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Abstract. In this work, we study the security of deterministic MAC
constructions with a double-block internal state, captured by the double-
block hash-then-sum (DbHtS) paradigm. Most DbHtS constructions, in-
cluding PolyMAC, SUM-ECBC, PMAC-Plus, 3kf9 and LightMAC-Plus, have
been proved to be pseudorandom up to 2 2n

3 queries when they are instan-
tiated with an n-bit block cipher, while the best known generic attacks
require 2 3n

4 queries.
We close this gap by proving the PRF-security of DbHtS constructions up
to 2 3n

4 queries (ignoring the maximum message length). The core of the
security proof is to refine Mirror theory that systematically estimates
the number of solutions to a system of equations and non-equations,
and apply it to prove the security of the finalization function. Then we
identify security requirements of the internal hash functions to ensure
3n/4-bit security of the resulting constructions when combined with the
finalization function.
Within this framework, we prove the security of DbHtS whose internal
hash function is given as the concatenation of a universal hash function
using two independent keys. This class of constructions include PolyMAC
and SUM-ECBC. Moreover, we prove the security of PMAC-Plus, 3kf9 and
LightMAC-Plus up to 2 3n

4 queries.

Keywords: message authentication codes, beyond-birthday-bound security, pseu-
dorandom functions, Mirror theory

1 Introduction

MACs. A message authentication code (MAC) is typically built from a block
cipher, e.g., CBC-MAC [3], PMAC [5], OMAC [10], LightMAC [13] or from a cryp-
tographic hash function, e.g., HMAC [2]. At a high level, many of these construc-
tions follow the well-established UHF-then-PRF design paradigm: a message is
first mapped onto a short string through a universal hash function (UHF), and
then encrypted through a fixed-input-length PRF to obtain a short tag. This
? Jooyoung Lee was supported by a National Research Foundation of Korea (NRF)
grant funded by the Korean government (Ministry of Science and ICT), No. NRF-
2017R1E1A1A03070248.



method is simple, in particular, being deterministic and stateless, yet its se-
curity caps at the so-called birthday bound; any collision at the output of the
UHF, which translates into a tag collision, is usually enough to break the security
of the scheme. However, the birthday bound security might not be enough, in
particular, when the MAC construction is instantiated with a lightweight block
cipher such as PRESENT [6], LED [9], GIFT [1] operating on small blocks.

Double-block Hash-then-Sum. Many studies tried to tweak the UHF-then-
PRF design in order to obtain beyond-birthday secure MACs, while they possess
a similar structural design; the internal state of the hash function is doubled, the
two n-bit hash values are encrypted by a block cipher using independent keys,
and the outputs are xored to generate the final tag. Datta et al. [7] have dubbed
this generic design principle the double-block hash-then-sum (DbHtS) paradigm.
Within this unified framework, they revisited the security proof of existing DbHtS
constructions, including PolyMAC (based on polynomial evaluation [8, 4, 17]),
SUM-ECBC [18], PMAC-Plus [19], 3kf9 [20] and LightMAC-Plus [14], and con-
firmed that all the constructions are secure up to 2 2n

3 queries (ignoring the max-
imum message length) when they are instantiated with an n-bit block cipher.
Recently, Leurent et al. [12] proposed generic attacks on all these constructions
using 2 3n

4 (short message) queries, leaving a gap between the upper and lower
bounds for the provable security of DbHtS constructions.

Our Results. The goal of this paper is to close this gap by proving the exact
PRF-security of DbHtS constructions. In order to do this, we take a modular
approach; the first step is to refine Mirror theory [15, 16] that systematically
estimates the number of solutions to a system of equations and non-equations
in order to prove the security of the finalization function up to 2 3n

4 queries.
However, we cannot directly apply Mirror theory to the problem in a black box
manner since it requires that ξ2

maxq ≤ 2n in its original form, where ξmax and q
denote the maximum component size and the number of equations, respectively.
So we refine Mirror theory by distinguishing components of size two and larger
ones, and make sharp estimation for components of size two, while we use the
fact that the number of larger components is probabilistically small.

The next step is to identify security requirements of the internal hash func-
tions to ensure 3n/4-bit security of the entire constructions, combined with the
finalization function. Existing security proofs limit the probability of having a
trail of length 3 in the transcript graph when an adversary makes 2 2n

3 queries,
while our proof allows an adversary making 2 3n

4 queries. So in this case, we need
to limit the probability of having a trail of length 4 in the transcript graph;
this is the most challenging part of the proof (e.g., Lemma 4 for the proof of
PMAC-Plus) that needs a careful case analysis.

As a result, we prove the security of various DbHtS constructions including
PolyMAC, SUM-ECBC, PMAC-Plus, 3kf9 and LightMAC-Plus up to 2 3n

4 queries,
ignoring the maximum message length. Table 1 compares our new bounds to
the old ones given in [7]. For some constructions, one cannot simply ignore the
influence of the maximum message length on the security bounds. As seen in
Figure 1, our bound for PMAC-Plus is better than the old one when ` is relatively
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small (while our bound is worse for a larger `). So our new bound should be seen
as complementary to the old one. However, we also remark that our security
proof does not use independent randomness of two masking keys ∆0 and ∆1;
a single masking key is sufficient for our security proof. We would be able to
remove the `2q/2n term from the security bound by a more complicated proof
using the independent randomness of two masking keys.

Table 1: New security bounds for DbHtS MACs. The number of queries and
the maximum message length (in blocks) are denoted q and `, respectively.
All the constructions (except PolyMAC) are based on an n-bit block cipher.
LightMAC-Plus uses an additional parameter s, which is the size of the prefix for
each block cipher call; one can assume ` = 2s − 1.

Construction # Keys Rate Old bound New bound
PolyMAC 4 − `2q3/22n `q

4
3 /2n

SUM-ECBC 4 1
2 `2q/2n + q3/22n `o(1)q

4
3 /2n + `4q

4
3 /22n

PMAC-Plus 3 1 `q3/22n + `2q2/22n `/2 n
2 + `

2
3 q

4
3 /2n + `2q/2n

3kf9 3 1 `4q3/22n `
4
3 q

4
3 /2n+`2q2/22n+`6q4/23n

LightMAC-Plus 3 n−s
n

q3/22n q
4
3 /2n

2 Preliminaries

Basic Notation. In all of the following, we fix a positive integer n, and denote
N = 2n. We denote 0n (i.e., n-bit string of all zeros) by 0. The set {0, 1}n is
sometimes regarded as a set of integers {0, 1, . . . , 2n − 1} by converting an n-
bit string an−1 · · · a1a0 ∈ {0, 1}n to an interger an−12n−1 + · · · + a12 + a0. We
also identify {0, 1}n with a finite field GF(2n) with 2n elements. For a positive
integer q, we write [q] = {1, . . . , q}.

Given a non-empty set X , x ←$ X denotes that x is chosen uniformly at
random from X . The set of all functions from X to Y is denoted Func(X ,Y), and
the set of all permutations of X is denoted Perm(X ). The set of all permutations
of {0, 1}n is simply denoted Perm(n). The set of all sequences that consist of b
pairwise distinct elements of X is denoted X ∗b. For integers 1 ≤ b ≤ a, we will
write (a)b = a(a− 1) · · · (a− b+ 1) and (a)0 = 1 by convention. If |X | = a, then
(a)b becomes the size of X ∗b.

When two sets X and Y are disjoint, their (disjoint) union is denoted X tY.
For a set X ⊂ {0, 1}n and λ ∈ {0, 1}n, we will write X ⊕ λ = {x⊕ λ : x ∈ X}.

PRFs and PRPs. Let F : K × X → Y be a keyed function with key space K,
domain X , and range Y, where X is a subset of {0, 1}∗. We will denote FK(X) for
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(a) n = 64 and ` = 28 (b) n = 128 and ` = 216

Fig. 1: Upper bounds on distinguishing advantage for PMAC-Plus. The solid and
the dotted lines represent the new and the old bounds, respectively. The dashed
line represents the security bound `q2/2n for PMAC. The x-axis gives the log
(base 2) of q, and the y-axis gives the security bounds.

F (K,X). A (q, t, `)-distinguisher against F is an algorithm D with oracle access
to a function from X to Y, making at most q oracle queries, each of length at
most ` in blocks, running in time at most t, and outputting a single bit. The
advantage of D in breaking the PRF-security of F , i.e., in distinguishing F from
a uniformly randomly chosen function R←$ Func(X ,Y), is defined as

Advprf
F (D) =

∣∣Pr
[
K ←$ K : DFK = 1

]
− Pr

[
R←$ Func(X ,Y) : DR = 1

]∣∣ .
When X = Y and F (K, ·) is a permutation for each K ∈ K, the PRP-security
of F is defined as

Advprp
F (D) =

∣∣Pr
[
K ←$ K : DFK = 1

]
− Pr

[
R←$ Perm(X ,Y) : DR = 1

]∣∣ .
For atk ∈ {prf, prp}, we define Advatk

F (q, t, `) as the maximum of Advatk
F (D)

over all (q, t, `)-distinguishers against F . We will consider PRP-security only for
a block cipher whose input size is fixed (e.g., X = {0, 1}n); in this case, we will
simply drop the parameter `. On the other hand, when we consider information
theoretic security, we will drop the parameter t.

Almost Universal Hash Functions. Let δ > 0, and let H : Kh × X → Y
be a keyed function for three non-empty sets Kh, X , and Y. H is said to be
δ-almost universal if for any distinct X and X ′ ∈ X ,

Pr [Kh ←$ Kh : HKh
(X) = HKh

(X ′)] ≤ δ.
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Double-block Hash-then-Sum Constructions. Let

H : Kh ×M −→ {0, 1}n × {0, 1}n

(Kh,M) 7−→ HKh
(M)

be a keyed function. We will write the 2n-bit function H as the concatenation
of two n-bit functions F and G. So we have

HKh
(M) = (FKh

(M), GKh
(M)) .

Given a block cipher

E : K × {0, 1}n −→ {0, 1}n

(K,X) 7−→ EK(X),

one can define the DbHtS construction based on H and E as follows.

DbHtS[H,E] : (Kh ×K2)×M −→ {0, 1}n

((Kh,K1,K2),M) 7−→ EK1(FKh
(M))⊕ EK2(GKh

(M)).

In a typical MAC based on an n-bit block cipher, the message space is given as
the set of all binary strings, namely {0, 1}∗, and a padding scheme

pad : {0, 1}∗ −→
∞⋃
i=1

({0, 1}n)i

is used, where pad is a public injective function. Since the padding scheme does
not affect the PRF-security of its MAC, we will simply assume that

M =
⋃̀
i=1

({0, 1}n)i ,

where ` denotes the maximum message length in blocks (after padding).

H-coefficient Technique. Consider the DbHtS construction based on H and
E using keys K = (Kh,K1,K2). The first step of the security proof is to replace
the keyed permutations EK1 and EK2 by independent random permutations; the
resulting construction will be denoted DbHtS[H] instead of DbHtS[H,E] .

Suppose that a distinguisher D adaptively makes q queries to the construc-
tion oracle, which is either DbHtS[H]Kh,π1,π2 for a random key Kh ∈ Kh and
independent random permutations π1 and π2 (in the real world) or a truly ran-
dom function R (in the ideal world), recording all the queries (Mi, Ti)1≤i≤q. So
according to the instantiation, it would imply either DbHtS[H]Kh,π1,π2(Mi) = Ti
or R(Mi) = Ti.

At the end of the interaction, we will give Kh to D for free. In the ideal
world, a dummy key Kh will be selected uniformly at random from Kh, and
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given to D. This will not degrade the adversarial distinguishing advantage since
the distinguisher is free to ignore this additional information. We will call

τ = (Kh, (M1, T1), . . . , (Mq, Tq))

the transcript of the attack; it contains all the information that D has obtained
at the end of the attack. We will assume that D is information theoretic, so
we can further assume that D is deterministic without making any redundant
query.

A transcript τ is called attainable if the probability to obtain this transcript
in the ideal world is non-zero. Any key Kh ∈ Kh and any sequence (T1, . . . , Tq) ∈
({0, 1}n)q uniquely determine an attainable transcript τ = (Kh, (Mi, Ti)1≤i≤q))
containing them, for some (Mi) ∈ ({0, 1}n)q. We denote Γ the set of attainable
transcripts. We also denote Tre (resp. Tid) the probability distribution of the
transcript τ induced by the real world (resp. the ideal world). By extension, we
use the same notation to denote a random variable distributed according to each
distribution.

In order to upper bound the advantage of the distinguisher, we will partition
the set of attainable transcripts Γ into a set of “good” transcripts Γgood such that
the probabilities to obtain some transcript τ ∈ Γgood are close in the real and in
the ideal world, and a set Γbad of “bad” transcripts such that the probability to
obtain any τ ∈ Γbad is small in the ideal world, and use the following theorem.

Lemma 1. Fix a distinguisher D. Let Γ = Γgood tΓbad be a partition of the set
of attainable transcripts. Assume that there exists ε1 such that for any τ ∈ Γgood,

Pr [Tre = τ ]
Pr [Tid = τ ] ≥ 1− ε1,

and that there exists ε2 such that Pr[Tid ∈ Γbad] ≤ ε2. Then one has

Advprf
DbHtS[H](D) ≤ ε1 + ε2.

3 Mirror Theory

The goal of this section is to lower bound the number of solutions to a certain
type of systems of equations and non-equations. We will represent a system of
equations and non-equations by a simple graph containing no loops or multiple
edges; each vertex denotes an n-bit unknown (for a fixed n), and each edge is
labeled with an element in {0, 1}n ∪ {6=}, where 6= is a special symbol meaning
non-equality. Let G = (V, E) be a graph and let PQ ∈ E be an edge for P , Q ∈ V.
If this edge is labeled with λ ∈ {0, 1}n, then it means an equation P ⊕ Q = λ,
while if it is labeled with a special symbol 6=, then it means that P and Q

are distinct. We will sometimes write P
?
− Q when an edge PQ is labeled with

? ∈ {0, 1}n ∪ {6=}.
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P

Q
C1 C2

. . . Cα D1D2
. . . Dβ

Fig. 2: A bipartite graph G= with two parts P and Q.

Let G= denote the graph obtained by deleting all 6=-labeled edges from G.
For ` > 0 and a trail1

L : P0
λ1
− P1

λ2
− · · ·

λ`

− P`

in G=, its label is defined as

λ(L) def= λ1 ⊕ λ2 ⊕ · · · ⊕ λ`.

In this work, we will focus on a graph G = (V, E) with certain properties, as
listed below.

1. G= contains no isolated vertex; every vertex is incident with at least one
edge.

2. The vertex set V is partitioned into two disjoint parts, denoted P and Q;
the edge set E contains P

6=
− P ′ for any different P , P ′ ∈ P, and Q

6=
−Q′ for

any different Q, Q′ ∈ Q.
3. G= contains no cycle.
4. λ(L) 6= 0 for any trail L of even length in G=.

Any graph G satisfying the above properties will be called a nice graph. For a
nice graph G, G= is a bipartite graph with no cycle, where every edge connects
a vertex in P to one in Q. So G= is decomposed into its connected components,
all of which are trees; let

G= = C1 t C2 t · · · t Cα t D1 t D2 t · · · t Dβ

for some α, β ≥ 0, where Ci denotes a component of size greater than 2, and
Di denotes a component of size 2. We will also write C = C1 t C2 t · · · t Cα and
D = D1 t D2 t · · · t Dβ (Figure 2).

Any solution to G (identifying G with its corresponding system of equations
and non-equations) should satisfy all the equations in G=, while all the variables
in P (resp. Q) should take on different values. We remark that if we assign any
value to a vertex P , then the labeled edges determine the values of all the other
vertices in the component containing P , where the assignment is unique since G=

1 A trail is a walk in which all edges are distinct.
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contains no cycle, and the values in the same part are all distinct since λ(L) 6= 0
for any trail L of even length.

On the other hand, the number of possible assignments of distinct values
to the vertices in P (resp. Q) is (N)|P| (resp. (N)|Q|). One might expect that
when such an assignment is chosen uniformly at random, it would satisfy all
the equations in G= with probability 1/Nq, where q denotes the number of
edges (i.e., equations) in G=. Indeed, we can prove that the number of solutions
to G is close to (N)|P|(N)|Q|

Nq up to a certain error (that can be negligible according
to the parameters).

Theorem 1. Let G be a nice graph, and let q and qc denote the number of edges
of G= and C, respectively. If q < N

8 , then the number of solutions to G, denoted
h(G), satisfies

h(G)Nq

(N)|P|(N)|Q|
≥ 1− 9q2

c

8N −
3qcq2

2N2 −
q2

N2 −
9q2
cq

8N2 −
8q4

3N3 .

Proof. For i = 1, . . . , α, Ci is a bipartite graph, where one part consists of the
vertices in P and the other vertices in Q; the two parts are denoted Pi and Qi,
respectively. Let ri = |Pi| and si = |Qi|, let di = ri + si.

Let hc(i) be the number of solutions to C1t· · ·tCi. In order to find a relation
between hc(i) and hc(i+ 1), we fix a solution to C1 t · · · t Ci. If we fix a vertex
P ∗ ∈ Pi+1 and assign any value to P ∗, then the other unknowns are uniquely
determined, since there is a unique trail from P ∗ to any other vertex in Ci+1. In
order to satisfy the non-equations, it is sufficient that

P ∗ /∈
⋃

1≤j≤i
P∈Pi+1

(Pj ⊕ λP ) ∪
⋃

1≤j≤i
Q∈Qi+1

(Qj ⊕ λQ) ,

where λX denotes the label of the unique trail from P ∗ to X if X 6= P ∗ and
λP∗ = 0. The number of such choices is at least

N − (r1 + · · ·+ ri)ri+1 − (s1 + · · ·+ si)si+1.

Then we have

hc(α) ≥ Nα

(
1− r1r2 + s1s2

N

)
· · ·
(

1− (r1 + · · ·+ rα−1)rα + (s1 + · · ·+ sα−1)sα
N

)

≥ Nα

1− 1
N

∑
1≤i<j≤α

(rirj + sisj)


≥ Nα

1− 1
2N

(
α∑
i=1

di

)2


≥ Nα

(
1− 9q2

c

8N

)
(1)
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since hc(1) = N ,
∑α
i=1 di = α+ qc and α ≤ qc/2.

For i = 1, . . . , β, we will write

Di : Pi
λi

−Qi

where Pi ∈ P and Qi ∈ Q. Let hd(i) be the number of solutions to CtD1t· · ·tDi
for i = 1, . . . , β. Note that hd(0) = hc(α) and hd(β) = h(G). In order to find a
relation between hd(i) and hd(i+ 1), we fix a solution to C tD1 t · · · tDi. Then
we can choose Pi+1 from {0, 1}n \ (Xi ∪ (Yi ⊕ λi+1)), where

Xi
def=

⊔
1≤j≤α

Pj t {P1, . . . , Pi},

Yi
def=

⊔
1≤j≤α

Qj t {Q1, . . . , Qi}.

For i = 0, . . . , β − 1, let

Ri = r1 + · · ·+ rα + i,

Si = s1 + · · ·+ sα + i.

Then, since |Xi| = Ri and |Yi| = Si, we have

hd(i+ 1) =
∑

solutions to
CtD1t···tDi

(N − |Xi ∪ (Yi ⊕ λi+1)|)

=
∑

solutions to
CtD1t···tDi

(N −Ri − Si + |Xi ∩ (Yi ⊕ λi+1)|)

= (N −Ri − Si)hd(i) +
∑

solutions to
CtD1t···tDi

|Xi ∩ (Yi ⊕ λi+1)|. (2)

For X ∈ Xi and Y ∈ Yi, let h′(X,Y ) denote the number of solutions to C tD1 t
· · · t Di such that X ⊕ Y = λi+1. Then we have∑

solutions to
CtD1t···tDi

|Xi ∩ (Yi ⊕ λi+1)| =
∑

X∈Xi,Y ∈Yi

h′(X,Y )

≥
∑

X∈{P1,...,Pi}
Y ∈{Q1,...,Qi}

h′(X,Y ). (3)

If X = Pj , Y = Qj , and λi+1 = λj for some j = 1, . . . , i, then the additional
equation X ⊕Y = λi+1 is redundant, and hence h′(X,Y ) = hd(i). Suppose that
X = Pj and Y = Qj′ for distinct j and j′, and λi+1 /∈ {λj , λj′}. In this case,
and for i ≥ 2, we have

h′(X,Y ) ≥ hd(i)
N

(
1− 2(Ri + Si)

N

)
(4)
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since

h′(X,Y ) ≥ (N − 2(Ri + Si − 4))hd(i− 2) ≥ (N − 2(Ri + Si))hd(i− 2),
hd(i− 2)N2 ≥ hd(i− 2) (N − (Ri + Si − 4)) (N − (Ri + Si − 2)) ≥ hd(i).

Let

G = |{1 ≤ j ≤ i : λj = λi+1}| ,
H =

∣∣{(j, j′) ∈ [i]∗2 : λj 6= λi+1, λj′ 6= λi+1
}∣∣ .

Then we have

H ≥ i(i− 1)− 2iG. (5)

By (3), (4), (5), and since 2i ≤ 2q ≤ N , we have

∑
solutions to
CtD1t···tDi

|Xi ∩ (Yi ⊕ λi+1)| ≥
(
G+ i(i− 1)− 2iG

N

(
1− 2(Ri + Si)

N

))
hd(i)

≥ i(i− 1)
N

(
1− 2(Ri + Si)

N

)
hd(i),

and by (2),

hd(i+ 1) ≥ (N −Ri − Si)hd(i) + i(i− 1)
N

(
1− 2(Ri + Si)

N

)
hd(i).

Since Ri+Si

2 ≤ q < N
8 and R0 + S0 = α+ qc ≤ 3qc

2 , we have

hd(i+ 1)N
hd(i)(N −Ri)(N − Si)

≥
N2 − (Ri + Si)N + (i2 − i)

(
1− 2(Ri+Si)

N

)
N2 − (Ri + Si)N +RiSi

= 1−
RiSi − (i2 − i)

(
1− 2(Ri+Si)

N

)
N2 − (Ri + Si)N +RiSi

≥ 1−
(R0 + i)(S0 + i)− (i2 − i) + 2(Ri+Si)i2

N

N2/2

≥ 1− 2R0S0

N2 − 2(R0 + S0 + 1)i
N2 − 4(Ri + Si)i2

N3

≥ 1− 9q2
c

8N2 −
3qci+ 2i
N2 − 8qi2

N3 . (6)
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Since q = qc + β, |P| = R0 + β, |Q| = S0 + β and α+ qc = R0 + S0, and by (1)
and (6), we have

h(G)Nq

(N)|P|(N)|Q|
= h(G)Nqc+β

(N)R0(N −R0)β(N)S0(N − S0)β

= hc(α)Nqc

(N)R0(N)S0

β−1∏
i=0

(
hd(i+ 1)N

hd(i)(N −Ri)(N − Si)

)

≥ hc(α)
Nα

β−1∏
i=0

(
hd(i+ 1)N

hd(i)(N −Ri)(N − Si)

)

≥
(

1− 9q2
c

8N

) β−1∏
i=0

(
1− 9q2

c

8N2 −
3qci+ 2i
N2 − 8qi2

N3

)

≥
(

1− 9q2
c

8N

)(
1−

β−1∑
i=0

(
9q2
c

8N2 + 3qci+ 2i
N2 + 8qi2

N3

))

≥
(

1− 9q2
c

8N

)(
1− 9q2

cq

8N2 −
3qcq2

2N2 −
q2

N2 −
8q4

3N3

)
≥ 1− 9q2

c

8N −
9q2
cq

8N2 −
3qcq2

2N2 −
q2

N2 −
8q4

3N3

which completes the proof. ut

4 A Framework for Security Proof of DbHtS MACs

In this section, we consider DbHtS[H,E] based on a 2n-bit function H and an
n-bit block cipher E. A message M is encrypted as

EK1(FKh
(M))⊕ EK2(GKh

(M))

by keys Kh, K1 and K2, where we write HKh
(M) = (FKh

(M), GKh
(M)) (see

Section 2).
Up to the PRP-security of E, the keyed permutations EK1 and EK2 can

be replaced by independent random permutations π1 and π2, in which case we
simply write DbHtS[H] instead of DbHtS[H,E]. The goal of this section is to
establish a general framework for security proof of DbHtS[H] using Theorem 1.

Graph Representation of Transcripts. At the end of the attack, the dis-
tinguisher D will be given Kh for free. Then, from the transcript

τ = (Kh, (Mi, Ti)1≤i≤q) ,

HKh
(Mi) = (Ui, Vi) are fixed for i = 1, . . . , q. The core of the security proof is to

estimate the number of possible ways of fixing π1(Ui) and π2(Vi) in a way that
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π1(Ui) ⊕ π2(Vi) = Ti for i = 1, . . . , q. So {π1(Ui)} and {π2(Vi)} are identified
with two sets of unknowns

P = {P1, . . . , Pq1},
Q = {Q1, . . . , Qq2},

respectively, where q1, q2 ≤ q, since there might be collisions between Ui’s or
between Vi’s. Assuming that P and Q are disjoint, we connect Pj and Qj′ with
an edge of label Ti if π1(Ui) = Pj and π2(Vi) = Qj′ for some i. Any pair of
vertices in the same set of either P or Q are connected by a 6=-labeled edge.
In this way, we obtain a graph on P t Q, called the transcript graph of τ and
denoted Gτ .

Good Transcripts. Fix a parameter q̄c (to be optimized later). A transcript
τ = (Kh, (Mi, Ti)1≤i≤q) is defined as good if

1. the transcript graph Gτ is nice (as defined in Section 3);
2. the number of edges in C (i.e., edges in the components of size greater than

two) is not greater than q̄c.

If a transcript τ is not good, then it will be called a bad transcript.
For a transcript graph Gτ , let G=

τ denote the graph obtained by deleting all 6=-
labeled edges from Gτ . Then G=

τ is a bipartite graph with q edges. By definition,
G=
τ has no isolated vertices. So in order to see if Gτ is nice, it is sufficient to

check out if

1. G=
τ has no cycle;

2. λ(L) 6= 0 for any trail L of even length.

A Framework for Security Proof. Once bad transcripts have been defined,
we will show that

Pr[Tid ∈ Γbad] ≤ ε2

for a small ε2 > 0. Next, we fix a good transcript τ . Obviously, we have

Pr [Tid = τ ] = 1
|Kh| ·Nq

.

The probability of obtaining τ in the real world is computed over the randomness
of π1 and π2. By Theorem 1 and since qc ≤ q̄c, the number of possible ways of
fixing π1(Ui) and π2(Vi) (i.e., h(Gτ )) is lower bounded by

(N)|P|(N)|Q|
Nq

(1− ε1)

where
ε1

def= 9q̄2
c

8N + 3q̄cq2

2N2 + q2

N2 + 9q̄2
cq

8N2 + 8q4

3N3 . (7)
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The probability that π1 and π2 realize each assignment is exactly 1/(N)|P|(N)|Q|.
So we have

Pr [Tre = τ ]
Pr [Tid = τ ] ≥ 1− ε1,

and by Lemma 1,
Advprf

DbHtS[H](D) ≤ ε1 + ε2.

5 Concatenating Universal Hash Functions

In this section, we will prove the security of DbHtS when the underlying hash
function H is defined as the concatenation of two copies of an almost universal
hash function using independent keys.

Let δ > 0, and let F : K×M→ {0, 1}n be a δ-almost universal hash function.
We will consider DbHtS[H], where

H : (K ×K)×M −→ {0, 1}n × {0, 1}n

((K1,K2),M) 7−→ (FK1(M), FK2(M)).

We fix the parameter q̄c, and define bad events as follows.

– Bad1 ⇔ there is a pair of distinct queries (Mi,Mj) such that FK1(Mi) =
FK1(Mj) and FK2(Mi) = FK2(Mj).

– Bad2 ⇔ Bad2a ∨ Bad2b, where
• Bad2a ⇔ there is a quadruple of distinct queries (Mi1 ,Mi2 ,Mi3 ,Mi4)
such that FK1(Mi1) = FK1(Mi2), FK2(Mi2) = FK2(Mi3), FK1(Mi3) =
FK1(Mi4),

• Bad2b ⇔ there is a quadruple of distinct queries (Mi1 ,Mi2 ,Mi3 ,Mi4)
such that FK2(Mi1) = FK2(Mi2), FK1(Mi2) = FK1(Mi3), FK2(Mi3) =
FK2(Mi4).

– Bad3 ⇔ there is a pair of distinct queries (Mi,Mj) such that Ti ⊕ Tj = 0
and either FK1(Mi) = FK1(Mj) or FK2(Mi) = FK2(Mj).

– Bad4 ⇔ Bad4a ∨ Bad4b, where
• Bad4a ⇔ the number of distinct queries (Mi,Mj) such that FK1(Mi) =
FK1(Mj) is greater than q̄c/4,

• Bad4b ⇔ the number of distinct queries (Mi,Mj) such that FK2(Mi) =
FK2(Mj) is greater than q̄c/4.

We observe that

1. G=
τ contains no cycle of length 2 without Bad1;

2. G=
τ contains no trail of length 4 without Bad2;

3. λ(L) 6= 0 for any trail L of length 2 without Bad3.

13



A distinct pair of “half-colliding” queries such that either FK1(Mi) = FK1(Mj)
or FK2(Mi) = FK2(Mj) will add an edge to any component containing it, and
make the size of the component greater than two; the number of edges in C cannot
be twice as many as the number of half-collisions. So the number of edges in C
is not greater than q̄c without Bad4. With this observation, we conclude that a
transcript is good without any bad event above; namely,

Pr[Tid ∈ Γbad] ≤ Pr[Bad1 ∨ Bad2 ∨ Bad3 ∨ Bad4].

We can upper bound the probability of each bad event as follows.

1. The probability that there exists a pair of distinct queries (Mi,Mj) such
that FK1(Mi) = FK1(Mj) and FK2(Mi) = FK2(Mj) is upper bounded by
q2δ2 since K1 and K2 are independent. Namely,

Pr[Bad1] ≤ q2δ2.

2. By the Markov inequality, we have

Pr[Bad4a], Pr[Bad4b] ≤
4q2δ

q̄c
.

3. Given that the number of FK1 -collisions is upper bounded by q̄c/4, the proba-
bility that there exist two FK1 -colliding pairs (Mi1 ,Mi2) and (Mi3 ,Mi4) such
that FK2(Mi2) = FK2(Mi3) is upper bounded by q̄2

cδ
16 . Namely, we have

Pr[Bad2a | ¬Bad4a] ≤ q̄2
cδ

16 .

Similarly, we have

Pr[Bad2b | ¬Bad4b] ≤
q̄2
cδ

16 .

4. For each pair of distinct queries (Mi,Mj), the probability that Ti ⊕ Tj = 0
is 1/N , and the probability that either FK1(Mi) = FK1(Mj) or FK2(Mi) =
FK2(Mj) is upper bounded by δ. Since the two events are independent and
by the union bound, we have

Pr[Bad3] ≤ q2δ

N
.

All in all, we have

Pr[Tid ∈ Γbad] ≤ Pr[Bad1 ∨ Bad2 ∨ Bad3 ∨ Bad4]
≤ Pr[Bad1] + Pr[Bad3] + Pr[Bad4a] + Pr[Bad2a | ¬Bad4a]
+ Pr[Bad4b] + Pr[Bad2b | ¬Bad4b]

≤ q2δ2 + q2δ

N
+ 8q2δ

q̄c
+ q̄2

cδ

8 . (8)
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Combining (7) and (8), we have

Advprf
DbHtS[H](D) ≤ q2δ2 + q2δ

N
+ 8q2δ

q̄c
+ q̄2

cδ

8

+ 9q̄2
c

8N + 3q̄cq2

2N2 + q2

N2 + 9q̄2
cq

8N2 + 8q4

3N3

for any distinguisher D making q queries, and for any q̄c > 0. When q̄c = 4q 2
3 (by

setting 8q2δ/q̄c = q̄2
cδ/8), we obtain the following theorem.

Theorem 2. Let δ > 0, and let F : K ×M → {0, 1}n be a δ-almost universal
hash function. Let

H : (K ×K)×M −→ {0, 1}n × {0, 1}n

((K1,K2),M) 7−→ (FK1(M), FK2(M)).

Then one has

Advprf
DbHtS[H](D) ≤ 4q 4

3 δ + q2δ2 + q2δ

N
+ 18q 4

3

N

+ 6q 8
3

N2 + 18q 7
3

N2 + q2

N2 + 8q4

3N3 .

When δ ≈ 1
N , DbHtS[H] becomes a PRF that is secure up to 2 3n

4 queries.

5.1 Security of PolyMAC

An n-bit keyed function PolyHash is defined with key space K = {0, 1}n, where
{0, 1}n is identified with a finite field GF(2n) with 2n elements. For a padded
messageM = M [1]‖M [2]‖ · · · ‖M [m] wherem ≤ `, and a keyK ∈ K, PolyHashK(M)
is defined using finite field addition and multiplication, denoted ⊕ and ·, respec-
tively.

Function PolyHashK(M)
Z[0]← 0
for α← 1 to m do

Z[α]← K · (Z[α− 1]⊕M [α])
return Z[m]

The PolyMAC MAC is defined as DbHtS[H], where

H : (K ×K)×M −→ {0, 1}n × {0, 1}n

((K1,K2),M) 7−→ (PolyHashK1(M),PolyHashK2(M)).

It is not hard to show that PolyHash is `
N -almost universal. Therefore, by The-

orem 2, we obtain the following theorem.
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Theorem 3. When PolyMAC is based on a block cipher E, one has

Advprf
PolyMAC(q, t, `) ≤ (4`+ 18)q 4

3

N
+ 6q 8

3

N2 + 18q 7
3

N2 + (`2 + `+ 1)q2

N2 + 8q4

3N3

+ 2Advprp
E (q, t+ t′),

where t′ is the time complexity necessary to compute E for q times.

5.2 Security of SUM-ECBC

An n-bit hash function CBC is based an n-bit block cipher E using k-bit keys.
For a padded message M = M [1]‖M [2]‖ · · · ‖M [m] where m ≤ `, and a key
K ∈ {0, 1}k, CBCK(M) is defined as follows.

Function CBCK(M)
Z[0]← 0
for α← 1 to m do

Z[α]← EK (Z[α− 1]⊕M [α])
return Z[m]

The SUM-ECBC MAC is defined as DbHtS[H] (Figure 3), where

H : ({0, 1}k × {0, 1}k)×M −→ {0, 1}n × {0, 1}n

((K1,K2),M) 7−→ (CBCK1(M),CBCK2(M)).

Form ≤ `, let d(m) be the number of divisors ofm and let d′(`) = maxm≤` d(m).
It is known that d′(`) = `o(1). In [11, Corollary 2], it has been proved that CBC
is δ-almost universal when the underlying block cipher is replaced by a truly
random permutation, where

δ = d′(`)
N − 2` + 16`4

N2 .

Therefore, by Theorem 2, we obtain the following theorem.

Theorem 4. Assume that ` ≤ N/4. When SUM-ECBC is based on a block cipher
E, one has

Advprf
SUM-ECBC(q, t, `) ≤ (8d′(`) + 18)q 4

3

N
+ 6q 8

3

N2 + 18q 7
3

N2 + (4d′(`)2 + 2d′(`) + 1)q2

N2

+ 64`4q 4
3

N2 + 8q4

3N3 + (64d′(`) + 16)`4q2

N3 + 256`8q2

N4

+ 4Advprp
E (`q, t+ t′),

where t′ is the time complexity necessary to compute E for `q times.
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EK1

M [1]

EK1

M [2]

· · · EK1

M [m− 1]

EK1

M [m]

EK2

EK3

M [1]

EK3

M [2]

· · · EK3

M [m− 1]

EK3

M [m]

EK4

T

Fig. 3: SUM-ECBC based on a block cipher E using four keys Ki, i = 1, 2, 3, 4.

6 Security of PMAC-Plus

A 2n-bit hash function PHash is based an n-bit block cipher E using k-bit keys.
For a padded message M = M [1]‖M [2]‖ · · · ‖M [m] where m ≤ `, and a key
K ∈ {0, 1}k, PHashK(M) is defined as follows.

Function PHashK(M)
∆0 ← EK(0)
∆1 ← EK(1)
for α← 1 to m do

X[α]←M [α]⊕ 2α ·∆0 ⊕ 22α ·∆1
Y [α]← EK(X[α])

U ← Y [1]⊕ Y [2]⊕ · · · ⊕ Y [m]
V ← Y [1]⊕ 2 · Y [2]⊕ · · · ⊕ 2m−1 · Y [m]
return (U, V )

The PMAC-Plus MAC is defined as DbHtS[PHash] (Figure 4).
For simplicity of proof, we will replace keyed permutations EK1 , EK2 , EK3

by independent random permutations π, π′, π′′, respectively, up to the PRP-
security of E (to be captured by the term 3Advprp

E (`q, t + t′) in Theorem 5).
So we will focus on PHash based on a truly random permutation π, and upper
bound the probability of bad transcripts (as defined in Section 4).2

2 We will simply omit key π ∈ Perm(n) in PHash and its halves F and G.
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EK1

M [1]

2 ·∆0

22 ·∆1

X[1]

0

Y [1]

0

EK1

M [2]

22 ·∆0

24 ·∆1

X[2]

Y [2]

2

EK1

M [m− 1]

2m−1 ·∆0

22(m−1) ·∆1

X[m− 1]

Y [m− 1]

· · ·

· · ·

2m−2

EK1

M [m]

2m ·∆0

22m ·∆1

X[m]

Y [m]

2m−1

EK2

EK3

T

Fig. 4: PMAC-Plus based on a block cipher E using three keys K1, K2, K3, where
∆0 = EK1(0) and ∆1 = EK1(1).

Bad Events. Note that PHash(M) = (F (M), G(M)) for any message M . We
fix a parameter q̄c, and define bad events as follows.

– Bad1 ⇔ there is a pair of distinct queries (Mi,Mj) such that PHash(Mi) =
PHash(Mj).

– Bad2 ⇔ there is a quadruple of distinct queries (Mi1 ,Mi2 ,Mi3 ,Mi4) such
that F (Mi1) = F (Mi2), G(Mi2) = G(Mi3), F (Mi3) = F (Mi4).

– Bad3 ⇔ there is a quadruple of distinct queries (Mi1 ,Mi2 ,Mi3 ,Mi4) such
that G(Mi1) = G(Mi2), F (Mi2) = F (Mi3), G(Mi3) = G(Mi4) and Ti1 ⊕
Ti2 ⊕ Ti3 ⊕ Ti4 = 0.

– Bad4 ⇔ there is a pair of distinct queries (Mi,Mj) such that Ti ⊕ Tj = 0
and either F (Mi) = F (Mj) or G(Mi) = G(Mj).

– Bad5 ⇔ Bad5a ∨ Bad5b, where
• Bad5a ⇔ the number of distinct queries (Mi,Mj) such that F (Mi) =
F (Mj) is greater than q̄c/4,

• Bad5b ⇔ the number of distinct queries (Mi,Mj) such that G(Mi) =
G(Mj) is greater than q̄c/4.

We distinguish two types of trails of length 4; a trail of type M consists of two F -
collisions and one G-collision, while a trail of type W consists of two G-collisions
and one F -collision. Then we observe that

1. G=
τ contains no cycle of length 2 without Bad1;

2. G=
τ contains no trail of type M without Bad2;

3. G=
τ contains no trail of type W whose label is 0 without Bad3;

4. G=
τ contains no trail of length 2 whose label is 0 without Bad4;
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5. the number of edges in C is not greater than q̄c without Bad5.

Without Bad2, G=
τ contains neither a cycle of length 4 nor a trail of length 5.

We also note that λ(L) 6= 0 for any trail L of even length without Bad2, Bad3
and Bad4. Therefore, we have

Pr[Tid ∈ Γbad] ≤ Pr[Bad1 ∨ Bad2 ∨ Bad3 ∨ Bad4 ∨ Bad5].

Auxiliary Events. For each i = 1, . . . , q, the i-th message is denoted Mi =
Mi[1]‖ · · · ‖Mi[mi], where mi is the length ofMi in blocks. For distinct i, j ∈ [q],
let

NEQi,j
def= {α ∈ [min{mi,mj}] : Mi[α] 6= Mj [α]}
t {α : min{mi,mj} < α ≤ max{mi,mj}} .

Since Mi[α] = Mj [α] for any index α /∈ NEQi,j , we can simply ignore such an
index when we consider F - and G-collisions. We also note that NEQi,j 6= ∅ if Mi

and Mj are distinct.
Once ∆0 = π(0) and ∆1 = π(1) are fixed, we obtain Xi = Xi[1]‖ · · · ‖Xi[mi],

where Xi[α] = Mi[α]⊕ 2α ·∆0 ⊕ 22α ·∆1. Let

Icol
def= {(i, j) ∈ [q]∗2 : Xi[α] = Xj [β] for some α, β such that α 6= β},

I ′col
def= {(i, j) ∈ [q]∗2 : min{NEQi,j} ≤ mi and Xi[min{NEQi,j}] = Xj [β] for some β}.

In order to analyze the probability of the bad events, we need to introduce
certain auxiliary events as follows.

– Aux1 ⇔ either π(0) = 0 or π(1) = 0;
– Aux2 ⇔ Xi[α] = Xi[β] for some i ∈ [q] and two distinct indices α and β;
– Aux3 ⇔ Xi[α] ∈ {0, 1, π−1(0)} for some i ∈ [q] and α ∈ [mi];
– Aux4 ⇔ |Icol| > q̂c;
– Aux5 ⇔ |I ′col| > q̄c.

Note that q̄c has been introduced in Section 3, while q̂c is a new one. Let Aux =
Aux1 ∨ Aux2 ∨ Aux3 ∨ Aux4 ∨ Aux5. It is not hard to see that if ` ≤ N , then

Pr[Aux1 ∨ Aux3] ≤ 3`q
N − 2 + 2

N
, Pr[Aux2] ≤ `2q

2N ,

Pr[Aux4] ≤ `2q2

q̂cN
, Pr[Aux5] ≤ `q2

q̄cN

over the random choice of π(0), π(1), π−1(0). Simplifying the bounds, we have

Pr[Aux] ≤ (`2 + 8`)q
2N + `2q2

q̂cN
+ `q2

q̄cN
. (9)

Almost Universality. The almost universality of each half of PHash will be
used to upper bound the probability of Bad4 and Bad5.
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Lemma 2. Let PHash(M) = (F (M), G(M)) for any message M . If ` ≤ N/4,
then F and G are δ-almost universal, where

δ = 8`
N
.

We refer to [19] for the proof of Lemma 2.
Classifying X-Variables. In order to upper bound the probability of Bad1,
Bad2, Bad3, we need to classify X-variables for each pair of messages, assuming
that Aux has not occurred; let

Xi,j = Xī,j t Xi,j̄ t Xī,j̄
where

Xī,j
def= {Xi[α] : α ∈ NEQi,j} \ {Xj [α] : α ∈ NEQi,j},

Xi,j̄
def= {Xj [α] : α ∈ NEQi,j} \ {Xi[α] : α ∈ NEQi,j},

Xī,j̄
def= {Xi[α] : α ∈ NEQi,j} ∩ {Xj [α] : α ∈ NEQi,j}.

We make the following observations.

1. If X ∈ Xī,j̄ , then we have X = Xi[α] = Xj [β] for distinct indices α and β.
2. If Xī,j ∪ Xi,j̄ = ∅, then F (Mi) = F (Mj) (regardless of π); the probability

that Xī,j ∪Xi,j̄ = ∅ is upper bounded by `
N−1 over the random choice of ∆0

and ∆1.
3. If Xī,j ∪Xi,j̄ contains either one or two elements, then it is not possible that
F (Mi) = F (Mj).

4. The probability that Xī,j̄ 6= ∅ is upper bounded by `2

N−1 over the random
choice of ∆0 and ∆1.

By relabeling, let

Xi,j = {X[1], . . . , X[t]},
Yi,j = {Y [1], . . . , Y [t]},

where t = |Xi,j | and Y [α] = π(X[α]) for α = 1, . . . , t. We also partition the set
of indices {1, . . . , t} into three subsets; {1, . . . , t} = Iī,j t Ii,j̄ t Iī,j̄ , where

α ∈ Iī,j ⇔ X[α] ∈ Xī,j ,
α ∈ Ii,j̄ ⇔ X[α] ∈ Xi,j̄ ,
α ∈ Iī,j̄ ⇔ X[α] ∈ Xī,j̄ .

Then we can represent F - and G-collisions by equations in Y [α] as follows.

F (Mi) = F (Mj)⇔ A1 · Y [1]⊕ · · · ⊕At · Y [t] = 0, (10)
G(Mi) = G(Mj)⇔ B1 · Y [1]⊕ · · · ⊕Bt · Y [t] = 0, (11)

where
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1. Aα = 1 if α ∈ Iī,j ∪ Ii,j̄ , and Aα = 0 if α ∈ Iī,j̄ ;
2. Bα = 2β for some β if α ∈ Iī,j ∪ Ii,j̄ , and Bα = 2β ⊕ 2γ for distinct β and γ

if α ∈ Iī,j̄ .

Each unknown Y [α] can be seen as a random variable whose value is taken from
a set of size N − 3, namely {0, 1}n \ {0, π(0), π(1)}.
Upper Bounding the Probability of Bad Events. We are now ready to
upper bound the probability of each bad event above.

Lemma 3. Assume that ` ≤ N
8 . Then, in the ideal world, one has

Pr[Bad1 ∧ ¬Aux] ≤ 4`q2

N2 .

Proof. We fix distinct i, j ∈ [q], and distinguish the following two cases.
Case 1: Xī,j ∪ Xi,j̄ = ∅. This case happens with probability at most `

N−1 over
the random choice of∆0 and∆1. Since all the coefficients Bα in (11) are nonzero,
the probability that G(Mi) = G(Mj) is upper bounded by (N − 3)t−1/(N − 3)t,
which is not greater than 1

N−2`−2 since t ≤ 2`.
Case 2: Xī,j ∪ Xi,j̄ 6= ∅. It should be the case that |Xī,j ∪ Xi,j̄ | ≥ 2 since
otherwise we have F (Mi) 6= F (Mj). Consider equations (10) and (11) (with the
same pair of i and j). There are at least two indices α, α′ ∈ Iī,j ∪ Ii,j̄ , where
Aα = Aα′ = 1, Bα = 2β and Bα′ = 2γ for distinct β and γ. So the system of
equations has rank 2, and hence the equations are satisfied with probability at
most (N − 3)t−2/(N − 3)t, which is not greater than 1

(N−2`−1)(N−2`−2) .
Overall, we have Pr[Bad1 ∧ ¬Aux] ≤ 4`q2

N2 since ` ≤ N
8 . ut

Lemma 4. Assume that ` ≤ N
16 . Then, in the ideal world, one has

Pr[Bad2 ∧ ¬Aux] ≤ 2q̄c2

N
+ 4q̂c

N
+ 2
N

+ 2
√

2q2

N
3
2

+ 8q̂cq2

N2 + 96q2

N2 + 8q4

N3 .

Proof. We partition the set [q]∗4 of quadruples into five subsets; [q]∗4 = J1 t
J2 t J3 t J4 t J5, where

J1
def=
{

(i1, i2, i3, i4) ∈ [q]∗4 : (i2, i3) ∈ Icol
}
,

J2
def=
{

(i1, i2, i3, i4) ∈ [q]∗4 : (i2, i3) /∈ Icol ∧ (i1, i2) ∈ Icol ∧ (i3, i4) ∈ Icol
}
,

J3
def=
{

(i1, i2, i3, i4) ∈ [q]∗4 : (i2, i3) /∈ Icol ∧ (i1, i2) /∈ Icol ∧ (i3, i4) ∈ Icol
}
,

J4
def=
{

(i1, i2, i3, i4) ∈ [q]∗4 : (i2, i3) /∈ Icol ∧ (i1, i2) ∈ Icol ∧ (i3, i4) /∈ Icol
}
,

J5
def=
{

(i1, i2, i3, i4) ∈ [q]∗4 : (i2, i3) /∈ Icol ∧ (i1, i2) /∈ Icol ∧ (i3, i4) /∈ Icol
}
.

For (i1, i2, i3, i4) ∈ [q]∗4, let

Badi1,i2,i3,i42 ⇔ F (Mi1) = F (Mi2) ∧G(Mi2) = G(Mi3) ∧ F (Mi3) = F (Mi4).
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Then we have
Bad2 ⇔

∨
(i1,i2,i3,i4)∈[q]∗4

Badi1,i2,i3,i42 ,

and hence,
Pr [Bad2 ∧ ¬Aux] ≤ p1 + p2 + p3 + p4 + p5,

where

pj
def= Pr

 ∨
(i1,i2,i3,i4)∈Jj

Badi1,i2,i3,i42

 ∧ ¬Aux


for j = 1, 2, 3, 4, 5.

For a fixed quadruple (i1, i2, i3, i4), we can represent Badi1,i2,i3,i42 by a system
of three linear equations;

F (Mi1) = F (Mi2)⇔ A1,1 · Y [1]⊕ · · · ⊕A1,t · Y [t] = 0,
G(Mi2) = G(Mi3)⇔ A2,1 · Y [1]⊕ · · · ⊕A2,t · Y [t] = 0,
F (Mi3) = F (Mi4)⇔ A3,1 · Y [1]⊕ · · · ⊕A3,t · Y [t] = 0

for some Aj,α, where each column corresponds to a variable in
Xī1,i2 ∪ Xi1,ī2 ∪ Xi2,i3 ∪ Xī3,i4 ∪ Xi3,ī4 ,

so the number of columns, denoted t, is the size of this set. This system of equa-
tions can also be regarded as a 3× t matrix (Aj,α). This matrix will sometimes
be denoted A(i1,i2,i3,i4) to specify the corresponding quadruple. For j = 1, 2, 3,
the j-th row of (Aj,α) is denoted A(i1,i2,i3,i4)

j , or simply Aj . We observe that the
second row A2 is always nonzero, namely, the G-collision is nontrivial.
Upper Bounding p1. We have ∨

(i1,i2,i3,i4)∈J1

Badi1,i2,i3,i42

∧¬Aux ⇒

 ∨
(i2,i3)∈Icol

G(Mi2) = G(Mi3)

∧¬Aux.

Since |Icol| ≤ q̂c and the G-collision is nontrivial, the probability of the event on
the right-hand side is upper bounded by q̂c/(N − 2`− 2). So we have

p1 ≤
2q̂c
N
. (12)

Upper Bounding p2. We have ∨
(i1,i2,i3,i4)∈J2

Badi1,i2,i3,i42

 ∧ ¬Aux ⇒

 ∨
(i1,i2)∈Icol\I′col

F (Mi1) = F (Mi2)



∧


∨

(i1,i2)∈I′col
(i3,i4)∈I′col
(i2,i3)/∈Icol

G(Mi2) = G(Mi3)

 ∧ ¬Aux
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We see that

1. for any pair of messages in Icol \ I ′col, their F -collision is nontrivial;
2. for any pair of messages in [q]∗2 \ Icol, their G-collision is nontrivial;
3. |Icol \ I ′col| ≤ q̂c and |I ′col| ≤ q̄c.

Therefore we have

p2 ≤
q̂c

N − 2`− 2 + q̄c
2

N − 2`− 2 ≤
2q̂c
N

+ 2q̄c2

N
. (13)

Upper Bounding p3. Fix a quadruple (i1, i2, i3, i4) ∈ J3, and consider the cor-
responding matrix A(i1,i2,i3,i4) = (Aj,α). A1 is a zero-one matrix, but nonzero
since (i1, i2) /∈ Icol, while A2 contains at least two entries, say 2β and 2γ
for distinct β and γ. This implies that A2 cannot be a multiple of A1, and
hence (Aj,α) has rank at least two. Therefore the probability that random
variables Y [1], . . . , Y [t] satisfy the system of equations is upper bounded by
(N − 3)t−2/(N − 3)t, which is 1/(N − t − 1)(N − t − 2). Since the number of
quadruples (i1, i2, i3, i4) ∈ [q]∗4 such that (i2, i3) /∈ Icol is at most q̂cq2 and since
t ≤ 4`, we have

p3 ≤
q̂cq

2

(N − 4`− 1)(N − 4`− 2) ≤
4q̂cq2

N2 . (14)

Upper Bounding p4. In a similar manner to the analysis of p3, we obtain

p4 ≤
q̂cq

2

(N − 4`− 1)(N − 4`− 2) ≤
4q̂cq2

N2 . (15)

Upper Bounding p5. Fix a quadruple (i1, i2, i3, i4) ∈ J5, and consider the
corresponding matrix A(i1,i2,i3,i4) = (Aj,α). We can assume that A1 and A3
contain at least three 1’s, since otherwise we will not have two F -collisions for A1
and A3. Every entry of A2 should be given as 2α for some α (since (i2, i3) /∈ Icol),
and for each α, 2α appears at most twice in the row. Furthermore, A2 should
contain at least two distinct entries, since otherwise we will not have the G-
collision (with distinct nonzero Y -variables). So A2 cannot be a multiple of A1,
and hence the rank of (Aj,α) is at least two. In this case, we have two possibilities;
one is that A1 = A3, and the other is that A2 = CA1 ⊕DA3 for some nonzero
constants C and D.

All in all, J5 can be represented by a union of three subsets; J5 = J5,1 ∪
J5,2 ∪ J5,3, where

J5,1
def=
{

(i1, i2, i3, i4) ∈ J5 : A(i1,i2,i3,i4) has rank 3
}
,

J5,2
def=
{

(i1, i2, i3, i4) ∈ J5 : A(ij)
1 = A

(ij)
3

}
,

J5,3
def=
{

(i1, i2, i3, i4) ∈ J5 : A(ij)
2 = CA

(ij)
1 ⊕DA(ij)

3 for nonzero C and D
}
.
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For (i1, i2, i3, i4) ∈ J5,1, it is not hard to see that the probability of Y -variables
satisfying the corresponding system of equations is upper bounded by (N −
3)t−3/(N − 3)t, which is 1/(N − t)(N − t− 1)(N − t− 2). Since t ≤ 4`, we have

Pr

 ∨
(i1,i2,i3,i4)∈J5,1

Badi1,i2,i3,i42

 ∧ ¬Aux


≤ q4

(N − 4`)(N − 4`− 1)(N − 4`− 2) ≤
8q4

N3 . (16)

In order to upper bound the probability of Badi1,i2,i3,i42 for (i1, i2, i3, i4) ∈
J5,2, we need to define an equivalence relation, denoted ∼, on [q]∗2 \ Icol, where

(i1, i2) ∼ (i3, i4)⇔ Xī1,i2 t Xi1,ī2 = Xī3,i4 t Xi3,ī4 .

The relation (i1, i2) ∼ (i3, i4) implies that A1 = A3 for A(i1,i2,i3,i4). In other
words, F (Mi1) = F (Mi2)⇔ F (Mi3) = F (Mi4), namely, the two F -collisions are
dependent on each other. We will assume that this relation partitions [q]∗2 \ Icol
into r subsets, denoted I1, . . . , Ir, respectively. So we have

[q]∗2 \ Icol = I1 t · · · t Ir.

For j = 1, . . . , r, let

Ej ⇔ F (Mi1) = F (Mi2) for every (i1, i2) ∈ Ij .

Then we have
Pr [Ej ∧ ¬Aux] ≤ 1

N − 2`− 2 .

Given ¬Aux, we have ∨
(i1,i2,i3,i4)∈J5,2

Badi1,i2,i3,i42

⇒
 ∨
j∈[r]

∨
(i1,i2),(i3,i4)∈Ij

Badi1,i2,i3,i42

 .

For each j = 1, . . . , r, we have

Pr

 ∨
(i1,i2),(i3,i4)∈Ij

Badi1,i2,i3,i42

 ∧ ¬Aux


≤ Pr [Ej ∧ ¬Aux] · Pr

 ∨
(i1,i2),(i3,i4)∈Ij

G(Mi2) = G(Mi3)

∣∣∣∣∣ Ej ∧ ¬Aux


≤ 1
N − 2`− 2 ·min

(
|Ij |2

N − 3`− 2 , 1
)
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since the first and the second rows of A(i1,i2,i3,i4) are always linearly independent.
Overall, we have

Pr

 ∨
(i1,i2,i3,i4)∈J5,2

Badi1,i2,i3,i42

 ∧ ¬Aux

 ≤ r∑
j=1

2
N
·min

(
2 |Ij |2

N
, 1
)

(17)

where we use ` ≤ N/16. Subject to the condition
∑r
j=1 |Ij | = q2 (and with no

restriction on r),
∑r
j=1 min

(
2|Ij |2
N , 1

)
is maximized when r =

⌊
q2/
(
N
2
) 1

2
⌋

+ 1,

|Ij | = (N2 ) 1
2 for j = 1, . . . , r − 1 and |Ir| = q2 − (r − 1)

(
N
2
) 1

2 , in which case we
have

r∑
j=1

2
N
·min

(
2 |Ij |2

N
, 1
)
≤ 2
√

2q2

N
3
2

+ 2
N
. (18)

Finally, we focus on A(i1,i2,i3,i4) for (i1, i2, i3, i4) ∈ J5,3. We note that A2 is
represented by a linear combination of A1 and A3, where we can assume that

1. A2 does not contain the same entry more than twice;
2. A2 contains at least two different nonzero entries;
3. each of A1 and A3 contains at least three 1’s.

Therefore the supports of A1 and A3 cannot intersect at more than two positions,
nor be disjoint each other. So we should be able to find a 3× 3 submatrix1 1 0

C C ⊕D D
0 1 1


where C = 2α and D = 2β for distinct α and β. Furthermore, it should be the
case that 2α⊕2β = 2γ for some γ since (i2, i3) /∈ Icol. Since a linear combination
of A1 and A3 generates at most three different nonzero values in A2, we conclude
that NEQi2,i3 = {α, β, γ}.

Suppose that we begin with two messagesMi2 andMi3 such that |NEQi2,i3 | =
3, and try to find Mi1 and Mi4 such that (i1, i2, i3, i4) ∈ J5,3. Let NEQi2,i3 =
{α, β, γ}, where 2α⊕2β⊕2γ = 0 and α < β < γ. Then A2 is uniquely determined
by Mi2 and Mi3 , and its nonzero elements are 2α, 2β , 2γ , each of which appears
once or twice in the row. Once we choose a pair of distinct coefficients (C,D) ∈
{2α, 2β , 2γ}∗2, we can fix A1 and A3 such that CA1⊕DA3 = A2. For example, if
every nonzero element appears exactly twice in A2, and if C = 2α and D = 2β ,
then A will contain a 3× 6 submatrix 1 0 1 1 0 1

2α 2β 2γ 2α 2β 2γ
0 1 1 0 1 1


with all the other entries being zero. Since we have at most two possibilities for
Mi1 (resp. Mi4) yielding A1 (resp. A3), the number of possible ways of choosing
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Mi1 and Mi4 is at most 24 (given Mi2 and Mi3), and for each of such quadru-
ples, the probability that the Y -variables satisfy the corresponding system of
equations is upper bounded by 1/(N − 4`− 1)(N − 4`− 2). Therefore we have

Pr

 ∨
(i1,i2,i3,i4)∈J5,3

Badi1,i2,i3,i42

 ∧ ¬Aux


≤ 24q2

(N − 4`− 1)(N − 4`− 2) ≤
96q2

N2 . (19)

By (16), (17), (18), (19), we have

p5 ≤
2
N

+ 2
√

2q2

N
3
2

+ 96q2

N2 + 8q4

N3 . (20)

The proof is now complete by (12), (13), (14), (15), (20). ut

Lemma 5. Assume that ` ≤ N
8 . Then, in the ideal world, one has

Pr[Bad3 ∧ ¬Aux] ≤ 6`2q4

N3 .

Proof. Fix a quadruple of distinct queries. For simplicity of notation and without
loss of generality, we will consider (M1,M2,M3,M4). In the ideal world, the
probability that T1 ⊕ T2 ⊕ T3 ⊕ T4 = 0 is 1

N .
Next, we will upper bound the probability that F (M1) = F (M2) andG(M2) =

G(M3), focusing on the first three messages. We consider the following three
cases.
Case 1: X1̄,2 ∪ X1,2̄ = ∅. The analysis is similar to Case 1 in Lemma 3; the
probability that F (M1) = F (M2) and G(M2) = G(M3) in this case is upper
bounded by `

(N−1)(N−2`−2) .

Case 2: X1̄,2 ∪ X1,2̄ 6= ∅ and X2̄,3̄ 6= ∅. The probability that X2̄,3̄ 6= ∅ (over
the random choice of ∆0 and ∆1) is upper bounded by `2

N−1 . Once ∆0 and ∆1
are fixed, the probability that F (M1) = F (M2) (over the random choice of π) is
upper bounded by 1

N−2`−2 .
Case 3: X1̄,2∪X1,2̄ 6= ∅ and X2̄,3̄ = ∅. It should be the case that |X1̄,2∪X1,2̄| ≥ 2.
The F - and G-collisions can be represented by a system of equations

A1,1 · Y [1]⊕ · · · ⊕A1,t · Y [t] = 0,
A2,1 · Y [1]⊕ · · · ⊕A2,t · Y [t] = 0,

for some Aj,α, where t = |X1̄,2 ∪ X1,2̄ ∪ X2,3|. We can also partition the set of
indices {1, . . . , t} into two subsets; {1, . . . , t} = I1 t I2, where

α ∈ I1 ⇔ X[α] ∈ X1̄,2 t X1,2̄,

α ∈ I2 ⇔ X[α] ∈ X2,3 \ (X1̄,2 ∪ X1,2̄).
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We note that A1,α = 1 for every α ∈ I1 and A1,α = 0 for every α ∈ I2.
Furthermore, for every α ∈ I2, A2,α is nonzero. So if I2 is nonempty, then (Ai,α)
contains a 2× 2 submatrix [

1 0
∗ 2β

]
for some β, and hence the system of equations has rank 2.

If I2 is empty, then X2̄,3 ∪ X2,3̄ ⊂ X1̄,2 t X1,2̄. We also have |X2̄,3 ∪ X2,3̄| ≥ 2
since otherwise G(M2) 6= G(M3). So we have two indices α, α′ ∈ I1 such that
X[α], X[α′] ∈ X2̄,3 ∪ X2,3̄. Since A2,α = 2β and A2,α′ = 2γ for distinct β and γ,
(Ai,α) contains a 2× 2 submatrix [

1 1
2β 2γ

]
for distinct β and γ, and hence the system of equations has rank 2. So in any case,
the system of equations are satisfied with probability at most 1

(N−2`−1)(N−2`−2) .
Overall, we have Pr[Bad3 ∧ ¬Aux] ≤ 6`2q4

N3 since ` ≤ N
8 . ut

The following two lemmas are easy to prove using the Markov inequality and
the almost universality of F and G.

Lemma 6. In the ideal world, one has

Pr[Bad4] ≤ 16`2q2

N2 .

Lemma 7. In the ideal world, one has

Pr[Bad5] ≤ 64`q2

q̄cN
.

By Lemma 3, 4, 5, 6, 7, and (9), we can upper bound the probability of Bad, and
then combining it with (7) (setting q̂c = `N

1
2 /2
√

2 and q̄c = 2` 1
3 q

2
3 ), we obtain

the following theorem.

Theorem 5. Assume that ` ≤ N/16. When PMAC-Plus is based on a block
cipher E, one has

Advprf
PMAC-Plus(q, t, `) ≤

√
2`

N
1
2

+ 45` 2
3 q

4
3

N
+ (`2 + 8`)q

2N + 2
N

+ (4
√

2`+ 2
√

2)q2

N
3
2

+ 3` 1
3 q

8
3

N2 + 9` 2
3 q

7
3

2N2 + (16`2 + 4`+ 97)q2

N2 + (18`2 + 32)q4

3N3

+ 3Advprp
E (`q, t+ t′),

where t′ is the time complexity necessary to compute E for `q times.

Note that all the constant coefficients are loosely estimated in our bounds; most
large coefficients appear since we replace N − c` by N/2 for any small integer c.
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EK1

M [2]
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M [m− 1]
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M [m]

EK2

EK3 T. . .
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Fig. 5: 3kf9 based on a block cipher E using three keys K1, K2, K3.

7 Security of 3kf9 and LightMAC-Plus
In this section, we provide upper bounds on the PRF-security of 3kf9 and
LightMAC-Plus. Due to space constraints, the proof is deferred to the full version
of this paper. We remark that the security proof of LightMAC-Plus is much sim-
pler than PMAC-Plus; the structure of LightMAC-Plus is similar to PMAC-Plus,
while domain separation by distinct prefixes removes most bad events in the
proof.

7.1 Security of 3kf9
A 2n-bit hash function 3kf9Hash is based an n-bit block cipher E using k-bit
keys. For a padded message M = M [1]‖M [2]‖ · · · ‖M [m] where m ≤ `, and for
a key K ∈ {0, 1}k, 3kf9HashK(M) is defined as follows.

Function 3kf9HashK(M)
Z[0]← 0
for α← 1 to m do

Z[α]← EK (Z[α− 1]⊕M [α])
U ← Z[m]
V ← Z[1]⊕ Z[2]⊕ · · · ⊕ Z[m]
return (U, V )

The 3kf9 MAC is defined as DbHtS[3kf9Hash] (Figure 5). We prove the security
of 3kf9 as follows.
Theorem 6. Assume that ` ≤ N/8. When 3kf9 is based on a block cipher E,
one has

Advprf
3kf9(q, t, `) ≤ 18` 4

3 q
4
3

N
+ 2` 2

3 q
8
3

N2 + 2` 4
3 q

7
3

N2 + 11`2q2

N2 + 11`6q4

N3

+ 3Advprp
E (`q, t+ t′),
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2

EK1
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Fig. 6: LightMAC-Plus based on a block cipher E using three keys K1, K2, K3.

where t′ is the time complexity necessary to compute E for `q times.

7.2 Security of LightMAC-Plus
A 2n-bit hash function LHash is based an n-bit block cipher E using k-bit keys.
In this construction, a message is padded so that its length is a multiple of n−s,
where s is a fixed parameter such that 0 < s < n. So a padded message M can
be broken into (n− s)-bit blocks; let

M = M [1]‖M [2]‖ · · · ‖M [m],

where m < 2s and M(α) is n− s bits for α = 1, . . . ,m. Let 〈α〉s denote the s-bit
binary representation of integer α. Then for a key K ∈ {0, 1}k, LHashK(M) is
defined as follows.

Function LHashK(M)
for α← 1 to m do

X[α]← 〈α〉s‖M [α]
Y [α]← EK(X[α])

U ← Y [1]⊕ Y [2]⊕ · · · ⊕ Y [m]
V ← 2m−1 · Y [1]⊕ 2m−2 · Y [2]⊕ · · · ⊕ Y [m]
return (U, V )

The LightMAC-Plus MAC is defined as DbHtS[LHash] (Figure 6). We prove the
security of LightMAC-Plus as follows.
Theorem 7. Assume that ` ≤ N/16. When LightMAC-Plus is based on a block
cipher E, one has

Advprf
LightMAC-Plus(q, t, `) ≤

17q 4
3

2N + 2
N

+ 2
√

2q2

N
3
2

+ 3q 8
3

N2 + 9q 7
3

2N2 + 30q2

N2 + 44q4

3N3

+ 3Advprp
E (`q, t+ t′),

where t′ is the time complexity necessary to compute E for `q times.
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