
On the Memory-Tightness of Hashed ElGamal

Ashrujit Ghoshal and Stefano Tessaro

Paul G. Allen School of Computer Science & Engineering
University of Washington, Seattle, USA
{ashrujit,tessaro}@cs.washington.edu

Abstract. We study the memory-tightness of security reductions in
public-key cryptography, focusing in particular on Hashed ElGamal. We
prove that any straightline (i.e., without rewinding) black-box reduction
needs memory which grows linearly with the number of queries of the
adversary it has access to, as long as this reduction treats the underly-
ing group generically. This makes progress towards proving a conjecture
by Auerbach et al. (CRYPTO 2017), and is also the first lower bound
on memory-tightness for a concrete cryptographic scheme (as opposed
to generalized reductions across security notions). Our proof relies on
compression arguments in the generic group model.

Keywords: Public-key cryptography, memory-tightness, lower bounds,
generic group model, foundations, compression arguments

1 Introduction

Security proofs rely on reductions, i.e., they show how to transform an adversary
A breaking a scheme into an adversary B solving some underlying assumed-to-
be-hard problem. Generally, the reduction ought to be tight – the resources used
by B, as well as the attained advantage, should be as close as possible to those of
A. Indeed, the more resources B needs, or the smaller its advantage, the weaker
the reduction becomes.

Auerbach et al. [?] were the first to explicitly point out that memory resources
have been ignored in reductions, and that this leads to a loss of quality in security
results. Indeed, it is conceivable that A’s memory is naturally bounded (say, at
most 264 bits), and the underlying problem is very sensitive to memory. For
example, the best-known algorithm for discrete logarithms in a 4096-bit prime
field runs in time (roughly) 2156 using memory 280. With less memory, the best
algorithm is the generic one, requiring time Θp?pq � 22048. Therefore, if B also
uses memory at most 264, we can infer a larger lower bound on the necessary
time complexity for A to break the scheme, compared to the case where B uses
2100 bits instead.

What can be memory-tight?One should therefore target reductions that are
memory-tight, i.e., the memory usage of B is similar to that of A.1 The work

1 Generally, B � RA for a black-box reduction R, and one imposes the slightly stronger
requirement that R uses small memory, independent of that of A.

of Auerbach et al. [?], and its follow-up by Wang et al. [?], pioneered the study
of memory-tight reductions. In particular, and most relevant to this work, they
show negative results (i.e., that certain reductions cannot be memory tight) using
streaming lower bounds.

Still, these lower bounds are tailored at general notions (e.g., single- to multi-
challenge reductions), and lower bounds follow from a natural connection with
classical frequency problems on streams. This paper tackles the more ambi-
tious question of proving impossibility of memory-tight reductions for concrete
schemes, especially those based on algebraic structures. This was left as an open
problem by prior works.

Hashed ElGamal. Motivated by a concrete open question posed in [?], we
consider here the CCA-security of Hashed ElGamal. In its KEM variant, the
scheme is based on a cyclic group G � xgy – the secret key sk is a random
element from Z|G|, whereas the public key is pk � gsk. Then, encapsulation
produces a ciphertext-key pair

C Ð gr , K Ð Hppkrq .
for r Ð Z|G| and a hash function H : G Ñ t0, 1u`. Decapsulation occurs by

computing K Ð HpCskq.
The CCA-security of Hashed ElGamal in the random-oracle model was proved

by Abdalla, Bellare, and Rogaway [?] based on the Strong Diffie-Hellman (SDH)
assumption (also often called GapDH), and we briefly review the proof.2 First,
recall that in the SDH assumption, the attacker is asked to compute guv from gu

and gv, given additionally access to a decision oracle Ov which on input h, y P G,
tells us whether hv � y.

The reduction sets the Hashed ElGamal public-key to pk � gv (setting im-
plicitly sk � v), the challenge ciphertext to be C� � gu, and the corresponding
key K� to be a random string. Then, it simulates both the random oracle and
the decapsulation oracle to the adversary A (which is run on inputs pk, C� and
K�), until a random-oracle query for guv is made (this can be detected using the
Ov oracle). The challenge is to simulate both oracles consistently: As the reduc-
tion cannot compute discrete logarithms, it uses the oracle Ov to detect whether
a random-oracle query X and a decapsulation query Ci satisfy OvpCi, Xq � true,
and, if this is the case, answers them with the same value.

This reduction requires memory to store all prior decapsulation and random-
oracle queries. Unlike other reductions, the problem here is not to store the
random-oracle output values (which could be compressed using a PRF), but
the actual inputs to these queries, which are under adversarial control. This
motivates the conjecture that a reduction using little memory does not exist,
but the main challenge is of course to prove this is indeed the case.

2 Abdalla et al. [?] do not phrase their paper in terms of the KEM/DEM
paradigm [?,?], which was introduced concurrently – instead, they prove that an
intermediate assumption, called Oracle Diffie-Hellman (ODH), follows from SDH
in the ROM. However, the ODH assumption is structurally equivalent to the CCA
security of Hashed ElGamal KEM for one challenge ciphertext.

2

Our result, in summary. We provide a memory lower bound for reductions
that are generic with respect to the underlying group G. Specifically, we show
the existence of an (inefficient) adversary A in the generic group model (GGM)
which breaks the CCA security of Hashed ElGamal via Opkq random oracle/de-
capsulation queries, but such that no reduction using less than k � λ bits of
memory can break the SDH assumption even with access to A, where λ is the
bit-size of the underlying group elements.

Our lower bound is strong in that it shows we do not even have a trade-off
between advantage and memory, i.e., if the memory is smaller than k �λ, then the
advantage is very small, as long as the reduction makes a polynomial number of
queries to Ov and to the generic group oracle. It is however also important to
discuss two limitations of our lower bound. The first one is that the reduction
– which receives g, gv in the SDH game – uses pk � gv as the public key to the
Hashed ElGamal adversary. The second one is that the reduction is straightline,
i.e., it does not perform any rewinding.

We believe that our impossibility result would extend even when the reduc-
tion is not straightline. However, allowing for rewinding appears to be out of
reach of our techniques. Nonetheless, we do conjecture a lower bound on the
memory of Ωpk log kq bits, and discuss the reasoning behind our conjecture in
detail in the full version.

We stress that our result applies to reductions in the GGM, but treats the
adversary as a black box. This captures reductions which are black-box in their
usage of the group and the adversary. (In particular, the reduction cannot see
generic group queries made by the adversary, as in a GGM security proofs.)
Looking at the GGM reduces the scope of our result. However, it is uncommon
for reductions to depend on the specifics of the group, although our result can
be bypassed for specific groups, e.g., if the group has a pairing.

Concurrent related work. Concurrently to our work, Bhattacharyya [?]
provides memory-tight reductions of KEM-CCA security for variants of Hashed
ElGamal. At first glance, the results seem to contradict ours. However, they
are entirely complementary – for example, a first result shows a memory tight
reduction for the KEM-CCA security of the “Cramer-Shoup” variant of Hashed
ElGamal – this variant differs from the (classical) Hashed ElGamal we consider
here and is less efficient. The second result shows a memory-tight reduction for
the version considered in this paper, but assumes that the underlying group has
a pairing. This is a good example showing our result can be bypassed for specific
groups i.e. groups with pairings, but we also note that typical instantiations of
the scheme are on elliptic curves for which no pairing exists.

1.1 Our Techniques

We give a high-level overview of our techniques here. We believe some of these
to be novel and of broader interest in providing other impossibility results.

3

The shuffling game. Our adversary against Hashed ElGamal3 A first at-
tempts to detect whether the reduction is using a sufficient amount of memory.
The adversary A is given as input the public key gv, as well as gu, as well as a
string C� P t0, 1u`, which is either a real encapsulation or a random string. It
first samples k values i1, . . . , ik from Zp. It then:

(1) Asks for decapsulation queries for Cj Ð gij , obtaining values Kj , for j P rks
(2) Picks a random permutation π : rks Ñ rks.
(3) Asks for RO queries for Hj Ð HpVjq for j P rks, where Vj Ð gv�iπpjq .

After this, the adversary checks whether Kj � Hπpjq for all j P rks, and if so, it
continues its execution, breaking the ODH assumption (inefficiently). If not, it
just outputs a random guess.

The intuition here is that no reduction using substantially less than k � log p
bits succeeds in passing the above test – in particular, because the inputs Cj
and Vj are (pseudo-)random, and thus incompressible. If the test does not pass,
the adversary A is rendered useless, and thus not helpful to break SDH.

Remark 1. The adversary here is described in a way that requires secret ran-
domness, not known to the reduction, and it is easier to think of A in this way.
We will address in the body how to generically make the adversary deterministic.

Remark 2. We stress that this adversary requires memory – it needs to remember
the answers C1, . . . , Ck. However, recall that we adopt a black-box approach to
memory-tightness, where our requirement is that the reduction itself uses little
memory, regardless of the memory used by the adversary. We also argue this is
somewhat necessary – it is not clear how to design a reduction which adapts its
memory usage to the adversary, even if given this information in a non-black-box
manner. Also, we conjecture different (and much harder to analyze) memory-
less adversaries exist enabling a separation. An example is multi-round variant,
where each round omits (2), and (3) only asks a single query HpVjq for a random
jÐ$ rks, and checks consistency. Intuitively, the chance of passing each round is
roughly k log p{s, but we do not know how to make this formal.

Introducing the GGM.Our intuition is however false for an arbitrary group.
For instance, if the discrete logarithm (DL) problem is easy in the group, then
the reduction can simply simulate the random oracle via a PRF, as suggested
in [?]. Ideally, we could prove that if the DL problem is hard in G, then any
PPT reduction given access to A and with less than k � log p bits of memory
fails to break SDH.4 Unfortunately, it will be hard to capture a single hardness
property of G sufficient for our proof to go through. Instead, we will model the

3 The paper will in fact use the cleaner formalization of the ODH assumption, so we
stick to Hashed ElGamal only in the introduction.

4 This statement is somewhat confusing, so note that in general, the existence of a
reduction is not a contradiction with the hardness of DL, as the reduction is meant
to break SDH only given access to an adversary breaking the scheme, and this does
not imply the ability to break SDH without access to the adversary.

4

group via the generic group model (GGM) [?,?]: We model a group of prime
order p defined via a random injection σ : Zp Ñ L. An algorithm in the model
typically has access to σp1q (in lieu of g) and an evaluation oracle which on input
a,b P L returns σpσ�1paq � σ�1pbqq. (We will keep writing gi instead of σpiq in
the introduction, for better legibility.)

The permutation game. In order to fool A, the reduction can learn informa-
tion about π via the Ov oracle. For example, it can try to input Cj � gij and
Vj1 � gviπpj1q (both obtained from A’s queries), and OvpCj , Vj1q � true if and only
if πpj1q � j. More generally, the reduction can compute, for any ~a � pa1, . . . , akq
and ~b � pb1, . . . , bkq,

C� � g
°k
j�1 ajij �

k¹
j�1

C
aj
j , V � � g

°k
j�1 bjv�iπpjq �

k¹
j�1

V
bj
j ,

and the query OvpC�, V �q returns true iff bj � aπpjq for all j P rks, which we

write as ~b � πp~aq. We abstract this specific strategy in terms of an information-
theoretic game – which we refer to as the permutation game – which gives the
adversary access to an oracle O which takes as inputs pairs of vectors p~a,~bq from

Zkp, and returns true iff ~b � πp~aq for a secret permutation π. The goal of the
adversary is to recover π.

Clearly, a strategy can win with Opk2q oracle queries p~ei, ~ejq for all i, j, where
~ei P Zkp is the unit vector with a 1 in the i-th coordinate, and 0 elsewhere. This
strategy requires in particular querying, in its first component, vectors which
have rank k. Our first result will prove that this is necessary – namely, assume
that an adversary makes a sequence of q queries p~x1, ~y1q, . . . , p~xq, ~yqq such that
the rank of ~x1, . . . , ~xp is at most `, then the probability to win the permutation
game is of the order Opq`{k!q. We will prove this via a compression argument.

Note that roughly, this bound tells us that to win with probability ε and q
queries to the oracle, the attacker needs

` � Ω

�
k log k � logp1{εq

logpqq

.

A reduction to the permutation game. We will think of the execution of
the reduction against our adversary as consisting of two stages – we refer to
them as R1 and R2. The former learns the decapsulation queries gi1 , . . . , gik ,
whereas the latter learns the RO queries giπp1qv, . . . , giπpkqv, and (without loss of
generality) attempts to guess the permutation π. We will lower bound the size of
the state φ that R1 passes on to R2. Both stages can issue Ov and Eval queries.

Note that non-trivial Ov queries (i.e., those revealing some information about
the permutation), are (except with very small probability) issued by R2, since no
information about π is ever revealed to R1. As one of our two key steps, we will
provide a reduction from the execution of R1,R2 against A in the GGM to the
permutation game – i.e., we build an adversary D for the latter game simulating
the interaction between R1,R2 and A, and such that R1,R2 “fooling” A results
in D guessing the permutation.

5

Memory vs. rank. The main question, however, is to understand the com-
plexity of D in the permutation game, and in particular, the rank ` of the first
component of its queries – as we have seen above, this affects its chance of
winning the game.

To do this, we will take a slight detour, and specifically consider a set Z � L
of labels (i.e., outputs of σ) that the reduction R2 comes up with (as inputs to
either of Eval or Ov) on its own (in the original execution), i.e., no earlier Eval
query of R2 returned them, and that have been previously learnt by R1 as an
output of its Eval queries. (The actual definition of Z is more subtle, and this is
due to the ability of the adversary to come up with labels without knowing the
corresponding pre-image.)

Then, we will show two statements about Z:

(i) On the one hand, we show that the rank ` of the oracle queries of the
adversary D is upper bound by |Z| in its own simulation of the execution
of R1,R2 with A.

(ii) On the other hand, via a compression argument, we prove that the size of
Z is related to the length of φ, and this will give us our final upper bound.

This latter statement is by itself not very surprising – one can look at the execu-
tion of R2, and clearly every label in Z that appears “magically” in the execution
must be the result of storing them into the state φ. What makes this different
from more standard compression arguments is the handling of the generic group
model oracle (which admits non-trivial operations). In particular, our compres-
sion argument will compress the underlying map σ, and we will need to be able
to figure out the pre-images of these labels in Z. We give a very detailed technical
overview in the body explaining the main ideas.

Memory-Tight AGM Reduction. The Algebraic Group Model (AGM) was
introduced in [?]. AGM reductions make strong extractability assumptions, and
the question of their memory-tightness is an interesting one. In the full version we
construct a reduction to the discrete logarithm problem that runs an adversary
against the KEM-CCA security of Hashed ElGamal in the AGM such that the
reduction is memory-tight but not tight with respect to advantage. We note
that the model of our reduction is different than a (full-fledged) GGM reduction
which is not black-box, in that it can observe the GGM queries made by the
adversary. Our result does not imply any impossibility for these. In turn, AGM
reductions are weaker, but our results do not imply anything about them, either.

2 Preliminaries

In this section, we review the formal definition of the generic group model. We
also state ODH and SDH as introduced in [?] in the generic group model.

Notation. Let N � t0, 1, 2, � � � u and, for k P N, let rks � t1, 2, � � � , ku. We
denote by InjFuncpS1, S2q the set of all injective function from S1 to S2.

We also let � denote a wildcard element. For example Dt : pt, �q P T is true
if the set T contains an ordered pair whose first element is t (the type of the

6

wildcard element shall be clear from the context). Let Sk denote the set of all
permutations on rks. We use f : D Ñ R Y tKu to denote a partial function,
where fpxq � K indicates the value of fpxq is undefined. Define in particular
Dpfq � td P D : fpdq � Ku and Rpfq � tr P R : Dd P D : σpdq � ru.
Moreover, we let Dpfq � DzDpfq and Rpfq � RzRpfq.

We shall use pseudocode descriptions of games inspired by the code-based
framework of [?]. The output of a game is denoted using the symbol ñ. In all
games we assume the flag bad is set to false initially. In pseudocode, we denote
random sampling using Ð$, assignment using Ð and equality check using �. In
games that output boolean values, we use the term“winning” the game to mean
that the output of the game is true.

We also introduce some linear-algebra notation. Let S be a set vectors with
equal number of coordinates. We denote the rank and the linear span of the
vectors by rankpSq and spanpSq respectively. Let ~x, ~y be vectors of dimension k.
We denote ~z of dimension 2k which is the concatenation of ~x, ~y as ~z � p~x, ~yq.
We denote the element at index i of a vector ~x as ~xris.

2.1 Generic Group Model

The generic group model [?] captures algorithms that do not use any special prop-
erty of the encoding of the group elements, other than assuming every element
of the group has a unique representation, and that the basic group operations
are allowed. This model is useful in proving lower bounds for some problems,
but we use it here to capture reductions that are not specific to the underlying
group.

More formally, let the order of the group be a large prime p. Let Zp �
t0, 1, 2, � � � , p� 1u. Let L � t0, 1u� be a set of size p, called the set of labels. Let
σ be a random injective mapping from Zp to L. The idea is that now every group
element in Zp is represented by a label in L. An algorithm in this model takes
as input σp1q, σpx1q, σpx2q, � � � , σpxnq for some x1, � � � , xn P Zp (and possibly
other inputs which are not group elements). The algorithm also has access to
an oracle named Eval which takes as input two labels a,b P L and returns c �
σpσ�1paq�σ�1pbqq. Note that for any d, given σpxiq, σpd �xiq can be computed
using Oplog dq queries to Eval. We denote this operation as Exppσpxiq, dq. We
assume that all labels queried by algorithms in the generic group model are
valid i.e. all labels queried by algorithms in the generic group model are in L.5

Oracle Diffie-Hellman assumption (ODH). We first formalize the Oracle
Diffie-Hellman Assumption (ODH) [?], which we are going to use in lieu of the
CCA security of Hashed ElGamal. Suppose, a group has generator g and order
p. The domain of hash function H is all finite strings and range is t0, 1uhLen.
The assumption roughly states for u, vÐ$Zp,W Ð$ t0, 1uhLen, the distributions
pgu, gv,Hpguvqq and pgu, gv,W q are indistinguishable to an adversary who has

5 We stress that we assume a strong version of the model where the adversary knows
L.

7

Game GODH-REAL-GG
L,p,hLen pAq :

1 : σ Ð$ InjFuncpZp Ñ Lq
2 : uÐ$Zp;U Ð σpuq

3 : v Ð$Zp;V Ð σpvq

4 : H Ð$ΩhLen

5 : W Ð Hpσpuvqq

6 : bÐ AHvp.q,Hp.q,Evalp.,.qpU, V,W, σp1qq

7 : return b

Game GODH-RAND-GG
L,p,hLen pAq :

1 : σ Ð$ InjFuncpZp Ñ Lq
2 : uÐ$Zp;U Ð σpuq

3 : v Ð$Zp;V Ð σpvq

4 : H Ð$ΩhLen

5 : W Ð t0, 1uhLen

6 : bÐ AHvp.q,Hp.q,Evalp.,.qpU, V,W, σp1qq

7 : return b

Oracle Evalpa,bq :

1 : return σpσ�1paq � σ
�1pbqq

Oracle Hvpaq :

1 : if a � U then return K

2 : else return Hpσpσ�1paq � vqq

Game GSDH-GG
L,p,hLenpAq :

1 : σ Ð$ InjFuncpZp Ñ Lq
2 : uÐ$Zp;U Ð σpuq

3 : v Ð$Zp;V Ð σpvq

4 : z Ð AEvalp.,.q,Ovp.,.qpU, V, σp1qq

5 : return pz � σpuvqq

Oracle Ovpa,bq :

1 : return pσ�1paq � v � σ
�1pbqq

Fig. 1. Games for ODH and SDH assumptions

access to the oracle Hv where Hvpgxq returns Hpgxvq with the restriction that it
is not queried on gu.

We give a formalization of this assumption in the random-oracle and generic
group models. For a fixed hLen P N, let ΩhLen be the set of hash functions map-
ping t0, 1u� to t0, 1uhLen. In Figure ??, we formally define the Games GODH-REAL-GG

L,p,hLen ,

GODH-RAND-GG
L,p,hLen . The advantage of violating ODH is defined as

AdvODH-GG
L,p,hLenpAq �

��Pr
�
GODH-REAL-GG

L,p,hLen pAq ñ 1
�� Pr

�
GODH-RAND-GG

L,p,hLen pAq ñ 1
��� .

Strong Diffie-Hellman Assumption (SDH). This is a stronger version of
the classical CDH assumption. This assumption roughly states that CDH is hard
even in the presence of a DDH-oracle Ov where Ovpgx, gyq is true if and only if
x � v � y.

We formally define the game GSDH-GG in the generic group model in Figure ??.
The advantage of violating SDH is defined as

AdvSDH-GG
L,p,hLenpAq �

��Pr
�
GSDH-GG

L,p,hLenpAq ñ true
��� .

Note in particular that one can upper bound this advantage unconditionally.
We shall drop the L from the subscript of advantages and games henceforth
since the set of labels L remains the same throughout our paper.

Black Box reductions in the GGM. We consider black-box reductions in
the generic group model. We will limit ourselves to an informal description, but
this can easily be formalized within existing formal frameworks for reductions
(see e.g. [?]). We let the reduction R access an adversary A, and denote by RA

8

the resulting algorithm – understood here is that R supplies inputs, answers
queries, etc. In addition, we let R and A access the Eval oracle available in the
GGM. We stress that the GGM oracle is not under the reduction’s control here
– typically, the reduction itself will break a (hard) problem in the GGM with
help of A. We will allow (for simplicity) A to be run depending on some secret
private coins6 not accessible by R. Reductions can run A several times (with
fresh private coins). We call a reduction straigthline if it only runs A once.

In our case, the reduction R will be playing GSDH-GG
p,hLen . It receives as inputs

σp1q, U � σpuq, V � σpvq, and has access to the Eval, Ov oracles, as well as an
adversary A for GODH-REAL-GG

p,hLen or GODH-RAND-GG
p,hLen . The reduction needs therefore to

supply inputs pσp1q, U 1, V 1,W q to A, and to answer its queries to the oracles Hv,
as well as queries to H. We will call such a reduction restricted if it is straightline
and V 1 � V .

2.2 Compression Lemma

In our lower bound proof we use the compression lemma that was formalized
in [?] which roughly means that it is impossible to compress every element in
a set with cardinality c to a string less than log c bits long, even relative to a
random string. We state the compression lemma here as a proposition.

Proposition 1. Suppose, there is a (not necessarily efficient) procedure Encode :
X�RÑ Y and a (not necessarily efficient) decoding procedure Decode : Y�RÑ
X such that

Pr
xPX ,rPR

rDecodepEncodepx, rq, rq � xs ¥ ε ,

then log |Y| ¥ log |X | � logp1{εq.

2.3 Polynomials

Let ppX1, � � � , Xnq be a n variate polynomial. We denote by ppx1, � � � , xnq the
evaluation of p at the point px1, � � � , xnq throughout the paper. The polynomial
ring in variables X1, � � � , Xn over the field Zp is denoted by ZprX1, � � � , Xns.

2.4 Key Encapsulation Mechanism (KEM)

A key-encapsulation mechanism (KEM) consists of three probabilistic polyno-
mial time (PPT) algorithms Gen,Encap,Decap. The key generation algorithm
Gen is probabilistic and outputs a key-pair ppk, skq. The encapsulation algo-
rithm Encap is a probabilistic algorithm that takes pk as input and outputs a
ciphertext c and a key K where K P K for some non-empty set K. The decapsu-
lation algorithm Decap is a deterministic algorithm that takes as input the secret
key sk and a ciphertext c outputs a key K P K if psk, cq is a valid secret key-
ciphertext pair and K otherwise. For correctness, it is required that for all pairs

6 If we want to allow the reduction to control random bits, we model them explicitly
as an additional input.

9

ppk, skq output by Gen, if pK, cq is output by Encapppkq then K is the output of
Decappsk, cq.
Single challenge KEM-CCA security.The single challenge CCA security
of a KEM is defined by a pair of games called GKEM-CCA-REAL,GKEM-CCA-RAND. In
both games a ppk, skq pair is generated by Gen, and pc,Kq is output by the encap-
sulation algorithm Encap on input pk. The adversary is provided with ppk, c,Kq
in GKEM-CCA-REAL and with ppk, c,K 1q in GKEM-CCA-RAND where K 1 is a randomly
sampled element of K. The adversary has access to the decapsulation oracle
with sk as the secret key and it can make decapsulation queries on any cipher-
text except the ciphertext c and has to output a bit. We define the advantage of
violating single challenge KEM-CCA security is defined as the absolute value of
the difference of probabilities of the adversary outputting 1 in the two games. A
KEM is single challenge CCA-secure if for all non-uniform PPT adversaries the
advantage of violating single challenge KEM-CCA security is negligible.

Single challenge KEM-CCA of Hashed ElGamal.We describe the KEM
for Hashed ElGamal in a group with order p and generator g and a hash function
H. The function Gen samples v at random from Zp, and returns pgv, vq as the
ppk, skq pair. The function Encap on input v, samples u at random from Zp and
returns gu as the ciphertext and Hpguvq as the key K. The function Decap on
input c, returns Hpcvq. Note that Decap in KEM of Hashed ElGamal is identical
to the Hv function as defined in the ODH assumption. It follows that the single
challenge KEM-CCA security of Hashed ElGamal is equivalent to the ODH
assumption. In particular, in the generic group model when H is modeled as
a random oracle, the single challenge KEM-CCA security of Hashed ElGamal
is equivalent to the ODH assumption in the random oracle and generic group
model.

3 Memory Lower Bound on the ODH-SDH Reduction

3.1 Result and Proof Outline

In this section, we prove a memory lower bound for restricted black-box reduc-
tions from ODH to SDH. We stress that the restricted reduction has access only
to the H,Hv queries of the adversary. As discussed above, the ODH assumption
is equivalent to the single-challenge KEM-CCA security of Hashed ElGamal,
this proves a memory lower-bound for (restricted) black-box reductions of single
challenge KEM-CCA security of Hashed ElGamal to the SDH assumption.

Theorem 1 (Main Theorem). In the generic group model, with group order
p, there exists an ODH adversary A that makes k H queries and k Hv queries
(where k is a polynomial in log p), a function ε1pp, hLenq which is negligible in
log p, hLen, and a function ε2ppq which is negligible in log p, such that,

1. AdvODH-GG
p,hLen pAq � 1� ε1pp, hLenq.

10

2. For all restricted black-box reductions R, with s bits of memory and making
a total of q (assuming q ¥ k) queries to Ov, Eval,

AdvSDH-GG
p,hLen pRAq ¤ 2�2 s2

�
48q3

p

 k
8c
�

1� 6q

p

q
�4q2 log p� 13q2 � 5q

p
�ε2ppq ,

where c � 4r log qlog k s.

This result implies that if AdvSDH-GG
p,hLen pRAq is non-negligible for a reduction

R making q queries where q is a polynomial in log p, then s � Ωpk log pq i.e. the
memory required by any restricted black-box reduction grows with the number
of queries by A. Hence, there does not exist any efficient restricted black-box
reduction from ODH to SDH that is memory-tight.

In the full version, we discuss how rewinding can slightly improve the memory
complexity to (roughly) Opk log kq, with heavy computational cost (essentially,
one rewinding per oracle query of the adversary). We conjecture this to be op-
timal, but a proof seems to evade current techniques.

De-randomization. Before we turn to the proof – which also connects several
technical lemmas presented across the next sections, let us discuss some aspects
of the results. As explained above, our model allows for the adversary A to be
run with randomness unknown to R. This aspect may be controversial, but we
note that there is a generic way for A to be made deterministic. Recall that
A must be inefficient for the separation to even hold true. For example, A can
use the injection σ from the generic group model to generate its random coin
– say, using σ�1paiq as coins a priori fixed labels a1,a2, It is a standard –
albeit tedious and omitted – argument to show that unless the reduction ends
up querying the pre-images (which happens with negligible probability only),
the σ�1paiq’s are good random coins.

Strengthening beyond SDH. We would like to note that our result can be
strengthened without much effort to a reduction between ODH and a more
general version of SDH. Informally, we can extend our result to every problem
which is hard in the generic group model in presence of an Ov oracle. For example,
this could be a problem where given g, gu, and gv, the attacker needs to output
gfpu,vq, where f is (a fixed) two-variate polynomial with degree at least 2. We
do not include the proof for the strengthened version for simplicity. However, it
appears much harder to extend our result to different types of oracles than Ov,
as our proof is tailored at this oracle.

Proof. Here, we give the overall structure, the key lemmas, and how they are
combined – quantitatively – to obtain the final result.

First off, Lemma ?? establishes that there exists an adversary A such that
AdvODH-GG

p,hLen pAq is close to 1, which we will fix (i.e., when we refer to A, we refer
to the one guaranteed to exist by the lemma). The proof of Lemma ?? is in
Section ?? and the proof of Lemma ?? is in Section ??.

11

Lemma 1. There exists an adversary A and a function ε1pp, hLenq such that is
negligible in log p, hLen, and

AdvODH-GG
p,hLen pAq � 1� ε1pp, hLenq .

After that, we introduce a game, called G1 and described in Figure ?? in
Section ??. Very informally, this is a game played by a two-stage adversary
R1,R2 which can pass a state to each other of size s bits and have access to the
Eval,Ov oracles. The game captures the essence of the reduction R the adversary
A of having a sufficient amount of memory. This is made formal in Lemma ??,
where we show that the probability of the reduction R winning the SDH-GG
game while running A is bounded by the probability of winning G1.

Lemma 2. For every restricted black box reduction R to SDH-GG that runs A,
there exist adversaries R1,R2 playing G1, such that the number of queries made
by R1,R2 to Eval,Ov is same as the number of queries made by R to Eval,Ov,
the state passed from R1 to R2 is upper bounded by the memory used by R and,

AdvSDH-GG
p,hLen pRAq ¤ Pr rG1 ñ trues � 4k2plog pq2

p
� 4qk log p� q2

p
.

We introduce Games G2,G3 in Figure ?? in Section ??. These games are
identical to G1 except for the condition to output true. The condition to output
true in these games are disjoint and the disjunction of the two conditions is
equivalent to the condition to output true in G1. A little more specifically, both
games depend on a parameter l, which can be set arbitrarily, and in G3 and
G2 the winning condition of G1 is strengthened by additional ensuring that a
certain set defined during the execution of the game is smaller or larger than l,
respectively. Therefore, tautologically,

Pr rG1 ñ trues � Pr rG2 ñ trues � Pr rG3 ñ trues . (1)

We now prove the following two lemmas below, in Sections ?? and ??,

Lemma 3. For the game G2,

Pr rG2 ñ trues ¤ ql

k!
� 2qp2k � 3q � 2q

p
� 5q

p
� k2 � k � 2

p
.

Lemma 4. If the size of the state φ output by R1 is s bits and pR1,R2q make
q queries in total in G3, then

Pr rG3 ñ trues ¤ 2 � 2 s2
�

8q2p2k � 2� 3qq
p

 l
2
�

1� 6q

p

 2q�l
2

� k2 � k � 2

p
.

Combining ?? and the result of Lemmas ???? we get,

Pr rG1 ñ trues ¤ 2 � 2 s2
�

8q2p2k � 2� 3qq
p

 l
2
�

1� 6q

p

 2q�l
2

�

2pk2 � k � 2q
p

� ql

k!
� 2qp2k � 3q � 2q

p
� 5q

p
. (2)

12

Since
�

1� 6q
p

	 2q�l
2 ¤

�
1� 6q

p

	q
, combining Lemma ??, ?? we get,

AdvSDH-GG
p,hLen pRAq ¤2 � 2 s2

�
8q2p2k � 2� 3qq

p

 l
2
�

1� 6q

p

q
� 2pk2 � k � 2q

p
�

2qp2k � 3q � 2q
p

� 5q

p
� 4k2plog pq2

p
� 4qk log p� q2

p
� ql

k!
.

We let,

ε2ppq � ql

k!
� 2pk2 � k � 2q

p
� 4k2plog pq2

p
.

Setting c � r log qlog k s and l � k
4c ,

ql

k! ¤ kk{4

k! . By Sterling’s approximation k! ¥
kk�1{2e�k. Therefore,

kk{4

k!
� kk{4

kk{4
ek

kk{4
1

kk{2�1{2
.

For k ¡ e4 (we can set k ¡ e4), ql

k! ¤ 1
kk{2�1{2 i.e. ql

k! is negligible in log p for k

polynomial in log p. Also, 2pk2�k�2q
p � 4k2plog pq2

p is negligible in log p (since k is

a polynomial in log p). So, ε2ppq is negligible in log p. We have that,

AdvSDH-GG
p,hLen pRAq ¤2 � 2 s2

�
8q2p2k � 2� 3qq

p

 k
8c
�

1� 6q

p

q
�

2qp2k � 3q � 2q
p

� 5q

p
� 4qk log p� q2

p
� ε2ppq .

where c � 4r log qlog k s. Assuming q ¥ k (and thus q ¡ e4 ¡ 2), we get,

AdvSDH-GG
p,hLen pRAq ¤ 2 � 2 s2

�
48q3

p

 k
8c
�

1� 6q

p

q
� 4q2 log p� 13q2 � 5q

p
� ε2ppq .

[\

4 Proof of Theorem

4.1 Adversary A against ODH

In this section, we construct the ODH adversary A needed for the proof.

Lemma ??. There exists an adversary A and a function ε1pp, hLenq such that
is negligible in log p, hLen, and

AdvODH-GG
p,hLen pAq � 1� ε1pp, hLenq .

The adversary A is formally defined in Figure ??. The proof of Lemma ??
itself is deferred to the full version. Adversary A samples i1, � � � , ik from Zp, and
computes σpijq, σpij � vq for all j in rks. It then makes Hv queries on σpijq’s for

13

Adversary AHvp.q,Hp.q,Evalp.,.qpU, V,W, σp1qq :

1 : i1, � � � , ik Ð$Zp
2 : foreach j P rks do

3 : Q1rjs Ð Exppσp1q, ijq;Q2rjs Ð ExppV, ijq

4 : honest Ð 1

5 : foreach j P rks do

6 : ans1rjs Ð HvpQ1rjsq

7 : π Ð$Sk
8 : foreach j P rks do

9 : ans2rπpjqs Ð HpQ2rπpjqsq

10 : if Dj, l P rks, j � l : pans1rjs � ans1rls _ ans2rjs � ans2rlsq then honest Ð 0

11 : if Dj P rks : ans1rjs � ans2rjs then honest Ð 0

12 : if honest � 1 then

13 : temp Ð σp1q; v Ð 1

14 : while ptemp � V q

15 : temp Ð Evalptemp, σp1qq; v Ð v � 1

16 : inp Ð ExppU, vq;W 1 Ð Hpinpq; bÐ pW 1 � W q

17 : else bÐ$ t0, 1u

18 : return b

Fig. 2. The adversary A

all j in rks. Adversary A then samples a permutation π on rks Ñ rks, and then
makes H queries on σpiπpjq � vq’s for all j in rks. If answers of all the H queries
are distinct and the answers of all the Hv queries are distinct and for all j in rks,
Hvpσpijqq � Hpσpij � vqq, A computes the discrete logarithm of V outputs the
correct answer. Otherwise it returns a bit uniformly at random. Note that A is
inefficient, but only if it is satisfied from the responses it gets from the reduction
using it.

4.2 The Shuffling Games

The Game G1. We first introduce the two-stage game G1 played by a pair of
adversaries R1 and R2. (With some foresight, these are going to be two stages of
the reduction.) It is formally described in Figure ??. Game G1 involves sampling
σ, i1, � � � , ik, v from Zp, then running R1, followed by sampling permutation π
from Sk and then running R2. The first stage R1 has inputs σpi1q, � � � , σpikq and
it outputs a state φ of s bits along with k strings in t0, 1uhLen. The second stage
R2 has inputs φ, σpiπp1q �vq, � � � , σpiπpkq �vq and it outputs k strings in t0, 1uhLen.
Both the stages R1,R2 have access to oracles Eval,Ov. Game G1 outputs true
if all the k strings output by R1 are distinct, and if all the k strings output by
R2 are distinct, and if for all j P rks, the jth string output by R2 is identical
to the πpjqth string output by R1. Additionally, G1 involves some bookkeeping.
The Eval,Ov oracles in G1 take an extra parameter named from as input which
indicates whether the query was from R1 or R2.

14

Game G1 :

1 : σ Ð$ InjFuncpZp,Lq; i1, � � � , ik, v Ð$Zp
2 : X Ð tσp1q, σpvq, σpi1q, � � � , σpikqu;Y1 Ð tσp1q, σpvq, σpi1q, � � � , σpikqu

3 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

4 : π Ð$Sk;Y2 Ð tσp1q, σpvq, σpi1 � vq, � � � , σpik � vqu;Z Ð H

5 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

6 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

7 : return win

Oracle Evalpa,b, fromq :

1 : c Ð σpσ�1paq � σ
�1pbqq

2 : if from � 1 then

3 : if c R Y1 then X Y
ÐÝ tcu

4 : Y1
Y
ÐÝ ta,b, cu

5 : if from � 2 then

6 : if a P X zY2 then Z Y
ÐÝ tau

7 : if b P X zY2 then Z Y
ÐÝ tbu

8 : Y2
Y
ÐÝ ta,b, cu

9 : return c

Oracle Ovpa,b, fromq :

1 : if from � 1 then Y1
Y
ÐÝ ta,bu

2 : if from � 2 then

3 : if a P X zY2 then Z Y
ÐÝ tau

4 : if b P X zY2 then Z Y
ÐÝ tbu

5 : Y2
Y
ÐÝ ta,bu

6 : return pv � σ�1paq � σ
�1pbqq

Fig. 3. Game G1. We use the phrase R1,R2 win G1 to mean G1 ñ true. We shall use
this convention for all games in the paper that output boolean values.

We introduce the phrase “seen by” before describing the bookkeeping. A label
has been “seen by” R1 if it was an input to R1, queried by R1 or an answer to
a previously made Evalp., ., 1q query. A label has been “seen by” R2 if it was an
input to R2, queried by R2 or an answer to a previously made Evalp., ., 2q query.
We describe the sets X ,Y1,Y2,Z which are used for bookkeeping in G1.

– The labels in X are answers to Evalp., ., 1q queries such that it has not yet
been “seen by” R1 before the query.

– Y1 contains all the labels that are input to R1, queried by R1 or answers to
Evalp., ., 1q queries i.e. it is the set of labels “seen by” R1.

– Y2 contains all the labels that are input to R2, queried by R1 or answers to
Evalp., ., 2q queries i.e. it is the set of labels “seen by” R2.

– All labels in Z are queried by R2 and have not been “seen by” R2 before
the query and are in X

The following lemma tells us that we can (somewhat straightforwardly) take
a reduction as in the theorem statement, and transform it into an equivalent
pair R1,R2 of adversaries for G1. The point here is that the reduction is very
unlikely to succeed in breaking the SDH assumption without doing an effort
equivalent to winning G1 to get A’s help – otherwise, it is left with breaking
SDH directly in the generic group model, which is hard. The proof is deferred
to the full version.

15

Game G2 , G3 :

1 : σ Ð$ InjFuncpZp,Lq; i1, � � � , ik, v Ð$Zp
2 : X Ð tσp1q, σpvq, σpi1q, � � � , σpikqu;Y1 Ð tσp1q, σpvq, σpi1q, � � � , σpikqu

3 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

4 : π Ð$Sk;Y2 Ð tσp1q, σpvq, σpi1 � vq, � � � , σpik � vqu;Z Ð H

5 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

6 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

7 : return pwin ^ |Z| lq return pwin ^ |Z| ¥ lq

Fig. 4. Games G2,G3. The Eval,Ov oracles in G2,G3 are identical to those in G1

and hence we do not rewrite it here. The newly introduced changes compared to G1

are highlighted. The statement within the thinner box is present only in G3 and the
statement within the thicker box is present only in G2.

Lemma ??. For every restricted black box reduction R to SDH-GG that runs A,
there exist adversaries R1,R2 playing G1, such that the number of queries made
by R1,R2 to Eval,Ov is same as the number of queries made by R to Eval,Ov,
the state passed from R1 to R2 is upper bounded by the memory used by R and,

AdvSDH-GG
p,hLen pRAq ¤ Pr rG1 ñ trues � 4k2plog pq2

p
� 4qk log p� q2

p
.

The Games G2 and G3. In Figure ?? we define G2,G3 which have an added
check on the cardinality of Z to output true. Everything else remains unchanged
(in particular Eval,Ov are unchanged from G1 and we do not specify them again
here). The statement within the thinner box is present only in G3 and statement
within the thicker box is present only in G2. The changes from G1 have been
highlighted. We shall follow these conventions of using boxes and highlighting
throughout the paper.

The games G2,G3 are identical to G1 except for the condition to output true.
Since this disjunction of the conditions to output true in G2,G3 is equivalent to
the condition to output true in G1, and the conditions to output true in G2,G3

are disjoint, we have,

Pr rG1 ñ trues � Pr rG2 ñ trues � Pr rG3 ñ trues .

4.3 Proof of Lemma ??

Recall we are going to prove the following lemma.

Lemma ??. For the game G2,

Pr rG2 ñ trues ¤ ql

k!
� 2qp2k � 3q � 2q

p
� 5q

p
� k2 � k � 2

p
.

16

Game PGpAq :

1 : π Ð$Sk

2 : π
1 Ð AOp.,.q

3 : return pπ � π
1q

Oracle Op~x, ~yq : // ~x P Zkp, ~y P Zkp

1 : return p@i P rks : ~xrπpiqs � ~yrisq

Fig. 5. The permutation game PG being played by adversary A is denoted by PGpAq

We introduce a new game – called the permutation game and denoted PG –
in order to upper bound Pr rG2 ñ trues. In the rest of this proof, we are going to
first define the game, and upper bound the winning probability of an adversary.
Then, we are going to reduce an adversary for G2 to one for PG.

The Permutation Game. In Game PG, an adversary has to guess a randomly
sampled permutation π over rks. The adversary has access to an oracle that
takes as input two vectors of length k and returns true if the elements of the first
vector, when permuted using π, results in the second vector and false otherwise.
Figure ?? formally describes the game PG.

In the following, we say an adversary playing PG is a pq, lq-query adversary
if it makes at most q queries to O, and the rank of the vectors that were the first
argument to the O queries returning true is at most l.

The following lemma – which we prove via a compression argument – yields an
upper bound on the probability of winning the game for a pq, lq-query adversary.

Lemma 5. For a pq, lq-query adversary A playing PG the following is true.

Pr rPGpAq ñ trues ¤ ql

k!
.

Proof. We construct an encoding of π by running adversary A. In order to
run A, all the O queries need to be correctly answered. This can be naively
done by storing the sequence number of queries whose answers are true. In fact,
of all such queries, we need to just store the sequence number of just those
whose first argument is not in the linear span of vectors which were the first
argument of previous such queries i.e. we store the sequence number of only
those O queries returning true whose first argument form a basis of the first
argument of all O queries returning true. This approach works because for every
vector ~x, there is only a unique vector ~y such that Op~x, ~yq � 1. The random tape
of the adversary can be derived using the common randomness of Encode,Decode
and hence the adversary produces identical queries and output. For simplicity,
we do not specify this explicitly in the algorithms and treat A as deterministic.
The formal description of the algorithms Encode,Decode are in Figure ??.

Observe that S is a basis of vectors ~x such that Op~x, ~yq � true. Note that
for an Op~x, ~yq query returning true, if ~x P S then the sequence number of the
query is stored in enc. Therefore, p~x, ~yq P S1 in Decode. Again, for an Op~x, ~yq
query returning true, if ~x R S then the sequence number of the query is not
stored in enc and therefore p~x, ~yq R S1. So, for an Op~x, ~yq query returning true,
p~x, ~yq P S1 iff ~x P S. Since, for all p~x, ~yq such that Op~x, ~yq � true we have that

17

Procedure Encodepπq :

1 : cÐ 0

2 : S Ð H

3 : enc Ð H

4 : π
1 Ð AOp.,.q

5 : return enc

Oracle Op~x, ~yq :

1 : cÐ c� 1

2 : if pDi P rks : ~xrπpiqs � ~yrisq then

3 : return false

4 : else

5 : if ~x R spanpSq then

6 : S Ð S Y t~xu

7 : enc Ð enc Y tcu

8 : return true

Procedure Decodepencq :

1 : cÐ 0

2 : S
1 Ð H

3 : π
1 Ð AOp.,.q

4 : return π
1

Oracle Op~x, ~yq :

1 : cÐ c� 1

2 : if c P enc then

3 : S
1 Ð S

1 Y tp~x, ~yqu

4 : return true

5 : return pp~x, ~yq P spanpS1qq

Fig. 6. Encoding and decoding π using A

for all i P rks, ~yris � ~xrπ�1piqs, it follows that S1 forms a basis of vectors p~x, ~yq
such that Op~x, ~yq � true.

In Decodepencq, the simulation of Op~x, ~yq is perfect because

– If c is in enc, then ~x P S in Encode. From the definition of S in Encode, it
follows that Op~x, ~yq should return true.

– Otherwise we check if p~x, ~yq P spanpS1q and return true if the check succeeds,
false otherwise. This is correct since in S1 is a basis of vectors p~x, ~yq such
that Op~x, ~yq � true.

The encoding is a set of |S| query sequence numbers. Since there are at most
q queries, the encoding space is at most

�
q
|S|

�
. Using X to be the set Sk, Y to be

the set of all possible encodings, R to be the set of random tapes of A, it follows
from Proposition ?? that,

Pr rDecoding is sucessfuls ¤
�
q
|S|

�
k!

.

Since the simulation of Op~x, ~yq is perfect in Decode, decoding is successful if
PGpAq ñ true. Therefore,

Pr rPGpAq ñ trues ¤
�
q
|S|

�
k!

¤ q|S|

k!
.

Since A is a pq, lq-query adversary, |S| ¤ l. Thus, we have,

Pr rPGpAq ñ trues ¤ ql

k!
(3)
[\

18

Procedure PopulateSetsEvalpa,b, c, fromq :

1 : if from � 1 then

2 : if c R Y1 then X Y
ÐÝ tcu

3 : Y1
Y
ÐÝ ta,b, cu

4 : if from � 2 then

5 : if a P X z Y2 then Z Y
ÐÝ tau

6 : if b P X zY2 then Z Y
ÐÝ tbu

7 : Y2
Y
ÐÝ ta,b, cu

Procedure PopulateSetsOvpa,b, fromq :

1 : if from � 1 then Y1
Y
ÐÝ ta,bu

2 : if from � 2 then

3 : if a P X zY2 then Z Y
ÐÝ tau

4 : if b P X zY2 then Z Y
ÐÝ tbu

5 : Y2
Y
ÐÝ ta,bu

Fig. 7. Subroutines PopulateSetsEval,PopulateSetsOv

Reduction to PG.We next show that the Pr rG2 ñ trues is upper bounded in
terms of the probability of a pq, lq-query adversary winning the game PG.

Lemma 6. There exists a pq, lq-query adversary D against the permutation game
PG such that

Pr rG2 ñ trues ¤ Pr rPGpDq ñ trues � 2qp2k � 3q � 2q
p

� 5q

p
� k2 � k � 2

p
.

Proof. We transform R1,R2 playing G2 to an adversary D playing the game
PG through a sequence of intermediate games and use the upper bound on the
probability of winning the game PG established previously to prove an upper
bound on Pr rG2 ñ trues. In order to make the pseudocode for subsequent games
compact we define the two subroutines PopulateSetsEval,PopulateSetsOv and in-
voke them from Eval,Ov. The subroutines PopulateSetsEval,PopulateSetsOv are
formally described in Figure ??.

The game G4.We next describe game G4 where we introduce some additional
bookkeeping. In G4, every valid label that is an input to R1,R2 or queried
by R1,R2 or an answer to a query of R1,R2, is mapped to a polynomial in
ZprI1, � � � , Ik, V, T1, � � � , T2qs where q is the total number of Eval,Ov queries made
by R1,R2. The polynomial associated with label a is denoted by pa. Similarly,
we define Λ to be a mapping from polynomials to labels. For all labels a P L,
Λppaq � a. The mapping from labels to polynomials is done such that for every
label a mapped to pa,

σ�1paq � papi1, � � � , ik, v, t1, � � � , t2qq .

For compactness, let us denote pi1, � � � , ik, v, t1, � � � , t2qq by ~i. Before running
R1, pσp1q, pσpvq, pσpi1q, � � � , pσpikq, pσpi1�vq, � � � , pσpik�vq are assigned polynomials
1, V, I1, � � � , Ik, I1V, � � � , IkV respectively and for all other labels a P L, pa � K.
The function Λ is defined accordingly. For labels a queried by R1,R2 that have
not been previously mapped to any polynomial (i.e. pa � K), pa is assigned Tnew

(new starting from 1 and being incremented for every such label queried), the
variable tnew is assigned the pre-image of the label and ΛpTnewq is assigned a.
Since there are q queries (each with two inputs), there can be at most 2q labels

19

Game G4 :

1 : σ Ð$ InjFuncpZp,Lq; foreach a P L do pa Ð K

2 : foreach p1 P ZprI1, � � � , Ik, V, T1, � � � , T2qs do Λpp
1q Ð K

3 : i1, � � � , ik, v Ð$Zp; pσp1q Ð 1;Λp1q Ð σp1q

4 : if pσpvq � K then pσpvq Ð V

5 : ΛpV q Ð σpvq

6 : foreach j P rks do

7 : if pσpijq � K then pσpijq Ð Ij

8 : ΛpIjq Ð σpijq

9 : if pσpv�ijq � K then pσpv�ijq Ð V Ij

10 : ΛpV Ijq Ð σpv � ijq

11 : new Ð 0;X Ð tσp1q, σpvq, σpi1q, � � � , σpikqu;Y1 Ð tσp1q, σpvq, σpi1q, � � � , σpikqu

12 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

13 : π Ð$Sk;Y2 Ð tσp1q, σpvq, σpi1 � vq, � � � , σpik � vqu;Z Ð H

14 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

15 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

16 : return pwin ^ |Z| lq

Oracle Evalpa,b, fromq :

1 : if pa � K then

2 : AssignPolypaq

3 : if pb � K then

4 : AssignPolypbq

5 : p1 Ð pa � pb

6 : if Λpp1q � K then

7 : if Dc1 P L : pc1 p~iq � p1p~iq then

8 : Λpp1q Ð c1

9 : else

10 : Λpp1q Ð σpσ�1paq � σ�1pbqq;

11 : pΛpp1q Ð p1

12 : PopulateSetsEvalpa,b, Λpp1q, fromq

13 : return Λpp1q

Oracle Ovpa,b, fromq :

1 : if pa � K then

2 : AssignPolypaq

3 : if pb � K then

4 : AssignPolypbq

5 : ans Ð pV pa � pbq

6 : if pvpap~iq � pbp~iqq � ans then

7 : ans Ð pvpap~iq � pbp~iqq

8 : PopulateSetsOvpa,b, fromq

9 : return ans

Procedure AssignPolyplq :

1 : new Ð new � 1; tnew Ð σ
�1plq; pl Ð Tnew;ΛpTnewq Ð l

Fig. 8. G4 introduces additional bookkeeping. The newly introduced changes compared
to G2 are highlighted.

that had not previously been mapped to any polynomial. Hence, the polynomials
have variables I1, � � � , Ik, V, T1, � � � , T2q.

For an Evalpa,b, .q query where c � σpσ�1paq � σ�1pbqq, let p1 � pa � pb.
From the definition of p, we have that p1p~iq � σ�1paq � σ�1pbq. If Λpp1q � K,
then by definition of Λ, we have Λpp1q � c. If Λpp1q � K, then exactly one of the
following two must be true.

20

1. The label c has been mapped to a polynomial which is different from p1. In
this case pcp~iq � p1p~iq and Λpp1q is assigned c.

2. The label c has not been mapped to any polynomial. In this case, pc is
assigned p1 and Λpp1q is assigned c.

The label Λpp1q is returned as the answer of the Eval query. Note that the output
of Eval is c � σpσ�1paq � σ�1pbqq in all cases, i.e. it is the same as the output
of Eval in G2.

For an Ovpa,b, .q query, we first assign the boolean value V pa � pb to ans.
Note that if ans is true, then v � σ�1paq � σ�1pbq. However, we might have
that v � σ�1paq � σ�1pbq and V pa � pb. When this happens, the boolean value
vppap~iq � pbp~iqq is assigned to ans. Oracle Ov returns ans. From the definition of
p, it follows that the value returned by Ov in G4 is pv � σ�1paq � σ�1pbqq i.e. it
is the same as the output of Ov in G2.

Figure ?? formally describes G4. The changes in G4 compared to G2 have
been highlighted. We have already pointed out that the outputs of Ov,Eval in
G4 are identical to those in G2. Since the other changes involve only additional
bookkeeping, the outputs of G2,G4 are identical. Therefore

Pr rG4 ñ trues � Pr rG2 ñ trues . (4)

The game G11. We introduce a new game named G11 in Figure ??. Initially,
for all polynomials p, Λppq � K. In this game Λp1q, ΛpV q, ΛpIjq’s, and ΛpV Ijq’s
are assigned distinct labels sampled from L. Adversary R1 is run with input
labels Λp1q, ΛpV q, ΛpI1q, � � � , ΛpIkq and R2 has input labels Λp1q, ΛpV q, ΛpIπp1q �
V q, � � � , ΛpIπpkq � V q. The bookkeeping is identical to that in G4. Observe from
the pseudocode that the mapping Λ is injective in this game and hence Λ�1 is
well defined.

For every Eval or Ov query, if for the input label l, Λ�1plq is K, then l is
assigned to ΛpTnewq. For every such input label, new is incremented. For an
Evalpa,b, .q query, if ΛpΛ�1paq � Λ�1pbqq is not defined, then it is assigned a
random label in RpΛq. The label ΛpΛ�1paq � Λ�1pbqq is returned as answer.
For Ovpa,b, .q, query true is returned iff V Λ�1paq and Λ�1pbq are the same
polynomials.

We next upper bound Pr rG4 ñ trues in terms of Pr rG11 ñ trues in Lemma ??.

Lemma 7. For the games G4,G11, we have,

Pr rG4 ñ trues ¤ Pr rG11 ñ trues � 2qp2k � 3q � 2q
p

� 5q

p
� k2 � k � 2

p
.

The proof of Lemma ?? has been deferred to the full version.

The Adversary D. Next, we construct the adversary D that plays PG by
simulating G11 to R1,R2, where the permutation π is the secret permutation
from PG. As we will discuss below, the core of the adversary D will boil down

21

Game G11 :

1 : foreach p P ZprI1, � � � , Ik, V, T1, � � � , T2qs do Λppq Ð K;Λp1q Ð$L

2 : ΛpV q Ð$RpΛq

3 : foreach j P rks do

4 : ΛpIjq Ð$RpΛq;ΛpV Ijq Ð$RpΛq

5 : new Ð 0;X Ð Λp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu;Y1 Ð tΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu

6 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqq

7 : π Ð$Sk;Y2 Ð tΛp1q, ΛpV q, ΛpV I1q, � � � , ΛpV Ikqu;Z Ð H

8 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ,Λp1q, ΛpV q, ΛpIπp1q � V q, � � � , ΛpIπpkq � V qq

9 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

10 : return pwin ^ |Z| lq

Oracle Evalpa,b, fromq :

1 : if Λ
�1paq � K then

2 : new Ð new � 1;ΛpTnewq Ð a

3 : if Λ
�1pbq � K then

4 : new Ð new � 1;ΛpTnewq Ð b

5 : p Ð Λ
�1paq � Λ

�1pbq

6 : if Λppq � K then

7 : Λppq Ð$RpΛq

8 : PopulateSetsEvalpa,b, Λppq, fromq

9 : return Λppq

Oracle Ovpa,b, fromq :

1 : if Λ
�1paq � K then

2 : new Ð new � 1;ΛpTnewq Ð a

3 : if Λ
�1pbq � K then

4 : new Ð new � 1;ΛpTnewq Ð b

5 : PopulateSetsOvpa,b, fromq

6 : return pV Λ�1paq � Λ
�1pbqq

Fig. 9. Game G11

Procedure PolyMultCheckppa, pbq :

1 : if Dj : pcoefficientppa, Tjq � 0_ coefficientppa, V Ijq � 0q then return false

2 : if Dj : pcoefficientppb, Tjq � 0_ coefficientppb, Ijq � 0q then return false

3 : if coefficientppb, V q � coefficientppa, 1q then return false

4 : foreach j P rks do ~xrjs Ð coefficientppa, Ijq; ~yrjs Ð coefficientppb, V Ijq

5 : if Op~x, ~yq � true then

6 : if ~x R spanpSq then S
Y
ÐÝ t~xu;Z1 Y

ÐÝ tau

7 : if |S| � l then ABORT

8 : return true

9 : else return false

Fig. 10. Subroutine PolyMultCheck for simulating Ov. In particular,
coefficientpp,Mq returns the coefficient of the monomial M in the polynomial
p. The sets S and Z 1 have no effect on the behavior, and are only used in the analysis
of D. The symbol ABORT indicates that D aborts and outputs K.

to properly simulating the Ov oracle using the O oracle from PG and simulating
the labels σpiπpjqq (and the associated polynomials) correctly without knowing
π. After a correct simulation, D will simply extract the permutation π.

To see how this can be done, let us first have a closer look at G11. Let
us introduce the shorthand Kj � V Iπpjq for j P rks. With this notation, every

22

Adversary D :

1 : foreach p P ZprI1, � � � , Ik, V,K1, � � � , Kk, T1, � � � , T2qs do Λppq Ð K

2 : Λp1q Ð$L;ΛpV q Ð$RpΛq

3 : foreach j P rks do

4 : ΛpIjq Ð$RpΛq;ΛpKjq Ð$RpΛq

5 : new Ð 0;X Ð tΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu;Y1 Ð tΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqu

6 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pΛp1q, ΛpV q, ΛpI1q, � � � , ΛpIkqq

7 : Y2 Ð tΛp1q, ΛpV q, ΛpK1q, � � � , ΛpKkqu;Z Ð H;Z1 Ð H;S Ð H

8 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ,Λp1q, ΛpV q, ΛpK1q, � � � , ΛpKkqq

9 : win1 Ð pts1, � � � , slu � ts11, � � � , s
1
luq ^ p@j, l P rks : j � l ùñ sj � sl ^ s1j � s1lq

10 : if win1 � true then

11 : foreach i, j P rks do if si � s1j then πpiq � j

12 : return π

13 : else return K

Oracle Evalpa,b, fromq :

1 : if Λ
�1paq � K then

2 : new Ð new � 1;ΛpTnewq Ð a

3 : if Λ
�1pbq � K then

4 : new Ð new � 1;ΛpTnewq Ð b

5 : p Ð pa � pb

6 : if Λppq � K then Λppq Ð$RpΛq

7 : PopulateSetsEvalpa,b, Λppq, fromq

8 : return Λppq

Oracle Ovpa,b, fromq :

1 : if Λ
�1paq � K then

2 : new Ð new � 1;ΛpTnewq Ð a

3 : if Λ
�1pbq � K then

4 : new Ð new � 1;ΛpTnewq Ð b

5 : PopulateSetsOvpa,b, fromq

6 : PolyMultCheckppa, pbq

Procedure PopulateSetsEvalpa,b, c, fromq :

1 : if from � 1 then

2 : if c R Y1 then X Y
ÐÝ tcu

3 : Y1
Y
ÐÝ ta,b, cu

4 : if from � 2 then

5 : if a P X zY2 then Z Y
ÐÝ tau

6 : if b P X zY2 then Z Y
ÐÝ tbu

7 : Y2
Y
ÐÝ ta,b, cu

Procedure PopulateSetsOvpa,b, fromq :

1 : if from � 1 then Y1
Y
ÐÝ ta,bu

2 : if from � 2 then

3 : if a P X zY2 then Z Y
ÐÝ tau

4 : if b P X zY2 then Z Y
ÐÝ tbu

5 : Y2
Y
ÐÝ ta,bu

Fig. 11. Adversary D which plays the permutation game PG. The changes in D com-
pared to G11 have been highlighted.

polynomial input to or output from Eval is a linear combination of the monomials
1, I1, . . . , Ik, V,K1, . . . ,Kk, T1, T2, Now, it is convenient to slightly rethink
the check of whether V pa � pb within Ov with this notation. First off, we observe
that if either of the polynomial contains a monomial of the form Ti, the check
fails. In fact, it is immediately clear that the check can only possibly succeed is
if pa is a linear combination of 1 and the Ij ’s and pb is a linear combination of

23

V and the Kj ’s. Now, assume that

papI1, . . . , Ikq � a0 �
ķ

j�1

~xrjs � Ij ,

pbpV,K1, . . .Kkq � b0 � V �
ķ

j�1

~yrjs �Kj .

Then, V � pa � pb if and only if a0 � b0 and ~yrjs � ~xrπpjqs for all j P rks. If we
are now in Game PG, and π is the chosen permutation, then this is equivalent
to Op~x, ~yq � true and a0 � b0.

This leads naturally to the adversary D, which we formally describe in Fig-
ure ??. The adversary will simply sample labels f1, . . . , fk for σpv �iπp1qq, . . . , σpv �
iπpkqq, and associate with them polynomials in the variables K1, . . . ,Kj . Other
than that, it simulates the game G11, with the exception that the check V �pa �
pb is not implemented using the above approach – summarized in Figure ??.
Note that D aborts when |S| � l and makes at most q queries to O. Thus D is a
-query adversary against PG. If D does not abort, then its simulation of G11 is
perfect. If G11 ñ true and D does not abort, then win1 shall be true and D will
output the correct π.

The rest of the proof will now require proving that whenever G11 outputs true
our adversary D will never abort due to the check |S| � l. Since G11 ñ true only
if |Z| l, the following lemma implies that D does not abort if G11 ñ true.

Lemma 8. Let p~x1, ~y1q, � � � , p~xu, ~yuq be the queries made by D to O which return
true. Then,

rankp~x1, � � � , ~xuq ¤ |Z| .

The proof of Lemma ?? has been deferred to the full version.

We have established that if G11 outputs true, then D will not abort and
hence D simulates G11 to R1,R2 perfectly. If win � true in G11, the checks by
D succeed and D outputs the correct permutation and wins PG. Therefore, D is
a pq, lq-query adversary such that PGpDq ñ true if G11 ñ true. Hence,

Pr rG11 ñ trues ¤ Pr rPGpDq ñ trues . (5)

Combining Lemma ?? and ??,?? we get,

Pr rG2 ñ trues ¤ Pr rPGpDq ñ trues� 2qp2k � 3q � 2q
p

� 5q

p
� k2 � k � 2

p
. (6)

[\
Combining ????, we get,

Pr rG2 ñ trues ¤ ql

k!
� 2qp2k � 3q � 2q

p
� 5q

p
� k2 � k � 2

p
.

24

Game G12 , G13 :

1 : σ Ð$ InjFuncpZp,Lq; i1, � � � , ik, v Ð RestrictedSamplepq

2 : X Ð tσp1q, σpvq, σpi1q, � � � , σpikqu;Y1 Ð tσp1q, σpvq, σpi1q, � � � , σpikqu

3 : φ, s1, � � � , sk Ð REvalp.,.,1q,Ovp.,.,1q
1 pσp1q, σpvq, σpi1q, � � � , σpikqq

4 : π Ð$Sk;Y2 Ð tσp1q, σpvq, σpi1 � vq, � � � , σpik � vqu;Z Ð H

5 : s
1
1, s

1
2, � � � , s

1
k Ð REvalp.,.,2q,Ovp.,.,2q

2 pφ, σp1q, σpvq, σpiπp1q � vq, � � � , σpiπpkq � vqq

6 : win Ð p@j P rks : sπpjq � s
1
jq ^ p@j, l P rks : j � l ùñ sj � sl ^ s

1
j � s

1
lq

7 : return p win^ |Z| ¥ lq

Procedure RestrictedSamplepq :

1 : v Ð$Zp; if v P t0, 1u then bad Ð true; v Ð$Zpzt0, 1u

2 : S Ð t1u;S1 Ð tv�1u

3 : foreach j P rks do

4 : ij Ð$Zp; if ij P S Y S1
then bad Ð true; ij Ð$ZpzpS Y S1q

5 : S Y
ÐÝ tiju;S1 Y

ÐÝ tv�1 � iju

6 : return i1, � � � , ik, v

Fig. 12. Games G12,G13. The Eval,Ov oracles in G12,G13 are identical to those in G3

and hence we do not rewrite it here. The statement within the thinner box is present
only in G12 and the statement within the thicker box is present only in G13. The newly
introduced changes compared to G3 are highlighted.

4.4 Memory Lower Bound when |Z| ¥ l (Proof of Lemma ??)

Recall that we need to prove the following lemma, which we do by using a
compression argument.

Lemma ??. If the size of the state φ output by R1 is s bits and pR1,R2q make
q queries in total in G3, then

Pr rG3 ñ trues ¤ 2 � 2 s2
�

8q2p2k � 2� 3qq
p

 l
2
�

1� 6q

p

 2q�l
2

� k2 � k � 2

p
.

Proof. Our proof does initial game hopping, with easy transitions. It first intro-
duces a new game, G12 whose minor difference from game G3 is that it samples
i1, � � � , ik, v using RestrictedSample which was previously used in game G11. It
adds a bad flag while sampling i1, � � � , ik, v which is set to true if v is in t0, 1u
or if |1, v, i1, � � � , ik, i1 � v, � � � , ik � v| 2k� 2. The bad event does not affect the
output of G12 in any way. Observe that even though the sampling of i1, � � � , ik, v
is written in a different manner in G12, it is identical to that in G3. In all other
respects these two games are identical.

Pr rG3 ñ trues � Pr rG12 ñ trues . (7)

Games G12,G13 differ in the procedure RestrictedSample and the condition to
return true. Note that the conditions of bad being set to true is identical in

25

G12,G13 and given that bad is not set to true, G13 returns true whenever G12

returns true. Therefore,

Pr rG12 ñ trues ¤ Pr rG13 ñ trues � Pr rbad � true in G13s .
It is not hard to show (details in the full version) that the probability of bad

being set to true in RestrictedSample is at most k2�k�2
p . Since in G13 bad is set

only in RestrictedSample, the probability of bad being set to true is the same.
Hence, we get,

Pr rG12 ñ trues ¤ Pr rG13 ñ trues � k2 � k � 2

p
. (8)

The compression argument.We assume Pr rG13 ñ trues � 2ε. We say a σ is
“good” in G13 if

Pr
�
G13 ñ true

��σ was sampled in G13

� ¥ ε .

It follows from Markov’s inequality that at least ε fraction of σ’s are “good”.
The following lemma captures the essence of our compression argument.

Lemma 9. If the state output by R1 has size s bits, all the “good” σ’s can be
encoded in an encoding space of size at most

2sp!

�
1� 6q

p

p2q�lq�
p

8q2p2k � 2� 3qq

�l

,

and decoded correctly with probability ε.

We next give some intuition regarding how we achieve compression and defer
the formal proof of Lemma ?? to the full version.

Intuition regarding compression. Observe in G13, the labels in Z were
queried by R2 (these labels were not seen by R2 before they were queried) and
were answers to R1 and were not seen by R1 before the query. The core idea is
that for all a P LzZ, we store exactly one of a or its pre-image in the encoding and
for all labels in Z, we store neither the label nor its pre-image. Since R2 queries
all the labels in Z, these labels can be found by running R2 while decoding.
Since all the labels in Z are answers to queries of R1 and were not seen by R1

before the query, their pre-images can be figured out while running R1.

High level outlines of Encode, Decode. In Encode, we simulate the steps
of G13 to R1,R2, including bookkeeping and then run R1 again assuming the
particular σ we are compressing is sampled in G13. In Decode, we run R2 and
then R1 to recover σ. We treat the values i1, � � � , ik, v, π as part of the common
randomness provided to Encode,Decode (we assume they are sampled from the
same distribution they are sampled from in G13). The random tapes of R1,R2

can also be derived from the common randomness of Encode,Decode. For sim-
plicity, we do not specify this explicitly in the algorithms and treat R1,R2 as
deterministic.

26

Running R2. First off, we assume that R1 queries labels that it has “seen”
before and R2 queries labels that R1 has “seen” or it has “seen” before. We
shall relax this assumption later. Ideally, we would want to just store only φ, the
inputs labels to R2 and the labels that are answers to R2’s queries. We append
the input labels of R2 and labels that are answers to its Eval queries that it has
not “seen” before to a list named Labels. However, it is easy to see that this
information is not enough to answer Ov queries during decoding, as answering
Ov queries inherently requires knowledge about pre-images of R2. This naturally
leads to the idea of maintaining a mapping of all the labels “seen by” R2 to their
pre-images.

The mapping T of labels to pre-image expressions. The pre-images of
input labels and the labels that were results of sequence of Eval queries on its
input labels by R2, are known. However, R2 might query labels which were
neither an input to it nor an answer to one of its Eval queries. Such a label
is in Z since we have assumed that all labels queried by R2 were “seen by”
R1 or “seen by” R2 before. We represent the pre-images of labels in Z using a
placeholder variable Xn where n is incremented for every such label. Note that
the pre-image of every label seen by R2 can be expressed as a linear polynomial
in the Xn’s (these linear polynomials are referred to as pre-image expressions
from hereon). Therefore we maintain a mapping of all labels “seen by” and their
pre-image expressions in a list of tuples named T. Our approach is inspired by a
similar technique used by Corrigan-Gibbs and Kogan in [?]. Like in [?], we stress
that the mapping T is not a part of the encoding.

For Eval queries, we can check if there is a tuple in T whose pre-image ex-
pression is the sum of the pre-image expressions of the input labels. If that is
the case, we return the label of such a tuple. Otherwise, we append the answer
label to Labels. For Ov queries, we can return true if the pre-image expression of
the first input label multiplied by v gives the pre-image expression of the second
input label. Otherwise we return false.

Surprises. There is a caveat, however. There might arise a situation that the
label which is the answer to the Eval query is present in T but its pre-image
expression is not the sum of the pre-image expressions of the input labels. We
call such a situation a “surprise” and we call the answer label in that case a
“surprise label”. For Ov queries, there might be a surprise when the answer
of the Ov query is true but the pre-image expression of the first input label
multiplied by v is different pre-image expression of the second input label. In
this case we call the second input label the surprise label. We assign a sequence
number to each query made by R2, starting from 1 and an index to each tuple
in T, with the indices being assigned to tuples in the order they were appended
to T. To detect the query where the surprise happens, we maintain a set named
Srps1 that contains tuples of query sequence numbers and indices of the surprise
label in T. This set Srps1 is a part of the encoding. Note that whenever there is a
surprise, it means that two different pre-image expressions evaluate to the same
value. Since these two pre-image expressions are linear polynomials, at least one
variable can be eliminated from T by equating the two pre-image expressions.

27

Running R1.Now that we have enough information in the encoding to run R2,
we consider the information we need to add to the encoding to run R1 after R2 is
run. First, we need to provide R1 its input labels. Our initial attempt would be
to append the input labels of R1 (except σp1q, σpvq, which are already present)
to Labels. However, some of these input labels to R1 might have already been
“seen by” R2. Since all labels “seen by” R2 are in T, we need a way to figure out
which of σpijq’s are in T. Note that such a label was either queried by R2 or an
answer to a query of R2 (cannot have been an input to R2 given the restrictions
on i1, � � � , ik, v). Suppose q was the sequence number of the query in which σpijq
was queried or an answer. The tuple pq, b, jq is added to the set Inputs where b
can take values t1, 2, 3u depending on whether σpijq was the first input label, the
second input label or the answer label respectively. This set Inputs is a part of
the encoding. The rest of the labels σpijq, which do not appear in T, are added
to T with their pre-images and the labels are appended to Labels. Note that for
all queries of R1, it follows from our assumption that the input labels will be in
T. For every surprise, we add a tuple of sequence number and an index in T to
the set Srps2.

Relaxing the assumption.When we allow R2 to query labels it has not seen
before or R1 has not seen, there are two issues. First, we need to add a tuple for
the label in T (since T, by definition contains a tuple for all labels queried by
R2). We solve this issue by adding the tuple made of the label and its pre-image.
We have no hope of recovering the pre-image later, hence, we append the pre-
image to a list named Vals. This list needs to be a part of the encoding since the
pre-image of the label needs to be figured out to be added to T during decoding.
For queries of R1, if the input label is not present in T, we do the same thing.
The second issue that comes up when we relax the assumption is that we need
to distinguish whether an input label was in Z or not. We solve this issue by
maintaining a set of tuples named Free. For all labels in Z that are not an input
label to R1, we add the tuple consisting of the sequence number of the query of
R2 and b to Free where b set to 1 indicates it was the first input label and b set
to 2 indicates it was the second input label.

The final steps. The labels the are absent in T are appended to a list named
RLabels. If |Z| l, a fixed encoding D (the output of Encode for some fixed
σ when |Z| ¥ l) is returned. Otherwise the encoding of σ consisting of Labels,
RLabels, Vals, Inputs, Srps1, Srps2, Free, φ is returned.

Wrapping up. The set of all “good” σ’s has size at least εp! (where we have
used that the total number of injective functions from Zp Ñ L is p!). Using X
to be the set of the “good” σ’s, Y to be the set of encodings, R to be the set of
cartesian product of the domains of i1, � � � , ik, v, π, the set of all random tapes
of R1 the set of all random tapes of R2 and L, it follows from Lemma ?? and

28

Proposition ?? that

log pPr rDecoding is correctsq ¤s� p2q � lq log

�
1� 6q

p

� l log

�
p

8q2p2k � 2� 3qq

� log ε .

We have from Lemma ?? that Pr rDecoding is corrects ¤ ε. Therefore,

2 log ε ¤ s� p2q � lq log

�
1� 6q

p

� l log

�
p

8q2p2k � 2� 3qq

.

Since Pr rG13s � 2ε, using ???? we have,

Pr rG3 ñ trues ¤ 2 � 2 s2
�

8q2p2k � 2� 3qq
p

 l
2
�

1� 6q

p

 2q�l
2

� k2 � k � 2

p
.

[\

5 Conclusions

Despite a clear restriction of our result to straightline reductions, we believe the
main contribution of this work is the introduction of novel techniques for proving
lower bounds on the memory of reductions that will find wider applicability. In
particular, we clearly departed from the framework of prior works [?,?] tailored
at the usage of lower bounds for streaming algorithms, and provided the first
lower bound for “algebraic” proofs in the public-key domain. The idea of a
problem-specific proof of memory could be helpful elsewhere.

Of course, there are several open problems. It seems very hard to study the
role of rewinding for such reductions. In particular, the natural approach is to
resort to techniques from communication complexity (and their incarnation as
streaming lower bounds), as they are amenable to the multi-pass case. The simple
combinatorial nature of these lower bounds however is at odds with the heavily
structured oracles we encounter in the generic group model. Another problem we
failed to solve is to give an adversary A in our proof which uses little memory –
we discuss a candidate in the body, but analyzing it seems to give us difficulties
similar to those of rewinding.

This latter point makes a clear distinction, not discussed by prior works,
between the way in which we prove memory-tightness (via reductions using small
memory), and its most general interpretation, as defined in [?], which would allow
the reduction to adapt its memory usage to that of A.

Acknowledgements

We thank the anonymous reviewers of EUROCRYPT 2020 for helpful comments.
This work was partially supported by NSF grants CNS-1553758 (CAREER),
CNS-1719146, and by a Sloan Research Fellowship.

29

References

1. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, CT-RSA 2001,
volume 2020 of LNCS, pages 143–158. Springer, Heidelberg, April 2001.

2. Benedikt Auerbach, David Cash, Manuel Fersch, and Eike Kiltz. Memory-tight
reductions. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 101–132. Springer, Heidelberg, August 2017.

3. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor, EU-
ROCRYPT 2006, volume 4004 of LNCS, pages 409–426. Springer, Heidelberg,
May / June 2006.

4. Rishiraj Bhattacharyya. Memory-tight reductions for practical key encapsulation
mechanisms. In PKC 2020.

5. Henry Corrigan-Gibbs and Dmitry Kogan. The discrete-logarithm problem with
preprocessing. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 415–447. Springer, Heidel-
berg, April / May 2018.

6. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003.

7. Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks
against one-way functions and PRGs. In Tal Rabin, editor, CRYPTO 2010, volume
6223 of LNCS, pages 649–665. Springer, Heidelberg, August 2010.

8. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer, Heidelberg,
August 2018.

9. Ueli M. Maurer. Abstract models of computation in cryptography (invited paper).
In Nigel P. Smart, editor, 10th IMA International Conference on Cryptography and
Coding, volume 3796 of LNCS, pages 1–12. Springer, Heidelberg, December 2005.

10. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility be-
tween cryptographic primitives. In Moni Naor, editor, TCC 2004, volume 2951 of
LNCS, pages 1–20. Springer, Heidelberg, February 2004.

11. Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266.
Springer, Heidelberg, May 1997.

12. Victor Shoup. A proposal for an ISO standard for public key encryption. Cryptol-
ogy ePrint Archive, Report 2001/112, 2001. http://eprint.iacr.org/2001/112.

13. Yuyu Wang, Takahiro Matsuda, Goichiro Hanaoka, and Keisuke Tanaka. Memory
lower bounds of reductions revisited. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 61–90. Springer,
Heidelberg, April / May 2018.

30

http://eprint.iacr.org/2001/112

