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Abstract. In this paper, we initiate the study of side-channel leakage
in hash-and-sign lattice-based signatures, with particular emphasis on
the two efficient implementations of the original GPV lattice-trapdoor
paradigm for signatures, namely NIST second-round candidate Falcon
and its simpler predecessor DLP. Both of these schemes implement the
GPV signature scheme over NTRU lattices, achieving great speed-ups
over the general lattice case. Our results are mainly threefold.

First, we identify a specific source of side-channel leakage in most im-
plementations of those schemes, namely, the one-dimensional Gaussian
sampling steps within lattice Gaussian sampling. It turns out that the
implementations of these steps often leak the Gram–Schmidt norms of
the secret lattice basis.

Second, we elucidate the link between this leakage and the secret key,
by showing that the entire secret key can be efficiently reconstructed
solely from those Gram–Schmidt norms. The result makes heavy use of
the algebraic structure of the corresponding schemes, which work over a
power-of-two cyclotomic field.

Third, we concretely demonstrate the side-channel attack against DLP
(but not Falcon due to the different structures of the two schemes). The
challenge is that timing information only provides an approximation of
the Gram–Schmidt norms, so our algebraic recovery technique needs to
be combined with pruned tree search in order to apply it to approximate
values. Experimentally, we show that around 235 DLP traces are enough
to reconstruct the entire key with good probability.

1 Introduction

Lattice-based signatures. Lattice-based cryptography has proved to be a ver-
satile way of achieving a very wide range of cryptographic primitives with strong



security guarantees that are also believed to hold in the postquantum setting.
For a while, it was largely confined to the realm of theoretical cryptography,
mostly concerned with asymptotic efficiency, but it has made major strides to-
wards practicality in recent years. Significant progress has been made in terms of
practical constructions, refined concrete security estimates and fast implemen-
tations. As a result, lattice-based schemes are seen as strong contenders in the
NIST postquantum standardization process.

In terms of practical signature schemes in particular, lattice-based constructi-
ons broadly fit within either of two large frameworks: Fiat–Shamir type con-
structions on the one hand, and hash-and-sign constructions on the other.

Fiat–Shamir lattice based signatures rely on a variant of the Fiat–Shamir pa-
radigm [16] developed by Lyubashevsky, called “Fiat–Shamir with aborts” [31],
which has proved particularly fruitful. It has given rise to numerous practically
efficient schemes [23, 8, 2] including the two second round NIST candidates Di-
lithium [10, 33] and qTESLA [5].

The hash-and-sign family has a longer history, dating back to Goldreich–
Goldwasser–Halevi [22] signatures as well as NTRUSign [24]. Those early pro-
posals were shown to be insecure [19, 21, 40, 12], however, due to a statistical
dependence between the distribution of signatures and the signing key. That issue
was only overcome with the development of lattice trapdoors by Gentry, Peikert
and Vaikuntanathan [20]. In the GPV scheme, signatures follow a distribution
that is provably independent of the secret key (a discrete Gaussian supported
on the public lattice), but which is hard to sample from without knowing a se-
cret, short basis of the lattice. The scheme is quite attractive from a theoretical
standpoint (for example, it is easier to establish QROM security for it than for
Fiat–Shamir type schemes), but suffers from large keys and a potentially costly
procedure for discrete Gaussian sampling over a lattice. Several follow-up works
have then striven to improve its concrete efficiency [42, 49, 37, 34, 13], culmina-
ting in two main efficient and compact implementations: the scheme of Ducas,
Lyubashevsky and Prest (DLP) [11], and its successor, NIST second round can-
didate Falcon [47], both instantiated over NTRU lattices [24] in power-of-two
cyclotomic fields. One can also mention NIST first round candidates pqNTRU-
Sign [52] and DRS [44] as members of this family, the latter of which actually
fell prey to a clever statistical attack [51] in the spirit of those against GGH and
NTRUSign.

Side-channel analysis of lattice-based signatures. With the NIST post-
quantum standardization process underway, it is crucial to investigate the secu-
rity of lattice-based schemes not only in a pure algorithmic sense, but also with
respect to implementation attacks, such as side-channels. For lattice-based sig-
natures constructed using the Fiat–Shamir paradigm, this problem has received
a significant amount of attention in the literature, with numerous works [7, 43,
14, 6, 4, 50] pointing out vulnerabilities with respect to timing attacks, cache
attacks, power analysis and other types of side-channels. Those attacks have
proved particularly devastating against schemes using discrete Gaussian sam-
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pling, such as the celebrated BLISS signature scheme [8]. In response, several
countermeasures have also been proposed [28, 39, 27], some of them provably
secure [3, 4], but the side-channel arms race does not appear to have subsided
quite yet.

In contrast, the case of hash-and-sign lattice-based signatures, including DLP
and Falcon, remains largely unexplored, despite concerns being raised regar-
ding their vulnerability to side-channel attacks. For example, the NIST status
report on first round candidates, announcing the selection of Falcon to the se-
cond round, notes that “more work is needed to ensure that the signing algorithm
is secure against side-channel attacks”. The relative lack of cryptanalytic works
regarding these schemes can probably be attributed to the fact that the relati-
onship between secret keys and the information that leaks through side-channels
is a lot more subtle than in the Fiat–Shamir setting.

Indeed, in Fiat–Shamir style schemes, the signing algorithm uses the secret
key very directly (it is combined linearly with other elements to form the signa-
ture), and as a result, side-channel leakage on sensitive variables, like the random
nonce, easily leads to key exposure. By comparison, the way the signing key is
used in GPV type schemes is much less straightforward. The key is used to con-
struct the trapdoor information used for the lattice discrete Gaussian sampler;
in the case of the samplers [30, 20, 13] used in GPV, DLP and Falcon, that
information is essentially the Gram–Schmidt orthogonalization (GSO) of a ma-
trix associated with the secret key. Moreover, due to the way that GSO matrix
is used in the sampling algorithm, only a small amount of information about it
is liable to leak through side-channels, and how that small amount relates to the
signing key is far from clear. To the best of our knowledge, neither the problem of
identifying a clear side-channel leakage, nor that of relating that such a leakage
to the signing key have been tackled in the literature so far.

Our contributions. In this work, we initiate the study of how side-channel
leakage impacts the security of hash-and-sign lattice-based signature, focusing
our attention to the two most notable practical schemes in that family, namely
DLP and Falcon. Our contributions towards that goal are mainly threefold.

First, we identify a specific leakage of the implementations of both DLP and
Falcon (at least in its original incarnation) with respect to timing side-channels.
As noted above, the lattice discrete Gaussian sampler used in signature genera-
tion relies on the Gram–Schmidt orthogonalization of a certain matrix associated
with the secret key. Furthermore, the problem of sampling a discrete Gaussian
distribution supported over the lattice is reduced to sampling one-dimensional
discrete Gaussians with standard deviations computed from the norms of the
rows of that GSO matrix. In particular, the one-dimensional sampler has to
support varying standard deviations, which is not easy to do in constant time.
Unsurprisingly, the target implementations both leak that standard deviation
through timing side-channels; specifically, they rely on rejection sampling, and
the acceptance rate of the corresponding loop is directly related to the standard
deviation. As a result, timing attacks will reveal the Gram–Schmidt norms of
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the matrix associated to the secret key (or rather, an approximation thereof, to
a precision increasing with the number of available samples).

Second, we use algebraic number theoretic techniques to elucidate the link
between those Gram–Schmidt norms and the secret key. In fact, we show that
the secret key can be entirely reconstructed from the knowledge of those Gram–
Schmidt norms (at least if they are known exactly), in a way which crucially
relies on the algebraic structure of the corresponding lattices.

Since both DLP and Falcon work in an NTRU lattice, the signing key can
be expressed as a pair (f, g) of small elements in a cyclotomic ring R = Z[ζ] (of
power-of-two conductor, in the case of those schemes). The secret, short basis
of the NTRU lattice is constructed by blocks from the multiplication matrices
of f and g (and related elements F,G) in a certain basis of R as a Z-algebra
(DLP uses the usual power basis, whereas Falcon uses the power basis in bit-
reversed order ; this apparently small difference interestingly plays a crucial role
in this work). It is then easily seen that the Gram matrix of the first half of the
lattice basis is essentially the multiplication matrix associated with the element
u = ff̄ + gḡ, where the bar denotes the complex conjugation ζ̄ = ζ−1. From
that observation, we deduce that knowing the Gram–Schmidt norms of lattice
basis is essentially equivalent to knowing the leading principal minors of the
multiplication matrix of u, which is a real, totally positive element of R.

We then give general efficient algorithms, both for the power basis (DLP
case) and for the bit-reversed order power basis (Falcon case), which recover
an arbitrary totally positive element u (up to a possible automorphism of the
ambient field) given the leading principal minors of its multiplication matrix. The
case of the power basis is relatively easy: we can actually recover the coefficients
iteratively one by one, with each coefficient given as a solution of quadratic
equation over Q depending only on the minors and the previous coefficients.
The bit-reversed order power basis is more contrived, however; recovery is then
carried out recursively, by reduction to the successive subfields of the power-of-
two cyclotomic tower.

Finally, to complete the recovery, we need to deduce f and g from u. We
show that this can be done using the public key h = g/f mod q: we can use it to
reconstruct both the relative norm ff̄ of f , and the ideal (f) ⊂ R. That data can
then be plugged into the Gentry–Szydlo algorithm [21] to obtain f in polynomial
time, and hence g. Those steps, though simple, are also of independent interest,
since they can be applied to the side-channel attack against BLISS described
in [14], in order to get rid of the expensive factorization of an algebraic norm,
and hence make the attack efficient for all keys (instead of a small percentage of
weak keys as originally stated).

Our third contribution is to actually collect timing traces for the DLP scheme
and mount the concrete key recovery. This is not an immediate consequence
of the previous points, since our totally positive element recovery algorithm
a priori requires the exact knowledge of Gram–Schmidt norms, whereas side-
channel leakage only provides approximations (and since some of the squared
Gram–Schmidt norms are rational numbers of very large height, recovering them
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exactly would require an unrealistic number of traces). As a result, the recovery
algorithm has to be combined with some pruned tree search in order to account
for approximate inputs. In practice, for the larger parameters of DLP signatures
(with a claimed security level of 192 bits), we manage to recover the key with
good probability using 233 to 235 DLP timing traces.

Carrying out such an experiment in the Falcon setting, however, is left
as a challenging open problem for further work. This is because adapting the
bit-reversed order totally positive recovery algorithm to deal with approximate
inputs appears to be much more difficult (instead of sieving integers whose square
lies in some specified interval, one would need to find the cyclotomic integers
whose square lies in some target set, which does not even look simple to describe).

The source code of the attack is available at https://github.com/yuyang-
crypto/Key_Recovery_from_GSnorms.

Related work. As noted above, the side-channel security of Fiat–Shamir lattice-
based signature has been studied extensively, including in [7, 43, 14, 6, 4, 50].
However, the only implementation attacks we are aware of against hash-and-sign
schemes are fault analysis papers [15, 35]: side-channel attacks have not been
described so far to the best of our knowledge.

Aside from the original implementations of DLP and Falcon, which are
the focus of this paper, several others have appeared in the literature. However,
they usually do not aim for side-channel security [36, 41] or only make the base
discrete Gaussian sampler (with fixed standard deviation) constant time [29],
but do not eliminate the leakage of the varying standard deviations. As a result,
those implementations are also vulnerable to the attacks of this paper.

This is not the case, however, for Pornin’s very recent, updated implemen-
tation of Falcon, which uses a novel technique proposed by Prest, Ricosset
and Rossi [48], combined with other recent results on constant time rejection
sampling for discrete Gaussian distribution [53, 4] in order to eliminate the ti-
ming leakage of the lattice discrete Gaussian sampler. This technique applies
to discrete Gaussian sampling over Z with varying standard deviations, when
those deviations only take values in a small range. It is then possible to eliminate
the dependence on the standard deviation in the rejection sampling by scaling
the target distribution to match the acceptance rate of the maximal possible
standard deviation. The small range ensures that the overhead of this coun-
termeasure is relatively modest. Thanks to this countermeasure, we stress that
the most recent official implementation of Falcon is already protected against
the attacks of this paper. Nevertheless, we believe our results underscore the
importance of applying such countermeasures.

Organization of the paper. Following some preliminary material in Section 2,
Section 3 is devoted to recalling some general facts about signature generation
for hash-and-sign lattice-based schemes. Section 4 then gives a roadmap of our
attack strategy, and provides some details about the final steps (how to deduce
the secret key from the totally positive element u = ff̄ + gḡ. Section 5 describes
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our main technical contribution: the algorithms that recover u from the Gram–
Schmidt norms, both in the DLP and in the Falcon setting. Section 6 delves
into the details of the side-channel leakage, showing how the implementations of
the Gaussian samplers of DLP and Falcon do indeed reveal the Gram–Schmidt
norms through timing side-channels. Finally, Section 7 presents our concrete
experiments against DLP, including the tree search strategy to accommodate
approximate Gram–Schmidt norms and experimental results in terms of timing
and number of traces.

Notation. We use bold lowercase letters for vectors and bold uppercase for
matrices. The zero vector is 0. We denote by N the non-negative integer set
and by log the natural logarithm. Vectors are in row form, and we write B =
(b0, . . . ,bn−1) to denote that bi is the i-th row of B. For a matrix B ∈ Rn×m,
we denote by Bi,j the entry in the i-th row and j-th column of B, where i ∈
{0, . . . , n − 1} and j ∈ {0, . . . ,m − 1}. For I ⊆ [0, n), J ⊆ [0,m), we denote by
BI×J the submatrix (Bi,j)i∈I,j∈J . In particular, we write BI = BI×I . Let Bt

denote the transpose of B.
Given u = (u0, . . . , un−1) and v = (v0, . . . , vn−1), their inner product is

〈u,v〉 =
∑n−1
i=0 uivi. The `2-norm of v is ‖v‖ =

√
〈v,v〉 and the `∞-norm is

‖v‖∞ = maxi |vi|. The determinant of a square matrix B is denoted by det(B),
so that det

(
B[0,i]

)
is the i-th leading principal minor of B.

Let D be a distribution. We write z ←↩ D when the random variable z is
sampled fromD, and denote byD(x) the probability that z = x. The expectation
of a random variable z is E[z]. We writeN (µ, σ2) the normal distribution of mean
µ and variance σ2. We let U(S) be the uniform distribution over a finite set S.
For a real-valued function f and any countable set S in the domain of f , we
write f(S) =

∑
x∈S f(x).

2 Preliminaries

A lattice L is a discrete additive subgroup of Rm. If it is generated by B ∈ Rn×m,
we also write L := L(B) = {xB | x ∈ Zn}. If B has full row rank, then we call
B a basis and n the rank of L.

2.1 Gram–Schmidt Orthogonalization

Let B = (b0, . . . ,bn−1) ∈ Qn×m of rank n. The Gram-Schmidt orthogonali-
zation of B is B = LB∗, where L ∈ Qn×n is lower-triangular with 1 on its
diagonal and B∗ = (b∗0, . . . ,b

∗
n−1) is a matrix with pairwise orthogonal rows.

We call ‖b∗i ‖ the i-th Gram-Schmidt norm of B, and let ‖B‖GS = maxi ‖b∗i ‖.
The Gram matrix of B is G = BBt, and satisfies G = LDLt where D =

diag
(
‖b∗i ‖2

)
. This is also known as the Cholesky decomposition of G, and such

a decomposition exists for any symmetric positive definite matrix. The next
proposition follows from the triangular structure of L.
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Proposition 1. Let B = Qn×m of rank n and G its Gram matrix. Then for all
integer 0 ≤ k ≤ n− 1, we have det

(
G[0,k]

)
=
∏k
i=0 ‖b∗i ‖2.

Let M =

(
A B
C D

)
, where A ∈ Rn×n, D ∈ Rm×m are invertible matrices,

then M/A = D − CA−1B ∈ Rm×m is called the Schur complement of A. It
holds that

det(M) = det(A) det(M/A). (1)

2.2 Parametric Statistics

Let Dp be some distribution determined by parameter p. Let X = (X1, . . . , Xn)
be a vector of observed samples of X ←↩ Dp. The log-likelihood function with
respect to X is

`X(p) =

n∑
i=1

log(Dp(Xi)).

Provided the log-likelihood function is bounded, a maximum likelihood estimator
for samples X is a real MLE(X) maximizing `X(p). The Fisher information is

I(p) = −E
[
d2

dp2
`X(p)

]
.

Seen as a random variable, it is known (e.g. [26, Theorem 6.4.2]) that
√
n(MLE(X)−

p) converges in distribution to N (0, I(p)−1). When the target distribution is a
geometric, maximum likelihood estimators and the Fisher information are well-
known. The second statement of the next lemma directly comes from a Gaussian
tail bound.

Lemma 1. Let Geop denote a geometric distribution with parameter p, and X =
(X1, · · · , Xn) be samples from Geop. Then we have MLE(X) = n∑n

i=1Xi
and

√
n(MLE(X) − p) converges in distribution to N (0, p2(1 − p)). In particular,

when N is large, then for any α ≥ 1, we have |MLE(X)− p| ≤ α · p
√

1−p
N except

with probability at most 2 exp(−α2/2).

2.3 Discrete Gaussian Distributions

Let ρσ,c(x) = exp
(
−‖x−c‖

2

2σ2

)
be the n-dimensional Gaussian function with cen-

ter c ∈ Rn and standard deviation σ. When c = 0, we just write ρσ(x). The
discrete Gaussian over a lattice L with center c and standard deviation parame-
ter σ is defined by the probability function

DL,σ,c(x) =
ρσ,c(x)

ρσ,c(L)
,∀x ∈ L.

In this work, the case L = Z is of particular interest. It is well known that∫∞
−∞ ρσ,c(x)dx = σ

√
2π. Notice that DZ,σ,c is equivalent to i + DZ,σ,c−i for an
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arbitrary i ∈ Z, hence it suffices to consider the case where c ∈ [0, 1). The half
discrete integer Gaussian, denoted by D+

Z,σ,c, is defined by

D+
Z,σ,c(x) =

ρσ,c(x)

ρσ,c(N)
,∀x ∈ N.

We again omit the center when it is c = 0. For any ε > 0, the (scaled)5 smoothing
parameter η′ε(Z) is the smallest s > 0 such that ρ1/s

√
2π(Z) ≤ 1 + ε. In practice,

ε is very small, say 2−50. The smoothing parameter allows to quantify precisely
how the discrete Gaussian differs from the standard Gaussian function.

Lemma 2 ([38], implicit in Lemma 4.4). If σ ≥ η′ε(Z), then ρσ(c + Z) ∈
[ 1−ε1+ε , 1]ρσ(Z) for any c ∈ [0, 1).

Corollary 1. If σ ≥ η′ε(Z), then ρσ(Z) ∈ [1, 1+ε1−ε ]
√

2πσ.

Proof. Notice that
∫ 1

0
ρσ(Z+ c)dc =

∫∞
−∞ ρσ(x)dx =

√
2πσ, the proof is comple-

ted by Lemma 2. ut

2.4 Power-of-Two Cyclotomic Fields

For the rest of this article, we let n = 2` for some integer ` ≥ 1. We let ζn be a
2n-th primitive root of 1. Then Kn = Q(ζn) is the n-th power-of-two cyclotomic
field, and comes together with its ring of algebraic integers Rn = Z[ζn]. It is
also equipped with n field automorphisms forming the Galois group which is
commutative in this case. It can be seen that Kn/2 = Q(ζn/2) is the subfield of
Kn fixed by the automorphism σ(ζn) = −ζn of Kn, as ζ2n = ζn/2. This leads to
a tower of field extensions and their corresponding rings of integers

Kn ⊇ Kn/2 ⊇ · · · ⊇ K1 = Q
∪ ∪ · · · ∪
Rn ⊇ Rn/2 ⊇ · · · ⊇ R1 = Z

Given an extension Kn|Kn/2, the relative trace Tr : Kn → Kn/2 is the Kn/2-linear
map given by Tr(f) = f+σ(f). Similarly, the relative norm is the multiplicative
map N(f) = f ·σ(f) ∈ Kn/2. Both maps send integers in Kn to integers in Kn/2.
For all f ∈ Kn, it holds that f = (Tr(f) + ζn Tr(ζ−1n f))/2.

We are also interested in the field automorphism ζn 7→ ζ−1n = ζ̄n, which
corresponds to the complex conjugation. We call adjoint the image f̄ of f under
this automorphism. The fixed subfield K+

n := Q(ζn+ζ−1n ) is known as the totally
real subfield and contains the self-adjoint elements, that is, such that f = f̄ .
Another way to describe self-adjoint elements is to say that all their complex
embeddings6 are in fact reals. Elements whose embeddings are all positive are
called totally positive elements, and we denote their set by K++

n . A standard
example of such an element is given by ff̄ for any f ∈ Kn. It is well-known that
the Galois automorphisms act as permutation of these embeddings, so that a
totally positive element stays positive under the action of the Galois group.

5 The scaling factor is (
√

2π)−1 before the smoothing parameter ηε(Z) in [38].
6 Each root of xn + 1 describes one complex embedding by mean of evaluation.
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Representation of cyclotomic numbers We also have Kn ' Q[x]/(xn + 1) and
Rn ' Z[x]/(xn + 1), so that elements in cyclotomic fields can be seen as poly-

nomials. In this work, each f =
∑n−1
i=0 fiζ

i
n ∈ Kn is identified with its coefficient

vector (f0, · · · , fn−1). Then the inner product of f and g is 〈f, g〉 =
∑n−1
i=0 figi,

and we write ‖f‖, resp. ‖f‖∞, the `2-norm, resp. `∞-norm, of f . In this represen-
tation, it can be checked that f̄ = (f0,−fn−1, . . . ,−f1) and that 〈f, gh〉 = 〈fḡ, h〉
for all f, g, h ∈ Kn. In particular, the constant coefficient of fḡ is 〈f, g〉 = 〈fḡ, 1〉.
A self-adjoint element f has coefficients (f0, f1, . . . , fn/2−1, 0,−fn/2−1, . . . ,−f1).

Elements in Kn can also be represented by their matrix of multiplication in
the basis 1, ζn, . . . , ζ

n−1
n . In other words, the map An : Kn → Qn×n defined by

An(f) =


f0 f1 · · · fn−1
−fn−1 f0 · · · fn−2

...
...

. . .
...

−f1 −f2 · · · f0

 =


f

ζn · f
...

ζn−1n · f


is a ring isomorphism. We have fg = g · An(f). We can also see that An(f̄) =
An(f)t which justifies the term “adjoint”. We deduce that the matrix of a self-
adjoint element is symmetric. It can be observed that a totally positive element
A ∈ Kn corresponds to the symmetric positive definite matrix An(A).

For efficiency reasons, the scheme Falcon uses another representation cor-
responding to the tower structure. If f = (f0, . . . , fn−1) ∈ Kn, we let fe =
Tr(f)/2 = (f0, f2, . . . , fn−2) and fo = Tr(ζ−1n f)/2 = (f1, f3, . . . , fn−1). Let
Pn ∈ Zn×n be the permutation matrix corresponding to the bit-reversal or-
der. We define Fn(f) = PnAn(f)Ptn. In particular, it is also symmetric positive
definite when f is a totally positive element. As shown in [13], it holds that

Fn(f) =

(
Fn/2(fe) Fn/2(fo)
Fn/2(ζn/2fo) Fn/2(fe)

)
. (2)

2.5 NTRU Lattices

Given f, g ∈ Rn such that f is invertible modulo some q ∈ Z, we let h =
f−1g mod q. The NTRU lattice determined by h is LNTRU = {(u, v) ∈ R2

n :
u+ vh = 0 mod q}. Two bases of this lattice are of particular interest for cryp-
tography:

BNTRU =

(
q 0
−h 1

)
and Bf,g =

(
g −f
G −F

)
,

where F,G ∈ Rn such that fG−gF = q. Indeed, the former basis acts usually as
the public key, while the latter is the secret key, also called the trapdoor basis,
when f, g, F,G are short vectors. In practice, these matrices are represented
using either the operator An [11] or Fn [47]:

BAf,g =

(
An(g) An(−f)
An(G) An(−F )

)
and BFf,g =

(
Fn(g) Fn(−f)
Fn(G) Fn(−F )

)
.
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3 Hash-and-Sign over NTRU Lattices

Gentry, Peikert and Vaikuntanathan introduced in [20] a generic and provably
secure hash-and-sign framework based on trapdoor sampling. This paradigm
has then been instantiated over NTRU lattices giving rise to practically efficient
cryptosystems: DLP [11] and Falcon [47] signature schemes.

In the NTRU-based hash-and-sign scheme, the secret key is a pair of short
polynomials (f, g) ∈ R2

n and the public key is h = f−1g mod q. The trapdoor
basis Bf,g (of LNTRU) derives from (f, g) by computing F,G ∈ Rn such that
fG − gF = q. In both the DLP signature and Falcon, the trapdoor basis has
a bounded Gram-Schmidt norm: ‖Bf,g‖GS ≤ 1.17

√
q for compact signatures.

The signing and verification procedure is described on a high level as follows:

Sign(m, sk = Bf,g)
Compute c = hash(m) ∈ Rn;
Using sk, sample a short (s1, s2)
such that s1 + s2h = c mod q;
Return s = s2.

Verify(m, s, pk = h)
Compute c = hash(m) ∈ Rn;
Compute s = (c− sh mod q, s);
If ‖s‖ is not small enough, reject.
Accept.

Lattice Gaussian samplers [20, 42] are nowadays a standard tool to generate
signatures provably statistically independent of the secret basis. However, such
samplers are also a notorious target for side-channel attacks. This work makes no
exception and attacks non constant-time implementations of the lattice Gaussian
samplers at the heart of both DLP and Falcon, that are based on the KGPV
sampler [30] or its ring variant [13]. Precisely, while previous attacks target to
Gaussian with public standard deviations, our attack learns the secret-dependent
Gaussian standard deviations involved in the KGPV sampler.

3.1 The KGPV sampler and its variant

The KGPV sampler is a randomized variant of Babai’s nearest plane algo-
rithm [1]: instead of rounding each center to the closest integer, the KGPV
sampler determines the integral coefficients according to some integer Gaussi-
ans. It is shown in [20] that under certain smoothness condition, the algorithm
outputs a sample from a distribution negligibly close to the target Gaussian. Its
formal description is illustrated in Algorithm 3.1.

Note that in the KGPV sampler (or its ring variant), the standard deviations
of integer Gaussians are inversely proportional to the Gram-Schmidt norms of the
input basis. In the DLP scheme, B is in fact the trapdoor basis BAf,g ∈ Z2n×2n.

The Ducas–Prest sampler. Falcon uses a variant of the KGPV algorithm which
stems naturally from Ducas–Prest’s fast Fourier nearest plane algorithm [13]. It
exploits the tower structure of power-of-two cyclotomic rings. Just like the KGPV
sampler, the Ducas-Prest sampler fundamentally relies on integer Gaussian sam-
pling to output Gaussian vectors. We omit its algorithmic description, as it is not
needed in this work. Overall, what matters is to understand that the standard
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Algorithm 3.1 The KGPV algorithm KGPV(σ,B, c)

Input: a basis B = (b0, · · · ,bn−1) of a lattice L, c ∈ Qn and σ ≥ ‖B‖GS · ηε(Z).
Output: z ∈ Zn such that zB follows a distribution close to DL,σ,cB∗ .

Precomputation:
1: compute B = LB∗

2: (µ0, · · · ,µn−1)← L− In
3: for i = n− 1, · · · , 0 do
4: σi ← σ/‖b∗i ‖
5: end for

Sampling:
6: z← 0, c′ ← c
7: for i = n− 1, · · · , 0 do
8: zi ← GaussianIntegerSampler(σi, c

′
i)

9: c′ ← c′ − ziµi

10: end for
11: return z

deviations of involved integer Gaussians are also in the form σi = σ/‖b∗i ‖, but
that B = BFf,g in this context.

4 Side-Channel Attack against Trapdoor Samplers: a
roadmap

Our algorithm proceeds as follows:

1. Side-channel leakage: extract the ‖b∗i ‖’s associated to BAf,g, resp. BFf,g via
the timing leakage of integer Gaussian sampler in the DLP scheme, reps.
Falcon.

2. Totally positive recovery: from the given ‖b∗i ‖’s, recover a Galois conjugate
u of ff + gg ∈ K++

n .

3. Final recovery: compute f from u and the public key g/f mod q.

Steps 1 and 2 of the attack are the focus of sections 6 and 5 respectively. Below
we describe how the third step is performed. First we recover the element fg,
using the fact that it has small coefficients. More precisely, the jth coefficient is
〈f, ζjng〉 where f and ζjng are independent and identically distributed according
to DZn,r, with r = 1.17

√
q
2n . By [32, Lemma 4.3], we know that all these coef-

ficients are of size much smaller than q/2 with high probability. Now, we can
compute v = uh(1 + hh)−1 mod q, where h = f−1g mod q is the public verifica-
tion key. We readily see that v = fg mod q if and only if u = ff + gg. If u is a
conjugate of ff + gg, then most likely the coefficients of v will look random in
(−q/2, q/2]. This can mostly be interpreted as the NTRU assumption, that is, h
being indistinguishable from a random element modulo q. When this happens,
we just consider another conjugate of u, until we obtain a distinguishably small
element, which must then be fg (not just in reduction modulo q, but in fact over
the integers).

11



Once this is done, we can then deduce the reduction modulo q of ff̄ ≡ fḡ/h̄
(mod q), which again coincides with ff̄ over the integers with high probability
(if we again lift elements of Zq to (−q/2, q/2], except for the constant coeffi-
cient, which should be lifted positively). This boils down to the fact that with
high probability ff has its constant coefficient in (0, q) and the others are in
(−q/2, q/2). Indeed, the constant coefficient of ff is ‖f‖2, and the others are
〈f, ζjnf〉’s with j ≥ 1. By some Gaussian tail bound, we can show ‖f‖2 ≤ q with
high probability. As for 〈f, ζjnf〉’s, despite the dependency between f and ζjnf ,
we can still expect |〈f, ζjnf〉| < q/2 for all j ≥ 1 with high probability. We leave
details in the full version [17] for interested readers.

Next, we compute the ideal (f) from the knowledge of ff and fg. Indeed,
as f and g are co-prime from the key generation algorithm, we directly have
(f) = (ff) + (fg). At this point, we have obtained both the ideal (f) and
the relative norm ff̄ of f on the totally real subfield. That data is exactly
what we need to apply the Gentry–Szydlo algorithm [21], and finally recover f
itself in polynomial time. Note furthermore that the practicality of the Gentry–
Szydlo algorithm for the dimensions we consider (n = 512) has been validated
in previous work [14].

Comparison with existing method. As part of their side-channel analysis of the
BLISS signature scheme, Espitau et al. [14] used the Howgrave-Graham–Szydlo
algorithm to recover an NTRU secret f from ff . They successfully solved a
small proportion (≈ 7%) of NTRU instances with n = 512 in practice. The
Howgrave-Graham–Szydlo algorithm first recovers the ideal (f) and then calls
the Gentry–Szydlo algorithm as we do above. The bottleneck of this method is
in its reliance on integer factorization for ideal recovery: the integers involved
can become quite large for an arbitrary f , so that recovery cannot be done in
classical polynomial time in general. This is why only a small proportion of
instances can be solved in practice.

However, the technique we describe above bypasses this expensive factori-
zation step by exploiting the arithmetic property of the NTRU secret key. In
particular, it is immediate to obtain a two-element description of (f), so that
the Gentry-Szydlo algorithm can be run as soon as ff̄ and fḡ are computed.
This significantly improves the applicability and efficiency of Espitau et al.’s
side-channel attack against BLISS [14]. The question of avoiding the reliance on
Gentry–Szydlo algorithm by using the knowledge of fg and ff remains open,
however.

5 Recovering Totally Positive Elements

Totally positive elements in Kn correspond to symmetric positive definite matri-
ces with an inner structure coming from the algebra of the field. In particular,
it is enough to know only one line of the matrix to recover the corresponding
field element. Hence it can be expected that being given the diagonal part of the
LDL decomposition also suffices to perform a recovery. In this section, we show
that this is indeed the case provided we know exactly the diagonal.
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Recall on the one hand that the An representation is the skew circulant ma-
trix in which each diagonal consists of the same entries. On the other hand, the
Fn representation does not follow the circulant structure, but it is compatible
with the tower of rings structure, i.e. its sub-matrices are the Fn/2 representati-
ons of elements in the subfield Kn/2. Each operator leads to a distinct approach,
which is described in section 5.1 and 5.2 respectively.

While the algorithms of this section can be used independently, they are
naturally related to hash-and-sign over NTRU lattices. Let B be a matrix repre-
sentation of some secret key (g,−f), and G = BBt. Then the diagonal part of
G’s LDL decomposition contains the ‖b∗i ‖’s, and G is a matrix representation of
ff + gg ∈ K++

n . As illustrated in Section 4, the knowledge of u = ff + gg allows
to recover the secret key in polynomial time. Therefore results in this section
pave the way for a better use of secret Gram-Schmidt norms.

In practice however, we will obtain only approximations of the ‖b∗i ‖’s. The
algorithms of this section must then be tweaked to handle the approximation
error. The case of An is dealt with in Section 7.1. While we do not solve the “ap-
proximate” case of Fn, we believe our “exact” algorithms to be of independent
interest to the community.

5.1 Case of the Power Basis

The goal of this section is to obtain the next theorem. It involves the heuristic
argument that some rational quadratic equations always admits exactly one in-
teger root, which will correspond to a coefficient of the recovered totally positive
element. Experimentally, when it happens that there are two integer roots and
the wrong one is chosen, the algorithm “fails” with overwhelming probability at
the next step: the next discriminant does not lead to integer roots.

Theorem 1. Let u ∈ Rn ∩ K++
n . Write An(u) = L · diag(λi)i · Lt. There is a

(heuristic) algorithm RecoveryA that, given λi’s, computes u or σ(u). It runs in

Õ(n3 log ‖u‖∞).

The complexity analysis is given in the full version [17]. In Section 7.2, a version
tweaked to handle approximations of the λi’s is given, and may achieve quasi-
quadratic complexity. It is in any case very efficient in practice, and it is used in
our attack against DLP signature.

We now describe Algorithm 5.1. By Proposition 1,
∏i
j=0 λi = det

(
An(u)[0,i]

)
is an integer, thus we take mi =

∏i
j=0 λi instead of λi as input for integrality. It

holds that u0 = det
(
An(u)[0,0]

)
= λ0. By the self-adjointness of u, we only need

to consider the first n/2 coefficients. For any 0 ≤ i < n/2− 1, we have

An(u)[0,i+1] =


ui+1

An(u)[0,i]
...
u1

ui+1 . . . u1 u0

 .
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Algorithm 5.1 RecoveryA(m0, . . . ,mn−1)

Input: m0, . . . ,mn−1 ∈ Z+.
Output: u ∈ Rn such that u is totally positive and the principal minors of Fn(u) are

mi’s (0 ≤ i < n).
1: u0 ← m0

2: u1 ← any root of u0 − m1
m0
− X2

u0

3: for i = 1 to n/2− 2 do
4: Build An(u)[0,i] from ui, . . . , u0

5: vi ← (X,ui, . . . , u1)
6: Solve An(u)[0,i] ·wt

i = vti for wi

7: E ← u0 −mi+1/mi − vi ·wt
i .

8: Compute the roots {r1, r2} of E
9: ui+1 ← {r1, r2} ∩ Z

10: end for
11: return (u0, u1, . . . , un/2−1, 0,−un/2−1, . . . ,−u1).

Let vi = (ui+1, . . . , u1). By the definition of the Schur complement and Propo-
sition 1, we see that

det
(
An(u)[0,i+1]

)
det
(
An(u)[0,i]

) = u0 − viAn(u)−1[0,i]v
t
i ,

where the left-hand side is actually λi+1, and the right-hand side gives a quadra-
tic equation in ui+1 with rational coefficients that can be computed from the kno-
wledge of (u0, . . . , ui). When i = 0, the equation is equivalent to λ0λ1 = u20−u21:
there are two candidates of u1 up to sign. Once u1 is chosen, for i ≥ 1, the qua-
dratic equation should have with very high probability a unique integer solution,
i.e. the corresponding ui+1. This leads to Algorithm 5.1. Note that the sign of
u1 determines whether the algorithm recovers u or σ(u). This comes from the
fact that An(u) = diag((−1)i)i≤n · An(σ(u)) · diag((−1)i)i≤n.

5.2 Case of the Bit-Reversed Order Basis

In this section, we are given the diagonal part of the LDL decomposition Fn(u) =
L′ diag(λi)L

′t, which rewrites as (L′−1Pn)An(u)(L′−1Pn)t = diag(λi). Since the
triangular structure is shuffled by the bit-reversal representation, recovering u
from the λi’s is not as straightforward as in the previous section. Nevertheless,
the compatibility of the Fn operator with the tower of extension can be exploited.
It gives a recursive approach that stems from natural identities between the
trace and norm maps relative to the extension Kn | Kn/2, crucially uses the self-
adjointness and total positivity of u, and fundamentally relies on computing
square roots in Rn.

Theorem 2. Let u ∈ Rn ∩ K++
n . Write Fn(u) = L′ · diag(λi)i · L′t. There is a

(heuristic) algorithm that, given the λi’s, computes a conjugate of u. It runs in

Õ(n3 log ‖u‖∞).
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The recursiveness of the algorithm and its reliance on square roots will force
it to always work “up to Galois conjugation”. In particular, at some point we
will assume heuristically that only one of the conjugates of a value computed
within the algorithm is in a given coset of the subgroup of relative norms in the
quadratic subfield. Since that constraint only holds with negligible probability
for random values, the heuristic is essentially always verified in practice. Recall
that we showed in Section 4 how to recover the needed conjugate in practice by
a distinguishing argument.

The rest of the section describes the algorithm, while the complexity analysis
is presented in the full version [17]. First, we observe from

Tr(u) + ζn Tr(ζ−1n u) = 2u = 2ū = Tr(u) + ζ−1n Tr(ζ−1n u)

that Tr(u) is self-adjoint. The positivity of u implies that Tr(u) ∈ K++
n/2. From

Equation (2), we know that the n/2 first minors of Fn(u) are the minors of
Fn/2(Tr(u)/2). The identity above also shows that Tr(ζ−1n u) is a square root of

the element ζ−1n/2 Tr(ζ−1n u)Tr(ζ−1n u) in Kn/2. Thus, if we knew Tr(ζ−1n u)Tr(ζ−1n u),

we could reduce the problem of computing u ∈ Kn to computations in Kn/2, more
precisely, recovering a totally positive element from “its minors” and a square
root computation.

It turns out that Tr(ζ−1n u)Tr(ζ−1n u) can be computed by going down the
tower as well. One can see that

Tr(u)2 − 4 N(u) = Tr(ζ−1n u)Tr(ζ−1n u), (3)

where N(u) is totally positive since u (and therefore σ(u)) is. This identity7 can
be thought as a “number field version” of the Fn representation. Indeed, recall
that ue = (1/2) Tr(u) and uo = (1/2) Tr(ζ−1n u). Then by block determinant
formula and the fact that Fn is a ring isomorphism, we see that

detFn(u) =

n−1∏
i=0

λi = det(Fn/2(ue)
2 −Fn/2(uouo)).

This strongly suggests a link between the successive minors of Fn(u) and the ele-
ment N(u). The next lemma makes this relation precise, and essentially amounts
to taking Schur complements in the above formula.

Lemma 3. Let u ∈ K++
n and û = 2N(u)

Tr(u) ∈ K
++
n/2. Then for 0 < k < n/2, we

have
det
(
Fn(u)[0,k+n

2 )

)
= det

(
Fn/2(ue)

)
det
(
Fn/2(û)[0,k)

)
.

Proof. Let G = Fn(u) and B = Fn/2(uo)[0,n2 )×[0,k) in order to write

G[0,n2 +k) =

(
Fn/2(ue) B

Bt Fn/2(ue)[0,k)

)
,

7 This describes the discriminant of T 2 − Tr(u)T + N(u) whose roots are u and σ(u)

in Kn. It is then not surprising that Tr(ζ−1
n u)Tr(ζ−1

n u) is a square only in Kn.
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Algorithm 5.2 TowerRecoveryF (m0, . . . ,mn−1)

Input: m0, . . . ,mn−1.
Output: u ∈ Rn such that u is totally positive and the principal minors of Fn(u) are

mi’s (0 ≤ i < n).
1: if n = 2 then
2: return m0.
3: end if
4: u+ ← TowerRecoveryF (m0, . . . ,mn

2
−1) {u+ is Tr(u)/2}

5: ũ← TowerRecoveryF (
mn/2
mn/2−1

, . . . ,
mn−1

mn/2−1
) {ũ is a conjugate of û = 2N(u)

Tr(u)
}

6: Find τ such that u+ · τ(ũ) is a relative norm.
7: û← τ(ũ)
8: s← u+ · (u+ − û)
9: u− ← TowerRoot(ζ−1

n/2s) {u− is a conjugate of ±Tr(ζ−1
n u)/2}

10: return u+ + ζnu
−

with Bt = Fn/2(uo)[0,k)×[0,n2 ). Let S = G[0,n2 +k)/Fn/2(ue) = Fn/2(ue)[0,k) −
BFn/2(ue)

−1Bt. Since Fn is a ring isomorphism, a routine computation shows
that S = Fn/2(û)[0,k). The proof follows from Equation (1). ut

Lemma 3 tells us that knowing Tr(u) and the principal minors of Fn(u) is
enough to recover those of Fn/2(û), so that the computations in Kn are again
reduced to computing a totally positive element in Kn/2 from its minors. Then

from Equation (3), we can obtain Tr(ζ−1n u)Tr(ζ−1n u). The last step is then to

compute a square root of ζ−1n/2 Tr(ζ−1n u)Tr(ζ−1n u) in Kn/2 to recover ±Tr(ζ−1n u).

In particular, this step will lead to u or its conjugate σ(u). As observed above,
this translates ultimately in recovering only a conjugate of u.

Lastly, when n = 2, that is, when we work in Q(i), a totally positive element
is in fact in Q+. This leads to Algorithm 5.2, which is presented in the general
context of Kn to fit the description above, for the sake of simplicity. The algo-
rithm TowerRoot of Step 9 computes square roots in Kn and a quasi-quadratic
version for integers is presented and analyzed in the next section.

The whole procedure is constructing a binary tree as illustrated in Figure 1.
The algorithm can be made to rely essentially only on algebraic integers, which
also helps in analyzing its complexity. This gives the claim of Theorem 2 (see
the full version [17] for details). At Step 6, the algorithm finds the (heuristically
unique) conjugate û of ũ such that û · u+ is a relative norm (since we must have
û ·u+ = N(u) by the above). In practice, in the integral version of this algorithm,
we carry out this test not by checking for being a norm, but as an integrality
test.

5.2.1 Computing square roots in cyclotomic towers. In this section, we
will focus on computing square roots of algebraic integers: given s = t2 ∈ Rn,
compute t. The reason for focusing on integers is that both our Algorithm 5.2
and practical applications deal only with algebraic integers. A previous approach
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u

Tr(u) û

...
. . .

u′ u′′

Tr(u′) û′ Tr(u′′) û′′

λ0 λ1 λ2 λ3 · · · λn−4 λn−3 λn−2 λn−1

Fig. 1. Binary tree built by TowerRecoveryF .

was suggested in [25], relying on finding primes with small splitting pattern in
Rn, computing square roots in several finite fields and brute-forcing to find the
correct candidate. A hassle in analyzing this approach is to first find a prime
larger enough than an arbitrary input, and that splits in, say, two factors in Rn.
Omitting the cost of finding such a prime, this algorithm can be shown to run in
Õ(n2(log ‖s‖∞)2). Our recursive approach does not theoretically rely on finding
a correct prime, and again exploits the tower structure to achieve the next claim.

Theorem 3. Given a square s in Rn, there is a deterministic algorithm that
computes t ∈ Rn such that t2 = s in time Õ(n2 log ‖s‖∞).

Recall that the subfield Kn/2 is fixed by the automorphism σ(ζn) = −ζn. For

any element t in Rn, recall that t = 1
2 (Tr(t)+ζn Tr(ζ−1n t)), where Tr is the trace

relative to this extension. We can also see that

Tr(t)2 = Tr(t2) + 2 N(t) = Tr(s) + 2 N(t),

Tr(ζ−1n t)2 = ζ−2n (Tr(t2)− 2 N(t)) = ζ−1n/2(Tr(s)− 2 N(t)), (4)

for the relative norm. Hence recovering Tr(t) and Tr(ζ−1n t) can be done by com-
puting the square roots of elements in Rn/2 determined by s and N(t). The fact
that N(s) = N(t)2 leads to Algorithm 5.3.

Notice that square roots are only known up to sign. This means that an algo-
rithm exploiting the tower structure of fields must perform several sign checks to
ensure that it will lift the correct root to the next extension. For our algorithm,
we only need to check for the sign of N(t) (the signs of Tr(t) and Tr(ζ−1n t) can
be determined by checking if their current values allow to recover s). This veri-
fication happens at Step 6 of Algorithm 5.3, where after computing the square
root of N(s), we know (−1)b N(t) for some b ∈ {0, 1}. It relies on noticing that
from Equations (4), Tb := Tr(s) + 2 · (−1)b N(t) is a square in Kn/2 if and only if
b = 0, in which case Tb = Tr(t)2. (Else, ζ−2n Tb is the square Tr(ζ−1n t)2 in Kn/2.)

This observation can be extended to a sign check that runs in Õ(n · log ‖s‖∞).
The detailed analysis is given in the full version [17].
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Algorithm 5.3 TowerRoot(s)

Input: s = t2 for some t ∈ Rn.
Output: t ∈ Rn.
1: if s ∈ Z then
2: return IntegerSqrt(s)
3: end if
4: S ← N(s) and S′ ← Tr(s)
5: T ← TowerRoot(S) {T = (−1)b N(t)}
6: if CheckSqr(S′ + 2T ) = False then
7: T ← −T
8: end if
9: T+ ← TowerRoot(S′ + 2T ) {T+ = (−1)b0 Tr(t)}

10: T− ← TowerRoot(ζ−1
n/2(S′ − 2T )) {T− = (−1)b1 Tr(ζ−1

n t)}
11: if (1/4)(T+ + ζnT

−)2 = s then
12: return (1/2)(T+ + ζnT

−)
13: else
14: return (1/2)(T+ − ζnT−)
15: end if

In practice, we can use the following approach: since n is small, we can easily
precompute a prime integer p such that p − 1 ≡ n mod 2n. For such a prime,
there is a primitive nth root ω of unity in Fp, and such a root cannot be a square
in Fp (else 2n would divide p−1). Checking squareness then amounts to checking
which of Tb(ω) or ω−2Tb(ω) is a square mod p by computing a Legendre symbol.
While we need such primes for any power of 2 that is smaller than n, in any
case, this checks is done in quasi-linear time. Compared to [25], the size of p here
does not matter.

Let us denote by SQRT(n, S) the complexity of Algorithm 5.3 for an input s ∈
Rn with coefficients of size S = log ‖s‖∞. Using e.g. FFT based multiplication of

polynomials, N(s) can be computed in Õ(nS), and has bitsize at most 2S+log n.
Recall that the so-called canonical embedding of any s ∈ Kn is the vector τ(s) of
its evaluations at the roots of xn + 1. It is well-known that it satisfies ‖τ(s)‖ =√
n‖s‖, so that ‖τ(s)‖∞ ≤ n‖s‖∞ by norm equivalence. If s = t2 we see that

‖τ(s)‖∞ = ‖τ(t)‖2∞. Using again norm equivalence, we obtain ‖t‖∞ ≤
√
n‖s‖1/2∞ .

In the case of N(s) = N(t)2, we obtain that N(t) has size at most S + log n. The

cost of CheckSqr is at most Õ(nS), so we obtain

SQRT(n, S) = SQRT
(n

2
, 2S + log n

)
+ 2SQRT

(n
2
, S + log n

)
+ Õ(nS).

A tedious computation (see the full version [17] for details) gives us Theorem 3.

6 Side-Channel Leakage of the Gram–Schmidt Norms

Our algorithms in Section 5 rely on the knowledge of the exact Gram-Schmidt
norms ‖b∗i ‖. In this section, we show that in the original implementations of
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DLP and Falcon, approximations of ‖b∗i ‖’s can be obtained by exploiting the
leakage induced by a non constant-time rejection sampling.

In previous works targeting the rejection phase, the standard deviation of
the sampler was a public constant. This work deals with a different situation, as
both the centers and the standard deviations used by the samplers of DLP and
Falcon are secret values determined by the secret key. These samplers output
Gaussian vectors by relying on an integer Gaussian sampler, which performs
rejection sampling. The secret standard deviation for the ith integer Gaussian is
computed as σi = σ/‖b∗i ‖ for some fixed σ, so that exposure of the σi’s means
the exposure of the Gram-Schmidt norms. The idea of the attack stems from the
simple observation that the acceptance rate of the sampler is essentially a linear
function of its current σi. In this section, we show how, by a timing attack, one
may recover all acceptance rates from sufficiently many signatures by computing
a well-chosen maximum likelihood estimator. Recovering approximations of the
‖b∗i ‖’s then follows straightforwardly.

6.1 Leakage in the DLP Scheme

We first target the Gaussian sampling in the original implementation [46], descri-
bed in Algorithms 6.1 and 6.2. It samples “shifted” Gaussian integers by relying
on three layers of Gaussian integer sampling with rejection. More precisely, the
target Gaussian distribution at the “top” layer has a center which depends on
secret data and varies during each call. To deal with the varying center, the
“shifted” sample is generated by combining zero-centered sampler and rejection
sampling. Yet the zero-centered sampler has the same standard deviation as the
“shifted” one, and the standard deviation depends on the secret key. At the
“intermediate” layer, also by rejection sampling, the sampler rectifies a public
zero-centered sample to a secret-dependent one.

At the “bottom” layer, the algorithm IntSampler actually follows the BLISS
sampler [8] that is already subject to side-channel attacks [7, 43, 14]. We stress
again that our attack does not target this algorithm, so that the reader can
assume a constant-time version of it is actually used here. The weakness we
are exploiting is a non constant-time implementation of Algorithm 6.2 in the
“intermediate” layer. We now describe how to actually approximate the σi’s
using this leakage.

Algorithm 6.1 DLP base sampler DLPIntSampler(σi, c)

Input: c ∈ [0, 1) and σi ≥ ηε(Z).
Output: z ∈ Z following DZ,σi,c.
1: z ← DLPCenteredIntSampler(σi)
2: b← U({0, 1})
3: z ← z + b
4: return z with probability

ρσi,c(z)

ρσi (z)+ρσi (z−1)
, otherwise restart.
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Algorithm 6.2 DLP centered base sampler DLPCenteredIntSampler(σi)

Input: σi ≥ ηε(Z).
Output: z ∈ Z following DZ,σi .

1: k ← dσi
σ̂
e where σ̂ =

√
1

2 log(2)

2: z ← IntSampler(kσ̂)

3: return z with probability
ρσi (z)

ρkσ̂(z)
, otherwise restart.

Let σ̂ =
√

1
2 log(2) be the standard deviation of the Gaussian at the “bottom”

layer and ki = dσiσ̂ e. It can be verified that the average acceptance probability

of Algorithm 6.2 is AR(σi) =
ρσi (Z)
ρkσ̂(Z) . As required by the KGPV algorithm, we

know that kiσ̂ ≥ σi ≥ η′ε(Z) and by Corollary 1 we have AR(σi) ∈ σi
kiσ̂
·
[
1−ε
1+ε , 1

]
.

Since ε is very small in this context, we do not lose much by assuming that
AR(σi) = σi

kiσ̂
.

Next, for a given σi, the number of trials before Algorithm 6.2 outputs its
result follows a geometric distribution GeoAR(σi). We let ARi be maximum li-
kelihood estimators for the AR(σi)’s associated to N executions of the KGPV
sampler, that we compute using Lemma 1. We now want to determine the ki’s
to compute σi = kiσ̂ARi. Concretely, for the suggested parameters, we can set
ki = 3 for all i at the beginning and measure ARi. Because the first half of the
σi’s are in a small interval and increase slowly, it may be the case at some step
that ARi+1 is significantly smaller than ARi (say, 1.1 · ARi+1 < ARi). This
means that ki+1 = ki + 1, and we then increase by one all the next ki’s. This
approach can be done until ARn is obtained, and works well in practice. Lastly,
Lemma 1 tells us that for large enough α and p, taking N ≥ 22(p+logα) implies
|σi − σi| ≤ 2−p · σi for all 0 ≤ i < 2n with high probability.

From [11], the constant σ is publicly known. This allows us to have approxi-
mations bi = σ

σi
, which we then expect are up to p bits of accuracy on ‖b∗i ‖.

6.2 Leakage in the Falcon Scheme

We now describe how the original implementation of Falcon presents a similar
leakage of Gram–Schmidt norms via timing side-channels. In contrast to the pre-
vious section, the integer sampler of Falcon is based on one public half-Gaussian
sampler and some rejection sampling to reflect sensitive standard deviations and
centers. The procedure is shown in Algorithm 6.3.

Our analysis does not target the half-Gaussian sampler D+
Z,σ̂ where σ̂ = 2, so

that we omit its description. It can be implemented in a constant-time way [29],
but this has no bearing on the leakage we describe.

We first consider ci and σi to be fixed. Following Algorithm 6.3, we let

p(z, b) = exp
(
z2

2σ̂2 − (b+(2b−1)z−ci)2
2σ2
i

)
be the acceptance probability and note

20



Algorithm 6.3 Falcon base sampler FalconIntSampler(σi, c)

Input: c ∈ [0, 1) and σi ≥ ηε(Z).
Output: z′ ∈ Z following DZ,σi,c.
1: z ←↩ D+

Z,σ̂ where σ̂ = 2
2: b←↩ U({0, 1})
3: return z′ = b + (2b − 1)z with probability exp

(
z2

2σ̂2 − (b+(2b−1)z−c)2

2σ2
i

)
, otherwise

restart.

that

p(z, 0) =
1

ρσ̂(z)
exp

(
− (−z − c)2

2σ2
i

)
and p(z, 1) =

1

ρσ̂(z)
exp

(
− (z + 1− c)2

2σ2
i

)
.

Then the average acceptance probability for fixed c and σi satisfies

Ez,b
[
p(z, b)] =

1

2ρσ̂(N)

∑
z∈N

(
exp

(
− (−z − c)2

2σ2
i

)
+ exp

(
− (z + 1− c)2

2σ2
i

))
=
ρσi(Z− c)

2ρσ̂(N)
.

As σ̂ ≥ σi ≥ η′ε(Z) for a very small ε, we can again use Lemma 2 to have that
ρσi(Z−c) ≈ ρσi(Z). This allows us to consider the average acceptance probability
as a function AR(σi), independent of c. Using that 2ρ+σ̂ (N) = ρσ̂(Z)+1 combined

with Corollary 1, we write AR(σi) = σi
√
2π

1+2
√
2π

. Then an application of Lemma 1

gives the needed number of traces to approximate σi up to a desired accuracy.

7 Practical Attack Against the DLP Scheme

For the methods in Section 6, measure errors seem inevitable in practice. To
mount a practical attack, we have to take into account this point. In this section,
we show that it is feasible to compute a totally positive element even with noisy
diagonal coefficients of its LDL decomposition.

First we adapt the algorithm RecoveryA (Algorithm 5.1) to the noisy input in
Section 7.1. To determine each coefficient, we need to solve a quadratic inequa-
lity instead of an equation due to the noise. As a consequence, each quadratic
inequality may lead to several candidates of the coefficient. According to if there
is a candidate or not, the algorithm extends prefixes hopefully extending to a
valid solution or eliminates wrong prefixes. Thus the algorithm behaves as a tree
search.

Then we detail in Section 7.2 some implementation techniques to accelerate
the recovery algorithm in the context of the DLP scheme. While the algorithm
is easy to follow, adapting it to practical noisy case is not trivial.

At last, we report experimental results in Section 7.3. As a conclusion, given
the full timing leakage of about 234 signatures, one may practically break the
DLP parameter claimed for 192-bit security with a good chance. We bring some
theoretical support for this value in Section 7.4.
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Algorithm 7.1 RecoveryA(δ, {di}i, prefix)

Input: δ ∈
[
0, 1

2

)
, prefix =

(
A0, · · · , Al−1

)
∈ Zl and for all i

di = di + εi where di = det
(
An(A)[0,i]

)
/ det

(
An(A)[0,i−1]

)
and |εi| ≤ δ.

Output: a list of candidates of A in which each candidate A′

(1) takes prefix as the first l coefficients;
(2) satisfies |di − d′i| < δ where d′i = det

(
An(A′)[0,i]

)
/ det

(
An(A′)[0,i−1]

)
.

1: S ← ∅
2: if l = n

2
then

3: S ← {A0 +
∑n

2
−1

i=1 Ai(X
i +X−i)}

4: else
5: T← (A|i−j|)i,j∈[0,l), t←

(
0, Al−1, · · · , A1

)
6: Qa ← T−1

0,0, Qb ←
∑l−1
i=1 T

−1
0,i ti, Qc ← ttT−1t−A0 + dl

7: Sl ← {x ∈ Z : |Qax2 + 2Qbx+Qc| < δ} {all possible Al}
8: for a ∈ Sl do
9: prefix′ ← (prefix, a) ∈ Zl+1

10: S ← S
⋃

RecoveryA(δ, {di}i, prefix′)
11: end for
12: end if
13: return S

7.1 Totally Positive Recovery With Noisy Inputs

Section 5.1 has sketched the exact recovery algorithm. To tackle the measure
errors, we introduce a new parameter to denote the error bound. The modified
algorithm proceeds in the same way: given a prefix (A0, · · · , Al−1), it computes
all possible Al’s satisfying the error bound condition and extends or eliminates
the prefix according to if it can lead to a valid solution. A formal algorithmic
description is provided in Algorithm 7.1. For convenience, we use the (noisy)
diagonal coefficients (i.e. secret Gram-Schmidt norms) of the LDL decomposition
as input. In fact, Proposition 1 has shown the equivalence between the diagonal
part and principal minors. In addition, we include prefix in the input for ease of
description. The initial prefix is prefix = A0 = bd0e. Clearly, the correct A must
be in the final candidate list.

7.2 Practical Tweaks in the DLP Setting

Aiming at the DLP signature, we implemented our side-channel attack. By the
following techniques, one can boost the practical performance of the recovery
algorithm significantly and reduce the number of required signatures.

Fast computation of the quadratic equation. Exploiting the Toeplitz struc-
ture of An(A), we propose a fast algorithm to compute the quadratic equation,
i.e. (Qa, Qb, Qc), that requires only O(l) multiplications and additions. The idea
is as follows. Let Ti = An(A)[0,i]. Let ui = (A1, · · · , Ai) and vi = (Ai, · · · , A1),
then

Ti =

(
Ti−1 vti
vi A0

)
=

(
A0 ui
uti Ti−1

)
.
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Let ri = viT
−1
i−1, si = uiT

−1
i−1 which is the reverse of ri and di = A0− 〈vi, ri〉 =

A0 − 〈ui, si〉. A straightforward computation leads to that

T−1i =

(
T−1i−1 + rtiri/di −rti/di
−ri/di 1/di

)
.

Let fi = 〈ri,ui〉 = 〈si,vi〉, then the quadratic equation of Ai is

di = A0 − 〈vi, ri〉 = A0 − (Ai − fi−1)2/di−1 − 〈vi−1, ri−1〉.

Remark that di is the square of the last Gram-Schmidt norm. Because di, a
noisy di, is the input, combining fi−1,vi−1, ri−1 would determine all possible
Ai’s. Once Ai is recovered, one can then compute ri, si according to

si =
(
−Ai−fi−1

di−1
ri−1 + si−1,

Ai−fi−1

di−1

)
and further compute di, fi. As the recovery algorithm starts with i = 1 (i.e.
prefix = A0), we can compute the sequences {di}, {fi}, {ri}, {si} on the fly.

Remark 1. The input matrix is very well conditioned, so we can use a precision
of only O(log n) bits.

Remark 2. The above method implies an algorithm of complexity Õ(n2) for the
exact case (Section 5.1).

Pruning. We expect that when a mistake is made in the prefix, the error
committed in the Gram-Schmidt will be larger. We therefore propose to prune
prefixes when

∑j
k=i e

2
k/σ

2
k ≥ Bj−i for some i, j where ek is the difference between

the measured k-th squared Gram-Schmidt norm and the one of the prefix. The
bound Bl is selected so that for ek a Gaussian of standard deviation σk, the
condition is verified except with probability τ/

√
l. The failure probability τ is

geometrically decreased until the correct solution is found.

Verifying candidates. Let A = ff + gg, then ff = A(1 + hh) mod q. As
mentioned in Section 4, all coefficients except the constant one of ff would
be much smaller the modulus q. This can be used to check if a candidate is
correct. In addition, both A(x) and A(−x) are the final candidates, we also check
A(1 + h(−x)h(−x)) to ensure that the correct A(−x) will not to be eliminated.
Once either A(x) or A(−x) is found, we terminate the algorithm.

The use of symplecticity. As observed in [18], the trapdoor basis Bf,g is
q-symplectic and thus ‖b∗i ‖ · ‖b∗2n−1−i‖ = q. Based on that, we combine the
samples of the i-th and (2n − 1 − i)-th Gaussians to approximate ‖b∗i ‖. This
helps to refine the approximations and thus to reduce the number of signatures
enabling a practical attack.
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7.3 Experimental Results

We validate the recovery algorithm on practical DLP instances. Experiments are
conducted on the parameter set claimed for 192-bit security in which

n = 512, q ≈ 210, σ = 2.2358
√
q, ‖b∗i ‖ ≤ 1.17

√
q.

The leakage data we extracted is the number of iterations of centered Gaus-
sian samplings (Algorithm 6.2). To obtain it, we added some instrumentation to
Prest’s C++ implementation [46]. The centered Gaussian samplings only depend
on the secret key itself not the hashed message. Hence, instead of executing com-
plete signing, we only perform centered Gaussian samplings. We mean by sample
size the number of collected Gaussian samples. In fact, considering the rejection
sampling in Algorithm 6.1, one requires about N/2 signatures to generate N
samples per centered Gaussian.

We tested our algorithm on ten instances, and result is shown in Table 1.
Producing the dataset of 236.5 samples for a given key took about 36 hours on
our 48-core machine (two weeks for all 10 distinct keys).

In one instance, the recovery algorithm found millions of candidate solutions
with Gram-Schmidt norms closer to the noisy ones than the correct solution, in
the sense that they had a larger τ . This indicates that the recovery algorithm is
relatively close to optimality.

Table 1. Experimental validation of the recovery of ff + gg. The first column and
row indicate the time limit and the logarithm of used sample size respectively. The
remaining data shows how many instances out of 10 are solved correctly within the
time limit and with given number of samples.

36.5 36.0 35.5 35.0 34.5 34.0

< 1 s 8 7 4 3 0 0

< 10 s 9 8 6 4 1 0

< 102 s 10 9 7 4 3 1

< 103 s 10 10 8 4 4 1

< 104 s 10 10 8 5 4 1

< 105 s 10 10 8 6 4 2

< 5 · 105 s 10 10 9 7 4 3

7.4 Precision Required on the Gram–Schmidt Norms

We try here to give a closed formula for the number of samples needed. We
recall that the relative error with respect to the Gram-Schmidt norm (squared)
is Θ(1/

√
N) where N is the number of samples.
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A fast recovery corresponds to the case where only one root is close to an
integer; and in particular increasing by one the new coefficient must change by
Ω(1/

√
N) the Gram-Schmidt norm. This is not an equivalence because there is

another root of the quadratic form, but we will assume this is enough.
Let b1 be the first row of

(
An(f) An(g)

)
, and bi the i-th row for i ≥ 2. We

define pbi as the projection of b1 orthogonally to b2, . . . , bi−1. We expect that

‖pbi‖ ≈
√

2n−i+2
2n ‖b1‖. Consider the Gram matrix of the family b1, . . . , bi−1, bi±

pb
‖b1‖2 . We have indeed changed only the top right/bottom left coefficients by

±1, beside the bottom right coordinate. Clearly this does not change the i-th
Gram-Schmidt vector; so the absolute change in the i-th Gram-Schmidt norm
squared is ∥∥∥∥bi ± pbi

‖b1‖2

∥∥∥∥2 − ‖bi‖2 ≈ ±〈bi, pbi〉‖b1‖2
.

The Gram-Schmidt norm squared is roughly ‖pbi‖2.
Getting only one solution at each step with constant probability corresponds

to

〈bi, pbi〉 ≥
‖bi‖‖pbi‖√
2n− i+ 2

(assuming the scalar product is distributed as a Gaussian) which means a total
number of samples of

N = Θ

(√
2n− i+ 2‖pbi‖‖b1‖2

‖bi‖‖pbi‖

)2

= Θ(n‖b1‖2) = Θ(nq2).

This gives roughly 229 samples, which is similar to what the search algorithm
requires.

Getting only one solution at each step with probability 1− 1/n corresponds
to

〈bi, pbi〉 ≥
‖bi‖‖pbi‖

n
√

2n− i+ 2

and N = Θ(n3q2). This would be 257 samples.

8 Conclusion and Future Work

In this paper, we have investigated the side-channel security of the two main
efficient hash-and-sign lattice-based signature schemes: DLP and Falcon (focu-
sing on their original implementations, although our results carry over to several
later implementations as well). The two main takeaways of our analysis are that:

1. the Gram–Schmidt norms of the secret basis leak through timing side-channels;
and

2. knowing the Gram–Schmidt norms allows to fully recover the secret key.
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Interestingly, however, there is a slight mismatch between those two results:
the side-channel leakage only provides approximate values of the Gram–Schmidt
norms, whereas secret key recovery a priori requires exact values. We are able
to bridge this gap in the case of DLP by combining the recovery algorithm with
a pruned tree search. This lets us mount a concrete attack against DLP that
recovers the key from 233 to 235 DLP traces in practice for the high security
parameters of DLP (claiming 192 bits of security).

However, the gap remains in the case of Falcon: we do not know how to
modify our recovery algorithm so as to deal with approximate inputs, and as a
result apply it to a concrete attack. This is left as a challenging open problem
for future work.

Also left for future work on the more theoretical side is the problem of giving
an intrinsic description of our recovery algorithms in terms of algebraic quanti-
ties associated with the corresponding totally positive elements (or equivalently,
to give an algebraic interpretation of the LDL decomposition for algebraically
structured self-adjoint matrices). In particular, in the Falcon case, our appro-
ach shows that the Gram–Schmidt norms characterize the Galois conjugacy class
of a totally positive element. This strongly suggests that they should admit a
nice algebraic description, but it remains elusive for now.

The final recovery in our attack, that is computing f from ff̄ + gḡ, heavily
relies on the property of NTRU. We need further investigations to understand
the impact of Gram-Schmidt norm leakage in hash-and-sign schemes over other
lattices. But for non-structured lattices, there appears to be a strong obstruction
to at least a full key recovery attack, simply due to the dimension of the pro-
blem: there are only n Gram-Schmidt norms but O(n2) secret coefficients to be
recovered.

On a positive note, we finally recall that the problem of finding counterme-
asures against the leakage discussed in this paper is fortunately already solved,
thanks to the recent work of Prest, Ricosset and Rossi [48]. And that counter-
measure has very recently been implemented into Falcon [45], so the leak can
be considered as patched! The overhead of that countermeasure is modest in
the case of Falcon, thanks to the small range in which the possible standard
deviations occur; however, it could become more costly for samplers that need
to accommodate a wider range of standard deviations.

An alternate possible countermeasure could be to use Peikert’s convolution
sampling [42] in preference to the KGPV approach, as it eliminates the need for
varying standard deviations, and is easier to implement even without floating
point arithmetic [9]. It does have the drawback of sampling wider Gaussians,
however, and hence leads to less compact parameter choices.
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[4] Barthe, G., Beläıd, S., Espitau, T., Fouque, P.A., Rossi, M., Tibouchi, M.:
GALACTICS: Gaussian Sampling for Lattice-Based Constant-Time Imple-
mentation of Cryptographic Signatures, Revisited. In: Cavallaro, L., Kinder,
J., Wang, X., Katz, J. (eds.) ACM CCS 2019. pp. 2147–2164. ACM Press
(2019)

[5] Bindel, N., Akleylek, S., Alkim, E., Barreto, P.S.L.M., Buchmann, J., Eaton,
E., Gutoski, G., Kramer, J., Longa, P., Polat, H., Ricardini, J.E., Zanon,
G.: qTESLA. Tech. rep., National Institute of Standards and Technology
(2019), available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-2-submissions

[6] Bootle, J., Delaplace, C., Espitau, T., Fouque, P.A., Tibouchi, M.: LWE wit-
hout modular reduction and improved side-channel attacks against BLISS.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol.
11272, pp. 494–524. Springer, Heidelberg (Dec 2018)

[7] Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and
reload - A cache attack on the BLISS lattice-based signature scheme. In:
Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp.
323–345. Springer, Heidelberg (Aug 2016)

[8] Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures
and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part I. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (Aug 2013)

[9] Ducas, L., Galbraith, S., Prest, T., Yu, Y.: Integral Matrix Gram Root and
Lattice Gaussian Sampling without Floats. In: EUROCRYPT 2020 (2020),
(to appear)

[10] Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
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