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Abstract. Boneh, Waters and Zhandry (CRYPTO 2014) used multilinear maps to
provide a solution to the long-standing problem of public-key broadcast encryption
(BE) where all parameters in the system are small. In this work, we improve their
result by providing a solution that uses only bilinear maps and Learning With
Errors (LWE). Our scheme is fully collusion-resistant against any number of
colluders, and can be generalized to an identity-based broadcast system with short
parameters. Thus, we reclaim the problem of optimal broadcast encryption from
the land of “Obfustopia”.
Our main technical contribution is a ciphertext policy attribute based encryption
(CP-ABE) scheme which achieves special efficiency properties – its ciphertext
size, secret key size, and public key size are all independent of the size of the
circuits supported by the scheme. We show that this special CP-ABE scheme
implies BE with optimal parameters; but it may also be of independent interest.
Our constructions rely on a novel interplay of bilinear maps and LWE, and are
proven secure in the generic group model.

1 Introduction

Broadcast Encryption (BE) [FN94] enables a sender to encrypt a message for a subset of
users who are listening on a broadcast channel. In more detail, in a BE system, a sender
can encrypt to any set S of its choice, and any user in S can decrypt the broadcast using
its secret key. The system is said to be fully collusion resistant if no collection of users
outside S can learn anything about the plaintext.

Introduced in a seminal work by Fiat and Naor [FN94], the primitive of broadcast
encryption has received significant attention, with diverse constructions achieving
different tradeoffs in the sizes of ciphertext, secret key and public parameters. Of
particular importance is the size of the ciphertext overhead: namely, the size of the
ciphertext beyond what is necessary for the description of the recipient set S and the
symmetric encryption of the plaintext message. A BE scheme is said to have low
overhead if the ciphertext overhead depends at most logarithmically on the number of
users in the system (N , say). In this work, we focus on BE systems that are public key,
have low ciphertext overhead and are fully collusion resistant.

The first work to satisfy the above desiderata was by Boneh, Gentry, and Waters
[BGW05], and was based on hardness assumptions on bilinear maps. This construction
achieved optimal (constant) ciphertext overhead and short secret keys, but suffered from



public parameter size which is linear in the number of users N . Follow-ups based on
bilinear maps improved some aspects of this construction [GW09, DPP07, GW09, Del07,
SF, AL10, HWL+16], but could not improve the public key size. Indeed, even relying on
the existence of the powerful indistinguishability obfuscation [GGH+13], BE with short
public key remained elusive (though it achieved other remarkable properties) [BZ17].

This state of affairs was improved considerably by the work of Boneh, Waters and
Zhandry [BWZ14] who provided the first construction of broadcast encryption, achieving
optimal parameters including short public key, by relying on multilinear maps. This
marked the first solution to a long standing open problem. However, the constructions
suggested by [BWZ14] also have some limitations. In more detail, the [BWZ14] provide
three broadcast encryption systems that use an O(logN) way multilinear map – this
necessitates the degree of the map to be polynomial when N is exponential. More
importantly, existing candidates of multilinear maps have been subject to many attacks
[CHL+15, CGH+15, HJ15, CJL, CFL+, MSZ16, CLLT16, ADGM16] and their security
is poorly understood. Thus, the question of broadcast encryption with optimal parameter
size has so far, remained squarely in the land of “Obfustopia”.

Our Results. In this work, we reclaim broadcast encryption from Obfustopia by providing
a solution that uses only bilinear maps and Learning With Errors (LWE). Our scheme
is public key, fully collusion-resistant against any number of colluders, and can be
generalized to an identity-based broadcast system with short parameters. Along the
way, we provide the first ciphertext policy attribute based encryption scheme whose
ciphertext size, secret key size, and public key size are all independent of the size of the
circuits supported by the scheme. This construction may be of independent interest. Our
constructions rely on a novel interplay between bilinear maps and LWE and are proven
secure in the generic group model.

1.1 Our Techniques.

Recasting BE as CP-ABE: Our starting observation is that the question of broadcast
encryption can be re-stated in terms of the notion of ciphertext policy attribute based
encryption (CP-ABE). In a CP-ABE scheme, a ciphertext for a message m is labelled
with a function (policy) f , and secret keys are labelled with public attributes x from
the domain of f . Decryption succeeds to yield the hidden message m if and only if the
attribute satisfies the policy, namely f(x) = 1. To see BE as a special case of CP-ABE,
note that the ciphertext may encode a circuit FS that checks membership of a given
user index in a set of recipients S, and the attributes x may encode user index in the set
N . Thus, a user i can use her CP-ABE secret key to test whether i is a member of the
set S encoded in the ciphertext, and recover the message m if and only if this is true.
Then, a natural approach to construct BE is to leverage CP-ABE schemes. However,
unsurprisingly, constructions of CP-ABE achieving optimal parameters that suffice for
BE, has been elusive.

From Pairings to LWE: All known constructions of BE from standard assumptions
(i.e. without relying on the existence of multilinear maps or indistinguishability
obfuscation) are based on various assumptions on bilinear groups. Since the question of
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optimal BE from pairings has met with little progress for over a decade, it is evidently
meaningful to look at assumptions on other mathematical structures to seek a way
forward. The most obvious candidate that presents itself is the versatile Learning With
Errors (LWE) assumption, which has led to breakthroughs in similar primitives, notably
in fully homomorphic encryption [BV11, BGV12, Bra12].

Let us then examine what is known from LWE in this context. The dual notion of
key-policy ABE has met with fantastic success from LWE – the works of Gorbunov
et al. [GVW13] and Boneh et al. [BGG+14] show how to construct KP-ABE for all
circuits (on the other hand, constructions based on pairings could only support the much
weaker circuit class NC1). KP-ABE is the same as CP-ABE with the roles of circuit and
attributes swapped. Additionally, the KP-ABE construction of Boneh et al. [BGG+14],
henceforth denoted as BGG+, manages to encode the circuit very succinctly – in more
detail, the size of the public and secret keys in the BGG+ construction are independent
of the circuit size and depend only on the depth of the circuit. Additionally, the size of
the ciphertext is also independent of the circuit size and depends only on input length.
Since the input length for the circuit FS that checks membership in S is an encoding of
a user index, it is of size O(logN). Moreover, it is easy to check that the depth of FS is
also O(logN). Therefore, if we have a CP-ABE with analogous efficiency, namely, so
that the public key size, secret key size, and ciphertext size do not depend on the size but
only input length and depth of the circuit, it follows that we can obtain BE with optimal
parameters.

Constructing CP-ABE from LWE: Thus, it suffices to ask whether we can have
a CP-ABE scheme, denoted by cpABE, with the desired efficiency. To leverage the
succinctness of the circuit encoding of BGG+, a naive idea is to set cpABE.CT(FS) =
BGG+.SK(FS). Two immediate problems present themselves: i) Where to embed the
messagem3, and ii) Computing BGG+.SK(FS) requires the master secret but encryption
is a public key algorithm.

To address these challenges, a first idea is to exploit the decomposability of BGG+.
In more detail, decomposability means that the ciphertext for attribute x and message
m may be decomposed into |x| + 1 encodings, one for each bit xi of the attribute
string and message m – these are tied together using common randomness used during
their generation. Let us denote the encoding corresponding to bit xi as ψi,xi . Then, a
natural idea is to let the encryptor sample a fresh instance of the BGG+ scheme, generate
BGG+.SK(FS) and encrypt each ψi,b using a different public key encryption scheme,
say with PKE key PKi,b. This yields a CP-ABE with the desired efficiency, inherited
directly from the succinctness of the BGG+ key and the decomposability of the BGG+

ciphertext.

Constraining the Information Leaked (Or, Back to Pairings): However, this scheme
is obviously not collusion resistant: a user with keys for x and x̄ can decrypt every
ciphertext. To make the scheme collusion resistant, we would like to replace the naive
use of public key encryption above into a more sophisticated scheme, which hides all but
the output of the BGG+ decryption algorithm. This description bears close resemblance
to a functional encryption scheme for some restricted functionality, for which we turn

3 This question is surprisingly non-trivial even in the symmetric key setting
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to — pairings! In particular, we isolate the ψi,b by randomizing and lifting them to the
exponent of a bilinear group. The hope is that we may provide a secret key for some
attribute x such that it only allows the appropriate ψi,xi to be selected and combined
so that only the output of the BGG+ decryption is revealed, and that the randomization,
which will be unique to every cpABE ciphertext and secret key pair, prevents collusion
attacks.

Evaluation of NC1 Circuit in the Exponent: Several questions arise. First, we dis-
cussed above that the circuit for checking membership in set S is in NC1 – however,
pairings are only capable of supporting at most quadratic operations. How then, do we
hope to compute an NC1 circuit in the exponent of a bilinear group? The answer lies in
the specific structure of the BGG+ evaluation algorithm, which, even for a circuit in P is
linear in the encodings and the secret key, followed by a final rounding step to remove
the noise. Indeed, the knowledgeable reader may observe that this very linearity of the
BGG+ evaluation procedure has been the cause of attacks in other contexts [Agr17] –
what is a “curse” there is a “blessing” here! However, the rounding step remains – this is
in NC1 and clearly cannot be performed in the exponent.

An approach is to perform the linear computation (which represents the circuit FS)
in the exponent, recover the output via discrete log, and then compute the rounding in
the clear. Again, it is unclear this satisfies either correctness or security. For the former,
note that recovering the encoded output from the exponent requires that the output be
polynomially bounded. In this case, the output is the message bit plus some noise that
resulted from the homomorphic evaluation. While the noise in this context may be
superpolynomial in general, we can convert our NC1 circuit into a branching program
and leverage the asymmetric noise growth for BP evaluation of BGG+ encodings to
ensure that the noise is bounded by a polynomial [GV15].

The more worrisome issue is that of security. It is well known that the noise that
results from homomorphic evaluation of encodings leaks the noise in the original
encodings and is often a security threat –in fact, the savvy reader may have observed that
this leakage is one of the main barriers in constructing iO from standard assumptions
[Agr19, AJL+19]. However, here we are rescued by the serendipitous fact that what we
are trying to build here is a kind of attribute based encryption, not functional encryption!
In more detail, the leakage caused by the noise is a security threat in the context of
functional encryption, as formalized in [Agr17, Agr19, AJL+19] – this is because a
decryptor who possesses some secret keys for a functional encryption scheme must
still not be able to learn anything about the encrypted message beyond what the keys
reveal. On the other hand, attribute based encryption is a much simpler “all or nothing”
primitive – if the adversary possesses a single key that decrypts a ciphertext, there are
no more secrets the scheme withholds from her. Hence, if the adversary has a key that
lets her recover the value encoded in the exponent, the additional leakage created by the
noise terms do not pose a security threat.

Preventing Mix and Match Attacks: To prevent collusions, we design the decryption
algorithm so that the decryptor obtains a randomized version of the ciphertext
components in the exponents as g

δψi,xi
T , where gT is the target group, ψi,xi are BGG+

encodings as defined above and δ is user specific randomness. Since δ is user specific,
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the attacker cannot combine partial decryption results of multiple users, preventing mix
and match attacks.

Hence, it suffices to restrict our attention to the single user case. Here, we must ensure
that the adversary only gets components {gδψi,xiT }i corresponding to the particular key
x issued to her, instead of all the components {gδψi,bT }i,b for b ∈ {0, 1}. Furthermore,
we must ensure that the attribute vector x is processed in the correct sequence – i.e.,
its bits are not permuted. To prevent these attacks, we bind each entry of the ciphertext
and each bit of the secret key attribute x to the corresponding positions. This is possible
by setting the master public key to be {gwi,b}i,b where wi,b are randomly chosen for

each position i and b ∈ {0, 1} and setting the secret key and ciphertext as {gδ/wi,xi2 }i
and {gψi,bwi,b1 }i,b respectively. We remark that we need to use asymmetric pairings to
prevent ciphertext (respectively key) components from being paired between themselves
to leak information. By tying element values to their positions, we ensure that pairing of
the ciphertext and secret key components corresponding to different positions result in
a term which looks like g

δψi,bwi,b/wi′,b′

T for (i, b) 6= (i′, b′). Now, we claim that a term
of the form gδwi,b/wi′,b′ is useless to the attacker – to see this, note that in the generic
group model, an attacker cannot obtain any information about a value encoded in the
exponent unless she finds a non-trivial linear relation that contains that term. However,
since the term δwi,b/wi′,b′ appears only when we pair the ciphertext component with
position (i, b) with the secret key component with position (i′, b′) and cannot appear
anywhere else, it follows that it cannot appear as a term in a linear combination that
results in 0 (except with negligible probability). Thus, by using {wi,b}i,b, we enforce
that the computation follows the desired path.

Combining the above ideas, we obtain our final CP-ABE scheme. By setting the
circuit class appropriately, this yields BE and even Identity Based BE (or IBBE). Please
see Section 3 for the CP-ABE and Section 5 for the construction of BE and IBBE.

Security in the Generic Group Model: We prove security in the generic group model,
which closely follows the intuition we explained so far. Specifically, we will show that
the adversary cannot find any non-trivial linear relation among the partial decryption
results of the ciphertext components. The main challenge in the security proof is that
the partial decryption results obtained by using different secret keys are correlated – in
more detail, they can contain terms gδψi,01 and gδ

′ψi,1
1 where ψi,0 and ψi,1, if learned

simultaneously, lead to a complete break of security. Simulating these in the standard
model using the security of BGG+ appears difficult.

To address the issue we first observe that the adversary cannot take a linear
combination among partial decryption results obtained by two different secret keys in a
meaningful way, since they are randomized by the user specific randomness introduced
for preventing collusions. This implies that if the adversary manages to find a non-
trivial linear relation among the partial decryption results, all the terms involved should
be obtained from the same secret key. We also observe that until the point when the
adversary finds the first non-trivial linear relation, the simulator can simulate the generic
group oracles without knowing the corresponding encodings. This can be done by simply
pretending that there is no non-trivial linear relation among the terms.
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The above observations allow us to concentrate on the security proof for the single-
key case without worrying about the partial decryption results by other keys. We can
then conclude by using the security of the BGG+ scheme. In more detail, an adversary
who can find a non-trivial linear relation among the partial decryption results can be
used to distinguish a BGG+ ciphertexts from random ones, since the partial decryption
result by a single key essentially corresponds to a BGG+ ciphertext in exponent and it
cannot find any non-trivial linear relation among the random ciphertext components as
long as the modulus size is exponential.

1.2 Related Works.

In an independent work (that predates ours), Brakerski and Vaikuntanathan [BV20] also
construct broadcast encryption achieving optimal parameters. Their techniques as well
as final result are very different from ours – while our work crucially uses pairings in
conjunction with LWE, they rely entirely on LWE and new assumptions in the regime
of lattices. Both works can be seen as following the broad approach of starting with a
succinct single-key CP-ABE from LWE4, and adding collusion resistance using pairings
(ours) or new techniques in the lattice regime (theirs).

The techniques in our work are similar in spirit to a growing line of work that uses
“the best of both” of pairings and LWE [AJL+19, Agr19, JLS19, GQWW19], but quite
different in details. Closest to our work are techniques used to construct key policy
functional encryption [AJL+19, Agr19, JLS19], which use FHE (based on LWE) for
encrypted evaluation and pairings for performing FHE decryption in the exponent. While
a major challenge in these constructions is the leakage caused by FHE decryption noise,
we sidestep this issue altogether because BE is an “all or nothing” primitive” with no
secrets from a legitimate key holder. On the other hand, we need new tricks to handle
the functionality and security of a ciphertext-policy scheme – for instance, we need
to use position-wise randomness on the exponent to prevent ciphertext and secret key
components from being paired in illegitimate positions to leak information.

2 Preliminaries

In this section, we define some notation and preliminaries that we require.

Notation. We use bold letters to denote vectors and the notation [a, b] to denote the set
of integers {k ∈ N | a ≤ k ≤ b}. Throughout the paper, we use λ to denote the security
parameter. We say a function f(λ) is negligible if it is O(λ−c) for all c > 0, and we use
negl(λ) to denote a negligible function of λ. We say f(λ) is polynomial if it is O(λc)
for some constant c > 0, and we use poly(λ) to denote a polynomial function of λ.

2.1 Attribute Based Encryption

Let R = {Rλ : Aλ×Bλ → {0, 1}}λ be a relation where Aλ and Bλ denote “ciphertext
attribute” and “key attribute” spaces. An attribute-based encryption (ABE) scheme for R
is defined by the following PPT algorithms:

4 The single key CP-ABE with succinct CT was also discovered by Boneh and Kim [BK].
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Setup(1λ)→ (mpk,msk): The setup algorithm takes as input the unary representation
of the security parameter λ and outputs a master public key mpk and a master secret
key msk.

Enc(mpk, X, µ)→ ct: The encryption algorithm takes as input a master public key
mpk, a ciphertext attribute X ∈ Aλ, and a message bit µ. It outputs a ciphertext ct.

KeyGen(mpk,msk, Y )→ skY : The key generation algorithm takes as input the master
public key mpk, the master secret key msk, and a key attribute Y ∈ Bλ. It outputs a
private key skY .

Dec(mpk, ct, X, skY , Y )→ µ or ⊥: We assume that the decryption algorithm is
deterministic. The decryption algorithm takes as input the master public key mpk,
a ciphertext ct, ciphertext attribute X ∈ Aλ, a private key skY , and private key
attribute Y ∈ Bλ. It outputs the message µ or ⊥ which represents that the ciphertext
is not in a valid form.

Definition 2.1 (Correctness).
An ABE scheme for relation family R is correct if for all λ ∈ N, X ∈ Aλ, Y ∈ Bλ

such that R(X,Y ) = 1, and for all messages µ ∈M,

Pr

[
(mpk,msk)← Setup(1λ), skY ← KeyGen(mpk,msk, Y ),

ct← Enc(mpk, X, µ) : Dec
(
mpk, skY , Y, ct, X

)
6= µ

]
= negl(λ)

where the probability is taken over the coins of Setup, KeyGen, and Enc.

Definition 2.2 (Ada-IND security for ABE). For an ABE scheme ABE = {Setup,Enc,
KeyGen,Dec} for a relation family R = {Rλ : Aλ × Bλ → {0, 1}}λ and a message
space {Mλ}λ∈N and an adversary A, let us define Ada-IND security game as follows.

1. Setup phase: On input 1λ, the challenger samples (mpk,msk)← Setup(1λ) and
gives mpk to A.

2. Query phase: During the game, A adaptively makes the following queries, in an
arbitrary order. A can make unbounded many key queries, but can make only single
challenge query.
(a) Key Queries: A chooses an input Y ∈ Bλ. For each such query, the challenger

replies with skY ← KeyGen(mpk,msk, Y ).
(b) Challenge Query: At some point, A submits a pair of equal length messages

(µ0, µ1) ∈ (M)2 and the target X? ∈ Aλ to the challenger. The challenger
samples a random bit b← {0, 1} and replies to A with ct← Enc(mpk, X?, µb).

We require that R(X?, Y ) = 0 holds for any Y such that A makes a key query for
Y in order to avoid trivial attacks.

3. Output phase: A outputs a guess bit b′ as the output of the experiment.

We define the advantage AdvAda-INDABE,A (1λ) of A in the above game as

AdvAda-INDABE,A (1λ) :=
∣∣Pr[ExpABE,A(1λ) = 1|b = 0]− Pr[ExpABE,A(1λ) = 1|b = 1]

∣∣ .
The ABE scheme ABE is said to satisfy Ada-IND security (or simply adaptive security)
if for any stateful PPT adversary A, there exists a negligible function negl(·) such that
AdvAda-INDABE,A (1λ) 6= negl(λ).
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We can consider the following stronger version of the security where we require the
ciphertext to be pseudorandom.

Definition 2.3 (Ada-INDr security for ABE). We define Ada-INDr security game
similarly to Ada-IND security game except that the adversary A chooses single
message µ instead of (µ0, µ1) at the challenge phase and the challenger returns
ct ← Enc(mpk, X?, µ) if b = 0 and a random ciphertext ct ← CT from a ciphertext
space CT if b = 1. We define the advantage AdvAda-INDr

ABE,A (1λ) of the adversary A
accordingly and say that the scheme satisfies Ada-INDr security if the quantity is
negligible.

We also consider (weaker) selective versions of the above notions, where A specifies
its target X? at the beginning of the game.

Definition 2.4 (Sel-IND security for ABE). We define Sel-IND security game as
Ada-IND security game with the exception that the adversary A has to choose the
challenge ciphertext attribute X? before the setup phase but key queries Y1, Y2, . . . and
choice of (µ0, µ1) can still be adaptive. We define the advantage AdvSel-INDABE,A (1λ) of the
adversary A accordingly and say that the scheme satisfies Sel-INDr security (or simply
selective security) if the quantity is negligible.

Definition 2.5 (Sel-INDr security for ABE). We define Sel-INDr security game as
Ada-INDr security game with the exception that the adversary A has to choose the
challenge ciphertext attribute X? before the setup phase but key queries Y1, Y2, . . .
and choice of µ can still be adaptive. We define the advantage AdvSel-INDr

ABE,A (1λ) of the
adversary A accordingly and say that the scheme satisfies Sel-INDr security if the
quantity is negligible.

In the following, we recall definitions of various ABEs by specifying the relation. We
start with the standard notions of ciphertext-policy attribute-based encryption (CP-ABE)
and key-policy attribute-based encryption (KP-ABE).

CP-ABE for circuits. We define CP-ABE for circuit class {Cλ}λ by specifying the
relation. Here, Cλ is a set of circuits with input length `(λ) and binary output. We
define ACP

λ = Cλ and BCP
λ = {0, 1}`. Furthermore, we define the relation RCP

λ as
RCP
λ (C,x) = ¬C(x).5

KP-ABE for circuits. To define KP-ABE for circuits, we simply swap key and ciphertext
attributes in CP-ABE for circuits. More formally, to define KP-ABE for circuits, we
define AKP

λ = {0, 1}` and BKP
λ = Cλ. We also define RKP

λ : AKP
λ × BKP

λ → {0, 1} as
RKP
λ (x, C) = ¬C(x).

We can also capture identity-based broadcast encryption (IBBE) and broadcast encryption
(BE) as special cases of ABE by specifying the relations.

IBBE. To define IBBE, we define AIBBE
λ = ID(λ)≤t and BIBBE

λ = ID(λ), where
ID(λ) is the identity space and ID(λ)≤t denotes all subsets of ID(λ) with size at most

5 Here, we follow the standard convention in lattice-based cryptography where the decryption
succeeds when C(x) = 0 rather than C(x) = 1.
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t. We also define RIBBE
λ : AIBBE

λ ×BIBBE
λ → {0, 1} as RIBBE

λ (S, id) =

{
1 if id ∈ S
0 if id 6∈ S

.

For IBBE, we typically require that the ciphertext size should be o(t) · poly(λ), since
otherwise we have a trivial construction from IBE.

BE. To define BE, we defineABE
λ = 2[N(λ)] andBBE

λ = [N(λ)], whereN(λ) = poly(λ)
is the number of users in the system and 2[N(λ)] denotes all subsets of [N ]. We also
define RBE

λ : ABE
λ × BBE

λ → {0, 1} as RBE
λ (S, i) = 1 when i ∈ S and RBE

λ (S, i) = 0
otherwise. For BE, we typically require that the ciphertext size should be o(N) ·poly(λ),
since otherwise we have a trivial construction from plain public key encryption.

We also define dual versions of BE and IBBE where the ciphertext and secret key
attributes are swapped.

Dual IBBE (DIBBE). To define DIBBE, we define ADIBBE
λ = ID(λ) and BDIBBE

λ =
ID(λ)≤t, where ID(λ) is the identity space. We define RDIBBE

λ : ADIBBE
λ ×BDIBBE

λ →
{0, 1} as RIBBE

λ (id, S) = 1 if id ∈ S and RIBBE
λ (id, S) = 0 otherwise.

Dual BE (DBE). To define DBE, we define ADBE
λ = [N(λ)] and BDBE

λ = 2[N(λ)],
where N(λ) = poly(λ) is the number of users in the system. We also define RDBE

λ :
ADBE
λ ×BDBE

λ → {0, 1} as RDBE
λ (i, S) = 1 when i ∈ S and RDBE

λ (i, S) = 0 otherwise.

2.2 Lattice Preliminaries

Here, we recall some facts on lattices that are needed for the exposition of our
construction. Throughout this section, n, m, and q are integers such that n = poly(λ)
and m ≥ ndlog qe. In the following, let SampZ(γ) be a sampling algorithm for the
truncated discrete Gaussian distribution over Z with parameter γ > 0 whose support is
restricted to z ∈ Z such that |z| ≤

√
nγ.

Learning with Errors. We the introduce then learning with errors (LWE) problem.

Definition 2.6 (The LWE Assumption). Let n = n(λ),m = m(λ), and q = q(λ) > 2
be integers and χ = χ(λ) be a distribution over Zq. We say that the LWE(n,m, q, χ)
hardness assumption holds if for any PPT adversary A we have

|Pr[A(A, s>A + x>)→ 1]− Pr[A(A,v>)→ 1]| ≤ negl(λ)

where the probability is taken over the choice of the random coins by the adversary A
and A ← Zn×mq , s ← Znq , x ← χm, and v ← Zmq . We also say that LWE(n,m, q, χ)

problem is subexponentially hard if the above probability is bounded by 2−n
ε · negl(λ)

for some constant 0 < ε < 1 for all PPT A.

As shown by previous works [Reg09, BLP+13], if we set χ = SampZ(γ), the
LWE(n,m, q, χ) problem is as hard as solving worst case lattice problems such as
gapSVP and SIVP with approximation factor poly(n) · (q/γ) for some poly(n). Since
the best known algorithms for 2k-approximation of gapSVP and SIVP run in time
2Õ(n/k), it follows that the above LWE(n,m, q, χ) with noise-to-modulus ratio 2−n

ε

is
likely to be (subexponentially) hard for some constant ε.
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Trapdoors. Let us consider a matrix A ∈ Zn×mq . For all V ∈ Zn×m′q , we let A−1γ (V)

be an output distribution of SampZ(γ)m×m
′

conditioned on A · A−1γ (V) = V. A
γ-trapdoor for A is a trapdoor that enables one to sample from the distribution A−1γ (V)
in time poly(n,m,m′, log q) for any V. We slightly overload notation and denote a
γ-trapdoor for A by A−1γ . We also define the special gadget matrix G ∈ Zn×mq as
the matrix obtained by padding In ⊗ (1, 2, 4, 8, . . . , 2dlog qe) with zero-columns. The
following properties had been established in a long sequence of works [GPV08, CHKP10,
ABB10a, ABB10b, MP12, BLP+13].

Lemma 2.7 (Properties of Trapdoors). Lattice trapdoors exhibit the following prop-
erties.

1. Given A−1τ , one can obtain A−1τ ′ for any τ ′ ≥ τ .
2. Given A−1τ , one can obtain [A‖B]−1τ and [B‖A]−1τ for any B.
3. There exists an efficient procedure TrapGen(1n, 1m, q) that outputs (A,A−1τ0 ) where

A ∈ Zn×mq for some m = O(n log q) and is 2−n-close to uniform, where τ0 =

ω(
√
n log q logm).

Lattice Evaluation. The following is an abstraction of the evaluation procedure in
previous LWE based FHE and ABE schemes. We follow the presentation by Tsabary
[Tsa19], but with different parameters.

Lemma 2.8 (Fully Homomorphic Computation [GV15]). There exists a pair of
deterministic algorithms (EvalF,EvalFX) with the following properties.

– EvalF(B, F )→ HF . Here, B ∈ Zn×m`q and F : {0, 1}` → {0, 1} is a circuit.
– EvalFX(F,x,B) → ĤF,x. Here, x ∈ {0, 1}` with x1 = 16 and F : {0, 1}` →
{0, 1} is a circuit with depth d. We have [B − x ⊗G]ĤF,x = BHF − F (x)G
mod q, where we denote [x1G‖ · · · ‖xkG] by x ⊗ G. Furthermore, we have
‖HF ‖∞ ≤ m · 2O(d), ‖ĤF,x‖∞ ≤ m · 2O(d).

– The running time of (EvalF,EvalFX) is bounded by poly(n,m, log q, 2d).

The above algorithms are taken from [GV15], which is a variant of similar algorithms
proposed by Boneh et al. [BGG+14]. The algorithms in [BGG+14] work for any
polynomial-sized circuit F , but ‖HF ‖∞ and ‖HF,x‖∞ become super-polynomial even
if the depth of the circuit is shallow (i.e., logarithmic depth). On the other hand, the above
algorithms run in polynomial time only when F is of logarithmic depth, but ‖HF ‖∞ and
‖HF,x‖∞ can be polynomially bounded. The latter property is crucial for our purpose.

2.3 KP-ABE Scheme by Boneh et al. [BGG+14].

We will use a variant of the KP-ABE scheme proposed by Boneh et al. [BGG+14] as a
building block of our construction of CP-ABE. We call the scheme BGG+ and provide
the description of the scheme in the following. We focus on the case where the policies
associated with secret keys are limited to circuits with logarithmic depth rather than

6 This condition may be necessary for the lemma to hold for arbitrary F .
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arbitrary polynomially bounded depth, so that we can use the evaluation algorithm due
to Gorbunov and Vinayagamurthy [GV15] (see Lemma 2.8). This allows us to bound
the noise growth during the decryption by a polynomial factor, which is crucial for our
application.

The scheme supports the circuit class C`(λ),d(λ), which is a set of all circuits with
input length `(λ) and depth at most d(λ) with arbitrary `(λ) = poly(λ) and d(λ) =
O(log λ).

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ), m =
m(λ), noise distribution χ over Z, τ0, τ , and B = B(λ) as specified later. It then
proceeds as follows.
1. Sample (A,A−1τ0 )← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .
2. Sample random matrix B = (B1, . . . ,B`) ← (Zn×mq )` and a random vector

u← Znq .
3. Output the master public key mpk = (A,B,u) and the master secret key

msk = A−1τ0 .
KeyGen(mpk,msk, F ): The key generation algorithm takes as input the master public

key mpk, the master secret key msk, and a circuit F ∈ Fλ and proceeds as follows.
1. Compute HF = EvalF(B, F ) and BF = BHF .
2. Compute [A‖BF ]−1τ from A−1τ0 and sample r ∈ Z2m as r← [A‖BF ]−1τ (u).
3. Output the secret key skF := r.

Enc(mpk,x, µ): The encryption algorithm takes as input the master public key mpk,
an attribute x ∈ {0, 1}` with x1 = 1,7 and a message µ ∈ {0, 1} and proceeds as
follows.
1. Sample s← Znq , e1 ← χ, e2 ← χm, and Si,b ← {−1, 1}m×m for i ∈ [`] and
b ∈ {0, 1}. Then, set ei,b := S>i,be2 for i ∈ [`] and b ∈ {0, 1}.

2. Compute

ψ1 := s>u + e1 + µdq/2e ∈ Zq, ψ>2 := s>A + e>2 ∈ Zmq ,

ψ>i,b := s>(B− xiG) + e>i,b ∈ Zmq for all i ∈ [`] and b ∈ {0, 1}.

3. Output the ciphertext ctx := (ψ1, ψ2, {ψi,xi}i∈[`]), where xi is the i-th bit of
x.

Dec(mpk, skx,x, F, ctF ): The decryption algorithm takes as input the master public
key mpk, a secret key skF for a circuit F , and a ciphertext ctx for an attribute x and
proceeds as follows.
1. Parse ctx → (ψ1 ∈ Zq, ψ2 ∈ Zmq , {ψi,xi ∈ Zmq }i∈[`]), and skF ∈ Z2m. If any

of the component is not in the corresponding domain or F (x) = 1, output ⊥.
2. Concatenate {ψi,xi}i∈[`] to form ψ>3 = (ψ>1,x1

, . . . , ψ>`,x`).
3. Compute ψ′ := ψ1 − [ψ>2 ‖ψ>3 ]r.

4. Output 0 if ψ′ ∈ [−B,B] and 1 if [−B + dq/2e, B + dq/2e].

7 This restriction is required to apply Lemma 2.8. We can remove the condition by increasing the
dimension of x by 1 and considering function F that ignores the first bit.
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Remark 2.9. We note that the encryption algorithm above computes redundant compo-
nents {ψi,¬xi}i∈[`] in the second step, which are discarded in the third step. However,
due to this redundancy, the scheme has the following special structure that will be useful
for us. Namely, the first and the second steps of the encryption algorithm can be executed
without knowing x. Only the third step of the encryption algorithm needs the information
of x, where it chooses {ψi,xi}i∈[`] from {ψi,b}i∈[`],b∈{0,1} depending on each bit of x
and then output the former terms along with ψ1 and ψ2. Looking ahead, our construction
of CP-ABE in Sec. 3 crucially relies on this special structure. There, the encryption
algorithm, who takes as input a circuit C that specifies the policy and does not know the
corresponding input x, executes the first two steps of the above encryption algorithm.
This is possible since these two steps do not need the knowledge of x.

Parameters and Security. We choose the parameters for the scheme as follows:

m = n1.1 log q, q = 2Θ(λ), χ = SampZ(3
√
n),

τ0 = n log q logm, τ = m3.1` · 2O(d) B = n2m2τ · 2O(d).

The parameter n will be chosen depending on whether we need Sel-INDr security or
Ada-INDr security for the scheme. If it suffices to have Sel-INDr security, we set n = λc

for some constant c > 1. If we need Ada-INDr security, we have to enlarge the parameter
to be n = (`λ)c in order to compensate for the security loss caused by the complexity
leveraging.

We remark that if we were to use the above ABE scheme stand-alone, we would
have been able to set q polynomially bounded as in [GV15]. The reason why we set q
exponentially large is that we combine the scheme with bilinear maps of order q to lift
the ciphertext components to the exponent so that they are “hidden” in some sense (See
Sec. 4). In order to use the security of the bilinear map, we set the group order q to be
exponentially large.

The following theorem summarizes the security and efficiency properties of the
construction. There are two parameter settings depending on whether we assume
subexponential hardness of LWE or not.

Theorem 2.10 (Adapted from [GV15, BGG+14]). Assuming hardness of LWE(n,m,

q, χ) with χ = SampZ(3
√
n) and q = O(2n

1/ε

) for some constant ε > 1,
the above scheme satisfies Sel-INDr security. Assuming subexponential hardness of
LWE(n,m, q, χ) with the same parameters, the above scheme satisfies Ada-INDr
security with respect to the ciphertext space CT := Zm(`+1)+1

q

2.4 Bilinear Map Preliminaries

Here, we introduce our notation for bilinear maps and the bilinear generic group model
following Baltico et.al [BCFG17], who specializes the framework by Barthe [BFF+14]
for defining generic k-linear groups to the bilinear group settings. The definition closely
follows that of Maurer [Mau05], which is equivalent to the alternative formulation by
Shoup [Sho97].
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Notation on Bilinear Maps. A bilinear group generator takes as input 1λ and outputs
a group description G = (q,G1,G2,GT , e, g1, g2), where q is a prime of Θ(λ) bits,
G1, G2, and GT are cyclic groups of order q, e : G1 ×G2 → GT is a non-degenerate
bilinear map, and g1 and g2 are generators of G1 and G2, respectively. We require that
the group operations in G1, G2, and GT as well as the bilinear map e can be efficiently
computed. We employ the implicit representation of group elements: for a matrix A over
Zq, we define [A]1 := gA1 , [A]2 := gA2 , [A]T := gAT , where exponentiation is carried
out component-wise.

We also use the following less standard notations. For vectors w = (w1, . . . , w`)
> ∈

Z`q and v = (w1, . . . , w`)
> ∈ Z`q of the same length, w � v denotes the vector that

is obtained by component-wise multiplications. Namely, v �w = (v1w1, . . . , v`w`)
>.

When w ∈ (Z∗q)`, v�w denotes the vector v�w = (v1/w1, . . . , v`/w`)
>. It is easy to

verify that for vectors c,d ∈ Z`q and w ∈ (Z∗q)`, we have (c�w)�(d�w) = c�d. For
group elements [v]1 ∈ G`1 and [w]1 ∈ G`2, [v]1�[w]2 denotes ([v1w1]T , . . . , [v`w`]T )>,
which is efficiently computable from [v]1 and [w]2 using the bilinear map e.

Generic Bilinear Group Model. Let G = (q,G1,G2,GT , e, g1, g2) be a bilinear group
setting, L1, L2, and LT be lists of group elements in G1, G2, and GT respectively, and
let D be a distribution over L1, L2, and LT . The generic group model for a bilinear
group setting G and a distribution D is described in Fig. 1. In this model, the challenger
first initializes the lists L1, L2, and LT by sampling the group elements according to D,
and the adversary receives handles for the elements in the lists. For s ∈ {1, 2, T}, Ls[h]
denotes the h-th element in the listLs. The handle to this element is simply the pair (s, h).
An adversary running in the generic bilinear group model can apply group operations
and bilinear maps to the elements in the lists. To do this, the adversary has to call the
appropriate oracle specifying handles for the input elements. The challenger computes
the result of a query, stores it in the corresponding list, and returns to the adversary its
(newly created) handle. Handles are not unique (i.e., the same group element may appear
more than once in a list under different handles).

We remark that we slightly simplify the definition of the generic group model by
Baltico et. al [BCFG17]. Whereas they allow the adversary to access the equality test
oracle, which is given two handles (s, h1) and (s, h2) and returns 1 if Ls[h1] = Ls[h2]
and 0 otherwise for all s ∈ {1, 2, T}, we replace this oracle with the zero-test oracle,
which is given a handle (s, h) and returns 1 if Ls[h] = 0 and 0 otherwise only for the
case of s = T . We claim that even with this modification, the model is equivalent to
the original one. This is because we can perform the equality test for (s, h1) and (s, h2)
using our restricted oracles as follows. Let us first consider the case of s = T . In this case,
we can get the handle (T, h′) corresponding to LT [h1]− LT [h2] by calling negT and
addT . We then make a zero-test query for (T, h′). Clearly, we get 1 if Ls[h1] = Ls[h2]
and 0 otherwise. We next consider the case of s ∈ {1, 2}. This case can be reduced to
the case of s = T by lifting the group elements corresponding to h1 and h2 to the group
elements in GT by taking bilinear maps with an arbitrary non-unit group element in
G3−s, which is possible by calling mape.

Symbolic Group Model. The symbolic group model for a bilinear group setting G
and a distribution DP gives to the adversary the same interface as the corresponding
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State: Lists L1, L2, LT over G1, G2, GT respectively.
Initializations: Lists L1, L2, LT sampled according to distribution D.
Oracles: The oracles provide black-box access to the group operations, the bilinear map,

and equalities.
• For all s ∈ {1, 2, T}: adds(h1, h2) appends Ls[h1] + Ls[h2] to Ls and returns

its handle (s, |Ls|).
• For all s ∈ {1, 2, T}: negs(h1, h2) appends −Ls[h1] to Ls and returns its handle
(s, |Ls|).
• mape(h1, h2) appends e(L1[h1], L2[h2]) to LT and returns its handle (T, |LT |).
• ztT (h) returns 1 if LT [h] = 0 and 0 otherwise.

All oracles return ⊥ when given invalid indices.

Fig. 1. Generic group model for bilinear group setting G = (q,G1,G2,GT , e, g1, g2) and
distribution D.

generic group model, except that internally the challenger stores lists of element in
the field Zp(X1, . . . , Xn) instead of lists of group elements. The oracles adds, negs,
map, and zt computes addition, negation, multiplication, and equality in the field.
In our work, we will use the subring Zp[X1, . . . , Xn, 1/X1, . . . , 1/Xn] of the entire
field Zp(X1, . . . , Xn). Note that any element f in Zp[X1, . . . , Xn, 1/X1, . . . , 1/Xn]
can be represented as f(X1, . . . , Xn) =

∑
(c1,...,cn)∈Zn ac1,...,cnX

c1
1 · · ·Xcn

n using
{ac1,...,cn ∈ Zp}(c1,...,cn)∈Zn , where we have ac1,...,cn = 0 for all but finite
(c1, . . . , cn) ∈ Zn. Note that this expression is unique.

3 Our Construction of CP-ABE

Here, we describe our new construction of CP-ABE scheme. Our construction can
deal with any circuit class F = {Fλ}λ that is subclass of {C`(λ),d(λ)}λ with arbitrary
`(λ) ≤ poly(λ) and d(λ) = O(log λ), where C`(λ),d(λ) is a set of circuits with input
length `(λ) and depth at most d(λ). As we will see in Sec. 5, we can obtain new
constructions of BE, IBBE, CP-ABE by setting the circuit class F appropriately. In order
to get the scheme, we use the KP-ABE scheme BGG+ for the circuit class F = {Fλ}λ
that is described in Sec. 2.3 as an ingredient. Our construction below can be seen as a
conversion from an ABE scheme to another ABE scheme with dual predicate.

Setup(1λ): On input 1λ, the setup algorithm defines the parameters n = n(λ), m =
m(λ), noise distribution χ over Z, τ0, τ , and B = B(λ) as specified in Sec. 2.3.
It samples a group description G = (q,G1,G2,GT , e, [1]1, [1]2). It then sets L :=
(2`+ 1)m+ 2 and proceeds as follows.

1. Sample w← (Z∗q)L and compute [w]1.
2. Output mpk = ([1]1, [1]2, [w]1) and msk = w.

KeyGen(mpk,msk,x): The key generation algorithm takes as input the master public
key mpk, the master secret key msk, and an attribute x ∈ {0, 1}` with x1 = 1 and
proceeds as follows.
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1. Let 1 := (1, . . . , 1)> ∈ Zmq and 0 := (0, . . . , 0)> ∈ Zmq . Set

φ0 = 1 ∈ Zq, φ1 = 1 ∈ Zq, φ2 := 1 ∈ Zmq ,

φi,b :=

{
1 ∈ Zmq if b = xi

0 ∈ Zmq if b 6= xi
for i ∈ [`] and b ∈ {0, 1}. (3.1)

2. Vectorize (φ0, φ1, φ2, {φi,b}i,b) to form a vector d ∈ ZLq by concatenating each
entry of the vectors in a predetermined order.

3. Sample δ ← Z∗q .
4. Compute [δd�w]2 ∈ GL2 from msk = w in msk.
5. Output skx = [δd�w]2.

Enc(mpk, F, µ): The encryption algorithm takes as input the master public key mpk,
the circuit F , and a message µ ∈ {0, 1} and proceeds as follows.
1. Sample fresh BGG+ scheme:

(a) Sample (A,A−1τ0 )← TrapGen(1n, 1m, q) such that A ∈ Zn×mq .
(b) Sample random matrix B = (B1, . . . ,B`) ← (Zn×mq )` and a random

vector u← Znq .

2. Compute BGG+ function key for circuit F :
(a) Compute HF = EvalF(B, F ) and BF = BHF .
(b) Compute [A‖BF ]−1τ from A−1τ0 and sample r ∈ Z2m as r← [A‖BF ]−1τ (u).

3. Compute BGG+ ciphertext for all possible inputs:

(a) Sample s← Znq , e1 ← χ, e2 ← χm, and Si,b ← {−1, 1}m×m for i ∈ [`]

and b ∈ {0, 1}. Then, set ei,b := S>i,be2 for i ∈ [`] and b ∈ {0, 1}.
(b) Compute

ψ0 := 1 ∈ Zq, ψ1 := s>u + e1 + µdq/2e ∈ Zq,
ψ>2 := s>A + e>2 ∈ Zmq ,

ψ>i,b := s>(Bi − bG) + e>i,b ∈ Zmq for i ∈ [`] and b ∈ {0, 1}. (3.2)

4. Encode BGG+ ciphertexts in exponent of bilinear group:

(a) Vectorize (ψ0, ψ1, ψ2, {ψi,b}i,b) to form a vector c ∈ ZLq by concatenating
each entry of the vectors in a predetermined order (that aligns with the one
used in the key generation algorithm).

(b) Sample γ ← Z∗q .
(c) Compute [γc�w]1 ∈ GL2 from γ, c, and [w]1 in mpk.

5. Output ctF = (ct0 = (A,B), ct1 = [γc�w]1, ct2 = r).
Dec(mpk, skx,x, F, ctF ): The decryption algorithm takes as input the master public

key mpk, the secret key skx for an attribute x, and the ciphertext ctF for a circuit F
and proceeds as follows.
1. Parse ctF → (ct0 = (A ∈ Zn×mq ,B ∈ Zn×m`q ), ct1 ∈ GL1 , ct2 ∈ Z2m) and

skx ∈ GL2 . If any of the component is not in the corresponding domain or
F (x) = 1, output ⊥.
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2. Unmask BGG+ ciphertexts corresponding to x by using secret key:
Compute [v]T := ct1 � skx and de-vectorize [v]T to obtain

[v0]T ∈ GT , [v1]T ∈ GT , [v2]T ∈ GmT , [vi,b]T ∈ GmT , for i ∈ [`], b ∈ {0, 1}.
3. Evaluate circuit F on BGG+ ciphertexts in the exponent:

Compute ĤF,x = EvalF(F,x,B).

4. Perform BGG+ decryption in the exponent:
Form [v>x ]T = [v>1,x1

, . . . ,v>`,x` ]T and ct>2 = (r>1 ∈ Zmq , r>2 ∈ Zmq ). Then
compute

[v′]T := [v1 − (v>2 r1 + v>x ĤF,xr2)]T

from [v1]T , [v2]T , [vx]T , r1, r2, and ĤF,x.

5. Recover exponent via brute force if F (x) = 0:
Find η ∈ [−B,B] ∪ [−B + dq/2e, B + dq/2e] such that [v0]ηT = [v′]T by
brute-force search. If there is no such η, output ⊥. To speed up the operation,
one can employ the baby-step giant-step algorithm.

6. Output 0 if η ∈ [−B,B] and 1 if [−B + dq/2e, B + dq/2e].

Correctness. To see correctness of the scheme, we first observe that we have ct1�skx =
[γδ · c� d]T and thus

v0 = γδ, v1 = γδ (sTu + e1 + µdq/2e) , v>2 = γδ
(
s>A + e>2

)
,

v>i,b =

{
γδ
(
s>(Bi − xiG) + e>i,xi

)
if b = xi

0 if b = 1− xi
.

From the above, we have v>x = s>(B−x⊗G) + e>x for e>x := (e>1,x1
, · · · , e>`,x`). We

then have

v>2 r1 + v>x ĤF,xr2 = γδ
(
s>A + e>2

)
r1 + γδ

(
s>(B− x⊗G) + e>x

)
ĤF,xr2

= γδ
(
s>(Ar1 + BF r2) + e>2 r1 + e>x ĤF,xr2

)
= γδ

(
s>u + e>2 r1 + e>x ĤF,xr2

)
where the second equation follows from (B−x⊗G)ĤF,x = BF and the third equation
follows form [A‖BF ]r = u. This implies

v′ = γδ
(
µdq/2e+ e1 − e>2 r1 − e>x ĤF,xr2

)
.

Recall that we set χ = SampZ(3
√
n). By the definition of SampZ, we have ‖e1‖∞ ≤ 3n

and ‖e2‖∞ ≤ 3n. Furthermore, we have ‖ei,b‖∞ = ‖S>i,be2‖∞ ≤ 3mn for i ∈ [`] and
b ∈ {0, 1}, ‖r‖∞ ≤

√
nτ , and ‖ĤF,x‖∞ ≤ m · 2O(d), where the last inequality follows

from Lemma 2.8. Thus, we have

‖e1 − e>2 r1 − e>x ĤF,xr2‖∞ ≤ O(n1.5m2τ · 2O(d)) ≤ B

by our choice of B. The correctness therefore follows. Note that since B = poly(n, `) ·
2O(d) = poly(λ), the decryption algorithm runs in polynomial time.
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Efficiency of the Scheme. Here, we evaluate the efficiency of the above scheme. In
particular, we measure the sizes of the parameters. The master public key of the scheme
consists of L + 2 group elements. Since L = O(m`), we have that the master public
key can be represented by a binary string of length ` · poly(λ). Next, we observe that
a secret key in the scheme consists of L group elements, which can be represented by
a binary string of length ` · poly(λ). Finally, a ciphertext in the scheme consists of
O(nm) elements of Zq and L group elements. The former elements are represented by
a binary string of length poly(λ) if we only need Sel-INDr security for the underlying
KP-ABE scheme. If we need Ada-INDr security, the length of the binary string is
poly(`, λ). Therefore, the length of the whole ciphertext is ` · poly(λ) if we only
need Sel-INDr security for the underlying KP-ABE scheme and poly(`, λ) if we need
Ada-INDr security. In any case, the sizes of all parameters in the system are independent
of the size of the circuits being supported by the scheme, which is a notable feature of
the scheme.

4 Security Proof for Our CP-ABE

This section is devoted to prove the following theorem that asserts the security of our
CP-ABE scheme in Sec. 3.

Theorem 4.1. Our CP-ABE scheme for function class F satisfies Ada-IND security in
the generic group model assuming that the KP-ABE BGG+ for function class F satisfies
Ada-INDr security.

Overview of the Proof. Before going to the formal proof, we give its overview. The
proof is done by considering a sequence of games and consists of two parts. In the first
part of the proof, which is captured by a series of game hops from Game0 through
Game5 defined below, we prove that it is pointless for the adversary to take pairing
products between unmatching positions of the ciphertext and secret key components
and then take linear combinations among them. Therefore, the only possible strategy for
the adversary is to take linear combination among “partial decryption results” obtained
by taking pairing products between matching positions of the ciphertext and secret
key components and infer information of the message being encrypted. In the second
step of the proof, which is captured by the game hop from Game5 to Game6, we
show that this type of attack does not work either. To do so, we further consider a
sequence of subgames from Game5,0 through Game5,8. We first prove that taking
linear combinations among partial decryption results from different secret keys is useless.
This is the key step that excludes the collusion attack and is captured by the game hop
from Game5.3 to Game5.4. At this point, the only strategy for the adversary is to
take linear combination among partial decryption result obtained by single secret key.
Finally, in the step from Game5.7 to Game5.8, we use the security of the BGG+ ABE
to conclude that this strategy does not work either. To invoke the security of BGG+ ABE,
we use the fact that the partial decryption result obtained by secret key for x forms
randomized version of BGG+ ABE ciphertext for attribute x in the exponent.

Proof. To prove the theorem, we fix a PPT adversary A that makes at most Qkq(λ) key
queries and Qzt(λ) zero-test queries during the game. Furthermore, we assume that A
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always chooses (µ0, µ1) = (0, 1) as its target message at the challenge phase. This can
be assumed without loss of generality since our scheme is a single-bit scheme. In order
to prove the security, we consider following sequence of games. Let us denote the event
that A outputs correct guess for b at the end of Gamex as Ex.

Game0: This is the real game in the generic group model. To fix the notation and
for the sake of concreteness, we briefly describe the game here. Without loss of
generality, we assume that the challenger simulates the generic group oracle for
A. At the beginning of the game, the challenger picks w ← (Z∗q)L and sets the
master public key mpk = ([1]1, [1]2, [w]1) and the master secret key msk = w.
Then, it gives handles to the group elements in mpk to A. To respond to the j-th
key query x(j) made by A, the challenger samples δj ← Z∗q , sets d(j) ∈ ZLq as
specified in the key generation algorithm, and sets sk(j) = [δjd

(j) �w]2. It then
gives the handles corresponding to the group elements in sk(j) to A. To answer the
challenge query for a circuit F , the challenger first picks the message b← {0, 1} to
be encrypted, chooses γ ← Z∗q , computes A, B, r, c as specified in the encryption
algorithm (where b is encrypted), and forms the challenge ciphertext as ctF =
(ct0 = (A,B), ct1 = [γc�w]1, ct2 = r). It then returns ct0 = (A,B), handles to
ct1 = [γc�w]1, and ct2 to A. By definition, the advantage of A against the scheme
is
∣∣Pr[E0]− 1

2

∣∣ .
Game1: This game is the same as the previous game except that the challenger samples

w = (w1, . . . , wL)>, δ1, . . . , δQkq
, A, B, u, γ, b, and c = (c1, . . . , cL)> at the

beginning of the game. Note that c is sampled from the distribution that is only
dependent on the bit b being encrypted, and is independent of the circuit F that is
specified by A later in the game. Therefore, this game is well-defined. As we prove
in Lemma 4.2, we have Pr[E0] = Pr[E1].

Game2: In this game, we (partially) switch to the symbolic group model and replace
{wi}i∈[L], {δj}j∈[Qkq], γ, and {ci}i∈[L] in Zq with the formal variables {Wi}i∈[L],
{∆j}j∈[Qkq], Γ , and {Ci}i∈[L] respectively. As a result, all handles given to A refer
to elements in the ring

T := Zq[W1, . . . ,WL, 1/W1, . . . , 1/WL, ∆1, . . . ,∆Qkq
, Γ, C1, . . . , CL],

where {1/Wi}i are needed to represent the components in the secret keys. However,
when the challenger answers the zero-test queries, it substitutes the formal variables
with corresponding elements in Zq. Namely, in this game, the challenger picks
{wi}i, {δj}j , γ, and {ci}i at the beginning of the game as specified in the
previous game and when A makes a zero-test query for a handle corresponding to
f(W1, . . . ,WL, ∆1, . . . ,∆Qkq

, Γ, C1, . . . , CL) ∈ T, the challenger returns 1 if

f(w1, . . . , wL, δ1, . . . , δQkq
, γ, c1, . . . , cL) = 0

holds over Zq and 0 otherwise. As we prove in Lemma 4.3, we have Pr[E1] =
Pr[E2].

Here, we list all the components in T for which corresponding handles are given to
A in Game2 as either handles to the group elements in mpk, the challenge ciphertext,
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or secret keys:

S1 :=
{

1, Wi, {CiΓWi}i∈[L]
}
, S2 :=

{
1, {d(j)i ∆j/Wi}i∈[L],j∈[Qkq]

}
where d(j)i ∈ {0, 1} is the i-th entry of d(j). Note that S1 and S2 correspond to handles
for elements in G1 and G2, respectively. We then define ST as ST := {X · Y : X ∈
S1, Y ∈ S2, X · Y 6= 0}. If we explicitly write down ST , we have ST = ST,1 ∪ ST,2
where

ST,1 :=



1,
Wi, CiΓWi, for i ∈ [L],
∆j , for j ∈ [Qkq],
∆j/Wi, for i ∈ [L], j ∈ [Qkq] such that d(j)i = 1,

∆jWi′/Wi, for i, i′ ∈ [L], j ∈ [Qkq] such that i 6= i′ and d(j)i = 1

Ci′Γ∆jWi′/Wi for i, i′ ∈ [L], j ∈ [Qkq] such that i 6= i′ and d(j)i = 1


and ST,2 = {CiΓ∆j for i ∈ [L], j ∈ [Qkq] such that d(j)i = 1 }. Here, ST,2 consists
of terms that are obtained by taking product between matching positions of the ciphertext
and secret keys, whereas ST,1 consists of terms that are obtained by taking product
between unmatching positions of the ciphertext and secret keys or between master public
key and the ciphertext or secret keys. Note that any handle submitted to the zero-test
oracle by A during the game refers to an element f in T that can be represented as

f(W1, . . . ,WL, ∆1, . . . ,∆Qkq
, Γ, C1, . . . , CL) =

∑
Z∈ST

aZZ (4.1)

where the coefficients {aZ ∈ Zq}Z∈ST can be efficiently computed. Furthermore,
{aZ ∈ Zq}Z∈ST satisfying the above equation is unique since all monomials in ST are
distinct.

Game3: In this game, we change the game so that {Wi}i∈[L], {∆j}j∈[Qkq], Γ are
treated as formal variables rather than elements in Zq even when answering zero-
test queries. Namely, the challenger no longer samples {wi}i∈[L], {δj}j∈[Qkq],
and γ at the beginning of the game and when A makes a zero-test query for a
handle corresponding to f(W1, . . . ,WL, ∆1, . . . ,∆Qkq

, Γ, C1, . . . , CL) ∈ T, the
challenger returns 1 if

f(W1, . . . ,WL, ∆1, . . . ,∆Qkq
, Γ, c1, . . . , cL) = 0 (4.2)

holds over T and 0 otherwise, where {ci}i∈[L] are sampled at the beginning of
the game as specified in the previous game. As we prove in Lemma 4.4, we have
|Pr[E2]− Pr[E3]| ≤ Qzt(L+ 3)2/q.

Game4: This game is the same as the previous game except that the challenger aborts
the game and enforces the adversary to output a random bit when there exists i ∈ [L]
such that ci = 0, where c = (c1, . . . , cL)> is sampled as in the previous game. As
we prove in Lemma 4.5, we have |Pr[E3]− Pr[E4]| ≤ L/q.
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Game5: In this game, we further change the way zero-test queries are answered. In
particular, when A makes a zero-test query for a handle corresponding to f ∈ T that
can be represented as

f(W1, . . . ,WL, ∆1, . . . ,∆Qkq
, Γ, C1, . . . , CL) =

∑
Z∈ST,1

aZZ +
∑

Z∈ST,2

aZZ,

(4.3)
the challenger returns 0 if there exists Z ∈ ST,1 such that aZ 6= 0. Otherwise, the
challenger answers the query as in the previous game. As we prove in Lemma 4.6,
we have Pr[E4] = Pr[E5].

Game6: In this game, we change the game so that zero-test queries are performed over
the ring T. Namely, when A makes a zero-test query for a handle corresponding
to f ∈ T the challenger returns 0 if f 6= 0 over T. Equivalently, the challenger
returns 0 if there exists Z ∈ ST such that aZ = 0 when A makes a zero-test query
for a handle corresponding to f ∈ T that is represented as Eq. (4.1). Note that
(c1, . . . , cL) is not used in this game and the challenger does not have to sample
it any more. As we prove in Lemma 4.7, there exists a PPT adversary B such that
|Pr[E5]− Pr[E6]| ≤ QkqQzt · (AdvAda-INDr

BGG+,B (1λ) + 1/q).

We can see that the adversary cannot obtain any information about the encrypted message
b in Game6 since the challenge ciphertext is replaced by formal variables (C1, . . . , CL)
that does not contain any information of b and the answers to the zero test queries do
not depend on b neither. Therefore, we have Pr[E6] = 1/2. Thus, there exists a PPT
adversary B against Ada-INDr security of BGG+ such that∣∣∣∣Pr[E0]− 1

2

∣∣∣∣ ≤ QkqQzt ·
(
AdvAda-INDr

BGG+,B (1λ) +
1

q

)
+
Qzt(L+ 3)2 + L

q
.

In particular, assuming BGG+ satisfies Ada-INDr security, the above quantity is
negligible as desired.

To finish the proof of Theorem 4.1, it remains to prove Lemma 4.2, 4.3, 4.4, 4.5, 4.6,
and 4.7 in the following.

Lemma 4.2 (Game0 ≡ Game1). We have Pr[E0] = Pr[E1].

Proof. Since this is only a conceptual change, the lemma immediately follows.

Lemma 4.3 (Game1 ≡ Game2). We have Pr[E1] = Pr[E2].

Proof. Since zero-test queries in Game2 are answered by using {wi}i, {δj}j , γ, and
{ci}i that are sampled from exactly the same distribution as that in Game1, the view of
A in Game2 is not altered from that in Game1. The lemma therefore follows.

Lemma 4.4 (Game2 ≈s Game3). We have |Pr[E2]− Pr[E3]| ≤ Qzt(L+ 3)2/q.

Proof. Let us observe that Game2 and Game3 differ only when A submits a handle
corresponding to a polynomial f(W1, . . . ,WL, ∆1, . . . ,∆Qkq

, Γ, C1, . . . , CL) ∈ T
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satisfying f(w1, . . . , wL, δ1, . . . , δQkq
, γ, c1, . . . , cL) = 0 and f(W1, . . . ,WL, ∆1, . . . ,

∆Qkq
, Γ, c1, . . . , cL) 6= 0 to the zero-test oracle. Let F denote the event. It suffices to

bound the probability of F occurring in Game2. To do so, let us fix an element f in T
and c1, . . . , cL in Zq . We then define a polynomial g(W1, . . . ,WL, ∆1, . . . ,∆Qkq

, Γ ) ∈
Zq[W1, . . . ,WL, ∆1, . . . ,∆Qkq

, Γ ] as

g(W1, . . . ,WL, ∆1, . . . ,∆Qkq
, Γ )

:=

∏
i∈[L]

Wi

 · f(W1, . . . ,WL, ∆1, . . . ,∆Qkq
, Γ, c1, . . . , cL).

Note that in the above, the term (
∏
iWi) is introduced in order to clear the

denominators that possibly appear in f and to make sure that g is in the ring
Zq[W1, . . . ,WL, ∆1, . . . ,∆Qkq

, Γ ] rather than in T. We observe that F occurs if and
only if g(w1, . . . , wL, δ1, . . . , δQkq

, γ) = 0 and g(W1, . . . ,WL, ∆1, . . . ,∆Qkq
, Γ ) 6= 0

since we have wi 6= 0 for all i ∈ [L]. We can bound this probability by (L+ 3)2/q using
Schwartz-Zippel lemma since g is a polynomial in Zq[W1, . . . ,WL, ∆1, . . . ,∆Qkq

, Γ ]
with degree at most L+ 3. (Recall that f can be represented as a linear combination of
the terms in ST .) Since A makes at most Qzt zero-test queries, the lemma follows by the
union bound.

Lemma 4.5 (Game3 ≈s Game4). We have |Pr[E3]− Pr[E4]| ≤ L/q.

Proof. We observe that each entry of c = (c1, . . . , cL) is either fixed to be 1 or
distributed uniformly at random over Zq . Therefore, by the union bound, the probability
that there is i ∈ [L] such that ci = 0 can be bounded by L/q. The lemma therefore
follows.

Lemma 4.6 (Game4 ≡ Game5). We have Pr[E4] = Pr[E5].

Proof. We observe that Game4 and Game5 differ only when A makes a zero-test
query for a handle corresponding to f ∈ T that satisfies Eq. (4.2) and there exists
Z ∈ ST,1 such that aZ 6= 0 when we express f as Eq. (4.3). We claim that such f does
not exist and two games are actually equivalent. For the sake of contradiction, assume
that such f exists. Then Eq. (4.2) implies∑

Z∈ST,1

aZZ(c1, . . . , cL) +
∑

Z∈ST,2

aZZ(c1, . . . , cL) = 0,

where Z(c1, . . . , cL) denotes Z(W1, . . . ,WL, ∆1, . . . ,∆Qkq
, Γ, c1, . . . , cL) ∈ T in the

above. We can see that
∑
Z∈ST,1 aZZ(c1, . . . , cL) = 0 holds since we have ∑

Z∈ST,1

a′
ZZ(c1, . . . , cL) : a

′
Z ∈ Zq

 ∩
 ∑
Z∈ST,2

a′′
ZZ(c1, . . . , cL) : a

′′
Z ∈ Zq

 = {0},

which follows from the fact that monomials in ST,1 and ST,2 are distinct even if we
substitute {Ci}i in ST,1 and ST,2 with {ci}i and ignore the difference between the
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coefficients of the monomials. Furthermore,
∑
Z∈ST,1 aZZ(c1, . . . , cL) = 0 implies

aZ = 0 for all Z ∈ ST,1, which follows from c ∈ (Z∗q)L and from the fact that all
monomials in ST,1 are distinct even if we substitute {Ci}i with {ci}i and ignore the
difference between the coefficients of the monomials. However, this contradicts the
assumption that there exists Z ∈ ST,1 such that aZ 6= 0. This completes the proof of the
lemma.

Lemma 4.7 (Game5 ≈c Game6). There exists a PPT adversary B such that
|Pr[E5]− Pr[E6]| ≤ QkqQzt ·

(
AdvAda-INDr

BGG+,B (1λ) + 1/q
)

.

Proof. We first observe that Game5 and Game6 differ only when A makes a zero-test
query for a handle corresponding to f ∈ T that can be represented as

f(W1, . . . ,WL, ∆1, . . . ,∆Qkq
, Γ, C1, . . . , CL) =

∑
Z∈ST,2

aZZ (4.4)

and satisfies f 6= 0 over T and Eq. (4.2). We call such a query bad. In the following, we
prove that the probability that A makes a bad query in Game5 is negligible. To do so,
we consider following sequence of games. We define Fx as the event that A makes a bad
query in Game5,x and the challenger does not abort.

Game5.0: This game is the same as Game5. By definition, the probability that A
makes a bad query in Game5 is Pr[F0].

Game5.1: In this game, we change the previous game so that the challenger picks
a random guess k∗ for the first bad query as k∗ ← [Qzt] at the beginning of the
game. Furthermore, we change the game so that the challenger aborts if the k∗-th
zero-test query is not the first bad query. Since k∗ is chosen uniformly at random
and independent from the view of A, the guess is correct with probability 1/Qzt

conditioned on F0. Therefore, we have Pr[F1] = Pr[F0]/Qzt.
Game5.2: This game is the same as the previous game except that the challenger aborts

the game immediately after A makes the k∗-th zero-test query. Since whether F1

occurs or not is irrelevant to how the game proceeds after the k∗-th zero-test query
is made by A, we clearly have Pr[F2] = Pr[F1].

Game5.3: In this game, we change the game so that the challenger answers the first
k∗ − 1 zero-test queries by performing zero tests over T. Furthermore, we change
the game so that the sampling of c is deferred until the k∗-th zero-test query is
made by A. We first observe that the game is well-defined since c is used only for
the k∗-th zero-test query. Furthermore, since the first k∗ − 1 zero-test queries that
refer to f ∈ T such that f 6= 0 are answered by 0 whenever F2 happens, we have
Pr[F3] ≥ Pr[F2].

Game5.4: To define the game, we first define the set ST,2,j := {CiΓ∆j}i∈[L] s.t. d(j)i =1
.

By definition, we have ST,2 = ∪j∈[Qkq]ST,2,j . Using this notation, any f ∈ T
referred by a bad query can be represented as

f(W1, . . . ,WL, ∆1, . . . ,∆Qkq
, Γ, C1, . . . , CL) =

∑
j∈[Qkq]

∑
Z∈ST,2,j

aZZ. (4.5)
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In this game, we change the game so that the challenger aborts the game if the bad
query made by A refers to f such that there does not exist j ∈ [Qkq] satisfying∑

Z∈ST,2,j

aZZ 6= 0 and
∑

Z∈ST,2,j

aZZ(c1, . . . , cL) = 0, (4.6)

where Z(c1, . . . , cL) denotes Z(W1, . . . ,WL, ∆1, . . . ,∆Qkq
, Γ, c1, . . . , cL) ∈ T

above. We claim that this actually cannot happen. To see this, we first observe
that since we have f 6= 0 for a bad query, there exists j ∈ [Qkq] satisfying∑
Z∈ST,2,j aZZ 6= 0. Furthermore, we have∑

Z∈ST,2,j

aZZ(c1, . . . , cL) = −
∑
j′ 6=j

∑
Z∈ST,2,j′

aZZ(c1, . . . , cL)

from Eq. (4.2). However, the above is impossible unless the left hand side equals
to 0 since any monomial in ST,2,j never appears in ST,2,j′ for j′ 6= j even if we
replace {Ci}i with {ci}i and ignore the difference between the coefficients of the
monomials. Therefore, the change made in this game is only conceptual and we
have Pr[F4] = Pr[F3].

Game5.5: In this game, we change the previous game so that the challenger picks
j∗ ← [Qkq] uniformly at random at the beginning of the game. Furthermore, we
add the abort condition that the challenger aborts if Eq. (4.6) does not hold with
respect to j = j∗ for f that is referred by the k∗-th zero-test query. Since there exists
j′ ∈ [Qkq] that satisfies Eq. (4.6) as long as F4 occurs and j∗ is chosen uniformly at
random and independent from the view of A, we have Pr[F5] ≥ Pr[F4]/Qkq.

Game5.6: In this game, we further change the game so that the challenger aborts the
game if the j∗-th key query has not been made yet at the point when the k∗-th
zero-test query is made. We claim that conditioned on F5 happens, the challenger
never aborts. To see this, we observe that if the j∗-th key query has not been made
then terms that contain ∆j∗ has not been given to A and there is no way to make a
zero-test query for f such that

∑
Z∈ST,2,j∗ aZZ 6= 0, since all terms in ST,2,j∗ are

multiples of ∆j∗ . We therefore have Pr[F6] = Pr[F5].
Game5.7: In this game, we further change the game so that the challenger samples ci

only for i ∈ [L] such that d(j
∗)

i = 1, where j∗ is chosen at the beginning of the game
as in Game5.5. The game is still well-defined since the only place in the game
where we need the information of c is when checking Eq. (4.6) and we only need
{ci}i∈[L] s.t. d(j∗)i =1

there. (Recall that we have ST,2,j = {CiΓ∆j}i∈[L] s.t. d(j)i =1
.)

Clearly, this does not change the view of A. We therefore have Pr[F7] = Pr[F6].

From Eq. (3.1) and (3.2), we can see that {ci}i∈[L] s.t. d(j∗)i =1
consists of the following

components:

ψ0 = 1, ψ1 := s>u + e1 + µdq/2e, ψ>2 := s>A + e>2 ,

ψ>
i,x

(j∗)
i

:= s>(Bi − x(j
∗)

i G) + e>
i,x

(j∗)
i

for i ∈ [`] ,

where x(j
∗)

i is the i-th entry of x(j∗).
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Game5.8: In this game, we further change the game so that the challenger samples

ψ0 := 1 ∈ Zq, ψ1 ← Zq, ψ2 ← Zmq , ψi,b ← Zmq for i ∈ [`] and b ∈ {0, 1}

and sets {ci}i∈[L] s.t. d(j∗)i =1
from the above components.8 As we prove in

Lemma 4.8, there exists a PPT adversary B such that AdvAda-INDr
BGG+,B (1λ) ≥ |Pr[F7]−

Pr[F8]|.

As we will prove in Lemma 4.9, we have Pr[F8] ≤ 1/q. This allows us to bound Pr[F0]
as Pr[F0] ≤ QkqQzt · (AdvAda-INDr

BGG+,B (1λ) + 1/q), where B is a PPT adversary. This
completes the proof of Lemma 4.7.

It remains to prove Lemma 4.8 and 4.9 in the following.

Lemma 4.8 (Game5.7 ≈c Game5.8). There exists a PPT adversary B such that
AdvAda-INDr

BGG+,B (1λ) ≥ |Pr[F7]− Pr[F8]|.

Proof. We show that if A can distinguish Game5.7 from Game5.8, we can build
another adversary B against Ada-INDr security of BGG+. The adversary B acts as the
challenger and simulates the game for A. Looking ahead, setup phase and key queries
are trivial to handle since they do not need any parameter of BGG+. The only steps
we need care are the simulation of the challenge phase and the k∗-th zero-test query,
where B needs to interact with its challenger in order to handle them. We describe how
B proceeds in the following.

Setup phase. At the beginning of the game, B is given 1λ and the master public key of
BGG+ (A,B,u). It then gives the handles to 1,W1, . . . ,WL corresponding to G1 and
the handle to 1 corresponding to G2 to A. These handles correspond to the master public
key. B also samples j∗ ← [Qkq], k∗ ← [Qzt], and b← {0, 1} and keeps them secret.

Key Queries. Given the j-th secret key query for x(j) made by A, B proceeds as follows.
B first forms d(j) ∈ ZLq as specified in the key generation algorithm and returns the

handles corresponding to (d
(j)
1 ∆j/W1, . . . , d

(j)
L ∆j/WL) in G2 to A.

Challenge Query. When A makes the challenge query for a circuit F , B makes a secret
key query for F to its challenger and is given r sampled as r ← [A‖BF ]−1τ (u). B
then sets ct0 = (A,B), ct2 := r, and ct1 as the handles corresponding to the formal
variables (C1, . . . , CL) and gives ct = (ct0, ct1, ct2) to A as the challenge ciphertext.

Generic Group Queries. B honestly handles the queries for the generic group oracle
corresponding to addition, negation, and multiplication (bilinear map) made by A by
keeping track of the underlying encodings in T associated with the handles. For the
k-th zero-test query that refers to an element f in T, B returns 1 if f = 0 over T
and 0 otherwise if k < k∗. If k = k∗, B first checks whether the j∗-th key query has
already been made and aborts otherwise, as specified in Game5.6. It then makes the

8 Note that until this step, we have not changed the distribution of {ci}i∈[L] except that we stop
sampling ci for i such that d(j

∗)
i = 1 in Game5,7.
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challenge query for the attribute x(j∗), where x(j∗) is the attribute for which A has made
the j∗-th key query, and the message b to its challenger. Then B obtains its challenge
ciphertext (ψ1, ψ2, {ψi,x(j∗)

i

}i∈[`]). It then sets ψ0 = 1 and forms {ci}i∈[L] s.t. d(j∗)i =1

by vectorizing the terms appropriately. Finally, it checks whether Eq. (4.6) holds or
not using {ci}i∈[L] s.t. d(j∗)i =1

as specified in Game5.7 and outputs 1 if it holds and 0

otherwise.

Analysis. It is easy to see that B simulates Game5.7 if the challenge ciphertext for B is
the real one and Game5.8 if it is chosen uniformly at random from the ciphertext space.
Therefore, it can be seen that B outputs 1 with probability Pr[F7] if the challenge bit for B
is 0 and Pr[F8] otherwise. Therefore, B’s advantage against BGG+ is |Pr[F7]− Pr[F8]|.
This completes the proof of the lemma.

Lemma 4.9. We have Pr[F8] = 1/q.

Proof. We observe that F8 occurs only when A makes a zero-test query that refers to a
handle f 6= 0 that can be represented as Eq. (4.4) and satisfies Eq. (4.6) with respect to
j∗ where {ci}i∈[L] s.t. d(j∗)i =1

are chosen as Game5.8. However, Eq. (4.6) can happen
only with probability at most 1/q since f is represented as a linear combination of
{CiΓ∆j}i,j and all entries of {ci}i∈[L] s.t. d(j∗)i =1

are chosen uniformly at random
except for the entry that is fixed to be 1.

5 Implications to CP-ABE, BE, and IBBE

In this section, we show that by setting the circuit class supported by our CP-ABE
scheme in Sec. 3 appropriately, we can obtain various new schemes with different
security and efficiency tradeoffs. In particular, we obtain new CP-ABE, BE, and IBBE
schemes from the LWE assumption in the bilinear generic group model. Our CP-ABE
scheme achieves the notable efficiency property that the sizes of all the parameters in the
system do not depend on the size of the circuits supported by the scheme. Similarly, our
BE (resp., IBBE) schemes achieve optimal parameter size, in the sense that the sizes of
all parameters in the system are bounded by a fixed polynomial that is independent from
the number of users (resp., upper bound on the number of recipients). These efficiency
properties have never been achieved without using indistinguishability obfuscation or
multilinear maps.

5.1 New CP-ABE scheme

By setting FCP := {C`(λ),d(λ)}λ in the construction in Sec. 3, we obtain a CP-ABE
scheme that can deal with the set of circuits whose input length and depth are `(λ) and
d(λ), respectively. In order to prove Ada-IND security for the resulting scheme, we need
to be able to prove Ada-INDr security for the KP-ABE scheme BGG+ for the same
circuit class as stated in Theorem 4.1. This is possible by assuming subexponential
hardness of LWE as we see in Theorem 2.10. The notable feature of the resulting scheme
is that the sizes of the master public key, ciphertexts, and secret keys are independent
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from the size of the circuits supported by the scheme. The sizes of these parameters are
only dependant on the input length and the depth of the circuits.

Summarizing the above discussion, we get the following theorem.

Theorem 5.1. Assuming the subexponential hardness of LWE, we have a CP-ABE
scheme for circuit class C`,d for arbitrary ` = poly(λ) and d = O(log λ) that satisfies
Ada-IND security in the bilinear generic group model. The sizes of the master public
key, ciphertexts, and secret keys are bounded by poly(λ, `, d).

We note that in all previous CP-ABE scheme (e.g., [BSW07, Wat11, RW13]) for NC1,
either the ciphertext or secret key size depends on the circuit size supported by the
scheme.

5.2 New BE scheme with Optimal Parameter Size

Here, we show that we can obtain a BE scheme with optimal parameter size by setting
the circuit class F supported by the CP-ABE scheme in Sec. 3 appropriately.

Obtaining DBE from KP-ABE. In order to get the BE scheme, we first observe that we
can implement a DBE scheme by a KP-ABE scheme for the following circuit class FBE

defined as FBE =
{
FS : {0, 1}dlogNe → {0, 1}

}
S⊆[N ]

where FS(i) =

{
1 if i ∈ S
0 if i 6∈ S

.

Here, we identify a user index i ∈ [N ] and elements in S with binary strings in
{0, 1}dlogNe by a natural bijection map between {0, 1}dlogNe and [2dlogNe] ⊇ [N ].
Since the depth of FS affects the efficiency of the DBE scheme, we want FS to be as
shallow as possible. For this purpose, we compute FS by first computing bj := (i

?
= j)

for all j ∈ S in parallel and then computing ∨j∈Sbj . The first step can be implemented
with depthO(log logN) and the second step withO(logN). This allows us to implement
FS with depth O(log |S|) ≤ O(logN). By the definition of FS , one can see that this
KP-ABE scheme implements the functionality of DBE.

Plugging the DBE into Our Construction in Sec. 3. We then instantiate the KP-ABE
for the circuit class FBE with BGG+ and plug this scheme into our CP-ABE construction
in Sec. 3. Since the ciphertext and key attributes of the CP-ABE scheme are swapped from
the underlying KP-ABE scheme, we obtain a BE scheme as a result. This instantiation is
possible since the depth of the circuits is bounded by O(logN) ≤ O(log λ) and we can
take the upper bound on the depth d(λ) to be larger than this. The sizes of the master
public key, ciphertexts, and secret keys in the resulting BE scheme are bounded by
poly(logN,λ) = poly(λ), which is independent of the number of users, since the depth
and input length of the circuits in FBE is bounded by O(logN). Note that we crucially
rely on the efficiency property of our CP-ABE scheme that the sizes of all parameters in
the system are independent of the size of the circuits being supported, where the latter
can be as large as O(N) for FBE.

Security of the resulting BE Scheme. In order for the resulting BE scheme to have
Ada-IND security, we need the underlying KP-ABE scheme BGG+ to have Ada-INDr
security as stated in Theorem 4.1. In the general case where the input length for the
circuits is of poly(λ), we need to assume subexponential hardness of LWE to prove
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Ada-INDr security for BGG+ as we see in Theorem 2.10. However, since we restrict the
circuit class for BGG+ to be FBE here, we can avoid assuming subexponential hardness
of LWE and base the security of our scheme on polynomial hardness of LWE. To see
this, we first recall that for proving Sel-INDr security for BGG+, polynomial hardness
of LWE is enough (Theorem 2.10). We then observe that in the special case of DBE,
Sel-INDr and Ada-INDr are actually equivalent, since one can guess the target attribute
i? ∈ [N ] chosen by the adversary in the security game with only polynomial security
loss.

Summarizing the above discussion, we get the following theorem.

Theorem 5.2. Assuming the LWE assumption, we have a BE scheme that satisfies
Ada-IND security in the bilinear generic group model. The sizes of the master public
key, ciphertexts, and secret keys are bounded by a fixed polynomial poly(λ) that is
independent of N .

5.3 New IBBE scheme with Optimal Parameter Size

Here, we show that we can obtain an IBBE scheme with optimal parameter size by
setting the circuit class F supported by the CP-ABE scheme in Sec. 3 appropriately.
This can be done similarly to the case of BE and we only highlight the difference below.

Obtaining DIBBE from KP-ABE. Similarly to the case of BE, we first observe that
we can implement a DIBBE scheme by a KP-ABE scheme by setting the supported
circuit class FIBBE appropriately. In order to do so, we set FIBBE to be the same as FBE

except that we set N to be 2O(λ) and the identity space to be [N ]. We can implement the
circuit FS with depth O(log logN + log t). (Recall that the size of S is bounded by t.)
To support identities with arbitrary length, we hash an identity into an integer in [N ] by
a collision resistant hash function.

Plugging the DIBBE into Our Construction in Sec. 3. We then instantiate the KP-
ABE scheme for FIBBE with BGG+ and plug the scheme into our construction of
CP-ABE in Sec. 3. Note that the instantiation is possible since the depth of the circuits
is bounded by O(log t+ log logN) ≤ (log λ) and we can take the bound on the depth
d(λ) to be larger than this. As a result, we obtain an IBBE scheme whose sizes of the
master public key, ciphertexts, and secret keys are bounded by O(λ).

Security of the resulting IBBE Scheme. In order for the resulting IBBE scheme
to have Ada-IND security, we need the underlying KP-ABE scheme BGG+ to have
Ada-INDr security. Unlike the BE case, we do not have equivalence between Sel-INDr
and Ada-INDr here, sinceN is exponentially large. Instead, we rely on the random oracle
model to transform the scheme that is Sel-INDr secure into a scheme with Ada-INDr
security. This can be done similarly to the selective-to-adaptive conversion for IBE
(Theorem 7.3 in [BB04]) by applying a hash function that is modeled as a random oracle
to the identities before they are input to the encryption or key generation algorithms.
The reduction from Ada-INDr security to Sel-INDr security is done by guessing when
the hash query for the target identity id is made during the game. The guess is correct
with noticeable probability since the adversary makes only polynomial number of hash
queries and thus the reduction works.
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Summarizing the above discussion, we get the following theorem.

Theorem 5.3. Assuming the LWE assumption, we have an IBBE scheme that satisfies
Ada-IND security in the bilinear generic group model and the random oracle model.
The sizes of the master public key, ciphertexts, and secret keys are bounded by a fixed
polynomial poly(λ) that is independent of t, which is the upper bound of the number of
recipients that is specified by the scheme.

6 Conclusion

We provided the first BE and IBBE constructions with optimal parameters from bilinear
maps and pairings. Our techniques are new and demonstrate a novel interplay of LWE
and pairings that may be of independent interest. Several interesting questions arise
from our work. An immediate question is whether we can modify the construction so
as to obtain a proof in the standard model. It would also be interesting to explore if our
techniques can have applications in constructing other primitives that have been only
constructed from multilinear maps or indistinguishability obfuscation.
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