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Abstract. We initiate the study of structured encryption schemes with
computationally-secure leakage. Specifically, we focus on the design of
volume-hiding encrypted multi-maps; that is, of encrypted multi-maps
that hide the response length to computationally-bounded adversaries.
We describe the first volume-hiding STE schemes that do not rely on
näıve padding; that is, padding all tuples to the same length. Our first
construction has efficient query complexity and storage but can be lossy.
We show, however, that the information loss can be bounded with over-
whelming probability for a large class of multi-maps (i.e., with lengths
distributed according to a Zipf distribution). Our second construction is
not lossy and can achieve storage overhead that is asymptotically better
than näıve padding for Zipf-distributed multi-maps. We also show how
to further improve the storage when the multi-map is highly concentrated
in the sense that it has a large number of tuples with a large intersection.
We achieve these results by leveraging computational assumptions; not
just for encryption but, more interestingly, to hide the volumes them-
selves. Our first construction achieves this using a pseudo-random func-
tion whereas our second construction achieves this by relying on the
conjectured hardness of the planted densest subgraph problem which is
a planted variant of the well-studied densest subgraph problem. This as-
sumption was previously used to design public-key encryptions schemes
(Applebaum et al., STOC ’10 ) and to study the computational complex-
ity of financial products (Arora et al., ICS ’10 ).

1 Introduction

A structured encryption (STE) scheme encrypts a data structure in such a way
that it can be privately queried. An STE scheme is secure if it reveals nothing
about the structure and query beyond a well-specified and “reasonable” leakage
profile [15,12]. An important special case of STE is searchable symmetric encryp-
tion (SSE) which relies on encrypted multi-maps [15,12,29,28,36,11,10,7,8,4,18,5,16]
to achieve optimal-time search. Another example is graph encryption which en-
crypts various kinds of graphs [12,33]. STE has received a lot of attention due to
its potential applications to cloud storage and database security. In recent years,
much of the work on STE has focused on supporting more complex queries like
Boolean [11,37,21,25] and range queries [37,21,20,38], more complex structures
like relational databases [26] and on improving security, for example achieving
forward-privacy [40,7,8,19,1].



Leakage. One aspect of STE that is still poorly understood is its leakage.
There are currently two approaches to dealing with leakage. The first is crypt-
analysis; that is, designing leakage attacks against various leakage profiles so
that we can better understand their concrete security. This was initiated by Is-
lam, Kuzu and Kantarcioglu in the context of SSE [24] and expanded to PPE
by Naveed, Kamara and Wright [35] and to ORAM by Kellaris, Kollios, Nis-
sim and O’Neill [30]. While there has been some progress on designing leakage
attacks against STE [24,9,30,32], these attacks remain mostly of theoretical in-
terest due to the strong assumptions they rely on. Assumptions like knowledge
of at least 80% − 90% of client data in addition to knowledge of 5% of client
queries [24,9], or assuming clients make queries uniformly at random, often in
addition to assumptions about how client data is distributed [30,32]. Neverthe-
less, these attacks do provide us with some guidance as to which leakage profiles
to avoid when designing schemes. Another line of work related to leakage was
initiated recently by Kamara, Moataz and Ohrimenko in [27] where they pro-
pose designing general-purpose techniques to suppress specific leakage patterns.
In [27], they show how to do this for the query equality pattern (also known
as the search pattern) without making use of ORAM simulation and, therefore,
without incurring its poly-logarithmic multiplicative overhead.

Computationally-secure leakage. In this work, we consider a new approach
to dealing with leakage. Our work starts from the observation that the presence
of leakage does not necessarily imply that this leakage can be exploited. In fact,
it could be that the leakage is not exploitable because it does not convey enough
useful information to the adversary. Alternatively, it could be that the leakage
does convey enough information but no computationally-bounded adversary can
extract it. In other words, the leakage could be computationally-secure. The pos-
sibility of designing STE schemes with computationally-secure leakage patterns
is interesting for several reasons. From a theoretical point of view, as far as we
know, this question has never been considered before and it raises some intriguing
foundational questions; like what kind of computational assumptions would lend
themselves to the design of secure leakage patterns? The traditional assumptions
used in cryptography are usually algebraic or number-theoretic in nature and
it is not clear how such assumptions could be used. From a more practical per-
spective, the ability to leverage “computationally-secure leakage” in the design
of STE schemes could lead to a whole new set of techniques and, ultimately, to
highly-efficient zero- or low-leakage schemes—computationally speaking.

Volume-hiding EMMs. In this work, we initiate the study of computationally-
secure leakage. In particular, we focus on the design of volume-hiding encrypted
multi-maps or, more precisely, of encrypted multi-maps that hide the response
length to computationally-bounded adversaries. 1 We focus on encrypted multi-
maps because they are by far the most important encrypted structure; this is
illustrated by the fact that they are central to the design of optimal-time single-
keyword SSE [15,12,29,10,7,34,8,19], of sub-linear Boolean SSE [11,25], of graph

1 Our constructions also reveal the query equality—even to a bounded adversary—but
the latter can be suppressed using the cache-based transform from [27].
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encryption [12,33], of encrypted range structures [20,17] and of encrypted rela-
tional databases [26]. We consider the response length leakage pattern for several
reasons. The first is that it is a very difficult leakage pattern to suppress. In fact,
though encrypted search has been investigated since 2000, the first non-trivial
construction to even partially hide the response length is the recent PBS scheme
of [27]. 2 In fact, response lengths are leaked even by ORAM-based solutions.
The second reason we focus on response lengths is because of the recent volume
attacks of Kellaris et al. [30] or its extension by Grubbs et al. [23]. Again, while
these attacks are mostly of theoretical interest, they do suggest that the design
of volume-hiding encrypted structures is well-motivated.

1.1 Näıve Approaches
To better understand our techniques and the improvements they provide, we
first describe two possible näıve approaches to designing volume-hiding EMMs.
Recall that a multi-map is a data structure that stores a set of pairs {(`,v)},
where ` is a label from a label space L and v is a tuple of values from some value
space V. Multi-maps support get and put operations. Get takes as input a label
` and returns its associated tuple v whereas Put takes as input a label/value
pair (`,v) and stores it. We denote the get operation by v := MM[`] and the put
operation by MM[`] := v.

Näıve padding. The first approach to designing a volume-hiding multi-map
encryption scheme is to pad the tuples of the plaintext multi-map MM to their
maximum response length t = max`∈L #MM[`] and encrypt the padded multi-
map with any standard multi-map encryption scheme [12,10,7,1]. It is easy to see
that this hides the response lengths. Unfortunately, it also induces a non-trivial
storage overhead.

Using ORAM. We now describe a volume-hiding construction based on ORAM.
Note that, as far as we know, this construction has not appeared before and may
be of independent interest.3 We first represent the multi-map MM as a dictio-

nary by generating N
def
=
∑
`∈L #MM[`] pairs of the form

{
(`, v)`∈L,v∈MM[`]

}
and

storing them in a dictionary DX. We then add t − 1 dummy label/value pairs
to DX, where t is the maximum response length of a label in MM. DX is then
stored and managed using ORAM. To get the tuple associated with a label `, we
first obliviously access DX. There are two cases: if #MM[`] = t, then we retrieve
all pairs associated with `; otherwise if #MM[`] < t, we retrieve an additional
t−#MM[`] dummies.

It is clear that this hides the response length since the ORAM simulation
hides the query equality and, therefore, an adversary can’t distinguish between

2 The PBS construction has two variants. One can hide the response length on non-
repeating sub-patterns but has a probability of failure in the sense that the client
might not receive all its query responses. The second variant is always correct but
reveals the sequence response length on non-repeating sub-patterns.

3 Kellaris, Kollios, Nissim and O’Neil show in [31] how to use differential privacy to
perturb the response length in ORAM. This is different from this näıve approach
which completely hides the response length.
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a dummy label and a real label. From an efficiency perspective, if we use a
state-of-the-art ORAM [41] then the storage overhead is O(N). The commu-
nication complexity, however, is O(t · log2N) which includes a multiplicative
poly-logarithmic factor in addition to logarithmic round complexity.

1.2 Our Techniques and Contributions
In this work, we describe two volume-hiding multi-map encryption schemes: VLH
and AVLH. Both our constructions work by first transforming an input multi-
map into a volume-hiding multi-map and encrypting the result with a custom
multi-map encryption scheme that itself makes black-box use of a standard multi-
map encryption scheme. These constructions avoid the limitations of the näıve
approaches described above either by improving on the storage of näıve padding
or avoiding the multiplicative poly-logarithmic overhead of the ORAM-based
solution.

A time-efficient construction. Our first construction relies on a simple
transformation we call the pseudo-random transform which is parameterized by
a public parameter λ and makes use of a small-domain pseudo-random function
as follows. Each tuple v in the multi-map is transformed into a new tuple v′ of
size n′ = λ+FK(n), where n = #v. If n′ > n, then the elements of v are stored
in v′ and the latter is padded to have length n′. If n′ ≤ n then only the first n′

items of v are stored in v′ which effectively truncates v (we think of the case
n′ = n as a padding). Note that the multi-map that results from this process is
volume-hiding since each tuple has pseudo-random length. Perhaps surprisingly,
we also show that if the lengths of the input multi-map are Zipf-distributed
then the storage overhead and the number of truncations can be kept relatively
small with overwhelming probability in the number of labels. More precisely, we
show that the storage overhead is half that of näıve padding while the num-
ber of truncations is equal to m/ logm. Our scheme VLH essentially consists of
transforming a multi-map using the pseudo-random transform and encrypting
it with a standard multi-map encryption scheme. The query complexity of VLH
is O(λ+ ν), where ν is the largest value in the domain of F . While the pseudo-
random transform leads to an efficient construction, it is lossy since tuples can be
truncated. In many practical settings, however, truncations are not necessarily
an issue. For example, in the case of SSE where EMMs are used to store docu-
ment identifiers clients can rank the document ids (say, by relevance) at setup
time so that truncations only affect the low-ranked documents. Nevertheless, we
also consider the problem of designing non-lossy volume-hiding EMMs.

A non-lossy transform. Our second construction relies on a different trans-
formation we call the dense subgraph transform. Unlike the pseudo-random trans-
form which introduces truncations, this approach is non-lossy. On the other hand,
it is less efficient in terms of query complexity. Note, however, that it is hard
to imagine any non-lossy construction being able to hide the response length of
a query and having query complexity o(t), where t is the maximum response
length. Our goal, therefore, is to design a non-lossy scheme that improves on the
storage overhead of the näıve padding approach. At a high-level, our non-lossy
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transform works by re-arranging the data stored in the multi-map into bins ac-
cording to a random bi-partite graph. Roughly speaking, we construct a random
(regular) bi-partite graph with labels in one set and bins in the other. We then
assign the values in a label’s tuple to the bins that are incident to the label. The
bins are then padded to hide their size. To ensure that this re-arrangement is
still efficiently queryable, we show how to represent the structure encoded in the
bi-partite graph and the data stored in the bins with a pair of standard data
structures; specifically, a multi-map and a dictionary. We show that, with the
right choice of parameters, this version of our transformation already yields a
volume-hiding multi-map structure with better storage overhead than the näıve
padding approach. More precisely, we show that the näıve approach produces
a volume-hiding multi-map of size SNV = Ω(N), where N is the size of the
original multi-map, whereas our approach yields a volume-hiding multi-map of
size O(N) with overwhelming probability in N . Interestingly, we also show that
if the tuple-lengths of the input multi-map are Zipf-distributed then our trans-
formation yields a multi-map of size o(SNV) with overwhelming probability. We
note that this version of the transformation already makes use of computational
assumptions. In particular, it uses a pseudo-random function to generate the
edges of the random bi-partite graph which allows us to “compress” the size of
our data structures by storing random seeds as opposed to all the graph’s edges.
To query our transformed multi-map on some label `, it suffices to retrieve the
bins incident to `. Intuitively, this is volume-hiding because the bins are padded
and the number of bins is fixed. Furthermore, it hides other leakage patterns
because the tuple values are assigned to bins randomly.

Concentration and planted subgraphs. The version of the transforma-
tion described so far already improves over näıve padding (with overwhelming
probability) but we show that for a certain class of multi-maps we can do even
better—though at the cost of increased query complexity. Specifically, we con-
sider multi-maps that have a large number of tuples with a large intersection.
We refer to this property as concentration and describe a version of the dense
subgraph transform that leverages the multi-map’s concentration to improve
storage efficiency even more. At a high-level, the idea is as follows. A concen-
trated multi-map has a number of redundant values which our transformation
assigns to multiple bins. In our improved transform, we instead assign each of
these redundant values to a single bin and add edges between these bins and a
large subset of the labels whose tuples they appear in. The rest of the bi-partite
graph is generated (pseudo-)randomly as above. This has the benefit of inducing
smaller bins and, therefore, of requiring less padding. The bi-partite graph, how-
ever, is not random anymore (even ignoring our use of a pseudo-random function
to generate edges). We observe, however, that by adding the edges to the bins of
the redundant values, we are effectively planting a small dense subgraph inside
of a larger random graph. And while the resulting graph is clearly not random
anymore, it can be shown to be computationally indistinguishable from a ran-
dom graph. In fact, this reduces to the planted densest subgraph problem which
has been used in the past by Applebaum et al. in the context of cryptography
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[2] and by Arora et al. in the context of computational complexity [3]. Based
on this assumption, we can show that for multi-maps with concentration pa-
rameters within a certain range (in turn determined by the densest subgraph
assumption) the transformed multi-map is of size O

(
N −m0.5+δ · polylog(m)

)
with overwhelming probability, where m is the number of labels in the original
multi-map and δ ≥ 0. If the input multi-map is Zipf-distributed, then the output
multi-map has size o(SNV).

Our non-lossy construction. As mentioned above, the dense subgraph trans-
form produces multi-maps that we represent using a combination of a dictionary
and a standard multi-map. To encrypt this particular representation, we design
a new scheme called AVLH. The resulting construction has query complexity

O

(
t · N−m

0.5+δ·polylog(m)
m·polylog(m)

)
for multi-maps with concentration parameters within

a certain range.

Dynamism. Our VLH and AVLH constructions are for static multi-maps. While
there are many important applications of static EMMs, we describe how to ex-
tend these constructions to handle updates. This results in two additional con-
structions, VLHd and AVLHd. The former handles three kinds of updates: tuple
addition, tuple deletion and tuple edits; and the latter handles tuple edits.

1.3 Related Work

Structured encryption was introduced by Chase and Kamara [12] as a general-
ization of searchable symmetric encryption which was first considered by Song,
Wagner and Perrig [39] and formalized by Curtmola, Garay, Kamara and Os-
trovsky [15]. Multi-map encryption schemes are a special case of STE and have
been used to achieve optimal-time single-keyword SSE [15,29,10,7,19,8], sub-
linear Boolean SSE [11,25], encrypted range search [20,17], encrypted relational
databases [26] and graph encryption [12,33]. The first leakage attack against vol-
ume leakage was described by Kollios, Kellaris, Nissim and O’Neill [30] under
the assumption of uniform query distributions. In [27], Kamara, Moataz and
Ohrimenko describe an STE scheme called PBS which partially hides the vol-
ume pattern. More precisely, the first variant of PBS reveals only the sequence
response length (i.e., the sum of the response lengths of a given query sequence)
on non-repeating query sequences. The second variant reveals nothing (beyond a
public parameter independent of the volume) on non-repeating query sequences.
While there are schemes that hide the response length at setup time [42] or
use differential privacy to perturb response lengths [31], our techniques hide the
pattern entirely at query time. The planted densest graph problem was first
used as a computational assumption by Applebaum, Barak and Wigderson in
[2] for the purpose of designing public-key encryption schemes under new as-
sumptions. It was later used by Arora, Barak, Brunnermeier and Ge to study
the computational complexity of financial products [3].
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2 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and
the set of all finite binary strings as {0, 1}∗. We write x ← χ to represent an

element x being sampled from a distribution χ, and x
$← X to represent an

element x being sampled uniformly at random from a set X. The output x of an
algorithm A is denoted by x ← A. Given a sequence v of n elements, we refer
to its ith element as vi or v[i]. If S is a set then #S refers to its cardinality and
2S to its powerset.

Basic cryptographic primitives. A private-key encryption scheme is a set
of three polynomial-time algorithms SKE = (Gen,Enc,Dec) such that Gen is a
probabilistic algorithm that takes a security parameter k and returns a secret
key K; Enc is a probabilistic algorithm takes a key K and a message m and
returns a ciphertext c; Dec is a deterministic algorithm that takes a key K and a
ciphertext c and returns m if K was the key under which c was produced. Infor-
mally, a private-key encryption scheme is secure against chosen-plaintext attacks
(CPA) if the ciphertexts it outputs do not reveal any partial information about
the plaintext even to an adversary that can adaptively query an encryption
oracle. We say a scheme is random-ciphertext-secure against chosen-plaintext
attacks (RCPA) if the ciphertexts it outputs are computationally indistinguish-
able from random even to an adversary that can adaptively query an encryption
oracle. In addition to encryption schemes, we also make use of pseudo-random
functions (PRF), which are polynomial-time computable functions that cannot
be distinguished from random functions by any probabilistic polynomial-time
adversary.

3 Definitions

Structured encryption schemes encrypt data structures in such a way that they
can be privately queried. There are several natural forms of structured encryp-
tion. The original definition of [12] considered schemes that encrypt both a
structure and a set of associated data items (e.g., documents, emails, user pro-
files etc.). In [13], the authors also describe structure-only schemes which only
encrypt structures. Another distinction can be made between interactive and
non-interactive schemes. Interactive schemes produce encrypted structures that
are queried through an interactive two-party protocol, whereas non-interactive
schemes produce structures that can be queried by sending a single message,
i.e, the token. One can also distinguish between response-hiding and response-
revealing schemes: the former reveal the response to queries whereas the latter
do not. We recall here the syntax of an interactive response-hiding structured
encryption scheme.

Definition 1 (Structured encryption). An interactive response-hiding struc-
tured encryption scheme ΣDS = (Setup,Query) for data type DS consists of the
following polynomial-time algorithms and protocols:
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– (K,EDS) ← SetupC(1k,DS): is a probabilistic algorithm that takes as input
a security parameter 1k and a structure DS of type DS and outputs a secret
key K and an encrypted structure EDS.

– (r,⊥) ← QueryC,S(tk;EDS): is an interactive protocol executed between a
client C and a server S. The client inputs a token tk and the server inputs
an encrypted structure EDS. The client receives a response r and the server
receives ⊥.

We refer the reader to, for example [1], for syntax definitions of dynamic STE.

Security. The standard notion of security for STE guarantees that: (1) an
encrypted structure reveals no information about its underlying structure beyond
the setup leakage LS; (2) that the query protocol reveals no information about
the structure and the queries beyond the query leakage LQ. If this holds for
non-adaptively chosen operations then the scheme is said to be non-adaptively
secure. If, on the other hand, the operations can be chosen adaptively, the scheme
is said to be adaptively-secure.

Definition 2 (Adaptive security of interactive STE). Let Σ = (Setup,Query)
be an interactive STE scheme and consider the following probabilistic experi-
ments where A is a stateful semi-honest adversary, S is a stateful simulator, LS

and LQ are leakage profiles and z ∈ {0, 1}∗:
RealΣ,A(k): given z the adversary A outputs a structure DS and receives EDS

from the challenger, where (K,EDS) ← Setup(1k,DS). The adversary then
adaptively chooses a polynomial number of queries and, for each, executes
the Query protocol with the challenger, where the adversary plays the server
and the challenger plays the client. Finally, A outputs a bit b that is output
by the experiment.

IdealΣ,A,S(k): given z the adversary A generates a structure DS which it sends
to the challenger. Given z and leakage LS(DS) from the challenger, the sim-
ulator S returns an encrypted structure EDS to A. The adversary then adap-
tively chooses a polynomial number of queries and, for each one, executes
the Query protocol with the simulator, where the adversary plays the server
and the simulator plays the client (note that here, the simulator is allowed
to deviate from Query). Finally, A outputs a bit b that is output by the ex-
periment.

We say that Σ is adaptively (LS,LQ)-secure if there exists a ppt simulator S
such that for all ppt adversaries A, for all z ∈ {0, 1}∗,

|Pr [ RealΣ,A(k) = 1 ]− Pr [ IdealΣ,A,S(k) = 1 ]| ≤ negl(k).

Modeling leakage. Every STE scheme is associated with leakage which itself
can be composed of multiple leakage patterns. The collection of all these leakage
patterns forms the scheme’s leakage profile. Leakage patterns are (families of)
functions over the various spaces associated with the underlying data structure.
For concreteness, we borrow the nomenclature introduced in [27] and recall some
well-known leakage patterns that we make use of in this work:
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Let F : {0, 1}k × {0, 1}∗ → {0, 1}log ν be a pseudo-random function, rank : Rn →
Rn be ranking function and λ ∈ N be a public parameter. Consider the transform
PRT defined as follows:

– PRT(1k, λ,MM):

1. sample a key K
$← {0, 1}k;

2. instantiate an empty multi-map MM′;
3. for all ` ∈ LMM,

(a) let r := MM[`] and n` = #r;
(b) compute r′ := rank(r);
(c) let n′` = λ+ FK(`‖n`);
(d) if n′` > n`, set MM′[`] :=

(
r′,⊥1, . . . ,⊥n′

`
−n`

)
;

(e) otherwise, set MM′[`] :=
(
r′1, · · · , r′n′

`

)
;

4. output MM′.
– Get(`,MM): output MM[`].

Fig. 1. The pseudo-random transform.

– the query equality pattern is the function family qeq = {qeqk,t}k,t∈N with
qeqk,t : Dk ×Qtk → {0, 1}t×t such that qeqk,t(DS, q1, . . . , qt) = M , where M
is a binary t × t matrix such that M [i, j] = 1 if qi = qj and M [i, j] = 0 if
qi 6= qj . The query equality pattern is referred to as the search pattern in
the SSE literature;

– the response identity pattern is the function family rid = {ridk,t}k,t∈N with
ridk,t : Dk×Qtk → [2[n]]t such that ridk,t

(
DS, q1, . . . , qt

)
= (DS[q1], . . . ,DS[qt]).

The response identity pattern is referred to as the access pattern in the SSE
literature;

– the response length pattern is the function family rlen = {rlenk,t}k,t∈N with
rlenk,t : Dk×Qtk → Nt such that rlenk,t(DS, q1, . . . , qt) =

(
|DS[q1]|, . . . , |DS[qt]|

)
;

– the domain size pattern is the function family dsize = {dsizek, t}k,t∈N with
dsizek, t : Dk → N such that dsizek,t(DS) = #Q.

– the total response length pattern is the function family trlen = {trlenk}k∈N
with trlenk : Dk → N such that trlenk(DS) =

∑
q∈Qk |DS[q]|;

4 The Pseudo-Random Transform

We describe the pseudo-random transform (PRT) in Figure 1 and provide a high
level description below.

Overview. PRT is a data structure transformation that takes as input a multi-
map MM, a security parameter k and a public parameter λ. It first generates
a random key K and initializes an empty multi-map MM′. For each label ` in
the multi-map, it ranks the tuple r := MM[`];4 resulting in a ranked tuple r′.
It then evaluates a PRF on the label ` concatenated to the length n` of r. The

4 The ranking function can be any ordering defined by the user; including standard
ranking algorithms from information retrieval.
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output of this PRF evaluation is then added to λ in order to compute a new
length n′`. There are two possible cases that can occur at this point: (1) if n′`
is larger than n`, the ranked response is padded with dummies and inserted in
MM′[`]; (2) if n′` is at most n`, the ranked response is truncated to its first n′`
elements and inserted in MM′[`]. Note that for ease of exposition and without
loss of generality, we consider the case where n′` = n` a padding. Finally, the
transform outputs the multi-map MM′. The get algorithm simply outputs the
tuple corresponding to the label `.

A note on probabilistic analysis. Throughout this work, we model pseudo-
random functions as random functions for the purposes of probabilistic analysis.
It should be understood that all our bounds will have an additional negligible
value in the security parameter.

4.1 Analyzing the Number of Truncations
For any label ` of the multi-map, the transform can pad or truncate its ranked
response depending on the output of the PRF. In this Section, we will ana-
lyze the number of truncations induced by our transformation. The number of
truncations is defined as

#{` ∈ LMM : #MM′[`] < #MM[`]}.
In the worst-case, the number of truncations can be #LMM which occurs when
every label in MM is truncated. We will show, however, that in practice this is
very unlikely to occur. In particular, we will show that for real-world distributions
of response lengths, the number of truncations is small with high probability.
Note that if we set λ ≥ max`∈L #MM[`], then truncations can never occur since
#MM′[`] ≥ max`∈L #MM[`] ≥ #MM[`]. We therefore only consider settings in
which λ < max`∈L #MM[`].

Zipf-distributed multi-maps. To get a concrete bound on the number of
truncations, we have to make an assumption on how the response lengths of
the multi-map are distributed. Here, we will assume that they are distributed
according to the Zipf distribution which is a standard assumption in information
retrieval [14,43]. We note that our analysis can be extended to any power-law
distribution. More precisely, we say that a multi-map MM is Za,b-distributed if
its rth response has length

r−b

Ha,b
·N

where N
def
=
∑
`∈L #MM[`] is the volume of MM and Ha,b is the harmonic

number
∑a
i=1 i

−b. Throughout, we will consider multi-maps that are Zm,1-
distributed where m = #LMM. From this assumption, it follows that the set
of all response lengths is

L = (L1, . . . , Lm) =

(
N

1 ·Hm,1
, . . . ,

N

m ·Hm,1

)
,

Note that we consider the case where b = 1 for ease of exposition but our analyses
generalize to any b.
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Theorem 1. If MM is Zm,1-distributed, then with probability at least 1− ε the
number of truncations is at most

m ·
(

N

ν ·H2
m,1

·
(
Hρ,2 −

λ ·Hm,1

N
·Hρ,1

)
+

√
ln(1/ε)

2m

)
,

where ρ = bN/(λ ·Hm,1)c.

Due to space limitations, the proof of Theorem 1 is in the full version of this
work. Note that the worst case information loss (i.e., the total number of pairs
lost due to truncations) can be computed as

∑
i∈[σ](N/(i ·Hm,1))− λ), where σ

is the number of truncations.

4.2 Analyzing the Storage Overhead
As detailed above, PRT can truncate or pad the responses in the multi-map.
This has a direct impact on the storage overhead of the transformed multi-map
since padding increases the storage overhead while truncations decrease it. In the
following, we show that the size of the transformed multi-map MM′ can be upper
bounded with high probability without any assumptions on the distribution of
response lengths.

Theorem 2. With probability at least 1 − ε, the size of the transformed multi-
map is at most

m ·
(
ν − 1

2
+ (ν − 1) ·

√
ln(1/ε)

2m
+ λ

)
,

where λ ≥ 0.

Due to space limitations, the proof of Theorem 2 is in the full version.

4.3 Concrete Parameters
In this Section, we will provide concrete parameters for PRT. Our goal is to
find parameters that will provide a good balance between a small number of
truncations and a small storage overhead. To study this, we first introduce two
näıve transformations that achieve extreme tradeoffs between truncations and
storage:

– the näıve padding transform is a transformation that pads the response of
every label with dummies ⊥ so that the length of the new responses are all
set to the maximum response’s length max`∈LMM

#MM[`]. Note that there
are no truncations in this case and the size of the transformed multi-map is

SNV
def
= m · max

`∈LMM

#MM[`].

– the näıve truncating transform truncates the responses of every label to the
minimum response length min`∈L #MM[`]. Note that the number of trun-

cations in this case is TNV
def
= #LMM = m and the storage overhead is

m ·min`∈LMM
#MM[`], which is optimal.
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Let STEEMM = (Setup,Get) be a static multi-map encryption scheme and PRT be
the pseudo-random transform. Consider the scheme VLH = (Setup,Get) defined
as follows:

– Setup(1k, λ,MM):
1. generate a PRT-transform of MM by computing MM′ = PRT(1k, λ,MM);
2. encrypt the transform by computing

(K, st,EMM)← STEEMM.Setup
(
1k,MM′

)
;

3. output (K, st,EMM).
– GetC,S((K, st, `),EMM): C and S execute

(r,⊥)← STEEMM.GetC,S
(
(K, st, `),EMM

)
.

Fig. 2. VLH: A volume-hiding multi-map encryption scheme.

In the following Corollary, we set concrete values for λ and s so that we
can achieve the best of both worlds. Specifically, we show that if the input
multi-map is Zm,1-distributed, then by setting the output length of the PRF
to s = log(L1 + 1), where L1 is the maximum response length, and setting
λ = O(ν · α), where 1/2 < α < 1, then we can achieve storage overhead α · SNV

with β · TNV truncations with high probability, where β is a function of α and
m.

Corollary 1. Let 1/2 < α < 1. If MM is Zm,1-distributed and if

log ν = log
(
L1 + 1) and λ = (ν − 1) · (2α− 1)/4

then with probability at least:

– 1− exp
(
−m · (2α− 1)2/8

)
, the total volume of the transformed multi-map

is at most α · SNV.

– 1− exp
(
− 2m/ log2m

)
, the number of truncations is at most

1

logm
·Hb 4

2α−1 c,2 · TNV.

Due to space limitations, the proof of Corollary 1 is in the full version.

5 A Volume-Hiding Multi-Map Encryption Scheme

In this Section, we use the PRT to construct a volume-hiding multi-map encryp-
tion scheme. Our construction is described in detail in Figure 2 and works as
follows.

Overview. The construction, VLH = (Setup,Get), makes black-box use of
an underlying multi-map encryption scheme STEMM = (Setup,Get). VLH.Setup
takes as input a security parameter k, a public parameter λ and a multi-map
MM. It applies the PRT transform on MM which results in a new multi-map
MM′. It then encrypts MM with STEMM, resulting in an encrypted multi-map

12



EMM, a state st and a key K which it returns as its own output. To execute
a Get query ` on EMM, the client and the server execute STEMM.Get on ` and
EMM.

Efficiency. Assuming that STEMM is an optimal-time multi-map encryption
scheme [15,10,7,1], the get complexity of VLH is O(λ+n′`), where n′` ∈ {0, · · · , ν−
1}. Therefore, the worst-case complexity is O(λ + ν) while the best-case com-
plexity is O(λ). The expected complexity is O(λ+ 2s−1).

The storage overhead of VLH is

O(N) = O

( ∑
`∈LMM

#MM′[`]

)
= O

(
λ ·m+

∑
`∈LMM

n′`

)
,

where, again, n′` ∈ {0, · · · , ν − 1}. So based on Corollary 1, when λ = (ν − 1) ·
(2α− 1)/4 and 1/2 < α < 1, the storage overhead of VLH is

O
(
α · (ν − 1) ·m

)
with high probability.

Correctness. The correctness of VLH is affected by the number of truncations
induced by PRT. Based on Corollary 1, we can show that the number of trun-
cations performed by VLH is at most O(m/ logm) under the same assumptions
stated in the corollary.

Security. We now describe the leakage profile of VLH assuming STEMM is in-
stantiated with one of the standard optimal-time multi-map encryption schemes [15,10,7,1]
all of which have leakage profile

ΛMM = (LS,LQ) =
(
trlen, (qeq, rlen)

)
.

Theorem 3. If STEEMM is a (trlen, (qeq, rlen))-secure multi-map encryption scheme
and F in PRT is a pseudo-random function, then VLH is a

(
dsize, qeq

)
-secure

multi-map encryption scheme.

Due to space limitations, the proof of Theorem 3 is in the full version of this
work. We observe that if we consider λ to be a public parameter, then dsize
will leak an approximation of m rather than the exact value of m as stated in
the theorem since λ−1 · trlen = λ−1 ·∑i∈[m] #MM[`] = m + λ−1 ·∑i∈[m] ri,
where ri is generated uniformly at random. Note that this differs slightly from
standard EMM schemes as their setup leakage is usually the sum of all pairs in
the multi-map.

6 DST: The Densest Subgraph Transform

In this section, we introduce a new data structure transformation called the dense
subgraph transform (DST). Unlike the PRT which achieves efficient storage by
increasing truncations (and therefore losing information), this new transform
improves on the storage complexity of PRT without losing any information.
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The transformation is randomized and, surprisingly, we can show that, with
high probability, it incurs no asymptotic storage overhead. Furthermore, we can
also show that, for the case of Zipf-distributed multi-maps, it produces multi-
maps that are asymptotically-smaller than the näıve padding and truncating
transforms described in Section 4.3.

The DST takes a multi-map MM as input and creates a new multi-map MM′

that is volume-hiding. This new structure results from re-arranging the data in
the input multi-map according to a random bi-partite graph. To ensure this re-
arrangement is still efficiently queryable, we represent it using a pair of standard
data structures which include a multi-map MMG and a dictionary DX. As we
will show, the storage complexity of the final representation depends on certain
properties of the bi-partite graph which are, in turn, inherited from the original
multi-map.

Below, we provide a high-level overview of our transformation. A more de-
tailed description is given in Section 6.1. The overview is divided in two parts:
(1) a variant for general multi-maps; and (2) a variant for what we refer to as
concentrated multi-maps. Note that the transformation handles both cases but
achieves better results for the later. We then provide a more detailed description
in Figure 6.

General multi-maps. Given a multi-map MM we begin creating a bi-partite
graph with LMM as the top vertices and a set of n empty bins as the bottom
vertices. For each label/vertex ` in Vtop, we randomly select t bins and insert in
each bin a single value of the tuple MM[`]. Here, t is the maximum tuple size in
the multi-map. If #MM[`] < t, then some of the selected bins won’t receive a
value. At the end of this process, we pad all bins so that they all have the same
size. Note that this process creates a bi-partite graph where the edges incident
to some top vertex/label ` correspond to the bins selected for that label/vertex.
We now create two data structures to represent and efficiently process this bi-
partite graph. The first is a dictionary that maps bin identifiers to the bin’s
contents. The second is a multi-map that maps a label to the identifiers of the
bins associated to it. To retrieve the values associated to a given label `, we query
the multi-map on ` to retrieve its t bin identifiers and then query the dictionary
on each of the t bin identifier to retrieve the contents of the bins.

It is already clear from this high-level description that all labels will have
exactly the same response length: t · α, where α is the maximum size of a bin.
It can be shown that with the right choice of parameters, this transformation
results in a small amount of padding compared to the näıve approach.

Concentrated multi-maps. The storage overhead of our approach can be
greatly improved when the multi-map satisfies a certain property we refer to as
concentration. At a high level, a multi-map is concentrated if there exists a large
number of values that appear in the tuples of a large number of labels. More
formally, we define this property as follows.

Definition 3 (Concentrated multi-maps). Let µ, ν > 0. We say that a
multi-map MM is (µ, ν)-concentrated if there exists a set of µ labels `1, · · · , `µ ∈
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LMM such that,

#

µ⋂
i=1

MM[`i] = ν.

We refer to this set of labels as MM’s concentrated component and denote it L̂MM.
Throughout, we will assume the existence of an efficient algorithm FindComp that
takes as input a multi-map and outputs the multi-map’s concentrated component
L̂MM. If no such component exists, the algorithm outputs ⊥.

A (µ, ν)-concentrated multi-map has µ labels with an intersection of size ν
which means that there is some redundancy in the structure. Unfortunately, the
previous approach does not take advantage of this since it stores all the values in
the multi-map independently. To exploit this redundancy, we proceed as follows.
We dedicate a random subset of the bins to store the tuple values of the multi-
map’s concentrated component. Because the component’s tuples have a large
intersection, we will avoid storing the same values over and over again. At a
high-level, we modify the process as follows. We first choose a random subset
of ν bins and store, in each one, one value from the intersection ∩`∈L̂MM

MM[`].
We then add an edge between a random subset of size τ of these bins and the
labels/vertices in the concentrated component. This results in µ labels/vertices
sharing a large portion of the bins. In the special case of τ = ν, then this will
result in µ labels/vertices that share the same bins. Notice the improved storage
overhead as we don’t store the values in the intersection in multiple bins. For
the remaining labels, we follow a similar process to the one presented in the
generic case. We sometimes refer to the value (µ − ν

τ ) · τ as the multi-map’s
concentration, for τ > 0.

Finding the concentration component. Our DST transform relies on an
efficient algorithm FindComp to find the concentration component of a multi-
map. We now describe such an algorithm. Informally, this algorithm will try
different combinations of labels, compute the intersection of their tuples, and
only retain the combination for which the intersection was the highest and that
verify some specific conditions on its size. The algorithm first determines the set
of labels L̃MM with tuples of size Ω(n0.5+δ), for some positive n. For i ∈ [λ], it

selects µ labels uniformly at random with replacement from L̃MM. We refer to

this set as LiMM. The algorithm then computes νi = #
(⋂

`∈LiMM
MM[`]

)
where λ

is the number of times the random selection is computed. The algorithm finally
determines ρ = argmaxi∈[λ]{νi : νi ∈ Ω(n0.5+δ)} and outputs L̂MM = LρMM if

such ρ exists and L̂MM = ⊥ otherwise. Notice that the algorithm runs in O(λ ·µ)
time. So it is sufficient to choose λ and µ to be polynomial in m. In our setting,
we need to set the parameters to align with the the densest subgraph assumption
(described in Definition 5) so we need µ = Ω(m0.5+δ) and for some positive δ.
We note that this algorithm is only an example and we believe that more efficient
algorithms can be designed.

A storage optimization. Notice that the auxiliary multi-map MMG asso-
ciates to every label a randomly selected set of t bins. In particular this means
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that the size of MMG is O(m ·t) which could be rather large. Fortunately, storing
the identifiers of each bin is not necessary. Instead, we can choose the bins to
assign to a label using a pseudo-random function and store the key in MMG.
This will reduce the size of MMG to O(m).

6.1 Detailed Description

We now provide a detailed description of the DST. The pseudo-code is in Fig-
ures 4 and 5. The transform makes black-box use of three pseudo-random func-
tions F , H and G.

Setup. The Setup algorithm takes as input a security parameter 1k, two in-
tegers n and τ and a multi-map MM. It instantiates a bi-partite graph G =
(Vtop,Vbot,E) where the top vertices Vtop = LMM are the labels in MM, the
bottom vertices Vbot are n empty bins denoted B = {B1, . . . , Bn} and the set
of edges E is empty.

The set of edges are generated as follows. Setup first computes the concen-
trated component of the multi-map L̂MM := FindComp(MM). If no concentrated

component exists, FindComp outputs ⊥. If #L̂MM 6= ⊥, it then pseudo-randomly
chooses ν bins B′ = {B′1, . . . , B′ν}, where ν = #

(⋂
`∈L̂MM

MM[`]
)
. More precisely,

it samples a k-bit value rand? uniformly at random and chooses the bins indexed
by the set {

FK1
(rand?‖1), . . . , FK1

(rand?‖ν)

}
.

Note that all these ν positions have to be distinct. If not, then it keeps
resampling a new k-bit value rand? uniformly at random until no collisions are
found. Note however that the probability p that no collision occurs, modeling F
as a random function, is equal to

p =

ν−1∏
i=0

(
1− i

n

)
≥
(

1− ν

n

)ν
≈ e−ν2/n,

which tends to 1 when ν = o(n)– which aligns with the concrete parameters that
we will detail in Section 6.4.

For all ` ∈ L̂MM, it: (1) adds an edge between ` and t−τ bins outside of B′; and
(2) adds an edge between ` and τ bins in B′. Note that this separation between
the labels is necessarily for our reduction to the densest subgraph problem to
hold.

To do the former, it indexes the bins in B \ B′ from 1 to n − τ , samples a
k-bit value rand`,1 uniformly at random, and chooses the bins indexed by the set{

HK2
(rand`,1‖1) + slide1, . . . ,HK2

(rand`,1‖t− τ) + slidet−τ

}
,

where slidei, for i ∈ {1, · · · , t − τ}, is an integer used to deterministically map
back the smaller output of H in [n− τ ] to the corresponding bin identifier in [n]
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and is computed as follows. First, it orders the set of bins in B′ in a numerical
order such that

B′ =

(
Bpos1 , · · · , Bposν

)
,

where posi < posj , for i, j ∈ [ν]. Then it defines the following quantities based
on which the slide value is determined– refer to Figure 3 for an illustration of
the computation,

gapi =


[1, posi − 1] if i = 1

]posi−1 − (i− 1), posi − (i− 1)[ if i ∈ {2, · · · , ν}
]posi−1 − (i− 1), n− ν] if i = ν + 1

Then, for i ∈ {1, · · · , n−ν}, identify j ∈ {1, · · · , ν+1} such thatHK2(rand`,1‖i) ∈
gapj , then set slidei = j − 1.

gap1 gap2 gap3 gap4 gap5 gap6 gap7

Bin index in [n]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10

Bin index [n� ⌫]

Fig. 3. Gaps computation for n = 16 and ν = 6. � denotes bins being part of B′ =
{B4, B5, B6, B7, B11, B14} while • denotes bins in B \B′.

Note that rand`,1 has also to be chosen in such a way that the selected t− τ
positions are distinct. If not, similarly to above, it resamples a new k-bit value
uniformly at random until no collision occurs. The probability that no collision
occurs is approximately equal to e−(t−τ)

2/(n−ν) which tends to 1 when t = o(n)–
which aligns with our concrete parameterization as we are going to detail in
Section 6.4.

To do the latter, it samples rand`,2 uniformly at random and adds an edge
between ` and all bins indexed by{

jGK3
(rand`,2‖1), · · · , jGK3

(rand`,2‖τ)

}
,

where ji = FK1(rand?‖i), for i ∈ [ν]. If a collision is found, then it keeps resam-
pling a new k-bit value uniformly at random until all τ positions are distinct.
The probability that no collision occurs is approximately e−τ

2/ν which tends to
1 given our parametrization.

For each ` 6∈ L̂MM, it samples a k-bit value rand` uniformly at random and
adds an edge between ` and all bins indexed by the set{

FK1
(rand`‖1), . . . , FK1

(rand`‖t)
}
.
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Again, if a collision is found, it keeps resampling a new k-bit value uniformly at
random until all positions are distinct. The probability that no collision occurs
is approximately equal to e−t

2/n. Notice that at the end of this process, each
vertex has degree exactly t.

Now Setup will use the graph to load the bins in Vbot as follows. For each
` 6∈ L̂MM, it stores one value from the tuple MM[`] in one of the bins that are
incident to `. When inserting into a bin, the algorithm concatenates each value
with ` (this will be helpful at query time). If #MM[`] < t, then some of the

incident bins will not receive any value. For all ` ∈ L̂MM, it stores one element
from MM[`]\r` in the bins from B\B′ that are incident to `—again concatenating
each value with `, where

r` = (r1, · · · , rτ ) ⊆
⋂

`∈L̂MM

MM[`]

Also if #MM[`] < t, then some of the incident bins will not receive any value.
Finally, it stores each value from the set

r′ :=
⋂

`∈L̂MM

MM[`]

in a distinct bin in B′ in such a way that every bin in B′ will contain one value
in r′. Here, the algorithm concatenates the values with ?. The algorithm then
pads all the bins to have the same size.

Finally, it creates a dictionary DX and a multi-map MMG. The dictionary
maps bin identifiers to bin contents. The multi-map MMG maps labels ` 6∈ L̂MM

to rand` and labels ` ∈ L̂MM to (rand`,1, rand`,2, rand
?). It outputs MM′ =

(MMG,DX).

The storage complexity of MM′ is O(m + n · λ), where λ is the maximum
load of a bin.

Get. Get operations on MM′ = (MMG,DX) work as follows. Given a label `,

we first query MMG on `. If ` 6∈ L̂MM, then MMG returns rand` from which we
compute the bin identifiers {FK1

(rand`‖i)}ti=1. We can then query DX on the
bin identifiers to recover the bins and output the elements concatenated with
`. If ` ∈ L̂MM, MMG returns a triple (rand`,1, rand`,2, rand

?) from which we can
compute the sets{

HK2
(rand`,1‖i) + slidei

}t−τ
i=1

and

{
jGK3

(rand`2‖i)

}τ
i=1

where ji = FK1
(rand?‖i), for i ∈ [ν], which we, in turn, use to query DX and

recover the bins. From these bins the algorithm recovers the elements concate-
nated with ` and ?. The complexity of gets is O(t · λ) where, again, λ is the
maximum load of a bin.
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Let n ∈ N be a public parameter, F : {0, 1}k × {0, 1}∗ → [n], G : {0, 1}k ×
{0, 1}∗ → [n′] and H : {0, 1}k × {0, 1}∗ → [n′′] be two pseudo-random functions
with n′ < n′′ < n. Consider the transform DST defined as follows:

– DST(1k, param,MM):
1. parse param as (n, τ), instantiate an empty dictionary DX, an empty

multi-map MMG, and a bi-partite graph G =
(
(LMM,B),E

)
where B =

(B1, · · · , Bn) and E = ∅;
2. compute L̂MM ← FindComp(MM), set ν = #

(⋂
`∈L̂MM

MM[`]
)

and
t := max`∈LMM MM[`];

3. sample three keys K1
$← {0, 1}k, K2

$← {0, 1}k and K3
$← {0, 1}k;

4. for all ` ∈ LMM \ L̂MM,

(a) sample rand`
$← {0, 1}k and output

(i1, · · · , it) :=

{
FK1(rand`‖1), . . . , FK1(rand`‖t)

}
,

if there exist distinct i, j ∈ [t] for which ii = ij redo the sampling.
Add to E {

(`, ij) : j ∈ [t]

}
;

(b) parse MM[`] as (r1, · · · , rn`) and put rj‖` in Bij for all j ∈ [n`];

5. if L̂MM 6= ⊥, sample rand?
$← {0, 1}k and set B′ = (Bi1 , · · · , Biν ) where

(i1, · · · , iν) :=

{
FK1(rand?‖1), . . . , FK1(rand?‖ν)

}
,

if there exist distinct i, j ∈ [τ ] for which ii = ij redo the sampling.
Otherwise set B′ = ⊥;

6. compute

r′ :=
⋂

`∈L̂MM

MM[`] = (r′1, · · · , r′ν);

7. put r′j‖? in Bj for all j ∈ [ν] and Bj ∈ B′;

8. for all ` ∈ L̂MM,

(a) sample rand`,1
$← {0, 1}k and output

(i1, · · · , it−τ ) :=

{
HK2(rand`,1‖1), . . . , HK2(rand`,1 ‖t− τ)

}
,

if there exist distinct i, j ∈ [t−τ ] for which ii = ij , redo the sampling.
Add to E {

(`, ij + slidej) : j ∈ [t− τ ]

}
;

where slidej is computed as follows
i. order B′ in a numerical order such that B′ := (Bpos1 , · · · , Bposν );

ii. if ij ∈ [1, pos1], set slidej = 0;
iii. if ij ∈]posi−1 − (i− 1), posi − (i− 1)[, set slidej = i− 1, for any

i ∈ {2, · · · , ν};
iv. if ij ∈]posν − ν, n− ν[, set slidej = ν;

Fig. 4. DST: The Dense Subgraph Transform (Part 1).
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– DST(1k, param,MM):

8. for all ` ∈ L̂MM,

(b) sample rand`,2
$← {0, 1}k and set r` = (ri1 , · · · , riτ ) ⊆ r′ where

(i1, · · · , iτ ) :=

{
GK3(rand`,2|1), . . . , GK3(rand`,2‖τ)

}
,

if there exist distinct i, j ∈ [τ ] for which ii = ij , redo the sampling.
Add {

(`, FK1(rand?‖ij) : j ∈ [τ ]

}
to E;

(c) parse MM[`] as (r1, · · · , rn`);
(d) for all rj ∈ MM[`] \ r`, then put rj‖` in Bij+slidej ;

9. set θ = maxi∈[n] #Bi and set for all i ∈ [n]

Bi = (Bi,⊥1, · · · ,⊥θ−#Bi);

10. for all i ∈ [n], set DX[i] = Bi;

11. for all ` ∈ LMM, if ` ∈ L̂MM, set MM[`] := (rand`,1, rand`,2, rand
?), other-

wise set MM[`] := rand`;
12. output the key K = (K1,K2,K3) and MM′ = (DX,MMG).

– Get(K, `,MM):
1. parse K as (K1,K2,K3) and MM as (DX,MMG) and instantiate an

empty set Result;
2. if MMG[`] = rand, then

(a) add DX[`i] to Result, where for all i ∈ [t],

`i := FK1(rand‖i);

(b) keep all values of the form ·‖`;
3. if MMG[`] = (rand1, rand2, rand

?), then
(a) add DX[`i] to Result, where for all i ∈ [t− τ ],

`i := HK2(rand1‖i) + slidei,

and for all i ∈ [τ ],
`i := jGK3

(rand2‖i)

where (j1, · · · , jν) = FK1(rand?‖1), . . . , FK1(rand?‖ν);
(b) keep all values of the form ·‖` or ·‖?;

4. output Result.

Fig. 5. DST: The Dense Subgraph Transform (Part 2).
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6.2 Analyzing the Load of a Bin
As seen in the previous Section, an important quantity to evaluate the query
and storage efficiency of our transformation is the maximum load of a bin. In
this Section, we will show that, with high probability, the maximum load can
be upper bounded by (N − Nds)/n where Nds is the size of the concentrated
component and n is the number of bins. Before stating our result, we recall a
generalization of Chernoff’s inequality for the binomial distribution.

Lemma 1. Let X1, . . . , Xm be independent random variables over {0, 1} such
that Pr [Xi = 1 ] = pi and Pr [Xi = 0 ] = 1− pi. If X = X1 + · · ·+Xm, then

Pr [X ≥ E[X] + θ ] ≤ exp

(
− θ2

2(E[X] + θ/3)

)
.

Theorem 4. With probability at least 1 − ε, the maximum load of a bin is at
most

N −Nds

n
+

ln(1/ε)

3

(
1 +

√
1 +

18(N −Nds)

n · ln(1/ε)

)
,

where Nds = (µ− ν
τ ) · τ , for τ > 0.

Due to space limitations, the proof of Theorem 4 is in the full version.

6.3 Query and Storage Efficiency
We now give the storage and query efficiency of the DST transform.

Storage efficiency. The output of DST consists of a multi-map MMG and a
dictionary DX. The multi-map MMG has tuples of size 1 or 3 depending on the
label. That is, the size of the multi-map is upper bounded by 2m. The dictionary
DX stores the content of the padded bins. From Theorem 4 and the union bound,
we have that the size of the dictionary is at most

N −Nds +
n · ln(1/ε)

3
·
(

1 +

√
1 +

18(N −Nds)

n · ln(1/ε)

)
with probability 1− n · ε.
Get efficiency. The Get algorithm first retrieves either a random value or a
pair of random values from MMG. In the former case, t PRF evaluations are
computed and t bins are retrieved. In the later case, 2t+ ν PRF evaluations are
computed (using F , H and G) and t bins are retrieved. 5 Assuming that both
MMG and DX are data structures with optimal query complexity, the Get query
complexity is at most

t · N −Nds

n
+
t · ln(1/ε)

3
·
(

1 +

√
1 +

18(N −Nds)

n · ln(1/ε)

)
with probability 1− n · ε.
5 Note that the computation of the slidei’s is O(ν). These evaluations can be performed

once and stored at the client which reduces the total PRF evaluations at query time
to 2t.
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6.4 Concrete Parameters
In this Section, we propose concrete parameters for the DST. In particular, we
will be interested in parameters that guarantee better storage overhead than the
näıve padding transform. Note that we do not compare to the näıve truncating
approach since the DST does not lose any information.

General multi-maps. Recall that the näıve padding transform has a storage
overhead

SNV
def
= m · max

`∈LMM

#MM[`] = Ω(N),

where N
def
=
∑
`∈L #MM[`]. From Theorem 4, we have the following corollary.

Corollary 2. Let n ≥ 1 and m ≥ 0. If N > n log n, then with probability at
least 1− 1/eN/5n, the size of the resulting multi-map is at most O(N).

Notice that if the original multi-map is Zm,1-distributed (but not necessarily
concentrated), then SNV = N ·m/Hm,1 where Hm,1 = Θ(logm) is the harmonic
number (please refer to Section 4). It follows that, in this case, N = o(SNV) so
the storage overhead of DST is small-o of the overhead of the näıve padding
transform.

Concentrated multi-maps. We now consider a multi-map MM with a con-
centrated component of size (µ − ν

τ ) · τ . We show below that in this case, the
storage overhead induced by DST can be considerably smaller than the storage
overhead of the näıve padding transform. The following Corollary is a conse-
quence of Theorem 4.

Corollary 3. Let n ≥ 1 and m ≥ 0. If N > n log n,

µ = O

(
m0.5+δ · polylog(m)

)
and τ = O

(
polylog(m)

)
,

for some δ ≥ 0, then with probability at least 1−1/eN/5n, the size of the resulting
multi-map is at most

O

(
N −m0.5+δ · polylog(m)

)
.

As above, if the original multi-map MM is Zm,1-distributed, then the storage
overhead of DST is small-o of the overhead of the näıve padding transform.

A remark on security. As we will see in Section 7, the parameters µ and τ
have to satisfy certain constraints for our multi-map encryption scheme to be
secure. In particular, the parameters have to be chosen in such a way that they
verify the densest subgraph assumption which we detail in Definition 5. We note
here that to satisfy both this assumption and the constraints of Corollary 3, it
is sufficient that for some positive δ,

µ = O

(
m0.5+δ · polylog(m)

)
, τ = O(t) = O

(
polylog(m)

)
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and,

ν = O

(
m0.5+δ · polylog(m)

)
, n = Θ

(
m · polylog(m)

)
.

Note that this is only an example and is not the only choice of parameters that
can be used. The intuition is that the larger the multi-map’s concentration is,
the better storage overhead DST will achieve. More precisely, multi-maps with
larger values of µ and τ will achieve better storage gain as long as the DSP
problem is hard.

7 AVLH: Advanced Volume Hiding Multi-Map Encryption
Scheme

In this Section, we use the DST to construct a volume-hiding multi-map encryp-
tion scheme. Our construction is described in detail in Figure 6 and works as
follows.

Overview. The construction, AVLH = (Setup,Get), makes black-box use of an
underlying response-hiding dictionary encryption scheme STERH

DX = (Setup,Get).
AVLH.Setup takes as input a security parameter k, a public parameter param,
and a multi-map MM. It first applies the DST transform on MM which results
in a key K1 = (K1,1,K1,2,K1,3) and two structures: a multi-map MMG and a
dictionary DX. It then encrypts the dictionary DX, resulting in an encrypted dic-
tionary EDX, a state stDX and a key K2. It finally outputs a key K = (K1,K2),
a state st = (MMG, stDX) and an encrypted multi-map EMM = EDX. To execute
AVLH.Get, the client differentiates two cases: if MMG[`] is a tuple composed of a
single value rand, then the client and server execute the STERH

DX.Get on `i where
`i is a new label equal to FK1,1

(rand‖i), for all i ∈ [t], and t = max`∈LMM
#MM[`].

In this case the client C only outputs values of the form ·‖`. Otherwise, if
MMG[`] is a tuple composed of a triple (rand1, rand2, rand

?), then the client and
server execute STERH

DX.Get on `i where now `i is equal to jGK1,3
(rand2)‖i where

jl = FK1,1(rand?‖l), for l ∈ [ν] and i ∈ [τ ], and HK1,2(rand‖i) + slidei for all
i ∈ {1, · · · , t − τ}. Note that slidei, for which the computation was detailed in
Section 6.1, is used to deterministically map the smaller output of H in [n− τ ]
into a value in [n]. In this case, the client C only outputs values of the form ·‖`
or ·‖?.
Efficiency. Assuming that STERH

DX is an optimal-time dictionary encryption
scheme [15,10,7,1], the get complexity of AVLH isO(t·λ) where t = max`∈LMM

#MM[`]
and λ is the load of a bin. Given the parameters detailed in the previous section
and if N > n · log n then the get complexity is

O

(
t · N −m

0.5+δ · polylog(m)

m · polylog(m)

)
.

for some δ > 0, when

µ = O

(
m0.5+δ · polylog(m)

)
, τ = O(t) = O

(
polylog(m)

)
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and,

ν = O

(
m0.5+δ · polylog(m)

)
, n = Θ

(
m · polylog(m)

)
.

The storage overhead of AVLH is, with high probability,

O
( n∑
i=1

#DX[`i]
)

= O(n · λ) = O(N −m0.5+δ · polylog(m)).

7.1 Security
We will now study the security of our construction. More precisely, we will show
that it is volume-hiding in the sense that its query leakage does not include the
response length. The proof relies on a computational assumption known as the
densest subgraph assumption. We first recall this assumption and then proceed
to stating our security theorem.

The densest subgraph problem. The hardness of the (decisional) densest
subgraph problem problem was first used by Applebaum, Barak, and Wigderson
in [2] to design public-key encryption schemes based on new assumptions. It
was later used by Arora et al. [3] to study the hardness of financial products.
Informally, the DSP asks whether it is possible to distinguish between a random
regular bi-partite graph and a random regular bi-partite graph with a planted
random subgraph.

Definition 4 (The (decision) densest subgraph problem.). Let m,n, t, µ, ν, τ >
0. The decisional unbalanced expansion problem is to distinguish between the two
following distributions:

– R samples an (m,n, t)-bi-partite graph uniformly at random. In other words,
for each vertex in Vtop it samples t neighbors from Vbot uniformly at random.

– P is obtained as follows. First, two sets T ⊂ Vtop and B ⊂ Vbot, such
that #T = µ and #B = 2ν, are sampled uniformly at random. Then, for
each vertex in T , we choose t − τ random neighbors in Vbot and τ random
neighbors in B. For each vertex in Vtop \ T , we choose t random neighbors
in Vbot.

The following hardness assumption, used in [2,3], is based on state-of-the-art
algorithms of Bhaskara, Charikar, Chlamtac, Feige, and Vijayaraghavan in [6].

Definition 5 (The DSP assumption). There is no ε > 0 and ppt adversary
A that can distinguish between R and P with advantage ε when

n = o(m · t),
(
µ · τ2
ν

)2

= o

(
m · t2
n

)
, ν = Ω(n0.5+δ),

µ = Ω(m0.5+δ) and τ = Õ(
√
t)

for some positive δ.
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Leakage profile. We now describe the leakage profile of AVLH assuming STERH
DX

is instantiated with one of the standard optimal-time dictionary encryption
schemes [15,10,7,1] all of which have leakage profile

ΛDX = (LS,LQ) =
(
trlen, qeq

)
.

Theorem 5. If STERH
DX is a (trlen, qeq)-secure dictionary encryption scheme, F ,

G and H are pseudo-random functions, and the DSP assumptions holds, then
AVLH is a

(
(trlen, conc), qeq

)
-secure multi-map encryption scheme; where conc

is the leakage pattern that outputs a multi-map’s concentration.

Due to space limitations, the proof of Theorem 5 is in the full version of this
work. The leakage pattern conc is due to the fact that we leak the size of the
bins in trlen which is a function of the concentration.

Improving communication complexity. The communication (query) com-
plexity of AVLH is equal to O(t · λ) where λ is the size of the bin and t the
maximum response length. In the following we introduce a simple modification
of AVLH such that the communication complexity becomes sub-linear in λ.

At a high level, the idea consists of replacing the retrieval of the entire bin’s
content by an oblivious retrieval that only fetches the value of interest (note that
a bin will always contain at most one value associated to any label). Therefore
this technique would reduce the overhead from λ to the overhead of a single
oblivious access into an array of size λ. The (informal) modified AVLH works as
follows. At setup time, we parse the content of each bin as an array (a RAM)
and encrypt it using a computationally-secure state-of-the-art ORAM algorithm.
Note that now, instead of using a response-hiding dictionary, we use a response-
revealing one. The get algorithm works similarly to the one in AVLH except that
the dictionary’s get algorithm outputs an ORAM that we access separately. In
terms of efficiency, the communication complexity becomes O(t ·

√
λ) assuming

that we use square-root ORAM [22] as the underlying ORAM.6 Note that we
can achieve better communication complexity by leveraging techniques from [27].
The storage complexity however remains the same since square-root does not
asymptotically increase the load of the bin.

8 Dynamic Volume Hiding Multi-Map Encryption Schemes

In this section, we show how to extend both VLH and AVLH to be dynamic. In
particular, we will be interested in the following class of updates:

– tuple addition: this update operation adds a new tuple (`,v) to the multi-
map where ` is a label that was not part of the original label space LMM.

– tuple deletion: this update operation removes an entire label/tuple pair
(`,v) from the multi-map.

– editing : this update operation modifies the content of a specific tuple v
associated to ` by replacing an old value vold ∈ v by a new one vnew.

6 Note that one cannot use tree-based ORAM schemes such as Path ORAM [41] as the
security is function of the size of the RAM. In our case, under realistic parameters,
the bin’s load is very small to consider any of these schemes.
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Let STERH
DX = (Setup,Get) be a response-hiding dictionary encryption scheme and

DST the densest subgraph transform. Consider the scheme AVLH = (Setup,Get)
defined as follows:

– Setup(1k, param,MM):
1. generate a DST-transform of MM by computing

(K1,MMG,DX)← DST(1k, param,MM);

2. encrypt DX by computing

(K2, stDX,EDX)← STERH
DX.Setup

(
1k,DX

)
;

3. set K = (K1,K2), st = (MMG, stDX), and EMM = EDX and output
(K, st,EMM).

– GetC,S((K, st, `),EMM):
1. C parses K as ((K1,1,K1,2,K1,3),K2), st as (MMG, stDX) and S parses

EMM as EDX;
2. if MMG[`] = rand, then

(a) C and S execute STERH
DX.GetC,S((K2, stDX, `i),EDX), for all i ∈ [t],

where
`i := FK1,1(rand‖i);

(b) C outputs values of the form ·‖`;
3. if MMG[`] = (rand1, rand2, rand

?), then
(a) C and S execute STERH

DX.GetC,S((K2, stDX, `i),EDX), where for all
i ∈ [τ ],

`i := jGK1,3
(rand2‖i),

and (j1, · · · , jν) = (FK1,1(rand?‖1), · · · , FK1,1(rand?‖ν)) and for all
i ∈ {1, · · · , t− τ},

`i := HK1,2(rand1‖i) + slidei,

where slidej is computed as follows
i. order {

FK1,1(rand?‖i)
}
i∈[ν]

as (pos1, · · · , posν);
ii. if HK1,2(rand‖i) ∈ [1, pos1], set slidei = 0;
iii. ifHK1,2(rand‖i) ∈]posj−1−(j−1), posj−(j−1)[, set slidei = j−1,

for any j ∈ {2, · · · , ν};
iv. if HK1,2(rand‖i) ∈]posν − ν, n− ν], set slidei = ν;

(b) C outputs all values of the form ·‖` or ·‖?.

Fig. 6. AVLH: An Advanced Volume Hiding Multi-Map Encryption Scheme.
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In particular, we do not consider updates that add or remove a value to/from an
existing tuple in the multi-map. In the following, we detail how to extend VLH
to handle these three update operations and AVLH to handle the third update
operation.

8.1 VLHd: a dynamic variant of VLH.
The pseudo-code of VLHd is in the full version and it works as follows.

Overview. VLHd = (Setup,Get,Put) makes black-box use of a dynamic response-
hiding multi-map encryption scheme STERH

EMM = (Setup,Get,Put,Remove) and
of the volume-hiding multi-map encryption scheme VLH = (Setup,Get).7 Both
the Setup algorithm and the Get protocol are exactly the same as of those of
VLH. The Put algorithm takes as input an update u and processes it as fol-
lows. If u = (add, (`,v)), then the client first computes the PRT transform on
a single-pair multi-map defined as {(`,v)} and outputs a new single-pair multi-
map {(`,v′)}. The client and server then execute STERH

EMM.Put on the label/tuple
pair (`,v′). If u = (rm, `), then the client and server execute STERH

EMM.Remove
on the label `. If u = (edit, (`, vold, vnew)), then the client and server first execute
VLH.Get, the client receives the tuple v associated to the label `. The client and
server then execute STERH

EMM.Remove on the label `. The client locally replaces
the value vold by vnew in the tuple v and then executes STERH

EMM.Put with the
server on the modified label/tuple pair.

Efficiency analysis. In our analysis, assume STERH
EMM is an optimal-time dy-

namic multi-map encryption scheme [29,10,7]. It is clear that the get and storage
complexity of VLHd are exactly the same as VLH. The Put complexity varies de-
pending on the type of the update operation. If u is a tuple addition or a tuple
edit, then the Put complexity is O(λ + n′`) where n′` ∈ {0, · · · , 2s − 1}. The
worst-case is O(λ+ 2s) while the best case is O(λ). The expected complexity is
O(λ+ 2s−1). If u is a tuple deletion, then the put complexity has constant time.

Security analysis. We now describe the leakage of VLHd assuming that STERH
EMM

is instantiated with one of the standard optimal-time forward-private multi-map
encryption schemes [7,8,1] all of which have leakage profile

ΛMM = (LS,LQ,LU) = (trlen, (qeq, rlen), (op, rlen))

Theorem 6. If STERH
EMM is a (trlen, (qeq, rlen), (op, rlen))-secure multi-map en-

cryption scheme, F in PRT is a pseudo-random function and VLH is a
(
m, qeq

)
-

secure multi-map encryption scheme, then VLHd is a
(
m, qeq, (op, ueq)

)
-secure

multi-map encryption scheme.

The update equality pattern ueq leaks if and when a label edit has occurred. The
proof of this theorem is similar to Theorem 3 and deferred to the full version of
this work.
7 Note that the same multi-map encryption scheme STERH

EMM =
(Setup,Get,Put,Remove) has to be used as the underlying multi-map encryp-
tion scheme for VLH.
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8.2 AVLHd: dynamic variant of AVLH.
The pseudo-code of AVLHd is in the full version and it works as follows.

Overview. The construction, AVLHd, makes black box use of a dynamic response-
hiding dictionary STERH

EDX = (Setup,Get,Put,Remove) and of the volume hiding
multi-map encryption scheme AVLH = (Setup,Get).8 The Setup algorithm and
the Get protocol are exactly the same as of those of AVLH. The Put algorithm
takes as input an update u and processes it as follows. Parse u as (edit, (`,v)),
the client and server execute (r,⊥) ← AVLH.GetC,S

(
(K, st, `),EMM

)
where

r = (Bi1 , · · · , Bit) and the client here does not dismiss any value from the re-
trieved bins. The client and server then execute STERH

EDX.Remove on all retrieved
bins. The client then identifies the bin that contains the value vold‖` (or vold‖?)
that it replaces with vnew‖` (or by vnew‖? if concentrated). The client and server
then execute STEEDX.Put on the pairs (ij , Bij ), for all j ∈ [t].

Efficiency analysis. We assume STERH
EDX is an optimal-time dynamic dictio-

nary encryption scheme [29,10,7]. Clearly, the get and the storage complexity of
AVLHd are exactly the same as AVLH. The Put complexity is equal to O(t · λ),
where t = max`∈LMM

#MM[`] is the maximum response length and λ is the size
of the bin– which is the same as the get complexity. Refer to Section 7 for a
more detailed and concrete analysis of the bin size λ.

Security analysis. We now describe the leakage of AVLHd assuming that
STERH

EDX is instantiated with one of the standard optimal-time forward-private
dictionary encryption scheme [7,8,1] all of which have a leakage profile at most

ΛDX = (LS,LQ,LU) = (trlen, qeq, op)

Theorem 7. If STERH
EDX is a (trlen, qeq, op)-secure dictionary encryption scheme

and AVLH is a
(
trlen, qeq

)
-secure multi-map encryption scheme, then VLHd is a(

trlen, qeq, (op, ueq)
)
-secure multi-map encryption scheme.

The proof of this theorem is similar to Theorem 5 and deferred to the full version
of this work.
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