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Abstract. A blackbox secret sharing (BBSS) scheme works in exactly
the same way for all finite Abelian groups G; it can be instantiated for
any such group G and only black-box access to its group operations and
to random group elements is required. A secret is a single group element
and each of the n players’ shares is a vector of such elements. Share-
computation and secret-reconstruction is by integer linear combinations.
These do not depend on G, and neither do the privacy and reconstruction
parameters t, r. This classical, fundamental primitive was introduced by
Desmedt and Frankel (CRYPTO 1989) in their context of “threshold
cryptography.” The expansion factor is the total number of group ele-
ments in a full sharing divided by n. For threshold BBSS with t-privacy
(1 ≤ t ≤ n− 1), t+ 1-reconstruction and arbitrary n, constructions with
minimal expansion O(logn) exist (CRYPTO 2002, 2005).
These results are firmly rooted in number theory; each makes (differ-
ent) judicious choices of orders in number fields admitting a vector of
elements of very large length (in the number field degree) whose cor-
responding Vandermonde-determinant is sufficiently controlled so as to
enable BBSS by a suitable adaptation of Shamir’s scheme. Alternative
approaches generally lead to very large expansion. The state of the art
of BBSS has not changed for the last 17 years.
Our contributions are two-fold. (1) We introduce a novel, nontrivial, ef-
fective construction of BBSS based on coding theory instead of number
theory. For threshold-BBSS we also achieve minimal expansion factor
O(logn). (2) Our method is more versatile. Namely, we show, for the
first time, BBSS that is near-threshold, i.e., r − t is an arbitrarily small
constant fraction of n, and that has expansion factor O(1), i.e., individ-
ual share-vectors of constant length (“asymptotically expansionless”).
Threshold can be concentrated essentially freely across full range. We
also show expansion is minimal for near-threshold and that such BBSS
cannot be attained by previous methods.
Our general construction is based on a well-known mathematical prin-
ciple, the local-global principle. More precisely, we first construct BB-
SS over local rings through either Reed-Solomon or algebraic geometry
codes. We then “glue” these schemes together in a dedicated manner
to obtain a global secret sharing scheme, i.e., defined over the integers,
which, as we finally prove using novel insights, has the desired BBSS



properties. Though our main purpose here is advancing BBSS for its
own sake, we also briefly address possible protocol applications.
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1 Introduction

This paper advances the state of the art in blackbox secret sharing (BBSS), a
classical, fundamental primitive first studied by Desmedt and Frankel [18, 19] in
the late 1980s, motivated by their context of “threshold cryptography.” A BBSS
scheme works in exactly the same way for all finite Abelian groups G. I.e., it
can be instantiated for any such group G and only black-box access to its group
operations and to random group elements is required. The secret-space equals
G (so the secret is a single group element) and the share-space for each of n
players is a fixed finite product over G (so each share is a vector). Viewing G
additively and using the basic fact that G may be viewed as a Z-module, 5 each
share is obtained by applying Z-linear forms 6 on a vector consisting of secret
and random group elements; likewise for secret-reconstruction from appropriate
shares. Whether a given player set is reconstructing or gives privacy does not
depend on structural information on G (e.g. access to its order), other than it
being finite Abelian. This also holds for the integer coefficients of the forms in
share computation and secret reconstruction. In this section, we first discuss
the technical background of BBSS and its history. Then we overview our results
and method. We also argue why our main claim cannot be achieved by previous
methods. Finally, we briefly discuss possible protocol applications.

1.1 Background on BBSS

BBSS is conveniently formalized and elucidated mathematically by Integer Span
Programs (ISP). The latter notion, introduced in [14], is not only sufficient for
BBSS but also necessary; it captures exactly the principles laid out above. In
a nutshell, an ISP is characterized by a positive integer e and Z-submodules
V1, . . . , Vn ⊂ Ze. Note that, by standard theory, any such submodule is free,
i.e., has a basis. Let V0 denote the Z-module spanned by the “target vector”
µe = (1, 0, . . . , 0) ∈ Ze, i.e., V0 consists of all its integer multiples. 7 For a
nonempty subset A ⊂ {1, . . . , n} we write VA =

∑
i∈A Vi, the Z-span of the Vi’s

with i ∈ A. A set A is a reconstructing set if V0 ⊂ VA. It is a privacy set if there

5 Briefly, “vectorspace axioms are satisfied except that scalars are defined over Z in-
stead of a field.”

6 Owing to Z-module structure, a form maps (g1, . . . , gm) ∈ Gm to
∑

i λigi ∈ G for a
fixed vector (λ1, . . . , λm) ∈ Zm.

7 In fact, any vector whose coordinates do not have a nontrivial common divisor may
be taken as the target vector.
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is a Z-linear form φA : Ze → Z such that φA(VA) ≡ 0, whereas φA(V0) = Z. The
latter is equivalent to the condition VA ∩ V0 = {0}. 8

One may easily rephrase this definition in terms of matrices; this way one
readily observes that a matrix whose rows are partitioned into n blocks each
constituting a basis of a different space Vi can be used to define computation of
shares by having the matrix act on a vector whose first coordinate is the secret
and whose remaining ones are random group elements. Reconstruction is derived
from the integer coefficients according to a span of the target vector. Privacy
can be verified using the linear form in question, in a way familiar from schemes
over finite fields.

Note that there is similarity with Monotone Span Programs or MSP [?], a
notion due to Karchmer and Wigderson known to be intimately connected with
linear secret sharing over finite fields, as first shown by Beimel [2]. In MSPs,
the dividing line between the two types sets of sets is “to span or not to span
the target vector.” This is not the case for ISPs. The reconstruction condition
is still equivalent to “the target vector being in the span.” However, the privacy
condition is not simply its negation; since we work over Z and not over a field it
could be so that some nonzero multiple of the target vector is spanned but not
the target vector itself. Indeed, write VA ∩ V0 = (a)µe for some principal ideal
(a) of the ring Z with a 6= 0,±1. Then choose, for instance, a prime number p
dividing a and a prime number p′ not dividing it. Now, if we take G as the cyclic
group of order p, the set A is a privacy set, whereas, if we take G as the cyclic
group of order p′, it is a reconstructing set. In particular, the ISP definition is
not just a verbatim translation of the MSP definition from finite fields to the
integers. For more discussion, see [14, 12].

The expansion factor in BBSS is the length of a full vector of n shares (i.e.,
the total number of group elements) divided by n. For threshold BBSS with
t-privacy (1 ≤ t ≤ n− 1), t+ 1-reconstruction and arbitrary positive n, Cramer
and Fehr [14] show a construction that achieves expansion O(log n), which is
minimal. This improved the O(n) expansion from the earlier construction due
to Desmedt and Frankel [18, 19]. In [16], Cramer, Fehr and Stam prove that
absolutely minimal expansion (up to an additive constant) can be achieved. For
the lower bounds, please refer to [14, 16]. 9

These results are firmly rooted in number theory. More precisely, each makes
a judicious choice of orders in algebraic number fields 10 admitting a finite, large

8 The implication starting from the form-based definition is trivial. In the other direc-
tion, it follows e.g. using basic structural theory of finitely-generated modules over
principal ideal domains, such as Z.

9 Note that the case t = 0 is trivial and that the case t = n − 1 is expansionless
via “additive n-out-of-n secret sharing.” Hence the restriction on t above. For those
“interesting” t, the first step to lower bounds is the observation that threshold BBSS
gives binary linear secret sharing for threshold access structures.

10 An order O in an algebraic number field K of degree k is a subring O of its ring of
integers OK such that O has finite index in OK as a Z-submodule, i.e., |OK/O| is
finite. In particular, O has rank k as Z-module, just as OK .
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dedicated set of points that is sufficiently controlled so as to enable BBSS by
a suitable adaptation of Shamir’s secret sharing over finite fields. The choice of
order, the control, and the exact way BBSS is realized all vary across these known
results. In a nutshell, these methods all use “polynomials” whose coefficients are
chosen in the tensor-product R ⊗Z G, where R is the order in question. The
latter object is an R-module in a natural way. Thus, such a “polynomial” can
be evaluated in a set of points in R. Getting a theshold BBSS in this way,
mimicking Shamir’s scheme to a certain degree, is down to a Vandermonde-
determinant determined by these points satisfying one out of several possible
convenient number-theoretical properties. The central issue in construction is
then to find an infinite family of orders R such that Z-rank of R tends to infinity
and such that R admits a dedicated evaluation-point set constrained as indicated
above that is very large compared to the Z-rank of R, since the number of players
n equals the cardinality of this set and the expansion factor equals the Z-rank of
R divided by n. In addition, care must be taken such that each positive number
n of players can be accommodated.

In [18, 19], this determinant attached to the evaluation-point set is required to
be a multiplicative unit of R, so that the Lagrange Interpolation Theorem holds
over R. This is best forced by using cyclotomic number fields. But the resulting
expansion is O(n). In [14], two evaluation sets are required whose attached de-
terminants are co-prime in R. It is shown how to construct orders R admitting
two such sets of cardinality 2k where k is the Z-rank of R. One of these sets can
be taken simply as {1, . . . , n}, the other being more intricate and depending on
R. This gives minimal expansion O(log n). In [16], the two sets are reduced to
a single one by requiring the attached determinant to be primitive, i.e., its only
rational integers divisors are ±1. It is shown that orders R of rank k exist that
admit evaluation-point sets of cardinality 2k. So expansion is minimal here too,
in fact, better by an additive constant. The latter result, though, is not explicit
and is significantly more intricate, mathematically. For a full treatment of thresh-
old BBSS, please refer to [12]. There are alternative, more generic approaches.
E.g., one can combine Benaloh-Leichter secret sharing [3] with Valiant’s result
on polynomial-size monotone Boolean formulas for threshold functions [37]. But
this leads to very large expansion (but still polynomial in n). The state of the
art of BBSS has not changed for the last 15 years.

1.2 Our contributions

Our contributions here are two-fold.

1. We introduce a completely different, nontrivial effective construction of BB-
SS based on coding theory instead of number theory. For the threshold case
we also achieve minimal expansion factor O(log n) as before. The threshold
can be chosen freely.

2. Our general method is more versatile than previous methods. As an appli-
cation not attainable by any previous method (as argued below), we demon-
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strate, for the first time, BBSS that is near-threshold, i.e., t-privacy and r-
reconstruction are such that r− t is an arbitrarily small constant fraction of
n, and that achieves expansion factor O(1), i.e., a constant number of group
elements per share. Moreover, it is supported for arbitrary n and thresholds
can be chosen essentially freely, for instance, concentrated around n/2. This
result is asymptotically expansionless and minimal for near-threshold, as we
also prove (see Main Theorem 1).

We now give an informal discussion why an expansionless, near-theshold BB-
SS cannot be fulfilled by previous methods. We restrict to the general approach
from [14, 16] based on “polynomial interpolation” involving number fields (since
this approach gives exponentially smaller expansion anyway). Towards a contra-
diction, suppose, first, that BBSS as claimed above is achieved by evaluations
of a single polynomial with coefficients in R⊗Z G (for some given R). Then the
Z-rank of R must be a constant c (equivalently, the number field in question has
constant degree), since otherwise the O(1) expansion claim is not met. We may
assume there are at least n evaluation points in R used and each share corre-
sponds to one or more (but at most a constant number of them) evaluations of
a given polynomial.

Now fix a prime number p and an order R in a number field. Note that
|R/(p)| = pc is also a constant. Suppose n � pc. If we restrict the assumed
BBSS work over G = Z/pZ and consider that, when taken modulo p, the set
of evaluation points used “collapses” to at most c distinct ones, this set can be
partitioned into at most c “blocks” such that, within each block, polynomial
evaluation gives the same result across the entire block. In other words, there is
just “a constant number of evaluations that matter”; the others are always dupli-
cates. Combining this with the fact that the assumed BBS ensures, in particular,
that a full vector of shares determines the secret, there is in fact a constant-sized
set of players that can reconstruct the secret jointly in case G = Z/pZ: a con-
tradiction with the assumed parameters. Second, this argument extends to the
case where various polynomials are used instead of just one 11 and where R may
differ per polynomial. Also note that the argument does not depend on R being
an order in a number field; it extends to any commutative ring R that has finite
rank as a Z-module, which exactly represents the minimal requirement on R for
the BBSS paradigm from [14, 16] to make sense anyway.

1.3 Our method

Our general construction is based on a well-known mathematical principle, the
local-global principle. More precisely, we first construct BBSS over local rings
through either Reed-Solomon or algebraic geometry codes. We then “glue” these
schemes together in a dedicated manner to obtain a global secret sharing scheme,
i.e., defined over the integers, which, as we finally prove, has the desired BBSS
properties.

11 In [14], two polynomials are used, whereas in [18, 19, 16] there is a single one.
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In some more detail, we start from an observation exploited in [14] and
earlier in [33]. Namely, a weak form of threshold BBSS is achievable simply by
taking “polynomials” with coefficients in G and then evaluating in the integer
points 0, 1, . . . , n. Defining ∆ =

∏
0≤i<j≤n(j − i), the free coefficient is taken as

∆ · s, with s ∈ G equal to the secret. The other coefficients are random in G.
It is now straightforward to show that, using polynomials of degree ≤ t (with
1 ≤ t < n), there is t-privacy, and, in addition, there is (t + 1)-reconstruction
not of the secret s itself but of a multiple ∆2 · s, In [14], an order of rank log n
is then hand-crafted that admits evaluation points 0, α1, . . . , αn ∈ R such that,
also by weak-BBSS with t-privacy, there is (t + 1)-reconstruction of the value
(∆′)2 · s, where ∆′ is a Vandermonde determinant defined by the αi’s and such
that ∆,∆′ are coprime in R. This leads to a “double-sharing” approach: by secret
sharing a given secret independently according to each of these two weak-BBSS
schemes, the secret can be reconstructed by a known linear combination over R
(translated into linear combinations over Z). This gives the desired BBSS. On a
high level, we also follow this double-sharing approach, starting with weak-BBSS
from polynomial-evaluation at integer points. However, our approach towards
creating the second weak-BBSS, which, together with the first, shouild enforce
the co-primality property, is completely different.

Let P (n) denote the set of prime numbers p with 2 ≤ p ≤ n. For the moment,
fix n arbitrarily. For each p ∈ P (n), we select an Fp-linear secret sharing scheme
with secret-space dimension 1 and “small” share-space dimension. We construct
these schemes from linear codes as in [13], i.e., via codes with large distance
as well as large dual distance (but, in the present case, without consideration
of multiplicative properties). We also fix generator matrices for each, or, more
precisely, monotone span programs. The privacy and reconstruction parameters
are designed such that they match (sufficiently well) with the desired values t, r
in each case. Note that this influences the constant in share-space dimension;
e.g., if this constant was just 1, then this upperbounds the achievable r, t just
on account of (dual-) distance bounds on binary linear codes.

Now, we glue these |P (n)| schemes together in two steps: First, we apply
Chinese Remaindering to the monotone span programs at hand, and second, we
arbitrarily lift the result to the integers. Somewhat surprisingly, as a result, we
obtain a weak-BBSS with t-privacy and r-reconstruction of a λ-multiple of the
secret, where λ is an integer coprime with ∆. Indeed, this is by no means obvious
since, at face value, this procedure does not even seem to account for behavior
over groups whose order is (divisible by) a power of a prime in P (n), a class
of groups that is obviously finite for each n. But still we get around this issue
thanks to novel, nontrivial ideas on lifting of linear secret sharing over finite
fields to rings while preserving the relevant parameters. In the particular case
of ours here, that means lifting schemes over Fp to schemes over Z/pkZ; this is
a key ingredient for making our local-global approach work, i.e., this allows to
reduce the “global” problem to addressing, for each n, just a finite number of
“local” problems.
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As for recovering log n expansion for threshold BBSS, we may work with
Shamir’s scheme defined over a large enough extension of a prime field Fp with
p ∈ P (n) and turn it into a linear scheme over Fp in a standard way; simply
“expand” extension field elements into coordinate-vectors over the base field,
after selection of a basis; this turns out to work for our purposes. Since, in
this case, we need threshold secret sharing over e.g. F2 in particular, it is clear
that share-space dimension (over F2) will be log n in the worst case (as we go
through L(n)). Note that the expansion achieved here matches exactly that of
the number-theoretic approach from [14]. We do not necessarily say that the
approach for threshold-BBSS in the present paper is conceptually/technically
simpler than that of [14]: each feels “mathematically right” albeit seen from
different standpoints. However, the result in [16], also number-theoretic and more
intricate than [14], is still better by an additive constant.

Finally, we get to our claim on expansionless, flexible near-threshold BBSS,
which is not attainable by previous methods as we have argued. We choose, for
each prime p, linear secret sharing schemes over Fp with appropriate asymp-
totic properties. Here, asymptotic theory of linear codes comes into play here;
asymptotic results from [13] show at once that all the necessary connections can
be made. Indeed, by choosing a large enough fixed extension of a base field Fp,
one gets, asymptotically, that distance and dual distance can be concentrated
around an arbitrary constant fraction of n, with the difference between distance
and dual distance being an arbitrarily small constant fraction of n. This trans-
lates into similar properties for t-privacy and r-reconstruction in corresponding
linear secret sharing schemes with share-space of constant dimension over the
base field. As in the threshold case, schemes over extension fields are turned into
schemes over the base field in a standard way.

It is for these reasons that we can achieve expansionless, flexible near-threshold
BBSS. The gluing procedure is then by a form of diagonalization. I.e., index rows
by the positive integers n and index the columns by the prime numbers. In loca-
tion (n, p), we have a linear secret sharing scheme over Fp supporting n players
and achieving the desired privacy and reconstruction. Then, for each n, we glue
along the n-th row “up to the diagonal,” i.e., up to location (n, p) where p is the
largest prime p ≤ n. Finally, for the compound BBSS to be explicit (poly-time)
the underlying codes are required to be explicit. This means we need to resort
to algebraic-geometric codes (AG). However, the latter cannot be taken off-the-
shelf since we need to ensure that the compound BBSS works for each and every
n and achieves the desired parameters. This leads us to handcraft the required
AG-codes. In addition, we encounter several technical issues of parameter fine-
tuning that have been suppressed in our overview for sake of brevity but that
are still necessary for our approach.

1.4 Brief remarks on possible protocol applications

Though our primary purpose here is to advance the theoretical state of the art in
BBSS, we briefly address some potential applications. Threshold-RSA [18] was
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eventually realized very effiently without recourse to BBSS, exploiting specifics
of RSA not generally present in cryptosystems over groups with secret of hard
to compute order. Very briefly, “Shamir-sharing over the integers” can be used
here for the purpose of practical threshold-RSA signatures [33]. Even though
only reconstruction of a multiple of the secret can be guaranteed when doing so,
this works for RSA if the constant scalar in this multiple is co-prime both to
the public exponent and to the order of the (sub-group) of the “RSA-group” in
question. The latter is by forcing existence of an easily accessible constant-index
subgroup of the “RSA-group” whose order only has very large prime factors
(implied by requiring prime factors of RSA-modulus to be Sophie Germain) and
the former by requiring that the public exponent is a prime exceeding the number
of players.

By applying our techniques for expansionless near-threshold BBSS to prac-
tical ranges of n (making some practical substitutions for the codes), one may,
in principle remove the lower bound condition on the public exponent, with the
benefit of rendering faster signature verification, while maintaining “practical-
ity” and active security. In case of passive security only, the Sophie Germain
requirement may also be removed. Note that, in the active case, the Sophie Ger-
man condition facilitates the efficient zero knowledge proofs of correct “partial
verification” in the style of Schnorr-proofs with exponentially large challenge
space for exponentially small error probability in a single run. Without that
condition one would have to resort to repetition of proofs supporting a 1-bit
challenge space only (so error 1/2 per run), leading to efficiency loss. However,
using amortization techniques for zero knowledge [10], this effect can be neutral-
ized if many statement are proven simultaneously. Thus, if many signatures are
verified simultaneously, we may also remove the Sophie-Germain condition in
the active case. Alternatively, we may thus also consider deploying these ideas
towards improved threshold-RSA decryption. We suggest that this all merits
further study.

Moreover, in [17], ISPs are shown to imply “integer linear secret sharing” with
statistical privacy, by selecting secret and randomness from an appropriately
large bounded range of integers instead of blackbox groups. Clearly, ISPs allow
for full secret-reconstruction, not just a multiple. Known applications are to
threshold cryptosystems based on class groups. 12 Also results also apply directly
here. We believe there are other useful applications, for instance in MPC over
the integers. 13 This may offer advantages for certain functions, compared to
methods which emulate integer operations by first working over e.g. finite fields.
But more research is needed still for this to be conclusive,

12 Whereas these seemed out of fashion for some time, they appear to be making a
comeback in the blockchain context presently.

13 a topic which, surprisingly, has not seen much attention lately, especially given the
surge in MPC research
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1.5 Organization of the paper

In Section 2, we introduce monotone span programs and near-threshold black-
box secret sharing schemes. We also show how to lift a monotone span programs
modulo prime powers to a monotone span program over Z. In Section 3, we show
a lower bound on expansion factor on near-threshold black-box secret sharing
schemes. This generalizes the lower bound on threshold black-box secret sharing
schemes. Section 4 presents our gluing technique that glues a Vandermonde
matrix with a generator matrix modulo an integer. Section 5 shows how to
construct a generator matrix over Z that gives a linear code with both good
minimum distance and dual minimum distance modulo every small prime p.
The last section collects the results prepared in the previous sections to form
our main result of this paper.

2 Monotone span programs and near-threshold black-box
secret sharing schemes

Throughout the paper, we denote by [n] the set {1, 2, 3, · · · , n}. We denote by
2[n] the set of all subsets of [n]. Then 2[n] has size 2n.

2.1 Monotone span program

Monotone span programs (MSP for short) over finite fields were introduced by
Karchmer and Wigderson [24]. Monotone span program is an efficient tool to con-
struct linear secret sharing scheme (LSSS for short) for a given access structure.
It is well known that there is a one-to-one correspondence between monotone
span programs over finite fields with linear secret sharing schemes over finite
fields (see e.g. [2, 21]). Monotone span programs over rings (in particular over
integers Z) were introduced in [14, 16] and it turns out that they have a similar
correspondence with black-box secret sharing schemes. In addition, monotone
span programs over rings are the basis for multi-party computation over black-
box rings, as studied in [15]. In particular, the techniques of [11] for secure
multiplication and VSS apply to this flavor of monotone span program as well.

Definition 1 The pair (Γ,∆) with Γ,∆ ⊆ 2[n] is called an access structure on
[n] if ∅ ∈ ∆, [n] ∈ Γ and Γ ∩∆ = ∅. Furthermore, it is called a monotone access
structure if Γ is monotonously increasing and ∆ is monotonously decreasing,
i.e.,

(i) if S1 ∈ Γ and S1 ⊆ S2, then S2 ∈ Γ ;
(ii) if T1 ∈ ∆ and T2 ⊆ T1, then T2 ∈ ∆.

Let t, r, n ∈ Z with 0 < t < r < n. Then Rt,r,n = (∆t,n, Γr,n) is defined to be
the access structure satisfying
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(i) ∆t,n = {T ⊆ [n] : |T | ≤ t}, and
(ii) Γr,n = {S ⊆ [n] : |S| ≥ r}.

A monotone increasing set Γ can be efficiently described by the set Γ− consisting
of the minimal elements (sets) in Γ , i.e., the elements in Γ for which no proper
subset is also in Γ . Similarly, the set ∆+ consists of the maximal elements (sets)
in ∆, i.e., the elements in ∆ for which no proper superset is also in ∆. It is
obvious that (Γ−, ∆+) generates a monotone access structure (Γ,∆), i.e., Γ
consists of subsets of [n] containing an element of Γ− and ∆ consists of subsets
of [n] that are contained in an element of ∆+.

Definition 2 A monotone access structure (Γ,∆) is said to be complete if Γ ∪
∆ = 2[n]. Thus, if r = t+ 1, then Rt,r,n is complete. In this case, we say that it
is a threshold access structure and denote Rt,t+1,n by Rt,n.

We provide necessary and sufficient conditions under which a (Γ,∆)-scheme
is a black-box secret sharing scheme for (Γ,∆) . This is a generalization of
threshold monotone span programs over rings introduced in [14], where the latter
was a generalization of monotone span program over finite fields introduced by
Karchmer and Wigderson [24]. We will show that monotone span programs in
this paper have a similar correspondence with black-box secret sharing schemes.

Let R be a ring and let (Γ,∆) be a monotone access structure on [n] and
M ∈ Rh×e with h ≥ n. We define a surjective function Ψ : [h] → [n] to group
the rows of M. We say that “the j-th row is labelled by Ψ(j)” or “Ψ(j) owns the
j-th row.” For any S ⊆ [n], we write MS to denote the the submatrix obtained
by keeping the rows Mi such that Ψ(i) ∈ S (and not i ∈ S). Denote by hS the
cardinality |Ψ−1(S)|. For any vectors x of length n, we define xS analogously.
Furthermore, for each S ∈ Γ , there exists a vector λ(S) ∈ RhS which is called a
reconstruction vector. Denote by R the collection of reconstruction vectors. We
denote by B the quadruple (R,M,Ψ,R). Throughout this paper, all vectors are
row vectors and we denote by u′ the transpose of a vector u.

Definition 3 A Monotone Span Program (MSP)M over a ringR is a quadruple
(R,M,Ψ,µe), where M is an h × e matrix over R with n ≤ h, Ψ : [h] → [n] is
a surjective function and µe = (1, 0, 0, . . . , 0) ∈ Re is a vector that is called the
target vector. The size of M is the number h of rows of M and is denoted as
size(M). If R = Z, we call it an integer monotone span program. The expansion
factor ofM is defined to be the ratio h/n, where h is the number of rows of M .

Definition 4 Let R be a ring and let (Γ,∆) be a monotone access structure on
[n]. We say that a monotone span programM = (R,M,Ψ,µe) computes (Γ,∆)
if

(P1) for any S ∈ Γ , µe ∈ im(M ′S), where M ′S is the transpose of MS and im(M ′S)
stands for the row space of MS ; and

(P2) for any T ∈ ∆, there exists a vector λ ∈ Re with the first coordinate λ1 = 1
such that MTλ

′ = 0′.
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As noted in [14], if R is a field, then µe 6∈ im(M ′S) implies that there exists a
vector λ ∈ Re with the first coordinate λ1 = 1 such that MSλ

′ = 0′. If R is not
a field this does not necessarily hold.

Using representations of monotone access structures as monotone Boolean
formulas and using induction in a similar style as in [3], it is straightforward
to verify that for every monotone access structure (Γ,∆), there is an integer
monotone span program that computes (Γ,∆).

Lemma 1. A monotone span program M = (R,M,Ψ,µe) computes (Γ,∆) if
and only if

(R1) for any S ∈ Γ , the equation xMS = µe is solvable in R;
(R2) for any T ∈ ∆, the equation

(µe
MT

)
x = µ′hT+1 is solvable in R.

Proof. It is clear that (P1) and (R1) are equivalent. To see the equivalence of
(P2) and (R2), we note that µe · λ

′ = 1 implies that the first coordinate of λ is
1.

The above result converts a monotone span program M = (R,M,Ψ,µe)
computing (Γ,∆) to solvability of linear equations in R. If R is the integer ring,
then we can reduce solvability of linear equations in Z to solvability of linear
equations in Zp` for every prime p and integer ` ≥ 1.

Lemma 2. Let N ∈ Zm×n and b ∈ Zm. Then Nx′ = b′ is solvable over Z if
and only if it is solvable over Zp` for all prime p and integer ` ≥ 1.

Proof. The “only if” part is clear.

Now we prove the “if” part. By [14, Lemma 1], it is sufficient to show that
Nx′ = b′ is solvable modulo k for every integer k ≥ 2. Let k have the canonical
factorization k =

∏r
i=1 p

ei
i . Assume that ui is a solution of Nx′ ≡ b′ (mod peii ).

By the Chinese Remainder Theorem, we can find a vector u ∈ Zk such that
u ≡ ui (mod peii ). This implies that u is a solution of Nx′ ≡ b′ (mod k).

Theorem 1. Let (Γ,∆) be a monotone access structure on [n]. Then M =
(Z,M, Ψ,µe) is a monotone span program computing (Γ,∆) if and only ifMp` =
(Zp` ,M, Ψ,µe) is a monotone span program computing (Γ,∆) for every prime p
and integer ` ≥ 1, where M and µe in Mp are viewed as a vector and a matrix
modulo p`, respectively.

Proof. Assume thatM = (Z,M, Ψ,µe) is a monotone span program computing
(Γ,∆). By taking modulo p`, we can easily show thatMp = (Zp` ,M, Ψ,µe) is a
monotone span program computing (Γ,∆) for every prime p and integer ` ≥ 1.

Now we prove the other direction. By Lemma 1, the conditions (R1) and
(R2) are satisfied for R = Zp` for every prime p and integer ` ≥ 1. By Lemma
2, the conditions (R1) and (R2) are satisfied for R = Z. By Lemma 1 again,
M = (Z,M, Ψ,µe) is a monotone span program computing (Γ,∆).

11



This is an interesting mathematical result that obeys the local-global principle,
also known as the Hasse principle. In mathematics (in particular number theory),
the local-global principle says that a phenomenon is true globally if and only if it
is true locally. A well-known example obeying this the local-global principle is the
Hasse-Minkowski theorem which states that the local-global principle holds for
the problem of representing 0 by quadratic forms over the rational numbers. Of
course, there are also some examples that do not obey the local-global principal.
A counterexample by Ernst S. Selmer shows that the Hasse-Minkowski theorem
cannot be extended to forms of degree 3 (see [28, pp.250-258]).

Theorem 1 is a bridge to connect integer monotone span programs with
monotone span programs over Zp` . This in turns allows us to construct integer
monotone span programs via monotone span programs over finite fields.

Theorem 2. Let (Γ,∆) be a monotone access structure on [n]. Let p be a prime
and let (Zp,M, Ψ) be a triple defined in Subsection 2.1. If M ∈ Zh×ep and

(O1) for any S ∈ Γ , the Fp-rank of MS is e; and
(O2) for any T ∈ ∆, the Fp-rank of NT is hT , where N is the h× (e− 1) matrix

obtained from M by removing the first column,

Then for any integer ` ≥ 1, (Zp` ,M (`), Ψ,µe) is a monotone span program com-

puting (Γ,∆), where M (`) is viewed as a lifting of M modulo p`, i.e., each entry
a of M can be replaced by any element b satisfying b ≡ a (mod p`).

Proof. By Lemma 1, it is sufficient to show that the conditions (R1) and (R2)
hold for the quadruple (Zp` ,M (`), Ψ,µe). Let S ∈ Γ , then by (O1) the Fp-rank
of MS is e, there is an e × e submatrix A of MS such that det(A) 6≡ 0 mod p.
This implies that A (mod p`) is invertible. Thus, there exists a vector u ∈ Zep`
such that uA ≡ µe (mod p`). Without loss of generality, we may assume that
M (`) =

(
A
C

)
for some (h−e)×e matrix C over Fq. Then (u,0)M (`) = (u,0)

(
A
C

)
=

uA ≡ µe (mod p`). This proves (R1) for the quadruple (Zp` ,M (`), Ψ,µe).

Let M = (b′|N). By (O2), for any T ∈ ∆, the Fp-rank of NT is hT . Hence,
there is an hT × hT submatrix E of NT such that det(E) 6≡ 0 mod p. This
implies that E (mod p`) is invertible. Thus, there exists a vector v ∈ ZhT

p`
such

that Ev′ ≡ −b′ (mod p`). Without loss of generality, we may assume that

M
(`)
T = (b′|E,F ). Then M

(`)
T (1,v,0)′ = (b′|E,F )(1,v,0)′ = b + Ev′ = 0

(mod p`). This proves (R2) for the quadruple (Zp` ,M (`), Ψ,µe).

We are interested in the smallest size of a monotone span programM computing
(Γ,∆). This is because this number determines the secret size (see Theorem 3).

Definition 5 For a given (Γ,∆), denote by mspR(Γ,∆) the smallest size of a
monotone span programM overR computing (Γ,∆). We also denote mspZ(Γ,∆)
by msp(Γ,∆).

The main purposes of this paper are (i) to derive a lower bound on msp(Γ,∆);
and more importantly (ii) to explicitly construct an MSP over Z with expansion
factor achieving this lower bound up to a constant multiplicative factor.
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2.2 Black-box secret sharing scheme

In this subsection, we will prove a one-to-one correspondence between black-box
secret sharing schemes and integer monotone span programs. Now we introduce
black-box secret sharing schemes.

Definition 6 Let (Γ,∆) be a monotone access structure on [n]. A black-box se-
cret sharing scheme (BBSSS for short) for (Γ,∆) is a quadruple B = (Z,M, Ψ,R)
defined in Subsection 2.1 satisfying the following requirement. Let G be an ar-
bitrary finite Abelian group and S ⊆ [n] be a non-empty set. For a uniformly
distributed s ∈ G,g = (g1, · · · , ge) ∈ Ge given that g1 = s, define s = gM ′ ∈ Zh.
Then:

(Q1) (Completeness) If S ∈ Γ, then λ(S) · s′S = s with probability 1.
(Q2) (Privacy) If T ∈ ∆, then sT contains no Shannon information on s.

If (Γ,∆) = Rt,r,n, we say B is a near-threshold black-box secret sharing scheme
with privacy t and reconstruction r. Furthermore, if (Γ,∆) = Rt,n, we say B is
a threshold black-box secret sharing scheme.

In [14], it was proved that there is a one-to-one correspondence between
threshold black-box secret sharing schemes and integer monotone span programs.
We also note that [14] gives a characterization on threshold black-box secret
sharing schemes.

Theorem 3. Let (Γ,∆) be a monotone access structure on [n]. Then there is a
black-box secret sharing scheme B = (Z,M, Ψ,R) for (Γ,∆) if and only if there
exists an integer monotone span program M = (Z,M, Ψ,µe) computing (Γ,∆).

Proof. Assume that M = (Z,M, Ψ,µe) is an integer monotone span program
computing (Γ,∆), i.e., the conditions (P1) and (P2) are given. Now we want to
show that the conditions (Q1) and (Q2) are satisfied.

Let us fix a finite Abelian group G. Sample s ∈ G uniformly at random
and sample g = (s, g2, · · · , ge) uniformly at random from {s}×Ge−1. Lastly, let
s = gM ′. Let S ∈ Γ , by (P1), there exists a vector u ∈ ZhS such that uMS = µe.
This gives s = µe · g′ = (uMS) · g′ = u · s′S . To prove (Q2), we have to show
that for any T ∈ ∆ and any s1, s2 ∈ G, given a vector g1 ∈ Ze with the first
coordinate of g1 equal to s1, there exists g2 such that s2 is the first coordinate
of g2 and MTg′1 = MTg′2. Let λ ∈ Ze with the first coordinate equal to 1 such
that MTλ

′ = 0′. Put g2 = g1 + (s2− s1)λ. Then the first coordinate of g2 is s2.
Furthermore, we have MTg′2 = MT (g1+(s2−s1)λ)′ = MTg′1+(s2−s1)MTλ

′ =
MTg′1.

Now we prove the other direction. We prove one by one. For any S ∈ Γ , let
λ(S) ∈ R. Choose a prime p such that p is bigger than the maximal absolute
value of all entries of λ(S)MS . Set G = Zp and let gi ∈ Ge be the vector such
that the ith position of gi is 1 and the rest are 0. Then for j ∈ [e], we have

δ1,j ≡ λ(S)MSg′i (mod p),
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where δ1,j is the Kronecker-delta function. Combining these e equations together,
we obtain µe ≡ λ(S)MS (mod p). As p is bigger than all entries of λ(S)MS , we
get µe = λ(S)MS ∈ im(M).

Suppose that T ∈ ∆. Recall that we want to show the existence of v =
(1, v2, · · · , ve) ∈ Ze such that MTv′ = 0′. Let MT = (b′|NT ), where b′ ∈ ZhT

is the first column of MT and NT ∈ ZhT×(e−1). Then the existence of such v
is equivalent to the solvability of −b′ = NTx in Z. So by Lemma 2, to show
that −b′ = NTx is solvable over Z, it is equivalent to showing that it is solvable
modulo k for any integer k ≥ 2.

Fix k ≥ 2 and set G = Zk. Now for T ∈ ∆, it follows from the privacy
condition (Q2) that there exists g1 ∈ Ze such that the first coordinate of g1 is
s − 1 and g1(MT )′ = g(MT )′. Setting v = g − g1, Then the first coordinate of
v is 1 and MTv′ = 0′, i.e., −b′ = NTx is solvable over Zk.

Definition 7 Let (Γ,∆) be a monotone access structure on [n]. The expansion
factor % of a black-box secret sharing scheme B = (Z,M, Ψ,R) for (Γ,∆) is
defined to be the ratio h

n , where h is the number of rows of M .

3 A lower bound on expansion factors

In this section, we are going to derive a lower bound on the expansion factor
so that we know how far our construction of BBSSS is away from optimality.
In literatures, some lower bounds have been derived (see [6, 9]). For the sake of
completeness, we derive a lower bound via a simple argument.

The idea is to obtain a lower bound on monotone span programs over finite
fields Fp for primes p. As an integer monotone span program gives rise to a
monotone span program modulo a prime with the same expansion factor, any
lower bound on expansion factors of monotone span programs modulo primes is
also a lower bound on integer monotone span programs. As one can expect, the
worst lower bound on expansion factors of monotone span programs are from
modulo 2. Thus, by deriving a lower bound on monotone span programs modulo
2 for the access structure Rt,r,n, we obtain a lower bound on the expansion factor
of BBSSS.

Let write msp2(Γ,∆) for mspF2
(Γ,∆). We first provide a lower bound on

msp2(R1,r,n).

Proposition 3 One has msp2(R1,r,n) ≥ n log n
r−1 .

Proof. Let M = (Z2,M, Ψ,µe) be a monotone span program computing R1,r,n.

For M ∈ Zh×e2 , we write Mi ∈ Zhi×e
2 and hi to represent M{i} and h{i}, re-

spectively. Since we are going to find a lower bound on h, we want to bound
them when hi is minimized. So we assume that all rows of Mi are Z2-linearly
independent for any 1 ≤ i ≤ n.

Define H0 = {(0, v2, · · · , ve) ∈ Ze2} and H1 = {(1, v2, · · · , ve) ∈ Ze2}. Since
{i} ∈ ∆(R1,r,n), there exists c ∈ ker(Mi) with the first coordinate equal to 1,
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where ker(Mi) denotes the solution space of Mix
′ = 0′. Hence, ker(Mi)∩H1 6= ∅.

We claim that | ker(Mi)∩H0| = | ker(Mi)∩H1| = 2e−1−hi . Note that ker(Mi) ⊆
H0 ∪H1 = Ze2 and | ker(Mi)| = 2hi . To prove our claim, it is sufficient to show
that | ker(Mi) ∩H0| = | ker(Mi) ∩H1|. This is true as one can easily verify that
c + ker(Mi) ∩H0 = | ker(Mi) ∩H1.

Let S be a subset of [n] of size r, we have S ∈ Γ (R1,r,n). Thus, µe belongs
to im(M ′S). In other words, the first column of MS is not a linear combination
of the others. This implies that ker(MS) ∩ H1 = ∅. This means that for any
v ∈ H1, it can appears in ker(Mi) ∩H1 for at most (r − 1) of i ∈ S. This gives
the following inequality

(r − 1)2e−1 = (r − 1)|H1| ≥
n∑
i=1

|ker(Mi) ∩H1| =
n∑
i=1

2e−1−hi ,

i.e.,
∑n
i=1 2−hi ≤ r − 1.

Recall that by the Log Sum Inequality, for any non-negative a1, · · · , an, b1, · · · , bn,
we have

n∑
i=1

ai log
ai
bi
≥ a log

a

b
,

where a =
∑n
i=1 ai and b =

∑n
i=1 bi. Let ai = 1 and bi = 2−hi . Then a = n and

b =
∑n
i=1 2−hi ≤ r − 1. Then

h =

n∑
i=1

hi =

n∑
i=1

1 · log
1

2−hi
≥ n log

n∑n
i=1 2−hi

≥ n log
n

r − 1
.

To find lower bounds on the expansion factor of the access structure Rt,r,n, let
us consider the dual of Rt,r,n.

Definition 8 The dual (Γ ∗, ∆∗) of a monotone access structure (Γ,∆) on [n]
is defined by

(i) ∆∗ = {T ⊆ [1, n] : T̄ ∈ Γ}, where T̄ is the complement of T , i.e., (T̄ ) =
[n] \ T .

(ii) Γ ∗ = {S ⊆ [1, n] : S̄ ∈ ∆}.

It is easy to verify that (Γ ∗, ∆∗) is a monotone access structure [n] as long as
(Γ,∆) is.

Remark 1 One has R∗t,r,n = Rn−r,n−t,n.

Lemma 4 (See [24]). For any finite field F and monotone access structure
(Γ,∆), we have the equality mspF(Γ,∆) = mspF(Γ ∗, ∆∗).

Remark 2 It follows from Lemma 4 that mspF(Rt,r,n) = mspF(Rn−t,n−r,n).
Thus, to find mspF(Tt,r,n), we can always assume that r ≥ n−1

2 .
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Theorem 4. If 1 ≤ t < r < n, then msp2(Rt,r,n) ≥ n log n+1
2(r−t+1) .

Proof. By Remark 2, we may assume that r ≥ n−1
2 . Consider any MSP M =

(F2,M, Ψ, ε) computing Rt,r,n. Without loss of generality, we may assume that
h1 ≤ h2 ≤ · · · ≤ hn. It is clear that (M ′1|M ′2| · · · |M ′r+1)′ is an MSP computing

Rt,r,r+1. So we have
∑r+1
i=1 hi ≥ msp2(Rt,r,r+1). Note that for any j > r+1, hj ≥

hr+1 ≥ msp2(Rt,r,r+1)
r+1 . Hence,

h =

r+1∑
i=1

hi +

n∑
j=r+2

hi ≥ msp2(Rt,r,r+1) +
n− (r + 1)

r + 1
msp2(Rt,r,r+1)

=
n

r + 1
msp2(Rt,r,r+1).

This gives

msp2(Rt,r,n) ≥ n

r + 1
msp2(Rt,r,r+1) =

n

r + 1
msp2(R1,r+1−t,r+1)

≥ n log
r + 1

r − t+ 1
≥ n log

n+ 1

2(r − t+ 1)

and the proof is completed.

By considering modulo 2, we obtain the following lower bound.

Theorem 5. For all integers r, t, n with 0 < t < r < n, one has msp(Rt,r,n) ≥
n · log n+1

2(r−t+1) .

Remark 3 It follows from [9, 6] that, for all integers r, t, n with 0 < t < r < n,
one has

msp(Rt,r,n) ≥ max

{
n · log

n− t+ 1

r − t
, n · log

r + 1

r − t

}
≥ n·log

n+ r − t+ 2

2(r − t)
. (1)

The lower bound in (1) is slightly better than the one given in Theorem 5.

4 Gluing method

In Subsection 2.1, we witnessed that an integer monotone span program obeys
the local-global principle. Thus, given an access structure Rt,r,n, construction of
an integer monotone span program computing Rt,r,n is equivalent to construc-
tion of a monotone span program computing Rt,r,n modulo every prime power.
However, it is usually not easy to directly construct an integer monotone span
program computing Rt,r,n that is also a monotone span program computing
Rt,r,n modulo every prime power. On the other hand, it is much easier to devel-
op a monotone span program computing Rt,r,n modulo one given prime power.
Thus, by the Chinese Remainder Theorem, for any given finite number n, we
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can lift monotone span programs computing Rt,r,n modulo all prime p ≤ n to an
integer monotone span program. The question is how to make it into an integer
monotone span program modulo all prime p > n.

Our idea is to glue two integer monotone span programs, one is a monotone
span program modulo primes p ≤ n and other one modulo primes p > n. The
first one can be obtained by lifting monotone span programs modulo every prime
power p ≤ n. The other one can be constructed via an integer Vandermonde ma-
trix. As a result, the integrated matrix gives an integer monotone span program
that is also a monotone span program modulo every prime power. Hence, by the
local-global principal, we obtain an integer monotone span program.

For positive integers x1, x2, . . . , xn, let us define the Vandermonde matrix

∆i(x1, x2, . . . , xn) =


xi1 x

1+i
1 x2+i1 . . . xn−1+i1

xi2 x
1+i
2 x2+i2 . . . xn−1+i2

...
...

...
...

...
xin x

1+i
n x2+in . . . xn−1+in

 .

We further denote by δ(x1, x2, . . . , xn) the determinant of∆1(x1, x2, . . . , xn), i.e.,

δ(x1, x2, . . . , xn) = (
∏n
i=1 xi)

(∏
1≤i<j≤n(xj − xi)

)
. It is clear that every prime

divisor of δ(x1, x2, . . . , xn) is at most max{x1, x2, . . . , xn}. The matrix defined in
the following lemma gives a threshold black-box secret sharing scheme modulo
large primes.

Lemma 5. Define the matrix

L =


1 1 1 . . . 1
2 22 23 . . . 2t

...
...

...
...

...
n n2 n3 . . . nt

 ∈ Zn×t. (2)

Then we have

(i) For every subset T of [n] of size t, the equation

(
1 0
δ1′ LT

)
x′ = µ′t+1 is

solvable modulo p` for any prime p > n and integer ` ≥ 1, where δ =
δ(1, 2, . . . , n).

(ii) For every subset S of [n] of size r with r ≥ t+ 1, the equation x(δ1′, LS) =
µt+1 is solvable modulo p` for all primes p > n and integers ` ≥ 1.

Proof. To prove part (i), we let |T | = t with T = {i1, i2, . . . , it}. Then the
matrix LT is in fact the matrix ∆1(i1, i2, . . . , it). As det(∆1(i1, i2, . . . , it)) =
δ(i1, i2, . . . , it) is co-prime to p` for every prime p > n and ` ≥ 1, we can find a
matrix A ∈ Zt×t such that ∆1(i1, i2, . . . , is)A is the identity matrix It modulo
p`, thus we have δ1′ ≡ δLTA1′ (mod p`), i.e, (1,−δ1A′) ∈ Zt+1

p`
(mod p`) is a

solution of (δ1′, ∆1(i1, i2, . . . , it))x
′ ≡ 0′ modulo p`. Thus, it is also a solution

of

(
1 0
δ1′ LT

)
x′ = µ′t+1 modulo p`.
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Now let |S| = r ≥ t+ 1 and denote S = {i1, i2, . . . , ir}. Then

(δ1′, LS) =

(
∆(δ)(i1, . . . , it+1)

B

)
, (3)

for a matrix B in Z(r−t−1)×(t+1), where ∆(δ)(i1, . . . , it+1) is the matrix obtained
from ∆0(i1, . . . , it+1) by multiplying δ to the first column. As ∆0(i1, . . . , it+1) is
invertible modulo p`, ∆(δ)(i1, . . . , it+1) is also invertible modulo p`. Hence, there
is a solution c ∈ Zt+1

p`
of the equation x∆(δ)(i1, i2, . . . , it+1) = µt+1 modulo p`.

Thus, (c,0) ∈ Zr is a solution of the equation x(δ1′, LS) ≡ µt+1 modulo p`.

We now present our gluing method.

Theorem 6. Let Ni ∈ Zm×(l−1) with mt < l ≤ mr be a matrix for 1 ≤ i ≤ n.
Let ci ∈ Zm. Put

G =


c′1 N1

c′2 N2

...
...

c′n Nn

 , N =


N1

N2

...
Nn

 .

Suppose that for every prime p ≤ n, every subset T of [n] of size t and every
subset S of [n] of size r, the Zp-ranks of NT and GS are mt and l, respectively.
Then there exists a monotone span program M = (Z,M, Ψ,µt+l) computing

Rt,r,n with M ∈ Z(m+1)n×(t+l). As a result, msp(Rt,r,n) ≤ (m+ 1)n.

Proof. Define the product

ρN =
∏

S⊂[n],|S|=t

 ∏
A∈Mt(NS),det(A)6=0

det(A)

 ,

where Mt(NS) stands for the set of mt ×mt submatrices of NS . By the given
condition, we know that ρN is well defined and it is a nonzero integer. We write
the above ρN into the product ρN = ζN × ηN such that gcd(ζN ,

∏
p≤n p) = 1,

and all prime divisors of ηN are less than or equal to n.

Define

M =



δ 0 e1

ζNc′1 N1 0
δ 0 e2

ζNc′2 N2 0
...

...
...

δ 0 en
ζNc′n Nn 0


, (4)

where δ = δ(1, 2, . . . , n) and ei = (i, i2, . . . , it) for 1 ≤ i ≤ n. Let Ψ be the map
splitting M into the blocks of (4). We claim that M = (Z,M, Ψ,µt+l) is an
integer monotone span program computing Rt,r,n.
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To prove privacy, by Lemma 1, it is sufficient to show that for every subset
T = {i1, i2, . . . , it} of [n] of size t and every prime power p`, the equation(

µt+l
MT

)
x′ ≡ µ′(m+1)t+1 (mod p`) (5)

has solutions in Zt+l
p`

. For p ≤ n, we let L be the matrix defined in (2). Then

LT = ∆1(i1, i2, . . . , it). It is clear that one can find D ∈ Zt×t such that LTD ≡
det(LT )It (mod p`). As det(LT ) is a divisor of δ, (1,− δ

det(LT )1D
′) is a solution

of the equation

(
1 0
δ1′ LT

)
x′ ≡ µt (mod p`). On the other hand, it follows from

the given condition that there exists an mt ×mt submatrix A of NT such that
gcd(det(A), p`) = 1. Then there exists an integer g such that g det(A) ≡ 1
(mod p`). Without loss of generality, we may assume that NT = (A,B) with B ∈
Zmt×(l−1−mt). Let H ∈ Zmt×mt

p`
such that AH = det(A)Imt. Then (1,−gcH ′,0)

is a solution of the equation

(
1 0
c′ NT

)
x′ =

(
1 0 0
c′ A B

)
x′ = µl modulo p`, where

c = ζN (ci1 , ci2 , . . . , cit). In conclusion, the vector (1,−gcH ′,0,− δ
det(LT )1D

′) is

a solution of (5).

If p > n, by Lemma 5 the equation

(
1 0
δ1′ LT

)
x′ ≡ µ′t+1 (mod p`) has a

solution (1,u) ∈ Zt+1. On the other hand, by the given condition, there exists
an mt×mt submatrix E of NT such that det(E) 6= 0. Without loss of generality,
we may assume that NT = (E,F ) with F ∈ Zmt×(l−1−mt). Assume that e ≥ 0
is an integer such that pe|det(E) and pe+1 - det(E). Then by the definition of
ζN , we have pe|ζN . Let ζN = pea and let det(E) = peb with gcd(b, p) = 1. Then
there exists an integer d such that bd ≡ 1 (mod p`). Let C ∈ Zmt×mt

p`
such that

AC = det(E)Imt = pebImt. Hence, (1,−advC ′,0) is a solution of the equation(
1 0
c′ NS

)
x′ =

(
1 0 0
c′ E F

)
x′ ≡ µmt+1 (mod p`), where c = ζN (ci1 , ci2 , . . . , cit)

and v = (ci1 , ci2 , . . . , cit). Thus, the vector (1,−advC ′,0,u) is a solution of (5).

To prove reconstruction, by Lemma 1, it is sufficient to show that for every
subset S = {i1, i2, . . . , ir} of [n] of size r and every prime power p`, the equation

xMS ≡ µl+e (mod p`) (6)

is solvable. If p ≤ n, then Zp-rank of GS is l. Without loss of generality, we may

write GS =
(
b′ E
c′ F

)
such that (b′, E) is an l × l invertible matrix modulo p`. As

ζN is co-prime with p, (ζNb′, E) is also an l × l invertible matrix modulo p`.
Thus, there exists a vector v ∈ Zl such that vE ≡ µl (mod p`). Hence, (v,0) is
a solution of (6).

If p > n, let S1 = {i1, i2, . . . , it+1} ⊆ S. By Lemma 5, there is a vector
a ∈ Zt+1

p`
such that a(δ1, LS1) ≡ µt+1 (mod p`). This implies that (6) is solvable

modulo p`.
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5 Lifting codes over prime fields

As we have seen in the previous section, to construct a monotone span program,
it is sufficient to construct a matrixG satisfying the conditions in Theorem 6. Our
idea is to construct generator matrices over Zp of the same size for every prime
p such that each generator matrix over Zp satisfies the conditions in Theorem
6. Then we lift these matrices using the Chinese Remainder Theorem to obtain
the desired matrix G in Theorem 6.

It has been known that linear secret sharing schemes with same secret and
share spaces are equivalent to linear codes (see e.g. [8, 26]).

Let us first review some notions from coding theory (see e.g. [30, 29]) that are
relevant to this work. Let Fq be a finite field of q elements. A q-ary linear code C
of length n is an Fq-subspace of Fnq . Then dimension of this code is defined to be
the dimension of C as an Fq-linear space. We denote by [n, k]q a q-ary linear code
of length n and dimension k. In case there is no confusion, we just denote [n, k]q
by [n, k] or q-ary [n, k]-linear code. The (Euclidean) dual code of C, denote by
C⊥, is defined to be the set {x ∈ Fq : 〈c,x〉 = 0 for all c ∈ C}, where 〈·, ·〉 is the
Euclidean inner product. Then it is well known from linear algebra that C⊥ is
a q-ary [n, n− k]-linear code. Apart from length and dimension, there is a third
parameter d, called minimum distance which plays an important role in coding
theory. We denote by [n, k, d]q a q-ary linear code of length n, dimension k and
minimum distance d. We use d⊥ to denote the minimum distance of the dual
code. We also call d⊥ the dual distance of C. The distance d and dual distance
d⊥ are closely related to privacy and reconstruction of the linear secret sharing
scheme arising from this code (see e.g. [8, 26]).

For an [n, k]q-linear code C, a matrix G is called a generator matrix of C if
the columns of G form an Fq-basis of C (note that this is different from the usual
definition in which rows of G form an Fq-basis of C). Thus, G has the size n× k.
A generator matrix of C⊥ is called a parity-check matrix of C. Hence, H has size
n × (n − k). It is clear that a linear code C is uniquely determined by either a
generator matrix or a parity-check matrix. Therefore, all three parameters of a
linear code C are completely determined by a generator matrix G or a parity-
check matrix H. The length and dimension of C are determined by size of G or
H in an obvious way. The following result shows how the minimum distance is
determined by G or H.

Lemma 6 (see [29, 38]). Let C be a q-ary [n, k]-linear code with a generator
matrix G or a parity-check matrix H. Then

(i) C has minimum distance d if and only if every (n− d+ 1)× k submatrix of
G has rank k; and there is a (n− d)× k submatrix of G with rank less than
k.

(ii) C has minimum distance d if and only if every (d − 1) × (n − k) submatrix
of H has rank d − 1; and there is a d × (n − k) submatrix of H with rank
less than d.
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In coding theory, there is a well-known propagation rule to construct new
codes from given codes, called concatenation rule. Let C1 be a pk0 -ary [n1, k1, d1]-
linear code and let C0 be a p-ary [n0, k0, d0]-linear code. We fix an Fp-isomorphism
τ between Fpk0 and C0. Then the concatenated code C is defined by {(τ(c1), τ(c2),
. . . , τ(cn)) : (c1, c2, . . . , cn) ∈ C1}. Furthermore, C is an [n0n1, k0k1,≥ d0d1]p-
linear code (see e.g. [29]). However, usually C has small dual distance. In fact,
the dual distance of C is at most the dual distance of C0. On the other hand, if
C0 is the trivial code Fk0q , then the dual distance of C is at least the dual distance
of C1

Fix an Fp-basis γ1, γ2, . . . , γm of Fpm . Let β1, β2, . . . , βm be an orthogonal
basis of γ1, γ2, . . . , γm, i.e, Tr(γiβj) = δij , where Tr is the trace map from
Fpm to Fp and where δi,j is the Kronecker-delta function. We define maps ϕ
and ψ from Fpm to Fmp by setting ϕ(α) = (a1, a2, . . . , am) if α =

∑m
i=1 aiγi

and ψ(α) = (b1, b2, . . . , bm) if α =
∑m
i=1 biβi, respectively. Then both map-

s are Fp-isomorphisms from Fpm to Fmp . Furthermore, we have 〈ϕ(α), ψ(β)〉 =
Tr(αβ). We can extend these two Fp-isomorphisms: Fnpm → Fmnp by defining
ϕ(α1, α2, . . . , αn) = (ϕ(α1), ϕ(α2), . . . , ϕ(αn)) and ψ(α1, α2, . . . , αn) = (ψ(α1),
ψ(α2), . . . , ψ(αn)), respectively. Then they become Fp-isomorphisms from Fnpm
to Fmnp .

Lemma 7. If C is a pm-ary [n, k, d]-linear code with dual distance d⊥. Then
ϕ(C) is a p-ary [nm, km]-linear code with distance at least d and dual distance
at least d⊥. Furthermore, the dual code of ϕ(C) is ψ(C⊥).

Proof. ϕ(C) (and ψ(C⊥), respectively) is the concatenated code with the outer
code C (and C⊥, respectively) and trivial inner code Fmp . Thus, ϕ(C) is a p-ary

linear code with the desired parameters. It remains to prove that ϕ(C)⊥ is ψ(C⊥).

Since the Fp-dimension of ϕ(C)⊥ is nm − dimFp
ϕ(C) = nm − dimFp

C =
nm − mk = dimFp

ψ(C⊥), it is sufficient to show that codewords of ϕ(C) and
those of ψ(C⊥) are orthogonal. Let u = (ϕ(α1), ϕ(α2), . . . , ϕ(αn)) ∈ ϕ(C)
with (α1, α2, . . . , αn) ∈ C. Let v = (ψ(λ1), ψ(λ2), . . . , ψ(λn)) ∈ ψ(C⊥) with
(λ1, λ2, . . . , λn) ∈ C⊥. Then the inner product of these vectors are

〈u,v〉 =

n∑
i=1

〈ϕ(αi), ψ(λi)〉 =

n∑
i=1

Tr(αiλi) = Tr

(
n∑
i=1

αiλi

)
= 0.

This completes the proof.

Corollary 8 Let C be a pm-ary [n, k, d]-linear code with dual distance d⊥. Let
(aij)1≤i≤n,1≤j≤k be a generator matrix of C. Then the matrix in Fmn×kmp given
below

G =


ϕ(γ1a11) ϕ(γ2a11) · · · ϕ(γma11) · · · · · · ϕ(γ1a1k) ϕ(γ2a1k) · · · ϕ(γma1k)
ϕ(γ1a21) ϕ(γ2a21) · · · ϕ(γma21) · · · · · · ϕ(γ1a2k) ϕ(γ2a2k) · · · ϕ(γma2k)

...
...

...
...

...
...

...
...

...
...

ϕ(γ1an1) ϕ(γ2an1) · · · ϕ(γman1) · · · · · · ϕ(γ1ank) ϕ(γ2ank) · · · ϕ(γmank)


(7)
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is a generator matrix of ϕ(C), where each ϕ(γiajl) is viewed as a column vector
of length m. Furthermore, define Ψ to be the map from [mn] to [n] such that the
first m numbers of [mn] are mapped to 1 and the second m numbers of [mn] are
mapped to 2 and so on. Then

(i) for any S ⊆ [n] with |S| ≥ n− d+ 1, ϕ(GS) has Fp-rank equal to mk;
(ii) for any T ⊆ [n] with |T | ≤ d⊥ − 1, ϕ(GT ) has Fp-rank equal to mt, where

t = |T |.

Proof. It is clear that every column of G is a codeword of ϕ(C). By Lemma
7, ϕ(G) has dimension mk. Thus, to show that ϕ(G) is a generator matrix
of ϕ(C), it is sufficient to show that all columns of ϕ(C) are linearly inde-
pendent. Let g′1,g

′
2, . . . ,g

′
k be column vectors of G. We want to show that

{ϕ(γigj)}1≤i≤m,1≤j≤k are Fp-linearly independent. Suppose that
∑m
i=1

∑k
j=1 λij

ϕ(γigj) = 0 for some λij ∈ Fp, i.e., ϕ
(∑m

i=1

∑k
j=1 λijγigj

)
= 0. As ϕ is an

isomorphism, we get
∑m
i=1

(∑k
j=1 λijγi

)
gj = 0. Since g1,g2, . . . ,gk are Fpm -

linearly independent, this forces that
∑k
j=1 λijγi = 0 for i = 1, 2, . . . , k. This

gives γij = 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ k.

Now let S ⊆ [n] with |S| ≥ n − d + 1. Consider the new code C1 that is
obtained from C by deleting n − |S| positions at i ∈ [n] \ S. Then C1 is pm-ary
[n− |S|, k,≥ d− n + |S|]-linear code. By the first part of this lemma, we know
that of ϕ(GS) is a generator matrix of ϕ(C1). Hence, it has rank mk.

Let T ⊆ [n] with |T | ≤ d⊥−1. If uT ∈ Fmtp is a solution of xϕ(GT ) = 0. Then
(uT ,0[n]\T ) is a solution of xϕ(G) = 0. By Lemma 7, (uT ,0[n]\T ) is a codeword

in ψ(C⊥). Hence ψ−1(uT ,0[n]\T ) is a codeword of C⊥. As the Hamming weight

of ψ−1(u,0[n]\T ) is at most |T | ≤ d⊥ − 1, we conclude that u = 0. This implies
that the Zp-rank of ϕ(G′T ) is mt. The proof is completed.

Given a matrix A = (aij)1≤i≤n,1≤j≤k ∈ Fn×kpm , we denote by ϕ(A) the matrix
given in (7).

5.1 Reed-Solomon codes

In this subsection, we are going to make use of Reed-Solomon codes to construct
a matrix G satisfying the conditions of Theorem 6.

Let m = dlog ne. Then for any prime p, we have n ≤ 2m ≤ pm. Choose
n distinct elements α1, α2, . . . , αn ∈ Fpm . We denote by Fpm [x]<t the set of
polynomials in Fpm [x] of degree less than t. Then Fpm [x]<t is an Fpm-space of
dimension t with a canonical basis {1, x, , x2, . . . , xt−1}. A Reed-Solomon code
is defined below

RS[n, t] := {(f(αi), f(α2), . . . , f(αn)) : f ∈ Fpm [x]<t}.

The code RS[n, t] is a pm-ary [n, t]-linear code with distance d = n− t+ 1 and
dual distance d⊥ = t+ 1, respectively.
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Fix an Fpm-basis f2, f3, . . . , ft+1 of Fpm [x]<t. Extend this basis to an Fpm-
basis {fi}t+1

i=1 of Fpm [x]≤t. Define the matrix

A(p) =


f1(α1) f2(α1) f3(α1) · · · ft+1(α1)
f1(α2) f2(α2) f3(α2) · · · ft+1(α2)

...
...

...
...

...
f1(αn) f2(αn) f3(αn) · · · ft+1(αn)

 (8)

Then A(p) is a generator matrix of RS[n, t+ 1] = [n, n− t− 1]pm .

Lemma 9. Put G(p) = ϕ(A(p)). Then

(i) for any subset S of [n] of size t+ 1, G
(p)
S has Fp-rank equal to (t+ 1)m; and

(ii) for any subset T of [n] of size t, NT has Fp-rank mt, where N is obtained
from G(p) by removing the first column from the left.

Proof. As A(p) is a generator matrix of RS[n, t+1] whose distance is n− t, Part
(i) directly follows from Corollary 8 (i). To prove Part (ii), we consider B(p) that
is obtained from A(p) by removing the first column. Then B(p) is a generator

matrix of RS[n, t] whose dual distance is t+ 1. By Corollary 8 (ii), ϕ(B
(p)
T ) has

Fp-rank mt. Furthermore, ϕ(B(p)) is in fact obtained from NT by removing the
first m− 1 columns. As a result, NT has Fp-rank mt as well.

Corollary 10 For any integer n ≥ 2 and any integer t with 0 < t < n, there
exists a triple (Z, G, Ψ) defined in Subsection 2.1 such that G ∈ Znm×(t+1)m

with m ≥ dlog ne and |Ψ−1(j)| = m for all 1 ≤ j ≤ n such that, for every prime
p ≤ n, if G is viewed a matrix modulo p, then

(i) for any subset S of [n] of t+ 1, GS has Fp-rank equal to (t+ 1)m; and
(ii) for any subset T of [n] of t, NT has Fp-rank mt, where N is obtained from

G by removing the first column from the left.

Proof. By Lemma 9, for every prime p ≤ n, we can construct a matrix G(p) ∈
Znm×(t+1)m satisfying the two conditions in Lemma 9. By the Chinese Remain-
der Theorem, we can lift all G(p)’s to one matrix G ∈ Znm×(t+1)m such that
G ≡ G(p) (mod p). Then G is the desired matrix.

5.2 Algebraic geometry codes

In the previous section, we made use of Reed-Solomon codes to construct a
matrix G satisfying the conditions in Theorem 6. This would give a threshold
BBSSS (see Theorem 7). However, in this case, the expansion factor h is nm =
ndlog ne, i.e., the ratio is h

n = dlog ne is unbounded. If we want to get a bounded

ratio h
n , then the lower bound in Theorem 5 indicates that we have to use a

near-threshold BBSSS. As in the case of linear secret sharing schemes, we can
use algebraic geometry codes to get a bounded ratio h

n .
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Let us first introduce an algebraic geometry codes very briefly. The reader
may refer to the books [34, 36] for the details on this topic. For convenience of
the reader, we start with some background on global function fields over finite
fields. The reader may refer to [34, 31] for detailed background on function fields
and algebraic-geometric codes.

For a prime power q, let Fq be the finite field of q elements. An algebraic
function field over Fq in one variable is a field extension F ⊃ Fq such that F is
a finite algebraic extension of Fq(x) for some x ∈ F that is transcendental over
Fq. The field Fq is called the full constant field of F if the algebraic closure of Fq
in F is Fq itself. Such a function field is also called a global function field. From
now on, we always denote by F/Fq a function field F with the full constant field
Fq.

A discrete valuation of F/Fq is a map from F to Z∪{+∞} satisfying certain
properties (see [34, Definition 1.19]). Then each discrete valuation ν from F/Fq
to Z ∪ {+∞} defines a valuation ring O = {f ∈ F : ν(f) ≥ 0} that is a local
ring [34, Theorem 1.1.13]. The maximal ideal P of O is given by P = {f ∈
F : ν(f) > 0} and it is called a place. We denote the valuation ν and the
local ring O corresponding to P by νP and OP , respectively. The residue class
field OP /P , denoted by FP , is a finite extension of Fq. The extension degree
[FP : Fq] is called degree of P , denoted by deg(P ). A place of degree one is
called a rational place. For a nonzero function z ∈ F , the principal divisor of
z is defined to be div(z) =

∑
P∈PF

νP (z)P . The zero and pole divisors of z are
defined to be div(z)0 =

∑
νP (z)>0 νP (z)P and div(z)∞ = −

∑
νP (z)<0 νP (z)P ,

respectively. Then we have deg(div(z)) = 0, i.e, deg(div(z)0) = deg(div(z)∞).
For two functions f, g ∈ F and a place P , we have νP (f+g) ≥ min{νP (f), νP (g)}
and the equality holds if νp(f) 6= νP (g) (note that νP (0) = +∞). This implies
that f + g 6= 0 if νP (f) 6= νP (g).

If F is the rational function field Fq(x), then every discrete valuation of F/Fq
is given by either ν∞ or νp(x) for an irreducible polynomial p(x), where ν∞ is
defined by ν∞(f/g) = deg(g)− deg(f) and νp(x)(f/g) = a− b with p(x)a||f and

p(x)b||g for two nonzero polynomials f, g ∈ Fq[x]. It is straightforward to verify
that the degrees of places corresponding to ν∞ and νp(x) are 1 and deg(p(x)),
respectively.

Let PF denote the set of places of F . The divisor group, denoted by Div(F ), is
the free abelian group generated by all places in PF . An elementD =

∑
P∈PF

nPP
of Div(F ) is called a divisor of F , where nP = 0 for almost all P ∈ PF .
We denote np by νP (D). The support, denoted by Supp(D), of D is the set
{P ∈ PF : nP 6= 0}. Thus, Supp(D) of a divisor D is always a finite subset of
PF . For a divisor D of F/Fq, we define the Riemann-Roch space associated with
D by

L(D) := {f ∈ F ∗ : div(f) +D ≥ 0} ∪ {0},

where F ∗ denotes the set of nonzero elements of F . Then L(D) is a finite di-
mensional space over Fq and its dimension dimFq L(D) is determined by the

24



Riemann-Roch theorem which gives

dimFq L(D) = deg(D) + 1− g + dimFq L(W −D),

where g is the genus of F and W is a canonical divisor of degree 2g−2. Therefore,
we always have that dimFq

L(D) ≥ deg(D) + 1 − g and the equality holds if
deg(D) ≥ 2g− 1 [34, Theorems 1.5.15 and 1.5.17].

Let p be a prime and let n > l ≥ 2 be two integers. Let F/Fpm be a function
field with genus g and n + 1 distinct Fpm -rational places P∞, P1, P2, . . . , Pn.
Define the ordered set P = {P1, P2, . . . , Pn}. Denote by C(lP∞,P) the algebraic
geometric code defined by

C(lP∞,P) = {(f(P1), f(P2), . . . , f(Pn)) : f ∈ L(lP∞)}. (9)

Lemma 11. (see [34, Theorem 2.2.4]) Let g < k < n − g. Then C((k + g −
1)P∞,P) is a pm-ary [n, k,≥ n−k−g+1]-linear code and C⊥((t+2g−1)P∞,P)
is a pm-ary [n, n− k,≥ k − g + 1]-linear code. Furthermore, the matrix

A =


f1(P1) f2(P1) f3(P1) · · · fk(P1)
f1(P2) f2(P2) f3(P2) · · · fk(P2)

...
...

...
...

...
f1(Pn) f2(Pn) f3(Pn) · · · fk(Pn)

 (10)

is a generator matrix of C((k + g− 1)P∞,P) whenever f1, f2, . . . , fk are a basis
of L((k + g− 1)P∞).

Similar to Corollary 10, we have the following result.

Lemma 12. Let g < k < n − g. Let f2, f3, . . . , fk−1 be a Fpm-basis of L((k +
g−2)P∞) and let f1, f2, f3, . . . , ft+g+1 be an Fpm-basis of L((k+g−1)P∞). Let
A be the matrix defined in (10) and put G(p) = ϕ(A). Furthermore, define Ψ to
be the map from [mn] to [n] such that the first m numbers of [mn] are mapped
to 1 and the second m numbers of [mn] are mapped to 2 and so on. Then

(i) for any subset S of [n] of size at least k + g, G
(p)
S has Fp-rank equal to

(t+ g + 1)m; and
(ii) for any subset T of [n] of size t with t ≤ k − g − 1, NT has Fp-rank mt,

where N is obtained from G(p) by removing the first column from the left.

Proof. Note that A is a generator matrix of L((t + 2g)P∞) with minimum dis-
tance at least n− 2g. Part (i) follows from Corollary 8.

Let B be the matrix of A obtained from A by removing the first column of
A. Then B is a generator matrix of C((k+ g− 2)P∞,P). By mimicking proof of
Corollary 10(ii), we can Part (ii).

Corollary 13 Let m ≥ 2 be an even integer. Then for any integer n ≥ 2 and

any integer k with 2(n+1)
2m/2−1 < k < n− 2(n+1)

2m/2−1 , there exists a triple (Z, G, Ψ) defined

in Subsection 2.1 such that G ∈ Znm×km and |Ψ−1(j)| = m for all 1 ≤ j ≤ n
such that, for every prime p ≤ n, if G is viewed as a matrix modulo p, then
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(i) for any subset S of [n] of size r with r ≥ k + 2(n+1)
2m/2−1 , GS has Fp-rank equal

to km; and

(ii) for any subset T of [n] of size t with t ≤ k − 2(n+1)
2m/2−1 − 1, NT has Fp-rank

mt, where N is obtained from G by removing the first column from the left.

Proof. If pm ≥ n, then the desired result follows from Corollary 10. Now we
assume that pm < n.

Define

i(p,m, n) =

⌈
logp

(
n

pm − 1

)⌉
. (11)

We claim that

pi(p,m,n)−1(pm − 1) < n ≤ pi(p,m,n)(pm − 1). (12)

To prove (12), it is sufficient to verify that pi(p,m,n)−1 < n
pm−1 ≤ pi(p,m,n), i.e,

i(p,m, n)− 1 < logp

(
n

pm−1

)
≤ i(p,m, n) for all primes p.

Define
i(m,n) = max

pm≤n
pi(p,m,n)(pm/2 + 1). (13)

For pm ≤ n, we have

pi(p,m,n)(pm/2 + 1) ≤ p1+logp( n+1
pm−1 )(pm/2 + 1) ≤ p

(
n+ 1

pm − 1

)
(pm/2 + 1)

=
p(n+ 1)

pm/2 − 1
≤ 2(n+ 1)

2m/2 − 1
.

For every p with pm ≤ n, by Lemma 14, there exists an algebraic function
field F/Fpm of genus g ≤ i(p,m, n) such that it has at least n + 1 distinct
Fpm-rational points. We label these n + 1 pairwise distinct Fpm-rational points
P∞, P1, P2, . . . , Pn. Let f2, f3, . . . , ft+g+1 be a Fpm -basis of L((t + 2g − 1)P∞)
and extend to a Fpm-basis f1, f2, f3, . . . , ft+g+1 of L((t+ 2g)P∞). Let A be the
matrix defined in (10) and put G(p) = ϕ(A).

By Corollary 13, for any subset S of [n] or size r with r ≥ k + 2(n+1)
2m/2−1 ≥

k + g, G
(p)
S has Fp-rank equal to km; and for any subset T of [n] of size t with

t ≤ k − 2(n+1)
2m/2−1 − 1 ≤ k − g − 1, NT has Fp-rank mt. Now by the Chinese

Remainder Theorem, we can lift all G(p) to a matrix G ∈ Znm×km such that
G ≡ G(p) (mod p). The desired result follows.

6 The main results

We are ready to state our final results by collecting some previous results.

Theorem 7. For any 0 < t < n, there is a threshold BBSSS over the access
structure Rt,n whose expansion factor % satisfies log n+3

2 ≤ % ≤ 1 + dlog ne.
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Proof. The lower bound follows from Remark 3 directly. By applying the matrix
G obtained in Corollary 10 to Theorem 6, we obtain the desired upper bound.

The above upper bound is better than the one given in [14] by an additive
constant and worse than the one given in [16] by an additive constant.

Theorem 8. Let m ≥ 2 be an even integer. Then for any integer n ≥ 2 and
any integer k with

2(n+ 1)

2m/2 − 1
< k < n− 2(n+ 1)

2m/2 − 1
, r ≥ k +

2(n+ 1)

2m/2 − 1
, t ≤ k − 2(n+ 1)

2m/2 − 1
− 1,

one has msp(Rt,r,n) ≤ n(1 + m). As a result, for any 0 < t < n − 2
⌈

2(n+1)
2m/2−1

⌉
and r with r = t + 2

⌈
2(n+1)
2m/2−1

⌉
+ 1, there is a near-threshold BBSSS over the

access structure Rt,r,n whose expansion factor % satisfies

m

2
− 3 ≈ log

n+ 1

2(r − t)
≤ % ≤ m+ 1.

Proof. The lower bound on msp(Rt,r,n) follows Theorem 5 directly. By applying
the matrix G obtained in Corollary 13 to Theorem 6, we obtain the desired
upper bound msp(Rt,r,n).

An immediate consequence of Theorem 8 is the following result showing that
our near-threshold black-box secret sharing schemes are expansionless.

Main Theorem 1 For any odd integer % ≥ 3, there exists a near-threshold
BBSSS over the access structure Rt,r,n with expansion factor % and r − t =
exp(−O(%))n. Furthermore, this is expansionless, i.e., every near-threshold BB-
SSS over the access structure Rt,r,n with expansion factor % must obey r − t =
exp(−Ω(%))n.

Proof. The first part follows from Theorem 8, while the second part follows from
Theorem 5.
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A The subfields of the Garcia-Stichtenoth tower

In the original Garcia-Stichtenoth tower {Ei/Fpm}∞i=1 (see [22, 23]), the extension
degree [Ei+1 : Ei] = pm for all i ≥ 1. However, in order to have a tower of slowly
growing genus, we split each extension Ei+1/Ei into m extensions of degree p.

Lemma 14. Let m be an even number and let p be a prime. Then there exists
a function field family {Fi/Fpm}∞i=1 such that, for every i ≥ 1, the genus g(Fi)
is upper bounded by pi(pm/2 + 1) and the number N(Fi) is lower bounded by
pi(pm − 1).

Proof. Put r = pm/2. Let E1 ⊆ E2 ⊆ . . . be the tower of global function fields
over Fpm constructed by Garcia and Stichtenoth [22], that is, E1 = Fpm(x1) is a
rational function field and En+1 = En(zn+1) for n = 1, 2, . . . with

zrn+1 + zn+1 = xr+1
n and xn+1 =

zn+1

xn
.
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Then En+1/En is a Galois extension of degree r and Gal(En+1/En) ' Zm/2p for
each n ≥ 1. Hence there exists a chain of fields

En = Kn,0 ⊂ Kn,1 ⊂ . . . ⊂ Kn,m/2 = En+1

such that [Kn,i+1 : Kn,i] = p for 0 ≤ i ≤ m/2− 1. From results in [22] we know
that for all n ≥ 1 we have

g(En) ≤ rn + rn−1, N(En) ≥ (pm − 1)rn−1 + 1.

The last inequality implies

N(Kn,i) ≥
N(En+1)

[En+1 : Kn,i]
≥ pi(pm − 1)rn−1 + 1 for 0 ≤ i ≤ m/2.

Next we establish an upper bound for g(Kn,i). From [22] we know that for
each place P of En that is ramified in the extension En+1/En we have νP (xn) =
−1, and therefore we obtain νP (xr+1

n ) = −r − 1. It follows that P is totally
ramified in En+1/En. According to [22], the sum of the degrees of these places
P is equal to rbn/2c, and so the same holds for the sum of the degrees of the
places P ′ of Kn,i that are ramified in En+1/Kn,i, where 0 ≤ i ≤ m/2 − 1. For
any such P ′ and the unique place P ′′ of En+1 lying over it we have

d(P ′′|P ′) = (pm/2−i − 1)(r + 2).

By combining these facts with the Hurwitz genus formula, we obtain

2g(En+1)− 2 = pm/2−i(2g(Kn,i)− 2) + rbn/2c(r + 2)(pm/2−i − 1)

for 0 ≤ i ≤ m/2, and so

g(Kn,i) ≤
pi

r
(g(En+1)− 1)− 1

2
rbn/2c−1(r + 2)(r − pi) + 1 ≤ pi

(
rn + rn−1

)
.

Taking {Fi} be the family {K0,0,K0,1, . . . ,K0,m/2,K1,0,K1,1, . . . ,K1,m/2, . . . }
gives the desired result.
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