
New Constructions of Statistical NIZKs:
Dual-Mode DV-NIZKs and More
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Abstract. Non-interactive zero-knowledge proofs (NIZKs) are important
primitives in cryptography. A major challenge since the early works on
NIZKs has been to construct NIZKs with a statistical zero-knowledge
guarantee against unbounded verifiers. In the common reference string
(CRS) model, such “statistical NIZK arguments” are currently known
from k-Lin in a pairing-group and from LWE. In the (reusable) designated-
verifier model (DV-NIZK), where a trusted setup algorithm generates a
reusable verification key for checking proofs, we also have a construction
from DCR. If we relax our requirements to computational zero-knowledge,
we additionally have NIZKs from factoring and CDH in a pairing group
in the CRS model, and from nearly all assumptions that imply public-key
encryption (e.g., CDH, LPN, LWE) in the designated-verifier model. Thus,
there still remains a gap in our understanding of statistical NIZKs in
both the CRS and the designated-verifier models.

In this work, we develop new techniques for constructing statistical
NIZK arguments. First, we construct statistical DV-NIZK arguments
from the k-Lin assumption in pairing-free groups, the QR assumption,
and the DCR assumption. These are the first constructions in pairing-
free groups and from QR that satisfy statistical zero-knowledge. All
of our constructions are secure even if the verification key is chosen
maliciously (i.e., they are “malicious-designated-verifier” NIZKs), and
moreover, they satisfy a “dual-mode” property where the CRS can be
sampled from two computationally indistinguishable distributions: one
distribution yields statistical DV-NIZK arguments while the other yields
computational DV-NIZK proofs. We then show how to adapt our k-Lin
construction in a pairing group to obtain new publicly-verifiable statistical
NIZK arguments from pairings with a qualitatively weaker assumption
than existing constructions of pairing-based statistical NIZKs.
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Our constructions follow the classic paradigm of Feige, Lapidot, and
Shamir (FLS). While the FLS framework has traditionally been used
to construct computational (DV)-NIZK proofs, we newly show that the
same framework can be leveraged to construct dual-mode (DV)-NIZKs.

1 Introduction

Non-interactive zero-knowledge (NIZK) proofs [BFM88, GMR89] allow a prover
to send a single message to convince a verifier that a statement is true without
revealing anything beyond this fact. Although such NIZKs cannot exist in the
plain model, they can be realized in the common reference string (CRS) model,
where a trusted party generates and publishes a common reference string ac-
cessible to the prover and the verifier. Shortly after the introduction of NIZKs,
numerous constructions have been developed in the CRS model from many
classes of cryptographic assumptions such as factoring [BFM88, DMP87, FLS90,
BY92, FLS99, DDO+01, Gro10, Gol11, GR13, CL18], pairing-based assump-
tions [CHK03, GOS06], and lattice-based assumptions [CCH+19, PS19]. We can
also construct NIZKs in the random oracle model [FS86].

A major open problem since the early works on non-interactive zero-knowledge
has been to construct NIZKs with a statistical zero-knowledge guarantee against
computationally-unbounded verifiers (i.e., “statistical NIZK arguments”). Here,
we only have constructions from the k-Lin family of assumptions over pairing
groups [GOS06, GOS12] and LWE [PS19] (or circular-secure FHE [CCH+19]). If
we relax the model and consider (reusable) designated-verifier NIZKs (DV-NIZKs),
where the trusted party that generates the CRS also generates a secret verification
key that is used to verify proofs, then the recent work of Chase et al. [CDI+19]
provides an instantiation of a statistical DV-NIZK from the DCR assumption. In
contrast, if we are satisfied with computational zero-knowledge, then we can addi-
tionally construct publicly-verifiable NIZKs in the CRS model from QR [BFM88],
factoring [FLS99], and the CDH assumption over a pairing group [CHK03]. In
the designated-verifier model, a recent line of works [QRW19, CH19, KNYY19a,
KNYY19b, LQR+19] has provided constructions of computational DV-NIZKs
from essentially all cryptographic assumptions known to imply public-key encryp-
tion. These include assumptions like CDH in a pairing-free group and LPN. Thus,
there is still a gap in our understanding of statistical NIZKs in the CRS model,
and especially in the designated-verifier model. In this work, we develop new
techniques for constructing statistical NIZKs in both the standard CRS model
as well as the (reusable) designated-verifier model, which we review below.

Reusable designated-verifier NIZKs. A key focus in this work is the designated-
verifier model [PsV06, DFN06], where a trusted party generates the CRS together
with a secret verification key that is used to verify proofs. In this work, we
focus exclusively on reusable (i.e., multi-theorem) security where soundness holds
even against a prover who has oracle access to the verification algorithm. We
also consider the stronger malicious-designated-verifier model (MDV-NIZKs)
introduced by Quach et al. [QRW19], where a trusted party only samples a
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common reference string,1 and the verifier is allowed to choose its public and
secret key-pair, which is used to generate and verify proofs, respectively. Here, we
require that zero-knowledge should hold even if the verifier samples its public key
maliciously. As discussed in [QRW19], MDV-NIZKs are equivalent to 2-round
zero-knowledge protocols in the CRS model where the verifier’s initial message is
reusable. A recent line of works have shown how to construct (M)DV-NIZKs with
computational zero-knowledge from nearly all assumptions known to imply public-
key encryption (e.g., CDH, LWE, LPN) [QRW19, CH19, KNYY19a, KNYY19b,
LQR+19].

Several recent works have also explored other relaxations of the standard
notion of publicly-verifiable NIZKs such as the reusable designated-prover model
(where there is a secret proving key and a public verification key) [KW18,
KNYY19a] or the reusable preprocessing model (where both the proving and
verifications keys are secret) [BCGI18, BCG+19]. In this work, our focus is on
reusable designated-verifier NIZKs and publicly-verifiable NIZKs.

Dual-mode NIZKs. An appealing feature of several existing NIZK construc-
tions [GOS06, GOS12, PS19] is they satisfy a “dual-mode” property. Namely,
the CRS in these schemes can be sampled from one of two computationally indis-
tinguishable distributions. One distribution yields computational NIZK proofs
while the other yields statistical NIZK arguments. Dual-mode NIZKs are pow-
erful primitives and a recent work has also studied generic constructions from
obfuscation [HU19]. Most of the constructions we develop in this work naturally
satisfy this dual-mode property.

1.1 Our Results

In this work, we develop new techniques for constructing statistical NIZKs for
general NP languages that yield new constructions in both the reusable designated-
verifier model and the standard CRS model. Our techniques enable the following
new constructions:

– Under the k-Lin assumption in a pairing-free group (for any k ≥ 1; recall
that 1-Lin ≡ DDH), we obtain a statistical MDV-NIZK argument in the
common random string model and a computational MDV-NIZK proof in the
common reference string model.2 This is the first construction of a statistical
DV-NIZK argument (even ignoring malicious security) in a pairing-free group,
and the first construction of a computational MDV-NIZK proof from a static
assumption. Previously, computational MDV-NIZK proofs were only known
from the interactive “one-more CDH” assumption [QRW19].

1In [QRW19], they require the stronger notion where the CRS is a uniformly random
string. In some of our constructions in this work, the CRS will be a structured string.
We believe that this model is still meaningful as the CRS just needs to be sampled
once and can be reused by arbitrarily many verifiers, and zero-knowledge holds as long
as the CRS is properly sampled.

2This is in fact a dual-mode NIZK, where one of the CRS distributions corresponds to
the uniform distribution.
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– Under the k-Lin assumption in G1 and the k-KerLin assumption in G2 of
a pairing group (for any k ≥ 1), we obtain a publicly-verifiable statistical
NIZK argument in the common reference string model. Notably, the k-KerLin
assumption is a search assumption that is implied by the standard k-Lin
assumption [MRV15, KW15]. This is a qualitatively weaker assumption than
existing pairing-based constructions of statistical NIZK arguments which rely
on a decisional assumption (k-Lin) in both G1 and G2 [GOS06, GOS12].

– Under the QR assumption, we obtain a dual-mode MDV-NIZK in the com-
mon reference string model. Previously, we could only construct (publicly-
verifiable) computational NIZKs from the QR assumption [BFM88] (or more
generally, from factoring [FLS90, FLS99]), but nothing was known for statis-
tical NIZKs or DV-NIZKs from these assumptions.

– Under the DCR assumption, we obtain a dual-mode MDV-NIZK in the com-
mon reference string model. This matches the recent construction described
in [CDI+19], which realizes the result through a different approach (via
reusable non-interactive secure computation).

We provide a detailed comparison of our constructions with existing NIZK
constructions (in both the designated-verifier and the publicly-verifiable models)
in Table 1. We describe the formal instantiations in Section 5.

From FLS to statistical NIZKs. All of our constructions follow the classic
paradigm of Feige, Lapidot, and Shamir (FLS) [FLS99] who provide a gen-
eral compiler from a NIZK in an idealized model (i.e., the “hidden-bits” model)
to a computational NIZK proof in the CRS model. To date, all existing instantia-
tions of the [FLS99] paradigm have yielded computational NIZK proofs in either
the CRS model [FLS90, BY92, FLS99, CHK03, Gro10, Gol11, GR13, CL18] or
the designated-verifier model [QRW19, CH19, KNYY19a]. In this work, we show
how to adapt the general FLS paradigm to obtain new constructions of statistical
NIZK arguments and more generally, dual-mode NIZKs. We provide a general
overview of our techniques in Section 1.2.

We further note that previous statistical NIZK arguments from pairings, LWE,
and DCR follow very different approaches. Our work can also be viewed as pro-
viding a unified approach to realizing these existing results—both computational
and statistical, with the sole exception of the LWE-based scheme—via the FLS
paradigm, while also improving upon some of these prior results, and obtaining
new ones.

1.2 Technical Overview

We begin with a brief overview of the Feige-Lapidot-Shamir (FLS) framework
[FLS90, FLS99] for constructing NIZK proofs for NP. We then describe how to
adapt the main ideas from the FLS framework to obtain new constructions of
(malicious) designated-verifier dual-mode NIZKs as well as publicly-verifiable
statistical NIZK arguments.
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Construction Model Soundness ZK Assumption

[BFM88] public stat. comp. QR
[FLS90, FLS99] public stat. comp. trapdoor permutation
[SW14] public comp. perf. iO + one-way function

[CHK03]∗ public stat. comp. CDH (G2)
[GOS06, GOS12]∗ public perf./comp. comp./perf. k-Lin (G1,G2)

This work∗ public comp. stat. k-Lin (G1), k-KerLin (G2)
†

[PS19] public stat./comp. comp./stat. LWE

[QRW19, CH19, KNYY19a] DV stat. comp. CDH
[QRW19] MDV stat. comp. one-more CDH
[LQR+19] MDV comp. comp. CDH/LWE/LPN
[CDI+19] MDV stat./comp. comp./stat. DCR

This work MDV stat./comp. comp./stat. k-Lin‡/QR/DCR

∗This is a pairing-based construction. In the assumption column, we enumerate all of the
necessary hardness assumptions to instantiate the scheme (in an asymmetric setting).
†The k-KerLin refers to the kernel k-Lin assumption [MRV15, KW15], which can be
viewed as the search analog of the classic k-Lin assumption [BBS04, HK07, Sha07].
‡This is over a pairing-free group. The special case where k = 1 corresponds to the
standard DDH assumption. In addition, if we consider the vanilla DV-NIZK model
(without malicious security), there is a simple instantiation (over elliptic-curve groups)
that achieves perfect zero-knowledge.

Table 1: Comparison of our construction to existing multi-theorem NIZKs. We write
“public” to denote the standard CRS model (with public proving and public verification),
“DV” to denote the designated-verifier model, and “MDV” to denote the malicious-
designated-verifier model. For soundness and zero-knowledge, we write “comp.” to
denote the computational variant of the property, “stat.” to denote the statistical
variant, and “perf.” to denote the perfect variant. When a scheme supports a dual-
mode CRS, we indicate the two modes by writing “stat./comp.” For the pairing-based
constructions, we list the necessary assumptions needed within each of the base groups
G1 and G2 (assuming an asymmetric pairing).

The FLS framework. The starting point of the FLS construction is a NIZK in
an idealized model called the “hidden-bits model.” In this model, a trusted party
generates a string of uniformly random bits r1, . . . , rρ ∈ {0, 1} and gives them to
the prover. The prover then outputs a proof π along with a set of indices I ⊆ [ρ].
The verifier receives (π, {ri}i∈I) from the trusted party. The model guarantees
that the prover cannot influence the value of any of the ri’s and the verifier does
not learn anything about ri for indices i /∈ I. Feige et al. [FLS99] showed how to
construct a NIZK with statistical soundness and perfect zero-knowledge in the
hidden-bits model by adapting Blum’s Σ-protocol for graph Hamiltonicity [Blu86].
Next, the FLS construction compiles a NIZK in the hidden-bits model into one
in the CRS model by using the CRS to define the sequence of hidden bits. We
recall the FLS compiler based on trapdoor permutations:

– The CRS contains the description of a family of trapdoor permutations over
{0, 1}λ together with ρ random strings w1, . . . , wρ ∈ {0, 1}λ that are used to
define a string of ρ hidden bits.
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– A hidden-bits string is defined by sampling a permutation σ from the family
of trapdoor permutations specified by the CRS, along with a trapdoor for
computing σ−1. In conjunction with wi in the CRS, the permutation σ defines
a hidden bit ri := hc(σ−1(wi)), where hc(·) is a hard-core bit of σ. We refer
to σ as a “commitment” to the hidden-bits string r ∈ {0, 1}ρ.

– The prover can open a commitment σ to a bit ri by sending (i, ri, ui) where
ui := σ−1(wi). The verifier checks that σ(ui) = wi and that hc(ui) = ri.

The security argument proceeds roughly as follows:

– Since hc is a hard-core bit, the value of any unopened bit ri is computationally
hidden given σ and wi. The resulting NIZK satisfies computational zero-
knowledge.

– The permutation σ and the string wi statistically determine ri, and the prover
cannot open ri to any value other than hc(σ−1(wi)). The resulting NIZK
satisfies statistical soundness. Note that a cheating prover can bias the bit ri
due to the adaptive choice of σ. The FLS construction works around this by
leveraging the fact that if the commitment σ has length `, then a malicious
prover can bias at most ` of the ρ bits, and soundness holds as long as `� ρ.

Our approach. In this work, we start by showing how to realize a dual-mode
variant of the hidden-bits model in the designated-verifier setting where the
underlying commitment to the random bits is either statistically binding or
statistically hiding. This “dual-mode” property yields either a computational
DV-NIZK proof or a statistical DV-NIZK argument depending on how the CRS is
sampled (similar to previous dual-mode NIZKs [GOS06, GOS12, PS19]). We then
show how to extend one of our constructions to the publicly-verifiable setting.

An instantiation from DDH. We first sketch our construction from the DDH
assumption. Here, we will work with a (multiplicative) group G of prime order
p and generator g. For a vector v = (v1, . . . , vn) ∈ Znp , we write gv to denote a
vector of group elements (gv1 , . . . , gvn). Analogous to the FLS construction from
trapdoor permutations, the CRS contains

– the description gv of a function, where v
r← Zρ+1

p and gv plays a role similar
to the family of trapdoor permutations in the FLS construction;

– gw1 , . . . , gwρ where each wi ∈ Zρ+1
p plays a role similar to wi ∈ {0, 1}λ.

In our construction, we will vary the distribution of wi (but not v) as follows:

– If we want statistically-binding “hidden bits,” then we sample wi ← siv,

where si
r← Zp.

– If we want statistically-hiding “hidden bits,” then we sample wi
r← Zρ+1

p .

Thanks to the DDH assumption, (gv, gsiv) is pseudorandom, and therefore,
these two CRS distributions are computationally indistinguishable.3 As with

3This idea of encoding either a full-rank matrix in the exponent or a rank-1 matrix in
the exponent also featured in the construction of lossy public-key encryption from the
Matrix Diffie-Hellman assumptions [HJR16].
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the construction from trapdoor permutations, the hidden bit ri is a function
of the CRS components gv, gwi together with an additional message σ from

the prover. Concretely, the prover samples a random y
r← Zρ+1

p and sends

σ = gy
Tv ∈ G. In conjunction with gwi in the CRS, the vector y defines a

hidden bit ri := H(gy
Twi), where H : G → {0, 1} is a universal hash function.

Importantly, while the description gv, gw1 , . . . , gwρ in the CRS grows with ρ, the
prover’s message σ does not. Now, observe that:

– In binding mode where wi = siv, we have yTwi = siy
Tv. Then, ri =

H(gy
Twi) = H(gsiy

Tv) = H(σsi) is fully determined by the commitment

σ = gy
Tv together with gv, gwi in the CRS.

– In hiding mode where wi
r← Zρ+1

p , the quantity gy
Twi is completely hidden

given gy
Tv along with gv, gwi in the CRS, provided that v and wi are

linearly independent. More generally, perfect hiding holds as long as the
vectors v,w1, . . . ,wρ are linearly independent over Zρ+1

p .

Next, to open the bit ri, the prover will send along gy
Twi . To ensure that

a cheating prover computes this quantity correctly in the designated-verifier
model, we rely on techniques using the Cramer-Shoup hash-proof system [CS98,
CS02, CKS08] (and also used to construct computational DV-NIZK proofs from
CDH [QRW19, CH19, KNYY19a]):

– The verifier’s public key consists of components gzi := gawi+biv where

a, bi
r← Zp are secret coefficients chosen by the verifier. The secret verification

key is the scalars (a, b1, . . . , bρ).

– The prover sends gui := gy
Tzi ∈ G in addition to σ = gc := gy

Tv ∈ G and

gti := gy
Twi ∈ G.

– The verifier checks that gui = (gti)
a
(gc)

bi using (a, bi).

In the statistically-binding mode where wi = siv, we have zi = (asi + bi)v,
so (a, bi) has (statistical) entropy given v,wi, zi. Roughly speaking, reusable
soundness then follows from the analysis of the Cramer-Shoup CCA-secure
encryption scheme [CS98, CS02, CKS08] to enforce the consistency check ti = sic.
In conjunction with a NIZK in the hidden-bits model, we thus obtain a dual-mode
DV-NIZK from the DDH assumption. This construction generalizes very naturally
to the k-Lin family of assumptions [BBS04, HK07, Sha07, EHK+13] for any k ≥ 1
(where in particular, 1-Lin is the DDH assumption). Concretely, we make the
following substitutions to the above construction:

v ∈ Zρ+1
p 7→ V ∈ Z(ρ+1)×k

p

si, bi ∈ Zp 7→ si,bi ∈ Zkp
ti, ui, c ∈ Zp 7→ ti,ui, c ∈ Zkp

We provide the full details and security analysis in the full version.
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Extending to QR/DCR. Our DDH construction readily generalizes to the sub-
group indistinguishability family of assumptions [BG10] (which generalize the
QR [GM82] and DCR [Pai99] assumptions). While there are some technical dif-
ferences in our concrete instantiations from QR and DCR, all of the main ideas
can be described via the conceptually-simpler language of subgroup indistin-
guishability. This is the approach we take in this overview, and we refer to the
technical sections for the full details. First, the subgroup indistinguishability
assumption says that the distributions (g, h, gr1) and (g, h, gr1hr2) are compu-
tationally indistinguishable, where g, h generate subgroups of co-prime order

mg,mh, respectively, and r1
r← Zmg , r2

r← Zmh .
Similar to the DDH instantiation, the CRS contains a function gv (where

v
r← Zρmgmh) together with additional components gs1vhŵ1 , . . . , gsρvhŵρ , where

ŵi = 0 in binding mode and ŵi = ei in hiding mode. Here ei is the basis vector
whose ith index is 1. Under the subgroup indistinguishability assumption, these
two distributions are computationally indistinguishable.

Next, the hidden bit ri is a function of the CRS components gv and gsivhŵi

together with an additional commitment σ from the prover. Specifically, the

prover samples a vector y = (y1, . . . , yρ)
r← Zρmgmh and computes

σ := gy
Tv and ti := gsiy

Tvhy
Tŵi and ri := H(ti), (1.1)

where H is a hash function. Now, observe that:

– In binding mode where ŵi = 0, then ti = gsiy
Tv = σsi . Thus, ti (and corre-

spondingly, ri) is fully determined by the commitment σ and the components
gv, gsivhŵi = gsiv in the CRS.

– In hiding mode where ŵi = ei, then ti = gsiw
Tyhyi . Since g and h generate

subgroups of co-prime order mg and mh, respectively, we can appeal to the

Chinese remainder theorem to argue that the commitment σ = gy
Tv perfectly

hides the value of y mod mh. Since y is uniform over Zmgmh , this means
that t1, . . . , ti have at least logmh bits of statistical entropy given σ (and
the components of the CRS).

In the DCR construction, mh = N is a product of two large primes, so we
can use a standard universal hash function to extract a uniformly random
bit [HILL99].

In the QR construction, mh = 2, so each component ti contains just one bit
of entropy, and we cannot appeal to the leftover hash lemma. In this case,
we adapt an idea from [DGI+19] (for constructing trapdoor hash functions
from QR) and use a deterministic function to extract the bit from ti.

Finally, to open a bit ri, the prover provides σ, ti, along with a proof that ti
and σ are consistent (i.e., there exists some y such that Eq. (1.1) hold). Here,
we use the same techniques as in the DDH setting (i.e., using the Cramer-Shoup
hash-proof system) to implement this. In the QR setting, we encounter some
challenges because the order of the subgroup generated by h is polynomial-sized,
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which allows the adversary to break soundness with noticeable probability. To
amplify soundness, we essentially embed multiple copies of the Cramer-Shoup
hash-proof system and ensure that the proof verifies only if all copies verify (while
retaining reusable soundness). We refer to the full version for the full analysis of
the QR and DCR constructions.

Handling malicious verifiers. All of the constructions described thus far are
zero-knowledge only if the verifier samples its public verification key honestly.
However, if the verifier can choose its key arbitrarily, then it can break zero-
knowledge. To see this, consider again the DDH construction (in hiding mode).
There, the CRS contains elements gv, gw1 , . . . , gwρ , and a verifier’s public key is
(gz1 , . . . , gzρ) where zi = awi+biv. To generate a hidden-bits string r, the prover

samples y
r← Zρ+1

p and sets ri = H(gy
Twi). To open a bit ri, the prover computes

gti = gy
Twi and gui = gy

Tzi . In order to appeal to security of the underlying

NIZK in the hidden-bits model, we require that the commitment σ = gy
Tv, the

value of ri, and the opening (gti , gui) do not leak information about any other
(unopened) bit rj . This is the case when all of the verification key components
zi are generated honestly. In this case, v,w1, . . . ,wρ are linearly independent,
and zi is a function of only v and wi. However, a malicious verifier can choose
zi = wj for some j 6= i. Then, if the honest prover computes an opening to ri, it

will also compute gui = gy
Tzi = gy

Twj , which completely leaks the value of rj .
As such, the basic scheme is insecure against a malicious verifier.

This problem where an opening to ri can leak information about the value rj
for j 6= i is the same problem encountered in the basic DV-NIZK from [QRW19]. In
this work, we adopt the same general strategy as them to defend against malicious
verifiers. At a high-level, the approach of [QRW19] for achieving security against
malicious verifiers is to use the basic scheme above to generate a hidden-bits string
r′1, . . . , r

′
` of length `� ρ. Each of the ρ hidden bits r1, . . . , rρ is then derived as

a sparse pseudorandom combination of the bits r′1, . . . , r
′
`. More specifically, the

prover chooses a mapping ϕ that maps each index i ∈ [ρ] onto a set ϕ(i) ⊆ [`].
Each bit ri is a deterministic function of r′j for j ∈ ϕ(i). To open a bit ri, the
prover instead opens up all bits r′j for j ∈ ϕ(i). The length ` and the size |ϕ(i)|
of the sets are chosen so as to ensure that for all unopened bits j ∈ [ρ], there is
at least one index k ∈ ϕ(j) such that r′k is hidden from the verifier, which ideally,
is sufficient to mask the value of rj . Quach et al. show how to implement this
idea by relying on a one-more CDH assumption (in conjunction with somewhere
equivocal PRFs [HJO+16]), and a complex rewinding argument in the security
proof. In our setting, the algebraic structure of our construction enables us to
make a conceptually-simpler information-theoretic argument (and only needing
to assume a PRG). As such, we are able to obtain a dual-mode MDV-NIZK from
the DDH (and more generally, k-Lin), QR, and DCR assumptions.

We give a brief overview of how we extend the basic DDH construction sketched
above to achieve security against malicious verifiers. The same idea extends to
the QR and DCR constructions. Specifically, we use our basic construction to
generate a hidden-bits string of length `� ρ as follows:
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– The CRS (in hiding mode) consists of group elements gv, gw1 , . . . , gw` , where

v,w1, . . . ,w`
r← Z`+1

p . With overwhelming probability, these vectors are
linearly independent.

– The honest verifier’s public key is (gz1 , . . . , gz`), constructed in the usual
manner.

– The prover’s commitment is a vector y ∈ Z`+1
p as well as a seed s for a PRG.4

The PRG outputs a collection of ρ blocks, where each block consists of a
set Si ⊆ [`] and a vector α ∈ Z`p. The hidden bit ri is determined by first

computing gtj = gy
Twj for all j ∈ Si and defining ri := H(

∏
j∈Si g

αjtj ).

– The opening for ri consists of gtj = gy
Twj and guj = gy

Tzj for all j ∈ Si.

Our goal is to show that even for an adversarially-chosen verification key, the
commitment σ and the opening ({gtj , guj}j∈Si) to a bit ri does not leak any

information about rj whenever j 6= i.5 By construction, the opening to ri is
determined by yTv, yTwj , and yTzj for j ∈ Si (where the set Si is pseudorandom).
Take any index i∗ 6= i. Then, if there exists j∗ ∈ ϕ(i∗) such that wj∗ is linearly
independent of {v,wj , zj}j∈Si , then the value of yTwj∗ is independent and

uniformly random given the view of the adversary (since the honest prover

samples y
r← Z`+1

p ). In this case, the value gtj∗ = gy
Twj∗ remains uniformly

random and statistically hides ri∗ . Thus, it suffices to set ` and |Si| so that there
will always exist j∗ ∈ ϕ(i∗) where wj∗ is linearly independent of {v,wj , zj}j∈Si
with overwhelming probability. In the case of our DDH construction, we can set
|Si| = λ, where λ is a security parameter, and ` = 3ρ2λ to satisfy this property.
We provide the details of our DDH (more generally, its generalization to the k-Lin
assumption) in Section 4.3 and our QR and DCR constructions in the full version.

Public verifiability via pairings. All of the constructions we have described
so far operate in the designated-verifier model because our constructions rely
on a Cramer-Shoup-style hash proof system to argue consistency between a
commitment and the opening. If we can instead publicly check consistency between
a commitment and its opening, then the resulting scheme becomes publicly
verifiable. For the DDH construction, we can implement the consistency check
using a pairing (this is the approach taken in [CHK03] to obtain a computational
NIZK proof). In this work, we develop a similar approach to obtain a statistical
NIZK argument from pairings.

In particular, let e : G1 × G2 → GT be an (asymmetric) pairing. Let g1, g2
be generators of G1 and G2, respectively. At a high level, we implement the

4We require a PRG because the prover’s message needs to be succinct in order to argue
soundness of the resulting NIZK in the FLS paradigm. Thus, we rely on a PRG for
compression. Note that even though we rely on a computational assumption, we can
still show statistical zero-knowledge. The security proof only requires that there are no
efficient statistical tests that can distinguish the output of the PRG from a random
string (which is implied by PRG security).

5To show adaptive, multi-theorem zero-knowledge, we in fact show an even stronger
simulation property. We refer to Section 3 for more details.
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DDH scheme in G1 and use G2 for verification. More specifically, the CRS

is gv1 , g
w1
1 , . . . , g

wρ
1 , and the verification key is g

(aw1+b1v)
1 , . . . , g

(awρ+bρv)
1 . The

commitment, hidden-bits sequence, and openings are defined as before:

σ = gc1 = gy
Tv

1 , ri = H(gy
Twi

1 ) , gti1 = gy
Twi

1 and gui1 = g
yT(awi+biv)
1 .

In the designated-verifier setting, the verifier checks gui1
?
= (gti1 )a(gc1)bi . A di-

rect approach for public verification is to include ga2 , g
b1
2 , . . . , g

bρ
2 as part of the

verification key, and check the following:

e(gui1 , g2)
?
= e(gti1 , g

a
2 ) · e(gc1, g

bi
2 ).

While this approach is correct, it is unclear to argue soundness (even against
computationally-bounded adversaries). In the designated-verifier setting, the
soundness analysis critically relies on the verification coefficients a, bi being
hidden from the adversary, and it is unclear how to make such an argument when
the adversary is given ga2 , g

bi
2 .

To base hardness on a concrete cryptographic assumption, we leverage a
technique from [KW15], who describe a general method to “securely publish” the
verification key in the exponent (as we hoped to do in our initial attempt above)
with a concrete security reduction to a search assumption in G2. This yields a
general compiler from a designated-verifier scheme with unconditional soundness
to a publicly-verifiable scheme with computational soundness, at the expense
of requiring a pairing and a search assumption in G2. The compiler preserves
zero-knowledge of the underlying scheme.

Concretely, instead of scalar verification coefficients a, bi, we instead sample

vectors a,bi
r← Z2

p, and publish g
wia

T+vbT
i

1 for each i ∈ [ρ] in the CRS. The public

verification components will consist of gd2 , g
aTd
2 , g

bT
1d

2 , . . . , g
bT
ρd

2 , where d ∈ Z2
p. The

key observation is that a,b1, . . . ,bρ have statistical entropy even given the public

components gd2 , g
aTd
2 , g

bT
1d

2 , . . . , g
bT
ρd

2 . The commitment, hidden-bits sequence, and
openings are still computed as before, except the verification component gui1 is

replaced with g
uT
i

1 = g
yT(wia

T+vbT
i )

1 . The verification relation now checks

e(g
uT
i

1 , gd2 )
?
= e(gti1 , g

aTd
2 ) · e(gc1, g

bT
id

2 ).

Since the verification coefficients a,b1, . . . ,bρ have statistical entropy given the
public key, we can appeal to DDH in G1 and the 1-KerLin assumption (a search
assumption that is weaker than DDH) over G2 to argue soundness of the resulting
construction. This yields a publicly-verifiable statistical NIZK argument in the
common reference string model. We provide the full description and analysis
(generalized to the k-Lin and k-KerLin family of assumptions for any k ≥ 1) in
the full version.

Our pairing-based construction does not appear to have a dual mode and it
is unclear how to modify this construction to obtain computational NIZK proofs.
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We do note that computational NIZK proofs can be built directly from pairings
(under the CDH assumption in G1) also by following the FLS paradigm [CHK03].
At the same time, it is also unclear how to adapt the [CHK03] construction to
obtain statistical NIZK arguments.

A unifying abstraction: dual-mode hidden-bits generators. We unify the different
algebraic constructions through the abstraction of a “dual-mode hidden-bits
generator.” Previously, Quach et al. [QRW19] introduced the notion of a hidden-
bits generator (HBG) and showed how to use an HBG to implement the classic
FLS paradigm in both the designated-verifier and the publicly-verifiable set-
tings. Very briefly, an HBG with output size ρ consists of four main algorithms
(Setup,KeyGen,GenBits,Verify):

– The Setup algorithm outputs a common reference string crs, and KeyGen
generates a public key pk along with a (possibly secret) verification key sk.

– The GenBits algorithm outputs a short commitment σ together with a se-
quence of hidden bits r ∈ {0, 1}ρ as well as openings {πi}i∈[ρ].

– The Verify algorithm takes an index i ∈ [ρ], a bit ri ∈ {0, 1}, and an opening
πi and either accepts or rejects the proof.

The main security requirements are statistical binding (i.e., no adversary can
produce a commitment σ and valid openings πi, π

′
i that open to 0 and 1 for the

same index) and computational hiding (i.e., an honestly-generated commitment
σ and set of openings {ri, πi}i∈I should hide all unopened bits rj for j /∈ I from
any computationally-bounded adversary). Quach et al. show that an HBG with
these properties can be combined directly with a NIZK in the hidden-bits model
to obtain a computational NIZK proof in the CRS model. If the HBG is in the
(malicious) designated-verifier model, then so is the resulting NIZK.

In this work, we extend this framework by introducing the notion of a dual-
mode HBG where the CRS can be generated in one of two modes: a binding mode
where the HBG satisfies statistical binding (as in [QRW19]) and a hiding mode
where the HBG satisfies a stronger notion of statistical hiding (i.e., the unopened
bits are statistically hidden given the CRS, the commitment σ and any subset of
opened bits {(ri, πi)}i∈I). In our case, we impose an even stronger equivocation
property in the hiding mode: namely, given any any set of indices I ⊆ [ρ] and
any assignment rI ∈ {0, 1}|I| to that set, it is possible to simulate a commitment
σ and a set of openings {πi}i∈I that is statistically indistinguishable from the
output of the honest generator. This allows us to directly argue adaptive and
multi-theorem6 statistical zero-knowledge for the resulting NIZK construction.
We give our formal definition in Section 3, and describe our construction of dual-
mode (designated-verifier) NIZKs from dual-mode (designated-verifier) HBGs in

6We can also use the transformation from [FLS99] to generically go from single-theorem
zero-knowledge to multi-theorem zero-knowledge, but at the expense of making non-
black-box use of a PRG. Our approach yields a direct construction of multi-theorem
zero-knowledge without needing to make non-black-box use of cryptography. We discuss
this in greater detail in Remark 2.5.
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Section 3.1. In Section 4 and the full version, we show how to construct dual-mode
HBGs from the k-Lin, QR, and DCR assumptions.

2 Preliminaries

Throughout this work, we write λ (oftentimes implicitly) to denote the security
parameter. For a positive integer n ∈ N, we write [n] to denote the set {1, . . . , n}.
We will typically use bold lowercase letters (e.g., v,w) to denote vectors and bold
uppercase letters (e.g., A,B) to denote matrices. For a vector v ∈ Znp , we will use
non-boldface letters to refer to its components; namely, we write v = (v1, . . . , vn).
For a (sorted) set of indices I = {i1, . . . , im} ⊆ [n], we write vI to denote the
sub-vector (vi1 , . . . , vim).

We say that a function f is negligible in λ, denoted negl(λ), if f(λ) = o(1/λc)
for all c ∈ N. We write poly(λ) to denote a function bounded by a fixed polynomial
in λ. We say an event happens with negligible probability if the probability of the
event happening is negligible, and that it happens with overwhelming probability
if its complement occurs with negligible probability. We say that an algorithm
is efficient if it runs in probabilistic polynomial-time in the length of its inputs.
We say that two families of distributions D1 = {D1,λ}λ∈N and D2 = {D2,λ}λ∈N
are computationally indistinguishable if no efficient adversary can distinguish
samples from D1 and D2 except with negligible probability, and we denote this

by writing D1
c
≈ D2. For two distributions D1, D2, we write ∆(D1,D2) to denote

the statistical distance between D1 and D2. We write D1
s
≈ D2 to denote that D1

and D2 are statistically indistinguishable: namely, that ∆(D1,D2) = negl(λ). For

a finite set S, we write x
r← S to denote that x is sampled uniformly at random

from S. For a distribution D, we write x← D to denote that x is sampled from
D. We review additional preliminaries in the full version.

2.1 NIZKs in the Hidden-Bits Model

In this section, we recall the notion of a NIZK in the hidden-bits model [FLS99].
Our presentation is adapted from the description from [QRW19, CH19, KNYY19a].

Definition 2.1 (NIZKs in the Hidden-Bits Model). Let L ⊆ {0, 1}n be an
NP language associated with an NP relation R with n = n(λ). A non-interactive
zero-knowledge proof in the hidden-bits model for L consists of a tuple ΠHBM =
(Prove,Verify) and a parameter ρ = ρ(λ, n) with the following properties:

– Prove(1λ, r, x, w)→ (I, π): On input the security parameter λ, a string r ∈
{0, 1}ρ, a statement x ∈ {0, 1}n and a witness w, this algorithm outputs a
set of indices I ⊆ [ρ] and a proof π.

– Verify(1λ, I, rI , x, π) → {0, 1}: On input the security parameter λ, a subset
I ⊆ [ρ], a string rI ∈ {0, 1}|I|, a statement x ∈ {0, 1}n and a proof π, the
verification algorithm outputs a bit b ∈ {0, 1}.

Moreover, ΠHBM satisfies the following properties:
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– Completeness: For all (x,w) ∈ R and r ∈ {0, 1}ρ,

Pr[(I, π)← Prove(1λ, r, x, w) : Verify(1λ, I, rI , x, π) = 1] = 1.

– Statistical soundness: For all unbounded provers P∗, we have that for

r
r← {0, 1}ρ and (x, π, I)← P∗(1λ, r),

Pr[x /∈ L ∧ Verify(1λ, I, rI , x, π) = 1] = negl(λ).

We will oftentimes refer to the above probability as the soundness error.
– Perfect zero-knowledge: There exists an efficient simulator S such that for

all unbounded verifiers V∗, if we take (x,w)← V∗(1λ), r
r← {0, 1}ρ, (I, π)←

Prove(1λ, r, x, w), and (Ĩ , r̃I , π̃) ← S(1λ, x), and moreover if R(x,w) = 1,
then the following two distributions are identically distributed:

(I, rI , π) ≡ (Ĩ , r̃I , π̃).

Theorem 2.2 (NIZKs in the Hidden-Bits Model [FLS99]). For any ε > 0,
every language L ∈ NP has a NIZK in the hidden-bits model with soundness error
ε and relying on a hidden-bits string of length ρ = poly(n, log(1/ε)).

2.2 Designated-Verifier NIZKs and Dual-Mode NIZKs

We now review the notion of a reusable designated-verifier NIZK (DV-NIZK).
Namely, we require that the same common reference string and verification state
can be reused to prove and verify many statements without compromising either
soundness or zero-knowledge. As in [LQR+19], we use the fine-grained notion with
separate setup and key-generation algorithms. The setup algorithm samples the
common reference string (CRS) while the key-generation algorithm generates a
public key (used to generate proofs) along with a secret key (used to verify proofs).
We allow the same CRS to be reusable by many verifiers, who each generate
their own public/secret key-pairs. In the traditional notion of DV-NIZKs, the
setup and key-generation algorithms would be combined into a single algorithm
that outputs the CRS (which would include the public proving key) along with a
secret verification key.

Definition 2.3 (Designated-Verifier NIZK). Let L ⊆ {0, 1}n be an NP
language associated with an NP relation R with n = n(λ). A reusable designated-
verifier non-interactive zero-knowledge (DV-NIZK) proof for L consists of a tuple
of efficient algorithms ΠdvNIZK = (Setup,KeyGen,Prove,Verify) with the following
properties:

– Setup(1λ)→ crs: On input the security parameter λ, this algorithm outputs a
common reference string crs. If Setup outputs a uniformly random string, we
say that the scheme is in the common random string model.

– KeyGen(crs)→ (pk, sk): On input the common reference string crs, the key-
generation algorithm outputs a public key pk and a secret key sk.
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– Prove(crs, pk, x, w)→ π: On input the common reference string crs, a public
key pk, a statement x ∈ {0, 1}n, and a witness w, this algorithm outputs a
proof π.

– Verify(crs, sk, x, π) → {0, 1}: On input the common reference string crs, a
secret verification key sk, a statement x, and a proof π, the verification
algorithm outputs a bit b ∈ {0, 1}.

Moreover, ΠdvNIZK should satisfy the following properties:

– Completeness: For all (x,w) ∈ R, and taking crs← Setup(1λ), (pk, sk)←
KeyGen(crs),

Pr
[
π ← Prove(crs, pk, x, w) : Verify(crs, sk, x, π) = 1

]
= 1.

– (Statistical) soundness: We consider two variants of soundness:
• Non-adaptive soundness: For all x /∈ L and all polynomials q = q(λ),

and all unbounded adversaries A making at most q verification queries,
and sampling crs← Setup(1λ), (pk, sk)← KeyGen(crs), we have that

Pr
[
π ← AVerify(crs,sk,·,·)(1λ, crs, pk, x) : Verify(crs, sk, x, π) = 1

]
= negl(λ).

• Adaptive soundness: For all polynomials q = q(λ) and all unbounded
adversaries A making at most q verification queries, and sampling crs←
Setup(1λ), (pk, sk)← KeyGen(crs), we have that

Pr
[
(x, π)← AVerify(crs,sk,·,·)(1λ, crs, pk) :

x /∈ L ∧ Verify(crs, sk, x, π) = 1
]

= negl(λ).

We also define the corresponding notions of computational soundness where
the above properties only need to hold against efficient adversaries A.

– (Statistical) zero-knowledge: For all polynomials q = q(λ) and all un-
bounded adversaries A making at most q oracle queries, there exists an
efficient simulator S = (S1,S2) such that∣∣∣Pr[AO0(crs,pk,·,·)(crs, pk, sk) = 1]− Pr[AO1(stS ,·,·)(c̃rs, p̃k, s̃k) = 1]

∣∣∣ = negl(λ),

where crs← Setup(1λ), (pk, sk)← KeyGen(crs) and (stS , c̃rs, p̃k, s̃k)← S1(1λ),
the oracle O0(crs, pk, x, w) outputs Prove(crs, pk, x, w) if R(x,w) = 1 and ⊥
otherwise, and the oracle O1(stS , x, w) outputs S2(stS , x) if R(x,w) = 1
and ⊥ otherwise. Similar to soundness, we also consider computational
zero-knowledge where the above property only needs to hold against efficient
adversaries A.

Definition 2.4 (Publicly-Verifiable NIZKs). A NIZK ΠNIZK is publicly-
verifiable if the secret key output by KeyGen is empty. In this case, we can combine
the Setup and KeyGen algorithms into a single algorithm that just outputs the
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CRS, and there is no notion of separate public/secret keys pk and sk. Both the
Prove and Verify algorithms just take crs as input. We can define all of the
properties analogously. In the publicly-verifiable setting, we do not need to provide
the prover a separate verification oracle in the soundness game.

Remark 2.5 (Single-Theorem vs. Multi-Theorem Zero-Knowledge). The zero-
knowledge property in Definition 2.3 is multi-theorem in the sense that the
adversary can see proofs of multiple statements. We can consider a weaker
notion of single-theorem zero-knowledge where the adversary can only see a
proof on a single (adaptively-chosen) statement. Previously, Feige et al. [FLS99]
showed how to generically compile a single-theorem NIZK into a multi-theorem
NIZK using a PRG. This transformation also applies in the designated-verifier
setting [QRW19, CH19, KNYY19a]. One limitation of the [FLS99] transformation
is that it requires making non-black-box use of a PRG. The constructions we
present in this work directly achieve multi-theorem zero-knowledge without
needing to go through the [FLS99] transformation. As such, our constructions do
not require making non-black-box use of any cryptographic primitives.

Malicious DV-NIZKs. We also consider the notion of a malicious designated-
verifier NIZK (MDV-NIZK) from [QRW19] where zero-knowledge holds even
when the public key pk is chosen maliciously. In this case, the only trusted setup
that we require is generating the common reference string (or, in some cases, a
common random string), which can be reused by many verifiers.

We recall the formal definition in the full version.

Dual-mode DV-NIZKs. Next, we recall the formal definition of a dual-mode
(DV)-NIZK [GOS06, GOS12].

Definition 2.6 (Dual-Mode Designated-Verifier NIZK). A dual-mode
DV-NIZK ΠdvNIZK = (Setup,KeyGen,Prove,Verify) is a DV-NIZK with the fol-
lowing additional properties:

– Dual-mode: The Setup algorithm takes an additional argument mode ∈
{binding, hiding}, and outputs a common reference string crs.

– CRS indistinguishability: The common reference string output by the two
modes are computationally indistinguishable:

Setup(1λ, binding)
c
≈ Setup(1λ, hiding).

– Statistical soundness in binding mode: If crs← Setup(1λ, binding), the
designated-verifier NIZK satisfies statistical soundness.

– Statistical zero-knowledge in hiding mode: If crs ← Setup(1λ, hiding),
the designated-verifier NIZK satisfies statistical zero-knowledge.

We define a dual mode MDV-NIZK analogously by requiring the stronger property
of statistical zero-knowledge against malicious verifiers in hiding mode.
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Remark 2.7 (Dual-Mode Designated-Verifier NIZKs). Let ΠdvNIZK = (Setup,
KeyGen,Prove,Verify) be a dual-mode DV-NIZK for a language L ⊆ {0, 1}n.
Then, the following properties hold:

– When the CRS is generated in binding mode, ΠdvNIZK satisfies statistical
soundness and computational zero-knowledge (i.e., ΠdvNIZK is a “computa-
tional DV-NIZK proof”).

– When the CRS is generated in hiding mode, ΠdvNIZK satisfies non-adaptive
computational soundness and statistical zero-knowledge (i.e., ΠdvNIZK is a
“statistical DV-NIZK argument”).

– If ΠdvNIZK is a dual-mode MDV-NIZK, then the zero-knowledge properties in
each of the above instantiations also hold against malicious verifiers.

The first two properties follow from CRS indistinguishability and the corre-
sponding statistical properties of ΠdvNIZK in the two modes. Note though that
even if ΠdvNIZK satisfies adaptive soundness in binding mode, we do not know
how to argue adaptive soundness for ΠdvNIZK in hiding mode. At a high-level,
this is because in the definition of adaptive soundness, checking whether the
adversary succeeded or not requires deciding whether the statement x output by
the adversary is contained in the language L or not. Unless NP ⊆ P/poly, this
is not an efficiently-checkable property in general, and as such, we are not able
to directly argue adaptive soundness of the construction. We refer to [AF07] for
more discussion on the challenges of using black-box reductions to argue adaptive
soundness for statistical NIZK arguments.

Remark 2.8 (Adaptive Soundness via Complexity Leveraging). Using complexity
leveraging [BB04] and relying on a sub-exponential hardness assumption (as
in [GOS06, GOS12]), we can show that non-adaptive soundness implies adaptive
soundness. A direct application of complexity leveraging to a dual-mode NIZK
yields an adaptively-sound statistical NIZK argument for proving statements of
a priori bounded length n = n(λ). Using the method from [QRW19, §7], we can
also obtain adaptive soundness for statements with arbitrary polynomial length,
but still at the expense of a subexponential hardness assumption.

3 Dual-Mode Hidden-Bits Generators and Dual-Mode
DV-NIZKs

In this section, we formally define a dual-mode hidden-bits generator. Our
definition extends the notion of a hidden-bits generator from [QRW19] (and the
similar notion of a designated-verifier PRG from [CH19]). Our definition differs
from that in [QRW19] in the following respects:

– Dual mode: We require that the common reference string for the hidden-bits
generator can be generated in two computationally indistinguishable modes:
a binding mode where the commitment statistically binds to a sequence of
hidden bits, and a hiding mode where the commitment (and the openings to
any subset of the bits) statistically hide the remaining bits.
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– Statistical simulation in hiding mode. Minimally, our hiding property
requires that the commitment and openings to any subset of the bits output by
the HBG statistically hide the unopened bits. Here, we require an even stronger
simulation property where there is an efficient simulator that can simulate
the commitment and openings to any (random) string, given only the values
of the opened bits. Moreover, we allow the adversary to adaptively choose the
subset of bits for which it wants to see openings, and we also allow multiple
interactions with the simulator. This strong simulation property enables us
to directly argue adaptive and multi-theorem statistical zero-knowledge for
our NIZK constructions (Section 3.1).7

Definition 3.1 (Dual-Mode Hidden-Bits Generator). Let λ be a security
parameter and ρ be the output length. Let ` = `(λ, ρ) be a polynomial. A dual-mode
(designated-verifier) hidden-bits generator (HBG) with commitments of length `
consists of a tuple of efficient algorithms ΠHBG = (Setup,KeyGen,GenBits,Verify)
with the following properties:

– Setup(1λ, 1ρ,mode) → crs: On input the security parameter λ, a length ρ,
and a mode mode ∈ {binding, hiding}, the setup algorithm outputs a common
reference string crs.

– KeyGen(crs) → (pk, sk): On input a common reference string crs, the key-
generation algorithm outputs a public key pk and a secret key sk.

– GenBits(crs, pk)→ (σ, r, {πi}i∈[ρ]): On input a common reference string crs
and a public key pk, the bit-generation algorithm outputs a commitment
σ ∈ {0, 1}`, a string r ∈ {0, 1}ρ, and a collection of proofs πi for i ∈ [ρ].

– Verify(crs, sk, σ, i, ri, πi)→ {0, 1}: On input a common reference string crs, a
secret key sk, a commitment σ ∈ {0, 1}`, an index i ∈ [ρ], a bit ri ∈ {0, 1},
and a proof πi, the verification algorithm outputs a bit b ∈ {0, 1}.

In addition, we require that ΠHBG satisfy the following properties:

– Correctness: For all integers λ ∈ N, and all polynomials ρ = ρ(λ), all
indices i ∈ [ρ] and both modes mode ∈ {binding, hiding}, and sampling
crs ← Setup(1λ, 1ρ,mode), (pk, sk) ← KeyGen(crs), and (σ, r, {πi}i∈[ρ]) ←
GenBits(crs, pk), we have

Pr[Verify(crs, sk, σ, i, ri, πi) = 1] = 1.

– Succinctness: The length ` of the commitment depends only on the security
parameter and not the length of the output: namely, ` = poly(λ).8

7The previous notion from [QRW19] was only sufficient for single-theorem non-adaptive
computational zero-knowledge. Extending to adaptive multi-theorem computational
zero-knowledge required imposing additional properties on the underlying NIZK in
the hidden-bits model as well as making non-black-box use of cryptographic primi-
tives [FLS99].

8We remark that this is a stronger requirement than the corresponding requirement
in [QRW19], which also allows ` to scale sublinearly with ρ. We use this definition
because it is conceptually simpler and all of our constructions satisfy this stronger
property.
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– CRS indistinguishability: For all polynomials ρ = ρ(λ), we have that

Setup(1λ, 1ρ, binding)
c
≈ Setup(1λ, 1ρ, hiding).

– Statistically binding in binding mode: There exists a (possibly inef-
ficient) deterministic algorithm Open(crs, σ) such that for all polynomials
ρ = ρ(λ) and q = q(λ) and all unbounded adversaries A making up to q oracle
queries, and sampling crs ← Setup(1λ, 1ρ, binding), (pk, sk) ← KeyGen(crs),
(σ∗, i∗, r∗, π∗)← AVerify(crs,sk,·,·,·,·)(1λ, 1ρ, crs, pk), r ← Open(crs, σ∗), we have

Pr[ri∗ 6= r∗ ∧ Verify(crs, sk, σ∗, i∗, r∗, π∗) = 1] = negl(λ).

– Statistical simulation in hiding mode: For all polynomials ρ = ρ(λ),
q = q(λ), and all unbounded adversaries A making up to q queries, there
exists an efficient simulator S = (S1,S2) such that∣∣Pr[ExptHide[A,S, 0](1λ, 1ρ) = 1]

− Pr[ExptHide[A,S, 1](1λ, 1ρ) = 1]
∣∣ = negl(λ), (3.1)

where for a bit b ∈ {0, 1}, the hiding experiment ExptHide[A,S, b](1λ, 1ρ) is
defined as follows:

• Setup phase: If b = 0, the challenger samples crs← Setup(1λ, 1ρ, hiding)
and (pk, sk) ← KeyGen(crs), and gives (crs, pk, sk) to A. If b = 1, it

samples (stS , c̃rs, p̃k, s̃k)← S1(1λ, 1ρ) and gives (c̃rs, p̃k, s̃k) to A.

• Query phase: The adversary A can now make up to q challenge queries.
On each query, the challenger responds as follows:

∗ If b = 0, the challenger computes (σ, r, {πi}i∈[ρ]) ← GenBits(crs, pk)

and gives r to the adversary. If b = 1, it responds with r̃
r← {0, 1}ρ.

∗ The adversary specifies a subset I ⊆ [ρ].
∗ If b = 0, then the challenger replies with the pair (σ, {πi}i∈[I]) it sam-

pled above. If b = 1, it replies to A with (σ̃, {π̃i}i∈I)← S2(stS , I, r̃I).

• Output phase: At the end of the experiment, the adversary outputs a
bit b ∈ {0, 1}, which is the output of the experiment.

When the difference in Eq. (3.1) is identically zero, we say that ΠHBG satisfies
perfect simulation in hiding mode.

Definition 3.2 (Publicly-Verifiable Dual-Mode HBG). A dual-mode HBG
ΠHBG is publicly-verifiable if the secret key sk output by KeyGen is empty. In
this case, we can combine the Setup algorithm and the KeyGen algorithm into
a single algorithm that just outputs the crs, and there is no notion of separate
public/secret keys pk and sk. The GenBits and Verify algorithms just take crs as
input. We define all of the other properties analogously. In the publicly-verifiable
setting, we do not need to provide the verification oracle to the adversary in the
statistical binding security definition.
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Definition 3.3 (Statistical Simulation for Malicious Keys). Let ΠHBG =
(Setup,KeyGen,GenBits,Verify) be a hidden-bits generator. We say that ΠHBG

satisfies statistical simulation for malicious keys if it satisfies the following
simulation property (where the adversary chooses pk) in hiding mode:

– Statistical simulation for malicious keys: For all polynomials ρ = ρ(λ),
q = q(λ), and all unbounded adversaries A making up to q queries, there
exists an efficient simulator S = (S1,S2) such that∣∣Pr[ExptHide∗[A,S, 0](1λ, 1ρ) = 1]

− Pr[ExptHide∗[A,S, 1](1λ, 1ρ) = 1]
∣∣ = negl(λ),

where for a bit b ∈ {0, 1}, the hiding experiment ExptHide∗[A,S, b](1λ, 1ρ) is
defined to be ExptHide[A,S, b](1λ, 1ρ) with the following differences:
• Setup phase: If b = 0, the challenger samples crs← Setup(1λ, 1ρ, hiding)

and gives crs to A. If b = 1, the challenger samples (stS , c̃rs)← S1(1λ, 1ρ)
and gives c̃rs to A. The adversary then chooses a public key pk.
• Query phase: Same as in ExptHide[A,S, b], except when b = 1, the

challenger also provides the (adversarially-chosen) public key pk to the
simulator. In other words, when b = 1, the challenger’s reply to A is
computed as (σ̃, {π̃i}i∈I)← S2(stS , pk, I, r̃I).
• Output phase: Same as in ExptHide[A,S, b].

3.1 Dual-Mode DV-NIZK from Dual-Mode HBG

In this section, we give our construction of a dual-mode designated-verifier NIZK
from a dual-mode designated-verifier HBG and a NIZK in the hidden-bits model.
Our generic construction is essentially the same as the corresponding construction
from [QRW19]. We do rely on a different argument to show adaptive, multi-
theorem statistical zero-knowledge, and in particular, we appeal to the statistical
simulation property of our dual-mode HBG that we introduced in Definition 3.1.

Construction 3.4 (Dual-Mode DV-NIZK from Dual-Mode HBG). Let
L ⊆ {0, 1}n be an NP language with associated NP relation R. We rely on the
following building blocks:

– Let ΠHBM = (HBM.Prove,HBM.Verify) be a NIZK in the hidden-bits model
for L, and let ρ = ρ(λ) be the length of the hidden-bits string for ΠHBM.

– LetΠHBG = (HBG.Setup,HBG.KeyGen,HBG.GenBits,HBG.Verify) be a hidden-
bits generator with commitments of length ` = `(λ, ρ), where λ is the security
parameter and ρ is the output length of the generator.

We construct a dual-mode DV-NIZK ΠdvNIZK = (Setup,KeyGen,Prove,Verify) for
L as follows:

– Setup(1λ,mode) → crs: On input λ and mode ∈ {binding, hiding}, sample

s
r← {0, 1}ρ. Then, run crsHBG ← HBG.Setup(1λ, 1ρ,mode), and output crs =

(λ, s, crsHBG).
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– KeyGen(crs) → (pk, sk): On input crs = (λ, s, crsHBG), the key-generation
algorithm runs (pkHBG, skHBG) ← HBG.KeyGen(crsHBG) and outputs pk =
pkHBG and sk = skHBG.

– Prove(crs, pk, x, w) → π: On input crs = (λ, s, crsHBG), pk = pkHBG, x ∈
{0, 1}n, and w, compute (σ, r, {πHBG,i}i∈[ρ])← HBG.GenBits(crsHBG, pkHBG),

and an HBM proof (I, πHBM) ← HBM.Prove(1λ, r ⊕ s, x, w). Output π =
(σ, I, rI , {πHBG,i}i∈I , πHBM).

– Verify(crs, sk, x, π): On input crs = (λ, s, crsHBG), sk = skHBG, x ∈ {0, 1}n, and
the proof π = (σ, I, rI , {πHBG,i}i∈I , πHBM), output 1 if HBM.Verify(1λ, I, rI ⊕
sI , x, πHBM) = 1 and HBG.Verify(crsHBG, skHBG, σ, i, ri, πHBG,i) = 1 for all
i ∈ I. Otherwise, output 0.

Theorem 3.5 (Completeness). If ΠHBM is complete and ΠHBG is correct,
then ΠdvNIZK from Construction 3.4 is complete.

Proof. Take any mode ∈ {binding, hiding}, and sample crs ← Setup(1λ,mode),
(pk, sk) ← KeyGen(crs). Here, crs = (λ, s, crsHBG), pk = pkHBG, and sk = skHBG.
Take any statement (x,w) ∈ R, and let π ← Prove(crs, pk, x, w). Then π =
(σ, I, rI , {πHBG,i}i∈I , πHBM). Consider the behavior of Verify(crs, sk, x, π). By cor-
rectness of ΠHBG, HBG.Verify(crsHBG, skHBG, σ, i, ri, πHBG,i) = 1 for all i ∈ I. By
completeness of ΠHBM, HBM.Verify(1λ, I, rI ⊕ sI , x, w) = 1, and the verifier ac-
cepts. ut

Theorem 3.6 (CRS Indistinguishability). If ΠHBG satisfies CRS indistin-
guishability, then ΠdvNIZK from Construction 3.4 satisfies CRS indistinguishability.

Proof. The CRS in Construction 3.4 consists of a tuple (λ, s, crsHBG). In both
modes, the first two components are identically distributed, and crsHBG is com-
putationally indistinguishable by CRS indistinguishability of ΠHBG. ut

Theorem 3.7 (Statistical Soundness in Binding Mode). If ΠHBM is sta-
tistically sound with soundness error ε(λ), ΠHBG is statistically binding in binding
mode, and 2` · ε = negl(λ) then ΠdvNIZK from Construction 3.4 satisfies adaptive
statistical soundness.

The proof of Theorem 3.7 is very similar to the corresponding proof of adaptive
statistical soundness from [QRW19]. We include it in the full version.

Theorem 3.8 (Statistical Zero-Knowledge in Hiding Mode). If ΠHBM

satisfies statistical (resp., perfect) zero-knowledge and ΠHBG provides statistical
(resp., perfect) simulation in hiding mode, then ΠdvNIZK from Construction 3.4
satisfies statistical (resp., perfect) zero-knowledge in hiding mode.

We give the proof of Theorem 3.8 in the full version.

Theorem 3.9 (Statistical Zero-Knowledge against Malicious Verifiers).
If ΠHBM satisfies statistical zero-knowledge and ΠHBG provides statistical sim-

ulation for malicious keys, then Construction 3.4 is a MDV-NIZK. Namely,
Construction 3.4 satisfies statistical zero-knowledge against malicious verifiers in
hiding mode.
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The proof of Theorem 3.9 follows from a similar argument as Theorem 3.8 and is
included in the full version.

4 Dual-Mode HBGs from the k-Lin Assumption

In this section, we show how to construct dual-mode hidden-bits generators from
the k-Lin assumption. We begin with a basic construction from the k-Lin assump-
tion (Section 4.1) and then show how to extend it to achieve public verifiability in
a pairing group (Section 4.2) as well as how to achieve security against malicious
verifiers in a pairing-free group (Section 4.3). In the full version, we also show
how to construct dual-mode HBGs from the QR and DCR assumptions.

4.1 Dual-Mode Hidden-Bits Generator from k-Lin

In this section, we show how to construct a dual-mode hidden-bits generator from
the k-linear (k-Lin) assumption [BBS04, HK07, Sha07, EHK+13] over pairing-free
groups for any k ≥ 1. We note that the 1-Lin assumption is precisely the decisional
Diffie-Hellman (DDH) assumption. We begin by recalling some basic notation.

Notation. Throughout this section, we will work with cyclic groups G of prime
order p. We will use multiplicative notation to denote the group operation. For
x ∈ Zp, we often refer to gx as an “encoding” of x. For a matrix A ∈ Zn×mp , we

write gA ∈ Gn×m to denote the matrix of group elements formed by taking the
element-wise encoding of each component of A.

Definition 4.1 (Prime-Order Group Generator). A prime-order group gen-
erator algorithm GroupGen is an efficient algorithm that on input the security
parameter 1λ outputs a description G = (G, p, g) of a prime-order group G with
order p and generator g. Throughout this work, we will assume that 1/p = negl(λ).

Construction 4.2 (Dual-Mode Hidden-Bits Generator from k-Lin). Let
GroupGen be a prime-order group generator algorithm. We construct a dual-mode
hidden-bits generator (HBG) as follows:

– Setup(1λ, 1ρ,mode)→ crs: First, the setup algorithm samples G = (G, p, g)←
GroupGen(1λ) and a hash function H

r← H, where H is a family of hash

functions with domain G and range {0, 1}. Next, it samples V
r← Z(ρ+k)×k

p

and vectors w1, . . . ,wρ ∈ Zρ+kp as follows:

• If mode = hiding, sample wi
r← Zρ+kp for all i ∈ [ρ].

• If mode = binding, sample si
r← Zkp and set wi ← Vsi for all i ∈ [ρ].

Output crs = (G, H, gV, gw1 , . . . , gwρ).
– KeyGen(crs) → (pk, sk): On input crs = (G, H, gV, gw1 , . . . , gwρ), the key-

generation algorithm samples a
r← Zp and b1, . . . ,bρ

r← Zkp. For each i ∈ [ρ],

it sets zi ← wia+ Vbi ∈ Zρ+kp . It outputs

pk = (gz1 , . . . , gzρ) and sk = (a,b1, . . . ,bρ).
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– GenBits(crs, pk) → (σ, r, {πi}i∈[ρ]): On input crs = (G, H, gV, gw1 , . . . , gwρ)

and pk = (gz1 , . . . , gzρ), sample y
r← Zρ+kp and compute for each i ∈ [ρ],

gti ← gy
Twi and gui ← gy

Tzi .

Next, let σ = gy
TV. For each i ∈ [ρ], set ri ← H(gti) and πi ← (gti , gui), and

output σ, r, and {πi}i∈[ρ].
– Verify(crs, sk, σ, i, ri, πi): On input crs = (G, H, gV, gw1 , . . . , gwρ), the secret

key sk = (a,b1, . . . ,bρ), σ = gc
T

, i ∈ [ρ], ri ∈ {0, 1}, and πi = (gti , gui),

output 1 if gui = (gtia)(gc
Tbi) and ri = H(gti). Otherwise, output 0.

Correctness and security analysis. We now state the correctness and security
theorems for Construction 4.2 and give the proofs in the full version.

Theorem 4.3 (Correctness). Construction 4.2 is correct.

Theorem 4.4 (Succinctness). Construction 4.2 is succinct.

Theorem 4.5 (CRS Indistinguishability). Suppose the k-Lin assumption
holds for GroupGen. Then, Construction 3.4 satisfies CRS indistinguishability.

Theorem 4.6 (Statistical Binding in Binding Mode). Construction 4.2
satisfies statistical binding in binding mode.

Theorem 4.7 (Statistical Simulation in Hiding Mode). If H satisfies
statistical uniformity, then Construction 4.2 satisfies statistical simulation in
hiding mode.

Remark 4.8 (Common Random String in Hiding Mode). Construction 4.2 has the
property that in hiding mode, the CRS is a collection of uniformly random group
elements; in other words, the CRS in hiding mode can be sampled as a common
random string. In conjunction with Construction 3.4, we obtain a statistical NIZK
argument in the common random string model (and a computational NIZK proof
in the common reference string model).

4.2 Publicly-Verifiable Hidden-Bit Generators from Pairings

In this section, we describe a variant of our dual-mode hidden-bits generator from
Section 4.1 to obtain a publicly-verifiable hidden-bits generator from pairings. Our
resulting construction does not give a dual-mode hidden-bits generator. Instead,
we obtain a standard HBG (where there is a single mode) that satisfies statistical
simulation and computational binding. Using an analog of Construction 3.4, this
suffices to construct a publicly-verifiable statistical NIZK argument. We refer
to the full version for the details. Below, we define the computational binding
property we use:

Definition 4.9 (Computational Binding). A publicly-verifiable hidden bits
generator ΠHBG = (Setup,GenBits,Verify) is computationally binding if the fol-
lowing property holds:
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– Computational binding: There exists an efficient extractor E = (E1, E2),
where E2 is deterministic, and for all polynomials ρ = ρ(λ), the following two
properties hold:
• CRS indistinguishability: The following distributions are computa-

tionally indistinguishable:

{Setup(1λ, 1ρ)}
c
≈ {(stE , c̃rs)← E1(1λ, 1ρ) : c̃rs}.

• Binding: For all efficient adversaries A, and sampling (stE , c̃rs) ←
E1(1λ, 1ρ) followed by (σ∗, i∗, r∗, π∗)← A(1λ, 1ρ, c̃rs) and r ← E2(stE , σ

∗),
we have that

Pr[ri∗ 6= r∗ ∧ Verify(c̃rs, σ∗, i∗, r∗, π∗) = 1] = negl(λ).

Pairing groups. In this section, we work in (asymmetric) pairing groups. We
review the notion of a pairing below. We review the kernel k-linear (k-KerLin)
assumption from [MRV15, KW15] in the full version.

Definition 4.10 (Prime-Order Pairing-Group Generator). A prime-order
(asymmetric) pairing group generator algorithm PairingGroupGen is an efficient
algorithm that on input the security parameter 1λ outputs a description G =
(G1,G2,GT , p, g1, g2, e) of two base groups G1 (generated by g1), G2 (generated
by g2), and a target group GT , all of prime order p, together with an efficiently-
computable mapping e : G1×G2 → GT (called the “pairing”). Finally, the mapping
e is bilinear: for all x, y ∈ Zp, e(gx1 , g

y
2 ) = e(g1, g2)xy.

Notation. For a matrix A, we continue to write gA1 and gA2 to denote matrices
of group elements (over G1 and G2, respectively). In addition, if we have two
matrices A ∈ Zm×` and B ∈ Z`×n, we write e(gA1 , g

B
2 ) to denote the operation

that outputs e(g1, g2)AB ∈ Gm×nT . In particular, the (i, j)th entry of e(gA1 , g
B
2 ) is

computed as [
e(gA1 , g

B
2 )
]
i,j

=
∏
k∈[`]

e(g
ai,k
1 , g

bk,j
2 ).

Construction 4.11 (Publicly-Verifiable Hidden-Bits Generator from Pair-
ings). Let PairingGroupGen be a prime-order bilinear group generator algorithm.
We construct a publicly-verifiable hidden-bits generator (HBG) as follow:

– Setup(1λ, 1ρ)→ crs: The setup algorithm starts by sampling

G = (G1,G2,GT , p, g1, g2, e)← PairingGroupGen(1λ)

and a hash function H
r← H where H is a family of hash functions with

domain G1 and range {0, 1}. Next, it samples a matrix V
r← Z(ρ+k)×k

p , vectors

w1, . . . ,wk
r← Zρ+kp , and verification components a

r← Zk+1
p , B1, . . . ,Bρ

r←
Zk×(k+1)
p . In addition, it samples d

r← Zkp, and constructs the matrix

D =

(
diag(d)

1T

)
∈ Z(k+1)×k

p . (4.1)
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It computes âT ← aTD ∈ Zkp, and for each i ∈ [ρ], it computes Zi ←
wia

T + VBi ∈ Z(ρ+k)×(k+1)
p and B̂i ← BiD ∈ Zk×kp . It outputs

crs =
(
G, H, gV1 , gâ

T

2 , gD2 ,
{
gwi1 , gZi1 , gB̂i2

}
i∈[ρ]

)
.

– GenBits(crs)→ (σ, r, {πi}i∈[k]): On input

crs =
(
G, H, gV1 , gâ

T

2 , gD2 ,
{
gwi1 , gZi1 , gB̂i2

}
i∈[ρ]

)
,

sample y
r← Zρ+kp , and compute for each i ∈ [ρ],

gti1 ← gy
Twi

1 and g
uT
i

1 ← gy
TZi

1 .

Next, let σ = gy
TV

1 , and for each i ∈ [ρ], set ri ← H(gti1 ) and πi = (gti1 , g
uT
i

1 ).
Output σ, r, and {πi}i∈[ρ].

– Verify(crs, σ, i, ri, πi): On input crs =
(
G, H, gV1 , gâ

T

2 , gD2 ,
{
gwi1 , gZi1 , gB̂i2

}
i∈[ρ]

)
,

σ = gc
T

1 , i ∈ [ρ], ri ∈ {0, 1}, and πi = (gti1 , g
uT
i

1 ), output 1 if

e(gti1 , g
âT

2 ) · e(gc
T

1 , gB̂i2 ) = e(g
uT
i

1 , gD2 ) (4.2)

and ri = H(gti1 ). If either check fails, output 0.

Correctness and security analysis. We now state the correctness and security
theorems for Construction 4.11 and provide the proofs in the full version.

Theorem 4.12 (Correctness). Construction 4.11 is correct.

Theorem 4.13 (Succinctness). Construction 4.11 is succinct.

Theorem 4.14 (Computational Binding). Suppose PairingGroupGen out-
puts groups (G1,G2,GT ) such that the k-Lin assumption holds in G1 and the
k-KerLin assumption holds in G2. Then, Construction 4.11 satisfies computational
binding in binding mode.

Theorem 4.15 (Statistical Simulation). If H satisfies statistical uniformity,
then Construction 4.11 satisfies statistical simulation.

4.3 Dual-Mode HBG with Malicious Security from k-Lin

We now show how to modify the k-Lin construction from Section 4.1 (Con-
struction 4.2) to obtain a hidden-bits generator with security against malicious
verifiers. Combined with Construction 3.4, this yields a dual-mode MDV-NIZK
(Theorem 3.9). We refer to Section 1.2 for a high-level description of our approach.

Construction 4.16 (Dual-Mode HBG with Malicious Security from
k-Lin). Let ρ be the output length of the hidden-bits generator. We require the
following primitives:
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– Let GroupGen be a prime-order group generator algorithm.
– Let ` = 3ρλ and define Tλ,` := {S ⊆ [`] : |S| = λ} to be the set of all subsets

of [`] that contains exactly λ elements. Let G : {0, 1}κ → T ρλ,` × Zρ`p be a
PRG with seed length κ = κ(λ). Here, p is the order of the group G output
by GroupGen (on input 1λ).

Constructing the PRG G. It is straightforward to construct a PRG with
outputs in T ρλ,` × Zρ`p from a PRG with outputs in {0, 1}ρλ`(1+dlog pe). To see
this, it suffices to give an efficient algorithm that maps from the uniform
distribution on {0, 1}λ`(1+dlog pe) to a distribution that is statistically close
to uniform over Tλ,` × Z`p. Take a string γ ∈ {0, 1}λ`(1+dlog pe).
• The first λ` bits of γ are interpreted as ` blocks of λ-bit indices i1, . . . , i` ∈
{0, 1}λ. These indices specify the set S ⊆ Tλ,` as follows. First, take
S0 ← [`]. For each j ∈ [λ], take sj to be the (ij mod |Sj−1|)th element of
Sj−1 and define Sj ← Sj−1 \ {sj}. Define S ← {s1, . . . , s`} ∈ Tλ,`.

• The remaining λ` dlog pe bits of γ are taken to be the binary representation
of a vector α ∈ Z`, where each component is a λ dlog pe-bit integer.

The string γ ∈ {0, 1}λ`(1+dlog pe) is mapped onto (S,α mod p) ∈ Tλ,` × Z`p.
By construction, this procedure maps from the uniform distribution over
{0, 1}λ`(1+dlog pe to a distribution that is statistically uniform over Tλ,` × Z`p.

We construct the dual-mode designated-verifier hidden-bits generator with mali-
cious security as follows:

– Setup(1λ, 1ρ,mode)→ crs: Let `′ = ρ`. Sample G = (G, p, g)← GroupGen(1λ)

and H
r← H, where H is a family of hash functions with domain G and range

{0, 1}. Next, it samples V
r← Z(`′+k)×k

p and w1, . . . ,w`′ ∈ Z`′+kp as follows:

• If mode = hiding, sample wi
r← Z`′+kp for all i ∈ [`′].

• If mode = binding, sample si
r← Zkp and set wi ← Vsi for all i ∈ [`′].

Output crs = (G, H, gV, gw1 , . . . , gw`′ ).

– KeyGen(crs)→ (pk, sk): On input crs = (G, H, gV, gw1 , . . . , gw`′ ), sample a
r←

Zp and b1, . . . ,b`′
r← Zkp. For each i ∈ [`′], compute zi ← wia+ Vbi ∈ Z`′+kp

and output

pk = (gz1 , . . . , gz`′ ) and sk = (a,b1, . . . ,b`′).

– GenBits(crs, pk) → (σ, r, {πi}i∈[ρ]): On input crs = (G, H, gV, gw1 , . . . , gw`′ )

and pk = (gz1 , . . . , gz`′ ), sample y
r← Z`′+kp and compute for each i ∈ [`′]

gti ← gy
Twi and gui ← gy

Tzi .

Next, sample a PRG seed s
r← {0, 1}κ and compute (Ŝ1, . . . , Ŝρ,α)← G(s)

where Ŝi ∈ Tλ,` for all i ∈ [ρ] and α ∈ Zρ`p . Compute the shifted sets

Si ← {j + ` · (i− 1) | j ∈ Ŝi} for each i ∈ [ρ]. Finally, compute

ri ← H

∏
j∈Si

gαjtj

 and πi ← {(j, gtj , guj )}j∈Si .
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Output σ = (s, gy
TV), r, and {πi}i∈[ρ].

– Verify(crs, sk, σ, i, ri, πi): On input crs = (G, H, gV, gw1 , . . . , gw`′ ), the se-

cret key sk = (a,b1, . . . ,b`′), σ = (s, gc
T

), i ∈ [ρ], ri ∈ {0, 1}, and πi =
{(j, gtj , guj )}j∈S for an implicitly-defined set S ⊆ [ρ`], the verification algo-
rithm performs the following checks:
• Compute (Ŝ1, . . . , Ŝρ,α)← G(s) and the shifted set Si ← {j+ ` · (i− 1) |
j ∈ Ŝi}. It checks that S = Si and outputs 0 if not.

• It checks that guj = (gtja)(gc
Tbj ) for all j ∈ S, and outputs 0 if not.

• It checks that ri = H
(∏

j∈S g
αjtj

)
and outputs 0 if not.

If all checks pass, the verification algorithm outputs 1.

Correctness and security analysis. We now state the correctness and security
theorems for Construction 4.16 and provide the proofs in the full version.

Theorem 4.17 (Correctness). Construction 4.16 is correct.

Theorem 4.18 (Succinctness). Construction 4.16 is succinct.

Theorem 4.19 (CRS Indistinguishability). Suppose the k-Lin assumption
holds for GroupGen. Then, Construction 4.16 satisfies CRS indistinguishability.

Theorem 4.20 (Statistical Binding in Binding Mode). Construction 4.16
satisfies statistical binding in binding mode.

Theorem 4.21 (Statistical Simulation in Hiding Mode). If G is a secure
PRG and H satisfies statistical uniformity, then Construction 4.16 satisfies
statistical simulation in hiding mode against malicious verifiers.

5 Instantiations and Extensions

In this section, we provide the main implications of our framework for constructing
statistical (and more generally, dual-mode) NIZKs. In the full version, we describe
two simple extensions to augment our NIZKs with additional properties.

Dual-mode MDV-NIZKs. By instantiating Construction 3.4 with a dual-mode
malicious designated-verifier hidden-bits generator, we obtain a dual-mode MDV-
NIZK (Theorems 3.5, 3.7 and 3.9).

Corollary 5.1 (Dual-Mode MDV-NIZK from k-Lin). Under the k-Lin as-
sumption over pairing-free groups (for any k ≥ 1), there exists a statistical
MDV-NIZK argument (with non-adaptive soundness) in the common random
string model, and a computational MDV-NIZK proof (with adaptive soundness)
for NP in the common reference string model.

Corollary 5.2 (Dual-Mode MDV-NIZK from QR or DCR). Under the
QR or DCR assumptions, there exists a statistical MDV-NIZK argument (with
non-adaptive soundness) and a computational MDV-NIZK proof (with adaptive
soundness) for NP in the common reference string model.

27



Publicly-verifiable statistical NIZK arguments. In the full version, we show how
to obtain a publicly-verifiable statistical NIZK argument in the common reference
string model using Construction 4.11:

Corollary 5.3 (Publicly-Verifiable Statistical NIZK Argument from
Pairings). Suppose that the k-Lin assumption holds in G1 and the k-KerLin
assumption holds in G2 (for any k ≥ 1) over a pairing group. Then, there ex-
ists a publicly-verifiable statistical NIZK argument for NP (with non-adaptive
soundness) in the common reference string model.
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