consider an adversary in the unforge-
ability game, let X be the public key and R1, . . . , R` be the elements returned by
the oracle Sign1 and let (R∗i , s∗i ) be the adversary’s forgeries on messages m∗i . As
Aalg is algebraic, it must also output a representation (γi, ξi, ~ρi) for R∗i w.r.t. the
group elements received from the game: R∗i = γiG+ ξiX +

∑`
j=1 ρi,jRj . Validity

of the forgeries implies another representation, namely R∗i = s∗iG − c∗iX with
c∗i = H(R∗i ,m∗i ). Together, these yield

(c∗i + ξ∗i )X +
∑`
j=1 ρ

∗
i,jRj = (s∗i − γ∗i )G , (5)
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which intuitively can be used to compute logX.
However, the reduction also needs to simulate Sign2 queries, for which,

contrary to the proof for standard Schnorr signatures (Theorem 1), it cannot
rely on programming the random oracle. In fact, the reduction can only win
OMDL, which is an easier game than DL. In particular, the reduction obtains
X,R1, . . . , Rq from its challenger and must compute their logarithms. It can
make q logarithm queries, which it uses to simulate the Sign2 oracle: on input
(j, cj), it simply returns sj ← DLog(Rj + cjX).

But this means that in Eq. (5) the reduction does not know the logarithms of
the Rj ’s; all it knows is Rj = sjG− cjX, which, when plugged into Eq. (5) yields(

c∗i + ξ∗i −
∑`
j=1 ρ

∗
i,jcj︸ ︷︷ ︸

=:χi

)
X =

(
s∗i − γ∗i −

∑`
j=1 ρ

∗
i,jsj

)
G .

Thus, if for some i, χi 6= 0, the reduction can compute x = logX, and derive
rj = logRj = sj − cj x. Together, x, r1, . . . , rq constitute an OMDL solution.

On the other hand, we can show that if χi = 0 for all i, then the adversary
has actually found a solution to the ROS problem (Fig. 7): A reduction to ROS
would answer the adversary’s queries H(R[γ,ξ,~ρ],m) by Hros(~ρ, (γ, ξ,m))− ξ; then
χi = 0 implies (recall that c∗i = H(R∗i ,m∗))

0 = χi = H(R∗i ,m∗i ) + ξ∗i −
∑`
j=1 ρ

∗
i,jcj = Hros(~ρ∗i , (γ∗i , ξ∗i ,m∗i ))−

∑`
j=1 ρ

∗
i,jcj ,

meaning
(
(~ρ ∗i , (γ∗i , ξ∗i ,m∗i ))i, (cj)j

)
is a solution to ROS.

To simplify the proof we first show the following lemma.

Lemma 3. Let GrGen be a group generator and let A be an adversary against
the UNF security of the blind Schnorr signature scheme BlSch[GrGen] running
in time at most τ and making at most qs queries to Sign1 and qh queries to the
random oracle. Then there exists an adversary B that makes exactly qs queries to
Sign1 and qs queries to Sign2 that do not return ⊥, and returns qs + 1 forgeries,
running in time at most τ +O(qs), such that

Advunf
BlSch[GrGen],A(λ) = Advunf

BlSch[GrGen],B(λ) .

Proof. We construct the following adversary that plays game UNF (Fig. 5). On
input pk, adversary B runs A(pk) and relays all oracle queries and responses
between its challenger and A. Let q be the number of A’s Sign1 queries, let
R1, . . . , Rq be the answers, and let C be the completed sessions, that is, the set
of values j such that A queried Sign2 on some input (j, ∗) and Sign2 did not
reply ⊥. Let (m∗i , (R∗i , s∗i ))i∈[n] be A’s output, for which we must have k = |C| < n
when A wins.
B then makes qs − q queries to Sign1 to receive Rq+1, . . . , Rqs . Next, B

completes all qs − k open signing sessions for distinct messages by following
the protocol in Fig. 6: for every j ∈ S := [1, . . . , qs] \ C, adversary B picks a
fresh message mj /∈ {m∗i }i∈[n] ∪ {mi}i∈S\[j] and αj , βj ←$ Zp, computes R′j :=
Rj + αjG+ βjX, queries H(R′,mj) to get c′j , computes cj := c′j + βj mod p and
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queries (j, cj) to Sign2. Upon receiving sj , B computes s′j := sj + αj mod p,
which yields a signature (R′j , s′j) on message mj .

Finally, B concatenates A’s output with qs + 1− n ≤ qs − k signatures: let
S = {j1, . . . , jqs−k}; then B returns (m∗i , (R∗i , s∗i ))i∈[n] ‖ (mji , (R′ji , s

′
ji

))i∈[qs+1−n].
When A wins the game, all tuples (m∗i , (R∗i , s∗i )) are different; as all remaining
messages also differ, all tuples output by B are distinct. By correctness of the
scheme, B’s signatures are valid. Thus whenever A wins, then so does B.

Proof of Theorem 2. LetAalg be an algebraic adversary making at most qs queries
to Sign1 and qh random oracle queries. By the above lemma, we can assume
that Aalg makes exactly ` := qs queries to Sign1, closes all sessions, and returns
`+ 1 valid signatures. We proceed with a sequence of games defined in Fig. 8.

Game0. The first game is the UNF game (Fig. 5) for scheme BlSch[GrGen] played
with Aalg in the random oracle model. We have written the finalization of the
game in a different but equivalent way. In particular, instead of checking that
(m∗i , (R∗i , s∗i )) 6= (m∗i′ , (R∗i′ , s∗i′)) for all i 6= i′ ∈ [` + 1], we simply check that
(m∗i , R∗i ) 6= (m∗i′ , R∗i′). This is equivalent since for any pair (m,R), there is a
single s ∈ Zp such that (R, s) is a valid signature for m. Hence, if the adversary
returns (m∗i , (R∗i , s∗i )) and (m∗i′ , (R∗i′ , s∗i′)) with (m∗i , R∗i ) = (m∗i′ , R∗i′) and s∗i 6= s∗i′ ,
at least one of the two forgeries is invalid. Thus,

Advgame0
Aalg

(λ) = Advunf
BlSch[GrGen],Aalg

(λ) . (6)

Game1. In Game1, we make the following changes (which are analogous to those
in the proof of Theorem 1). First, we introduce an auxiliary table U that for each
query H(R[γ,ξ,~ρ],m) stores the representation (γ, ξ, ~ρ) of R. Second, when the
adversary returns its forgeries (m∗i , (R∗i [γi,ξi,~ρi], s

∗
i ))i∈[`+1], then for each i ∈ [`+1]

for which T(R∗i ,m∗i ) is undefined, we emulate a call to H(R∗i [γi,ξi,~ρi],m
∗
i ). Again,

this does not change the output of the game, since in Game0, the value T(R∗i ,m∗i )
would be randomly assigned when the game calls H̃ to check the signature. Finally,
for each i ∈ [` + 1], we retrieve (γ∗i , ξ∗i , ~ρ ∗i ) := U(R∗i ,m∗i ) (which is necessarily
defined at this point) and return 0 if

∑`
i=1 ρ

∗
i,jcj ≡p c∗i + ξ∗i for all i ∈ [` + 1],

where cj is the (unique) value submitted to Sign2 together with j and not
answered by ⊥.

Game0 and Game1 are identical unless Game1 returns 0 in line (I). We reduce
indistinguishability of the games to ROS by constructing an algorithm Bros solving
the ROS` problem whenever Game1 stops in line (I). Algorithm Bros, which has
access to oracle Hros, runs Aalg and simulates Game1 in a straightforward way,
except for using its Hros oracle to define the entries of T.

In particular, consider a query H(R[γ,ξ,~ρ],m) by Aalg such that T(R,m) = ⊥.
Then Bros pads the vector ~ρ with 0’s to make it of length ` (at this point, not all
R1, . . . , R` are necessarily defined, so ~ρ might not be of length `), and assigns
T(R,m) := Hros(~ρ, (γ, ξ,m))− ξ (cf. comments in Fig. 8). Similarly, when Aalg
returns its forgeries (m∗i , (R∗i [γi,ξi,~ρi], s

∗
i ))i∈[`+1], then for each i ∈ [` + 1] with
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Game0
(
UNFAalg

BlSch[GrGen](λ)
)
, Game1

(p,G, G)← GrGen(1λ)
x←$ Zp ; X := xG ; k1 := 0 ; k2 := 0 ;
S := ∅ ; T := ( ) ; U := ( )(
m∗i , (R∗i [γi,ξi,~ρi], s

∗
i )
)
i∈[`+1]

← AH,Sign1,Sign2
alg (p,G, G,X)

//R∗i = γiG + ξiX + Σ`

j=1 ρi,jRj

if k2 > ` then return 0
if ∃ i 6= i′ ∈ [`+ 1] : (m∗i , R∗i ) = (m∗i′ , R∗i′)

then return 0

for i = 1 . . . `+ 1 do
if T(R∗i ,m∗i ) = ⊥ then

T(R∗i ,m∗i )←$ Zp
// T(R∗i ,m

∗
i ) := Hros(~ρi, (γi, ξi,m∗i ))− ξi

U(R∗i ,m∗i ) := (γi, ξi, ~ρi)

for i = 1 . . . `+ 1 do

c∗i := H̃(R∗i ,m∗i ) // doesn’t modify T in Game1

(γ∗i , ξ∗i , ~ρ ∗i ) := U(R∗i ,m∗i )
if ∀ i ∈ [`+ 1] :

∑`

j=1 ρ
∗
i,jcj ≡p c∗i + ξ∗i

then return 0 (I)
// ((~ρ ∗i , (γ

∗
i , ξ
∗
i ,m

∗
i ))i∈[`+1], ~c) solves ROS

return (∀ i ∈ [`+ 1] : s∗iG = R∗i + c∗iX)

Oracle H̃(R,m)

if T(R,m) = ⊥ then T(R,m)←$ Zp
return T(R,m)

Oracle H(R[γ,ξ,~ρ],m)

// R = γG + ξX + Σ|~ρ|j=1 ρjRj

if T(R,m) = ⊥ then
T(R,m)←$ Zp
// T(R,m) := Hros(~ρ, (γ, ξ,m))− ξ

U(R,m) := (γ, ξ, ~ρ)

return T(R,m)

Oracle Sign1()

k1 := k1 + 1 ; rk1 ←$ Zp
Rk1 := rk1G // Rk1 ← Chal()

S := S ∪ {k1}
return (k1, Rk1 )

Oracle Sign2(j, cj)

if j /∈ S then return ⊥
sj := rj + cjx // sj ← DLog(Rj + cjX)

S := S \ {j} ; k2 := k2 + 1
return sj

Fig. 8. Games used in the proof of Theorem 2. Game0 ignores all boxes. The light-gray
comments in Game1 and oracle H show how reduction Bros solves ROS; the comments
in the Sign oracles show how Bomdl embeds its challenges and simulates Game1.

T(R∗i ,m∗i ) = ⊥, reduction Bros assigns T(R∗i ,m∗i ) := Hros(~ρi, (γi, ξi,m∗i )) − ξi.
Since Hros returns uniformly random elements in Zp, the simulation is perfect.

If Game1 aborts in line (I), Bros returns ((~ρ ∗i , (γ∗i , ξ∗i ,m∗i ))i∈[`+1], (cj)j∈[`]),
where (γ∗i , ξ∗i , ~ρ ∗i ) := U(R∗i ,m∗i ). We show that this is a valid ROS solution.

First, for all i 6= i′ ∈ [`+1]: (~ρ ∗i , (γ∗i , ξ∗i ,m∗i )) 6= (~ρ ∗i′ , (γ∗i′ , ξ∗i′ ,m∗i′). Indeed, oth-
erwise we would have (m∗i , R∗i ) = (m∗i′ , R∗i′) and the game would have returned 0
earlier. Second, since the game returns 0 in line (I), we have

∑`
j=1 ρ

∗
i,jcj ≡p c∗i +ξ∗i

for all i ∈ [`+ 1]. Hence, to show that the ROS solution is valid, it is sufficient to
show that for all i ∈ [`+ 1], c∗i = Hros(~ρ ∗i , (γ∗i , ξ∗i ,m∗i ))− ξ∗i . This is clearly the
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case if T(R∗i ,m∗i ) = ⊥ when the adversary returns its forgeries. Indeed, in that
case (γ∗i , ξ∗i , ~ρ ∗i ) = (γi, ξi, ~ρi) and

c∗i = T(R∗i ,m∗i ) = Hros(~ρi, (γi, ξi,m∗i ))− ξi = Hros(~ρ ∗i , (γ∗i , ξ∗i ,m∗i ))− ξ∗i .

Otherwise, T(R∗i ,m∗i ) was necessarily assigned during a call to H, and this
call was of the form H(R∗i [γ∗

i
,ξ∗
i
,~ρ ∗
i

],m
∗
i ), which implies that c∗i = T(R∗i ,m∗) =

Hros(~ρ ∗i , (γ∗i , ξ∗i ,m∗i ))− ξ∗i . Hence,

Advgame1
Aalg

(λ) ≥ Advgame0
Aalg

(λ)− Advros
`,Bros

(λ) . (7)

Moreover, it is easy to see that Bros makes at most qh + `+ 1 queries to Hros and
runs in time at most τ + O(` + qh), assuming scalar multiplications in G and
table assignments take unit time.

Reduction to OMDL. In our last step, we construct an algorithm Bomdl
solving OMDL whenever Aalg wins Game1. Algorithm Bomdl, which has access
to two oracles Chal and DLog (see Fig. 1) takes as input a group description
(p,G, G), makes a first query X ← Chal(), and runs Aalg on input (p,G, G,X),
simulating Game1 as follows (cf. comments in Fig. 8). Each time Aalg makes a
Sign1() query, Bomdl queries its Chal oracle to obtain Rj . It simulates Sign2(j, c)
without knowledge of x and rj by querying sj ← DLog(Rj + cX).

Assume that Game1 returns 1, which implies that all forgeries (R∗i , s∗i ) returned
by Aalg are valid. We show how Bomdl solves OMDL. First, note that Bomdl made
exactly ` calls to its oracle DLog in total (since it makes exactly one call for
each (valid) Sign2 query made by Aalg).

Since Game1 did not return 0 in line (I), there exists i ∈ [`+ 1] such that∑`
j=1 ρ

∗
i,jcj 6≡p c∗i + ξ∗i . (8)

For all i, the adversary returned a representation (γ∗i , ξ∗i , ~ρ ∗i ) of R∗i , thus

R∗i = γ∗iG+ ξ∗iX +
∑`
j=1 ρ

∗
i,jRj . (9)

On the other hand, validity of the i-th forgery yields another representation:
R∗i = s∗iG+ c∗iX. Combining these two, we get

(c∗i + ξ∗i )X +
∑`
j=1 ρ

∗
i,jRj = (s∗i − γ∗i )G . (10)

Finally, for each j ∈ [`], sj was computed with a call sj ← DLog(Rj + cjX),
hence

Rj = sjG− cjX . (11)

Injecting Eq. (11) in Eq. (10), we obtain(
c∗i + ξ∗i −

∑`
j=1 ρ

∗
i,jcj

)
X =

(
s∗i − γ∗i −

∑`
j=1 ρ

∗
i,jsj

)
G . (12)

Since by Eq. (8) the coefficient in front of X is non-zero, this allows Bomdl to
compute x := logX. Furthermore, from Eq. (11) we have rj := logRj = sj − cjx
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CBlSch.Sign((p,G, G,H), x) CBlSch.User(((p,G, G,H), X),m)
r0, r1 ←$ Zp
R0 := r0G ;R1 := r1G R0, R1−−−−−−−−→ α0, β0, α1, β1 ←$ Zp

R′0 := R0 + α0G+ β0X
R′1 := R1 + α1G+ β1X
c′0 := H(R′0,m)
c′1 := H(R′1,m)
c0 := c′0 + β0 mod p
c1 := c′1 + β1 mod pc0, c1←−−−−−−−−b←$ {0, 1}

s := rb + cbx mod p b, s
−−−−−−−−→

return 1

if sG 6= Rb + cbX then return ⊥
s′ := s+ αb mod p
return σ := (R′b, s′)

Fig. 9. The clause blind Schnorr signing protocol.

for all j ∈ [`]. By returning (x, r1, . . . , r`), Bomdl solves the OMDL problem
whenever Aalg wins Game1, which implies

Advomdl
GrGen,Bomdl

(λ) = Advgame1
Aalg

(λ) . (13)

The theorem now follows from Equations (6), (7) and (13).

5 The Clause Blind Schnorr Signature Scheme

We present a variation of the blind Schnorr signature scheme that only modifies
the signing protocol. The scheme thus does not change the signatures themselves,
meaning that it can be very smoothly integrated in existing applications.

The signature issuing protocol is changed so that it prevents the adversary
from attacking the scheme by solving the ROS problem using Wagner’s algorithm
[Wag02, MS12]. The reason is that, as we show in Theorem 3, the attacker must
now solve a modified ROS problem, which we define in Fig. 10.

We start with explaining the modified signing protocol, formally defined in
Fig. 9. In the first round the signer and the user execute two parallel runs of
the blind signing protocol from Fig. 6, of which the signer only finishes one at
random in the last round, that is, it finishes (Run1 ∨ Run2): the clause from
which the scheme takes its name.

This minor modification has major consequences. In the attack against the
standard blind signature scheme (see Sect. 4.2), the adversary opens ` signing
sessions, receiving R1, . . . , R`, then searches a solution ~c to the ROS problem and
closes the signing sessions by sending c1, . . . , c`. Our modified signing protocol
prevents this attack, as now for every opened session the adversary must guess
which of the two challenges the signer will reply to. Only if all its guesses are
correct is the attack successful. As the attack only works for large values of `,
this probability vanishes exponentially.
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Game MROSAGrGen,`,Ω(λ)

(p,G, G)← GrGen(1λ)
Tros := ( )
(~ρi,0, ~ρi,1, auxi)i∈[`+1] ← AHros,Select(p)
// ~ρi,b = (ρi,b,1, . . . , ρi,b,`)

return
(
∀ i 6= i′ : (~ρi,0, ~ρi,1, auxi) 6= (~ρi′,0, ~ρi′,1, auxi′)

∧ ∀ i ∈ [`+ 1] :
∑`

j=1 ρi,bj ,jcj ≡p Hros(~ρi,0, ~ρi,0, auxi)

∧ ∀ i ∈ [`+ 1]∀ j ∈ [`] : ρi,1−bj ,j = 0
)

Oracle Hros(~ρ0, ~ρ1, aux)

if Tros(~ρ0, ~ρ1, aux) = ⊥ then
Tros(~ρ0, ~ρ1, aux)←$ Zp

return Tros(~ρ0, ~ρ1, aux)

Oracle Select(j, c′0, c′1)

// must be queried ∀ j ∈ [`]

bj ←$ {0, 1} ; cj := c′bj
return bj

Fig. 10. The modified ROS problem.

In Theorem 3 we make this intuition formal; that is, we define a modified
ROS game, which we show any successful attacker (which does not solve OMDL)
must solve.

We have used two parallel executions of the basic protocol for the sake of
simplicity, but the idea can be straightforwardly generalized to t > 2 parallel
runs, of which the signer closes only one at random in the last round, that is, it
closes (Run1 ∨ . . .∨ Runt). This decreases the probability that the user correctly
guesses which challenges will be answered by the signer in ` concurrent sessions.

The Modified ROS Problem. Consider Fig. 10. The difference to the original
ROS problem (Fig. 7) is that the queries to the Hros oracle consist of two vectors
~ρ0, ~ρ1 and additional aux information. Analogously, the adversary’s task is to
return ` + 1 tuples (~ρi,0, ~ρi,1, auxi), except that the ROS solution c∗1, . . . , c∗` is
selected as follows: for every index j ∈ [`] the adversary must query an additional
oracle Select(j, cj,0, cj,1), which flips a random bit bj and sets the j-th coordinate
of the solution to c∗j := cj,bj .

Up to now, nothing really changed, as an adversary could always choose
~ρi,0 = ~ρi,1 and cj,0 = cj,1 for all indices, and solve the standard ROS problem.
What complicates the task for the adversary considerably is the additional
winning condition, which demands that in all tuples returned by the adversary,
the ρ values that correspond to the complement of the selected bit must be zero,
that is, for all i ∈ [`+ 1] and all j ∈ [`]: ρi,1−bj ,j = 0. The adversary thus must
commit to the solution coordinate c∗j before it learns bj , which then restricts the
format of its ρ values.

We conjecture that the best attack against this modified ROS problem is to
guess the ` bits bj and to solve the standard ROS problem based on this guess
using Wagner’s algorithm. Hence, the complexity of the attack is increased by a
factor 2` and requires time

O
(
2` · (`+ 1)2λ/(1+blg(`+1)c)) .
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Fig. 11. Estimated complexity τ of conjectured best attack against the modified ROS
problem as a function of parameter ` for λ = 256 (solid line) and λ = 512 (dashed line).

This estimated complexity is plotted for λ ∈ {256, 512} in Fig. 11. This should
be compared to the standard Wagner attack with `+ 1 = 2

√
λ running in time

232 and 245, respectively, for the same values of the security parameter.

Unforgeability of Clause Blind Schnorr Signatures. We now prove
that the Schnorr signature scheme from Fig. 3, with the signing algorithm
replaced by the protocol in Fig. 9 is secure under the OMDL assumption for the
underlying group and hardness of the modified ROS problem.

Theorem 3. Let GrGen be a group generator. Let Aalg be an algebraic adver-
sary against the UNF security of the clause blind Schnorr signature scheme
CBlSch[GrGen] running in time at most τ and making at most qs queries to Sign1
and qh queries to the random oracle. Then there exist an algorithm Bmros for
the MROSqs problem making at most qh + qs + 1 random oracle queries and an
algorithm Bomdl for the OMDL problem w.r.t. GrGen making at most qs queries
to its oracle DLog, both running in time at most τ +O(qs + qh), such that

Advunf
BlSch[GrGen],Aalg

(λ) ≤ Advomdl
GrGen,Bomdl

(λ) + Advmros
`,Bmros

(λ) .

The theorem follows by adapting the proof of Theorem 2; we therefore discuss
the changes and refer to Fig. 12, which compactly presents all the details.

The proof again proceeds by one game hop, where an adversary behaving
differently in the two games is used to break the modified ROS problem; the only
change to the proof of Theorem 2 is that when simulating Sign2, the reduction
Bmros calls Select(j, cj,0, cj,1) to obtain bit b instead of choosing it itself. By
definition, Game1 aborts in line (I) if and only if Bmros has found a solution for
MROS.

The difference in the reduction to OMDL of the modified game is that the
adversary can fail to solve MROS in two ways: (1) its values ((ρi,bj ,j)i,j , (cj)j)
are not a ROS solution; in this case the reduction can solve OMDL as in the
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Game0
(
UNFAalg

CBlSch[GrGen](λ)
)
, Game1

(p,G, G)← GrGen(1λ)
x←$ Zp ; X := xG

k1 := 0 ; k2 := 0 ; S := ∅ ; T := ( ) ; U := ( )

(m∗i , (R∗i [γi,ξi,~ρi,0,~ρi,1], s
∗
i ))i∈[`+1]

← AH,Sign1,Sign2
alg (p,G, G,X)

// R∗i = γiG + ξiX + Σρi,0,jRj,0 + Σρi,1,jRj,1

if k2 > ` then return 0
if ∃ i 6= i′ ∈ [`+ 1] : (m∗i , R∗i ) = (m∗i′ , R∗i′)

then return 0

for i = 1 . . . `+ 1 do
if T(R∗i ,m∗i ) = ⊥ then

T(R∗i ,m∗i )←$ Zp
// T(R∗i ,m

∗
i ) := Hros(~ρi,0, ~ρi,1, (γi, ξi,m∗i ))− ξi

U(R∗i ,m∗i ) := (γi, ξi, ~ρi,0, ~ρi,1)

for i = 1 . . . `+ 1 do

c∗i := H̃(R∗i ,m∗i ) // does not modify T in Game1

(γ∗i , ξ∗i , ~ρ ∗i,0, ~ρ ∗i,1) := U(R∗i ,m∗i )

if ∀ i ∈ [`+ 1] :
∑`

j=1 ρ
∗
i,bj ,j

cj ≡p c∗i + ξ∗i

∧ ∀ i ∈ [`+ 1],∀ j ∈ [`] : ρ∗i,1−bj ,j = 0
then return 0 (I)
// ((~ρ ∗i,0, ~ρ

∗
i,1, (γ

∗
i , ξ
∗
i ,m

∗
i ))i∈[`+1]) solves MROS

return (∀ i ∈ [`+ 1] : s∗iG = R∗i + c∗iX)

//



ϕi := s∗i − γ
∗
i −Σ`

j=1 ρ
∗
i,bj ,j

sj

if χi := c∗i + ξ∗i −Σ`

j=1 ρ
∗
i,bj ,j

cj 6≡p 0

x := χ−1
i
ϕi mod p

for j ∈ [`] : rj,1−bj←DLog(Rj,1−bj )

else if ψ := ρ∗i,1−b̂,̂
6= 0 for some i, ̂

for j 6= ̂ : rj,1−bj←DLog(Rj,1−bj )

r̂,1−b̂ := ψ−1(ϕi −Σj 6=̂ ρ
∗
i,1−bj,j

rj,1−bj )

x← DLog(X)
for j ∈ [`] : rj,bj := sj − cjx
(x, r1,0, . . . , r`,0, r1,1, . . . , r`,1) solves OMDL

Oracle H̃(R,m)

if T(R,m) = ⊥ then
T(R,m)←$ Zp

return T(R,m)

Oracle H(R[γ,ξ,~ρ0,~ρ1],m)

// R = γG + ξX + Σρ0,jRj,0

// +Σρ1,jRj,1

if T(R,m) = ⊥ then
T(R,m)←$ Zp
// T(R,m) :=

// Hros(~ρ0, ~ρ1, (γ, ξ,m))− ξ

U(R,m) := (γ, ξ, ~ρ0, ~ρ1)

return T(R,m)

Oracle Sign1()

k1 := k1 + 1
rk1,0, rk1,1 ←$ Zp
Rk1,0 := rk1,0G // Rk1,0 ← Chal()

Rk1,1 := rk1,1G // Rk1,1 ← Chal()

S := S ∪ {k1}
return (k1, Rk1,0, Rk1,1)

Oracle Sign2(j, cj,0, cj,1)

if j /∈ S then return ⊥
bj ←$ {0, 1}
// bj ← Select(j, cj,0, cj,1)

cj := cj,bj

sj := rj,bj + cjx

// sj ← DLog(Rj,bj + cjX)

S := S \ {j}
k2 := k2 + 1
return (bj , sj)

Fig. 12. Games used in the proof of Theorem 3. The comments in light gray show how
Bmros solves MROS; the dark comments show how Bomdl solves OMDL.
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proof of Theorem 2; (2) these values are a ROS solution, but for some i, j, we
have ρi,1−bj ,j 6= 0. We show that in this case the OMDL reduction can compute
the discrete logarithm of one of the values Rj,1−bj .

More in detail, the main difference to Theorem 2 is that the representation of
the values R∗i in the adversary’s forgery depend on both the Rj,0 and the Rj,1
values; we can thus write them as

R∗i = γ∗iG+ ξ∗iX +
∑`
j=1 ρ

∗
i,bj ,j

Rj,bj +
∑`
j=1 ρ

∗
i,1−bj ,jRj,1−bj

(this corresponds to Eq. (9) in the proof of Theorem 2). Validity of the forgery
implies R∗i = s∗iG− c∗iX, which together with the above yields

(c∗i + ξ∗i )X +
∑`
j=1 ρ

∗
i,bj ,j

Rj,bj = (s∗i − γ∗i )G−
∑`
j=1 ρ

∗
i,1−bj ,jRj,1−bj

(cf. Eq. (10)). By definition of sj , we have Rj,bj = sjG− cjX for all j ∈ [`]; the
above equation becomes thus(

c∗i + ξ∗i −
∑`
j=1 ρ

∗
i,bj ,j

cj
)
X

=
(
s∗i − γ∗i −

∑`
j=1 ρ

∗
i,bj ,j

sj
)
G−

∑`
j=1 ρ

∗
i,1−bj ,jRj,1−bj (14)

(which corresponds to Eq. (12) in Theorem 2). In Theorem 2, not solving ROS
implied that for some i, the coefficient of X in the above equation was non-zero,
which allowed computation of logX.

However, if the adversary sets all these coefficients to 0, it could still fail to
solve MROS if ρ∗i∗,1−bj∗ ,j∗ 6= 0 for some i∗, j∗ (this is case (2) defined above). In
this case Game1 does not abort and the OMDL reduction Bomdl must succeed.
Since in this case the left-hand side of Eq. (14) is then 0, Bomdl can, after querying
DLog(Rj,1−bj ) for all j 6= j∗, compute DLog(Rj∗,1−bj∗ ), which breaks OMDL.

We finally note that the above case distinction was merely didactic, as the
same OMDL reduction can handle both cases simultaneously, which means that
our reduction does not introduce any additional security loss. In particular, the
reduction obtains X and all values (Rj,0, Rj,1) from its OMDL challenger, then
handles case (2) as described, and case (1) by querying R1,1−b1 , . . . , R`,1−b` to
its DLog oracle. In both cases it made 2` queries to DLog and computed the
discrete logarithms of all 2`+ 1 challenges.

Fig. 12 presents the unforgeability game and Game1, which aborts if the
adversary solved MROS. The gray and dark gray comments also precisely define
how a reduction Bmros solves MROS whenever Game1 aborts in line (I), and how
a reduction Bomdl solves OMDL whenever Aalg wins Game1.

Blindness of the Clause Blind Schnorr Signature Scheme. Blindness
of the “clause” variant in Fig. 9 follows via a hybrid argument from blindness
of the standard scheme (Fig. 6). In the game defining blindness , the adversary
impersonates a signer and selects two messages m0 and m1. The game flips a
bit b, runs the signing protocol with the adversary for mb and then for m1−b. If
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Game DDHAGrGen(λ)

(p,G, G)←GrGen(1λ) ; b←$ {0, 1} ; x, y, z←$ Zp
X := xG ; Y := yG ; Z0 := xyG ; Z1 := zG

b′ ← A(p,G, G,X, Y, Zb)
return (b = b′)

Fig. 13. The DDH problem.

both sessions terminate, the adversary is given the resulting signatures and must
determine b.

In the blindness game for scheme CBlSch, the challenger runs two instances
of the issuing protocol from BlSch for mb of which the signer finishes one, as
determined by its message (βb, sb) in the third round (βb corresponds to b in
Fig. 9), and then two instances for m1−b.

If b = 0, the challenger thus asks the adversary for signatures on m0,m0,m1
and then m1. We define a hybrid game where the order of the messages is
m1,m0,m0,m1; this game thus lies between the blindness games for b = 0
and b = 1, where the messages are m1,m1,m0,m0. The original games differ
from the hybrid game by exactly one message pair; intuitively, they are thus
indistinguishable by blindness of BlSch.

A technical detail is that the above argument only works when β0 = β1, as
otherwise both reductions (between each original game and the hybrid game)
abort one session and do not get any signatures from its challenger. The reductions
thus guess the values β0 and β1 (and return a random bit if the guess turns out
wrong). The hybrid game then replaces the β0-th message of the first two and
the β1-th of the last two (as opposed to the ones underlined as above). Following
this argument, in the full version [FPS19] we prove the following:

Theorem 4. Let A be a p.p.t. adversary against blindness of the scheme CBlSch.
Then there exist two p.p.t. algorithms B1 and B2 against blindness of BlSch such
that

Advblind
CBlSch,A(λ) ≤ 4 ·

(
Advblind

BlSch,B1
(λ) + Advblind

BlSch,B2
(λ)
)
.

Since the (standard) blind Schnorr signature scheme is perfectly blind [CP93],
by the above, our variant also satisfies perfect blindness.

6 Schnorr-Signed ElGamal Encryption

A public key for the ElGamal public-key encryption (PKE) scheme is a group
element Y ∈ G. Messages are group elements M ∈ G and to encrypt M under Y ,
one samples a random x ∈ Zp and derives an ephemeral key K := xY to blind
the message: C := xY +M . Given in addition the value X := xG, the receiver
that holds y = log Y can derive K := yX and recover M := C −K.
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SEG.Setup(λ)

(p,G, G)← GrGen(1λ)
Select H : {0, 1}∗ → Zp
return par := (p,G, G,H)

SEG.Enc(pk,M)

(p,G, G,H, Y ) := pk ; x, r←$ Zp
X := xG ; R := rG ; C := xY +M

s := r + H(X,C,R) · x mod p
return (X,C,R, s)

SEG.KeyGen(par)

(p,G, G,H) := par ; y←$ Zp ; Y := yG

sk := (par, y) ; pk := (par, Y )
return (sk, pk)

SEG.Dec(sk, (X,C,R, s))

(p,G, G,H, y) := sk
if sG 6= R+ H(X,C,R) ·X then

return ⊥
return M := C − yX

Fig. 14. The Schnorr-Signed ElGamal PKE scheme SEG[GrGen].

Under the decisional Diffie-Hellman (DDH) assumption (see Fig. 13), cipher-
texts of different messages are computationally indistinguishable: replacing K by
a random value K ′ makes the ciphertext C perfectly hide the message. In the
AGM, ElGamal, viewed as a key-encapsulation mechanism (KEM) was shown to
satisfy CCA1-security (where the adversary can only make decryption queries
before seeing the challenge key) under a parametrized variant of DDH [FKL18].

The idea of Schnorr-signed ElGamal is to accompany the ciphertext by a
proof of knowledge of the randomness x = logX used to encrypt, in particular,
a Schnorr signature on the pair (X,C) under the public key X. The scheme
is detailed in Fig. 14. (Note that we changed the argument order in the hash
function call compared to Sect. 3 so that it is the same as in ciphertexts.)

The strongest security notion for PKE is indistinguishability of ciphertexts
under adaptive chosen-ciphertext attack (IND-CCA2), where the adversary can
query decryptions of ciphertexts of its choice even after receiving the challenge.
The (decisional) game IND-CCA2 is defined in Fig. 15.

When ephemeral keys are hashed (that is, defined as k := H′(xY )) and the
scheme is viewed as a KEM, then CCA2-security can be reduced to the strong
Diffie-Hellman (SDH) assumption11 [ABR01, CS03] in the ROM. In the full
version [FPS19] we show that when key hashing is applied to the Schnorr-signed
ElGamal scheme from Fig. 14, then in the AGM+ROM we can directly reduce
CCA2-security of the corresponding KEM to the DL assumption (Fig. 1); in
particular, we do so using a tight security proof (note that SDH is equivalent
to DL in the AGM [FKL18] but the reduction from DL to SDH is non-tight).
Here we prove that the Schnorr-signed ElGamal PKE is IND-CCA2-secure in
the AGM+ROM under the DDH assumption.

11 SDH states that given X = xG and Y it is infeasible to compute xY even when given
access to an oracle which on input (Y ′, Z′) returns 1 if Z′ = xY ′ and 0 otherwise.
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Game IND-CCA2APKE(λ)

par← PKE.Setup(λ)
(pk, sk)← PKE.KeyGen(par)
b←$ {0, 1}
b′ ← AEnc,Dec(pk)
return (b = b′)

Oracle Enc(m0,m1) // one time

c∗ ← PKE.Enc(pk,mb) ; return c∗

Oracle Dec(c)

if c = c∗ then return ⊥
return PKE.Dec(sk, c)

Fig. 15. The IND-CCA2 security game for a PKE scheme PKE.

Theorem 5. Let GrGen be a group generator. Let Aalg be an algebraic adversary
against the IND-CCA2 security of the Schnorr-signed ElGamal PKE scheme
SEG[GrGen] making at most qd decryption queries and qh queries to the random
oracle. Then there exist two algorithms B1 and B2 solving respectively the DL
problem and the DDH problem w.r.t. GrGen, such that

Advind-cca2
SEG[GrGen],Aalg

(λ) ≤ 2 ·Advddh
GrGen,B2

(λ) + Advdl
GrGen,B1

(λ) +
qd + 1

2λ−1 (qd + qh)
2λ−1 .

We start with the proof idea. The full proof can be found in the full ver-
sion [FPS19]. Let Y be the public key, let P0 and P1 denote the challenge
plaintexts, and let (X∗ = x∗G,C∗ = x∗Y + Pb, R

∗, s∗) be the challenge cipher-
text. Under the DDH assumption, given Y and X∗, the value x∗Y looks random.
We can thus replace x∗Y by a random group element Z∗, which perfectly hides
Pb and leads to a game where the adversary gains no information about the
challenge bit b.

It remains to show how the reduction can simulate the game without knowl-
edge of logX∗ (needed to sign the challenge ciphertext) and log Y (needed to
answer decryption queries). The Schnorr signature under X∗ contained in the
challenge ciphertext can be simulated by programming the random oracle H as
for Theorem 1.

Decryption queries leverage the fact that the Schnorr signature contained
in a queried ciphertext (X,C,R, s) proves knowledge of x with X = xG. Thus,
intuitively, the reduction should be able to answer a query by extracting x and
returning M = C − xY . However, this extraction is a lot trickier than in the
proof of Theorem 1: During the game the adversary obtains group elements
Y , X∗, C∗, and R∗, as well as the answers M1, . . . ,Mqd to its queries to Dec.
The adversary’s representations of group elements can thus depend on all these
elements. In particular, since Dec on input (X,C, . . .) computes M := C − yX,
by successive calls to Dec, the adversary can obtain arbitrary powers of y.

In our proof we first show that from a representation given by the adversary,
we can always (efficiently) derive a representation in basis

(G,X∗, Y = yG, . . . , yqd+1G, x∗yG, . . . , x∗yqd+1G) .
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Now consider a decryption query (X,C,R, s), each group element represented as

X = γxG+ ξxX
∗+
∑qd+1
i=1 υ

(i)
x yiG+

∑qd+1
i=1 ζ

(i)
x x∗yiG , R = γrG+ . . . (15)

We show that each query falls into one of three categories:
(1) The choice of c = H(X,C,R) was unlucky, which only happens with negligible
probability.
(2) The representation of X is independent of Y , that is, X = γxG+ ξxX

∗. Then
xY (and hence the answer M = C − xY to the query) can be computed as
xY := γxY + ξxZ

∗ (where Z∗ := x∗Y is known by the reduction).
(3) Otherwise we show that the adversary has computed log Y : If the Dec query
was valid then sG = R + cX, which, by plugging in the representations (15)
yields

0 = (γr + cγx−s)G+(ξr + cξx)X∗+
qd+1∑
i=1

(
(υ(i)
r + x∗ζ(i)

r ) + c (

=:β(i)︷ ︸︸ ︷
υ(i)
x + x∗ζ(i)

x )︸ ︷︷ ︸
=:α(i)

)
yiG

If β(i) ≡p 0 for all i, we are in case (2). If β(j) 6≡p 0 for some j and α(i) ≡p 0 for
all i, then c ≡p −(υ(j)

r + x∗ζ
(j)
r ) · (β(j))−1 was an unlucky choice (made after the

adversary chose its representations from (15)) (case (1)). Otherwise α(j) ≡p 0 for
some j and

0 = γr + cγx − s+ (ξr + cξx)x∗ +
∑qd+1
i=1 α(i)yi

can be solved for y. (Note that the reduction to DL chooses x∗ itself.)
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