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Abstract. Finding a short element g of a number field, given the ideal
generated by g, is a classic problem in computational algebraic number
theory. Solving this problem recovers the private key in cryptosystems in-
troduced by Gentry, Smart–Vercauteren, Gentry–Halevi, Garg–Gentry–
Halevi, et al. Work over the last few years has shown that for some
number fields this problem has a surprisingly low post-quantum security
level. This paper shows, and experimentally verifies, that for some num-
ber fields this problem has a surprisingly low pre-quantum security level.
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1 Introduction

Gentry’s breakthrough ideal-lattice-based homomorphic encryption system at
STOC 2009 [29] was shown several years later to be breakable by a fast quan-
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tum algorithm if the underlying number field4 is chosen as a cyclotomic field
(with “small h+”, a condition very frequently satisfied). Cyclotomic fields were
considered in Gentry’s paper (“As an example, f(x) = xn ± 1”), in a faster
cryptosystem from Smart–Vercauteren [38], and in an even faster cryptosystem
from Gentry–Halevi [31]. Cyclotomic fields were used in all of the experiments
reported in [38] and [31]. Cyclotomic fields are also used much more broadly in
the literature on lattice-based cryptography, although many cryptosystems are
stated for more general number fields.

The secret key in the systems of Gentry, Smart–Vercauteren, and Gentry–
Halevi is a short element g of the ring of integers O of the number field. The
public key is the ideal gO generated by g. The attack has two stages:

– Find some generator of gO, using an algorithm of Biasse and Song [10],
building upon a unit-group algorithm of Eisenträger, Hallgren, Kitaev, and
Song [24]. This is the stage that uses quantum computation. The best known
pre-quantum attacks reuse ideas from NFS, the number-field sieve for integer
factorization, and take time exponential in N c+o(1) for a real number c with
0 < c < 1 where N is the field degree. If N is chosen as an appropriate
power of the target security level then the pre-quantum attacks take time
exponential in the target security level, but the Biasse–Song attack takes
time polynomial in the target security level.

– Reduce this generator to a short generator, using an algorithm introduced
by Campbell, Groves, and Shepherd [17, page 4]: “A simple generating set
for the cyclotomic units is of course known. The image of O× under the
logarithm map forms a lattice. The determinant of this lattice turns out to
be much bigger than the typical log-length of a private key α [i.e., g], so it
is easy to recover the causally short private key given any generator of αO
e.g. via the LLL lattice reduction algorithm.”5 This is the stage that relies
on the field being cyclotomic.

A quantum algorithm for the first stage was stated in [17] before [10], but the
effectiveness of this algorithm was disputed by Biasse and Song (see [9]) and was
not defended by the authors of [17]. The algorithm in [17, page 4] quoted above
for the second stage does not rely on quantum computers, and its effectiveness
is easily checked by experiment.

It is natural to ask whether quantum computers play an essential role in this
polynomial-time attack. It is also natural to ask whether the problem of finding
g given gO is weak for all number fields, or whether there is something that
makes cyclotomic fields particularly weak.

4 We assume some familiarity with algebraic number theory, although we also review
some background as appropriate.

5 Beware that the analysis in [17, page 4] is incomplete: the analysis correctly states
that the secret key is short, but fails to state that the textbook basis for the cy-
clotomic units is a very good basis; LLL would not be able to find the secret key
starting from a bad basis. A detailed analysis of the basis appeared in a followup
paper [22] by Cramer, Ducas, Peikert, and Regev.
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1.1 Why focus on the problem of finding g given gO?

There are many other lattice-based cryptosystems that are not broken by the
Biasse–Song–Campbell–Groves–Shepherd attack. For example, the attack does
not break a more complicated homomorphic encryption system introduced in
Gentry’s thesis [28,30]; it does not break the classic NTRU system [32]; and
it does not break the BCNS [12] and New Hope [3] systems. But the simple
problem of finding g given gO remains of interest for several reasons.

First, given the tremendous interest in Gentry’s breakthrough paper, the
scientific record should make clear whether Gentry’s original cryptosystem is
completely broken, or is merely broken for some special number fields.

Second, despite burgeoning interest in post-quantum cryptography, most
cryptographic systems today are chosen for their pre-quantum security levels.
Fast quantum attacks have certainly not eliminated the interest in RSA and
ECC, and also do not end the security analysis of Gentry’s system.

Third, the problem of finding a generator of a principal ideal has a long
history of being considered hard—even if the ideal actually has a short generator,
and even if the output is allowed to be a long generator. There is a list of five
“main computational tasks of algebraic number theory” in [19, page 214], and
the problem of finding a generator is the fifth on the list. Smart and Vercauteren
describe their key-recovery problem as an “instance of a classical and well studied
problem in algorithmic number theory”, point to the Buchmann–Maurer–Möller
cryptosystem [13] a decade earlier relying on the hardness of this problem, and
summarize various slow solutions.

Fourth, this problem has been reused in various attempts to build secure
multilinear maps, starting with the Garg–Gentry–Halevi construction [27]. We
do not mean to overstate the security or applicability of multilinear maps (see,
e.g., [21,18]), but there is a clear pattern of this problem appearing in the design
of advanced cryptosystems. Future designers need to understand whether this
problem should simply be discarded, or whether it can be a plausible foundation
for security.

Fifth, even when cryptosystems rely on more complicated problems, it is
natural for cryptanalysts to begin by studying the security of simpler problems.
Successful attacks on complicated problems are usually outgrowths of successful
attacks on simpler problems. As explained in Appendix B (in the full version
of this paper), the Biasse–Song–Campbell–Groves–Shepherd attack has already
been reused to attack a more complicated problem.

1.2 Contributions of this paper

We introduce a pre-quantum algorithm that, for a large class of number fields,
computes a short g given gO. Plausible heuristic assumptions imply that, for a
wide range of number fields in this class, this algorithm (1) has success proba-
bility converging rapidly to 100% as the field degree increases and (2) takes time
quasipolynomial in the field degree.
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One advantage of building pre-quantum algorithms is that the algorithms
can be tested experimentally. We have implemented our algorithm within the
Sage computer-algebra system; the resulting measurements are consistent with
our analysis of the performance of the algorithm.

The number fields that we target are multiquadratics, such as the degree-
256 number field Q(

√
2,
√

3,
√

5,
√

7,
√

11,
√

13,
√

17,
√

19), or more generally any
Q(
√
d1,
√
d2, . . . ,

√
dn). Sometimes we impose extra constraints for the sake of

simplicity: for example, in a few steps we require d1, . . . , dn to be coprime and
squarefree, and in several steps we require them to be positive.

A preliminary step in the attack (see Section 5.1) is to compute a full-rank
subgroup of “the unit group of” the number field (which by convention in alge-
braic number theory means the unit group of the ring of integers of the field):
namely, the subgroup generated by the units of all real quadratic subfields. We
dub this subgroup the set of “multiquadratic units” by analogy to the standard
terminology “cyclotomic units”, with the caveat that “multiquadratic units”
(like “cyclotomic units”) are not guaranteed to be all units.

The degree-256 example above has exactly 255 real quadratic subfields

Q(
√

2),Q(
√

3),Q(
√

6), . . . ,Q(
√

2 · 3 · 5 · 7 · 11 · 13 · 17 · 19).

Each of these has a unit group quickly computable by standard techniques. For
example, the units of Q(

√
2) are ±(1 +

√
2)Z, and the units of the last field are

±(69158780182494876719 + 22205900901368228
√

2 · 3 · 5 · 7 · 11 · 13 · 17 · 19)Z.
This preliminary step generally becomes slower as d1, . . . , dn grow, but it

takes time quasipolynomial in the field degree N , assuming that d1, . . . , dn are
quasipolynomial in N .

In the next step (the rest of Section 5) we go far beyond the multiquadratic
units: we quickly compute the entire unit group of the multiquadratic field. This
is important because the gap between the multiquadratic units and all units
would interfere, potentially quite heavily, with the success probability of our al-
gorithm, the same way that a “large h+” (a large gap between cyclotomic units
and all units) would interfere with the success probability of the cyclotomic
attacks. Note that computing the unit group is another of the five “main com-
putational tasks of algebraic number theory” listed in [19]. There is an earlier
algorithm by Wada [42] to compute the unit group of a multiquadratic field, but
that algorithm takes exponential time.

We then go even further (Section 6), quickly computing a generator of the
input ideal. The generator algorithm uses techniques similar to, but not the
same as, the unit-group algorithm. The unit-group computation starts from unit
groups computed recursively in three subfields, while the generator computation
starts from generators computed recursively in those subfields and from the unit
group of the top field.

There is a very easy way to extract short generators when d1, . . . , dn are large
enough, between roughly N and any quasipolynomial bound. This condition is
satisfied by a wide range of fields of each degree.

We do more work to extend the applicability of our attack to allow smaller
d1, . . . , dn, using LLL to shorten units and indirectly generators. Analysis of
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this extension is difficult, but experiments suggest that the success probability
converges to 1 even when d1, . . . , dn are chosen to be as small as the first n
primes starting from n2.

There are many obvious opportunities for precomputation in our algorithm,
and in particular the unit group can be reused for attacking many targets gO
in the same field. We separately measure the cost of computing the unit group
and the cost of subsequently finding a generator.

1.3 Why focus on multiquadratics?

Automorphisms and subfields play critical roles in several strategies to attack
discrete logarithms. These strategies complicate security analysis, and in many
cases they have turned into successful attacks. For example, small-characteristic
multiplicative-group discrete logarithms are broken in quasipolynomial time;
there are ongoing disputes regarding a strategy to attack small-characteristic
ECC; and very recently pairing-based cryptography has suffered a significant
drop in security level, because of new optimizations in attacks exploiting sub-
fields of the target field. See, e.g., [5], [26], and [33].

Do automorphisms and subfields also damage the security of lattice-based
cryptography? We chose multiquadratics as an interesting test case because they
have a huge number of subfields, presumably amplifying and clarifying any im-
pact that subfields might have upon security.

A degree-2n multiquadratic field is Galois: i.e., it has 2n automorphisms,
the maximum possible for a degree-2n field. The Galois group, the group of
automorphisms, is isomorphic to (Z/2)n. The number of subfields of the field
is the number of subgroups of (Z/2)n, i.e., the number of subspaces of an n-
dimensional vector space over F2. The number of k-dimensional subspaces is the
2-binomial coefficient(

n

k

)
2

=
(2n − 1)(2n−1 − 1) · · · (21 − 1)

(2k − 1)(2k−1 − 1) · · · (21 − 1)(2n−k − 1)(2n−k−1 − 1) · · · (21 − 1)
,

which is approximately 2n
2/4 for k ≈ n/2. This turns out to be overkill from the

perspective of our attack: as illustrated in Figures 5.1 and 5.2, the number of
subfields we use ends up essentially linear in 2n.

2 Multiquadratic fields

A multiquadratic field is, by definition, a field that can be written in the form
Q(
√
r1, . . . ,

√
rm) where (r1, . . . , rm) is a finite sequence of rational numbers. The

notation Q(
√
r1, . . . ,

√
rm) means the smallest subfield of C, the field of complex

numbers, that contains
√
r1, . . . ,

√
rm.

When we write
√
r for a nonnegative real number r, we mean specifically

the nonnegative square root of r. When we write
√
r for a negative real number

r, we mean specifically i
√
−r, where i is the standard square root of −1 in
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C; for example,
√
−2 means i

√
2. These choices do not affect the definition of

Q(
√
r1, . . . ,

√
rm), but many other calculations rely on each

√
r having a definite

value.
See full version of paper on multiquad.cr.yp.to for proofs.

Theorem 2.1. Let n be a nonnegative integer. Let d1, . . . , dn be integers such
that, for each nonempty subset J ⊆ {1, . . . , n}, the product

∏
j∈J dj is not a

square. Then the 2n complex numbers
∏
j∈J

√
dj for all subsets J ⊆ {1, . . . , n}

form a basis for the multiquadratic field Q(
√
d1, . . . ,

√
dn) as a Q-vector space.

Furthermore, for each j ∈ {1, . . . , n} there is a unique field automorphism
of Q(

√
d1, . . . ,

√
dn) that preserves

√
d1, . . . ,

√
dn except for mapping

√
dj to

−
√
dj.

Consequently Q(
√
d1, . . . ,

√
dn) is a degree-2n number field.

Theorem 2.2. Every multiquadratic field can be expressed in the form of The-
orem 2.1 with each dj squarefree.

3 Fast arithmetic in multiquadratic fields

See full version of paper on multiquad.cr.yp.to.

4 Recognizing squares

This section explains how to recognize squares in a multiquadratic field L =
Q(
√
d1, . . . ,

√
dn). The method does not merely check whether a single element

u ∈ L is a square: given nonzero u1, . . . , ur ∈ L, the method rapidly identifies
the set of exponent vectors (e1, . . . , er) ∈ Zr such that ue11 · · ·uerr is a square.

The method here was introduced by Adleman [2] as a speedup to NFS. The
idea is to apply a group homomorphism χ from L× to {−1, 1}, or more gen-
erally from T to {−1, 1}, where T is a subgroup of L× containing u1, . . . , ur.
Then χ reveals a linear constraint, hopefully nontrivial, on (e1, . . . , er) modulo
2. Combining enough constraints reveals the space of (e1, . . . , er) mod 2.

One choice of χ is the sign of a real embedding of L, but this is a limited
collection of χ (and empty if L is complex). Adleman suggested instead taking
χ as a quadratic character defined by a prime ideal. There is an inexhaustible
supply of prime ideals, and thus of these quadratic characters.

Section 3.6 (in the full version of this paper) used this idea for L = Q, but
only for small r (namely r = n), where one can afford to try 2r primes. This
section handles arbitrary multiquadratics and allows much larger r.

4.1 Computing quadratic characters

Let q be an odd prime number modulo which all the di are nonzero squares.
For each i, let si be a square root of di modulo q. The map Z[x1, . . . , xn]→ Fq

https://multiquad.cr.yp.to
https://multiquad.cr.yp.to
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defined by xi 7→ si and reducing coefficients modulo q induces a homomorphism
Z[x1, . . . , xn]/(x21 − d1, . . . , x

2
n − dn) → Fq, or equivalently a homomorphism

ϕ : Z[
√
d1, . . . ,

√
dn]→ Fq.

Let P be the kernel of ϕ. Then P is a degree-1 prime ideal of Z[
√
d1, . . . ,

√
dn]

above q, i.e., a prime ideal of prime norm q. Write OL for the ring of integers of
L; then P extends to a unique degree-1 prime ideal of OL. The map ϕ extends
to the set Rϕ of all u ∈ L having nonnegative valuation at this prime ideal.
For each u ∈ Rϕ define χ(u) ∈ {−1, 0, 1} as the Legendre symbol of ϕ(u) ∈ Fq.
Then χ(uu′) = χ(u)χ(u′), since ϕ(uu′) = ϕ(u)ϕ(u′) and the Legendre symbol is
multiplicative. In particular, χ(u2) ∈ {0, 1}.

More explicitly: Given a polynomial u ∈ Z[x1, . . . , xn]/(x21− d1, . . . , x2n− dn)
represented as coefficients of 1, x1, x2, x1x2, etc., first take all coefficients modulo
q to obtain u mod q ∈ Fq[x1, . . . , xn]/(x21 − d1, . . . , x

2
n − dn). Then substitute

xn 7→ sn: i.e., write u mod q as u0 +u1xn, where u0, u1 ∈ Fq[x1, . . . , xn−1]/(x21−
d1, . . . , x

2
n−1−dn−1), and compute u0+u1sn. Inside this result substitute xn−1 7→

sn−1 similarly, and so on through x1 7→ s1, obtaining ϕ(u) ∈ Fq. Finally compute
the Legendre symbol modulo q to obtain χ(u).

As in Section 3 (in the full version of this paper), assume that each coefficient
of u has at most B bits, and choose q (using the GoodPrime function from
Section 3.2) to have nO(1) bits. Then the entire computation of χ(u) takes time
essentially NB, mostly to reduce coefficients modulo q. The substitutions xj 7→
sj involve a total of O(N) operations in Fq, and the final Legendre-symbol
computation takes negligible time.

More generally, any element of L is represented as u/h for a positive integer
denominator h. Assume that q is coprime to h; this is true with overwhelming
probability when q is chosen randomly. (It is also guaranteed to be true for any
u/h ∈ OL represented in lowest terms, since q is coprime to 2d1 · · · dn.) Then
ϕ(u/h) is simply ϕ(u)/h, and computing the Legendre symbol produces χ(u/h).

4.2 Recognizing squares using many quadratic characters

Let χ1, . . . , χm be quadratic characters. Define T as the subset of L on which
all χi are defined and nonzero. Then T is a subgroup of L×, the intersection of
the unit groups of the rings Rϕ defined above. Define a group homomorphism
X : T → (Z/2)m as u 7→ (log−1 χ1, . . . , log−1 χm).

Given nonzero u1, . . . , ur ∈ L, choose m somewhat larger than r, and then
choose χ1, . . . , χm randomly using GoodPrime. Almost certainly u1, . . . , ur ∈ T ;
if any χ(uj) turns out to be undefined or zero, simply switch to another prime.

Define U as the subgroup of T generated by u1, . . . , ur. If a product π =
ue11 · · ·uerr is a square in L then its square root is in T so X(π) = 0, i.e., e1X(u1)+
· · · + erX(ur) = 0. Conversely, if X(π) = 0 and m is somewhat larger than r
then almost certainly π is a square in L, as we now explain.

The group U/(U ∩ L2) is an F2-vector space of dimension at most r, so its
dual group Hom(U/(U ∩ L2),Z/2) is also an F2-vector space of dimension at
most r. As in [16, Section 8], we heuristically model log−1 χ1, . . . , log−1 χm as
independent uniform random elements of this dual; then they span the dual with
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probability at least 1 − 1/2m−r by [16, Lemma 8.2]. If they do span the dual,
then any π ∈ U with X(π) = 0 must have π ∈ U ∩ L2.

The main argument for this heuristic is the fact that, asymptotically, prime
ideals are uniformly distributed across the dual. Restricting to degree-1 prime
ideals does not affect this heuristic: prime ideals are counted by norm, so asymp-
totically 100% of all prime ideals have degree 1. Beware that taking more than
one prime ideal over a single prime number q would not justify the same heuristic.

Computing X(u1), . . . , X(ur) involves mr ≈ r2 quadratic-character compu-
tations, each taking time essentially NB. We do better by using remainder trees
to merge the reductions of B-bit coefficients mod q across all r choices of q; this
reduces the total time from essentially r2NB to essentially rN(r +B).

We write EnoughCharacters(L, (v1, . . . , vs)) for a list of m randomly chosen
characters that are defined and nonzero on v1, . . . , vs. In higher-level algorithms
in this paper, the group 〈v1, . . . , vs〉 can always be expressed as 〈u1, . . . , ur〉
with r ≤ N + 1, and we choose m as N + 64, although asymptotically one
should replace 64 by, e.g.,

√
N . The total time to compute X(u1), . . . , X(uR)

is essentially N2(N + B). The same heuristic states that these characters have

probability at most 1/263 (or asymptotically at most 1/2
√
N−1) of viewing some

non-square ue11 · · ·uerr as a square. Our experiments have not encountered any
failing square-root computations.

5 Computing units

This section presents a fast algorithm to compute the unit group O×L of a mul-
tiquadratic field L. For simplicity we assume that L is real, i.e., that L ⊆ R.
Note that a multiquadratic field is real if and only if it is totally real, i.e., every
complex embedding L → C has image in R. For L = Q(

√
d1, . . . ,

√
dn) this is

equivalent to saying that each dj is nonnegative.
Like Wada [42], we recursively compute unit groups for three subfields Kσ,

Kτ , Kστ , and then use the equation u2 = NL:Kσ (u)NL:Kτ (u)/σ(NL:Kστ (u)) to
glue these groups together into a group U between O×L and (O×L )2. At this point
Wada resorts to brute-force search to identify the squares in U , generalizing an
approach taken by Kubota in [34] for degree-4 multiquadratics (“biquadratics”).
We reduce exponential time to polynomial time by using quadratic characters
as explained in Section 4.

5.1 Fundamental units of quadratic fields

A quadratic field is, by definition, a degree-2 multiquadratic field; i.e., a field
of the form Q(

√
d), where d is a non-square integer.

Fix a positive non-square integer d. Then L = Q(
√
d) is a real quadratic

field, and the unit group O×L is{
. . . ,−ε2,−ε,−1,−ε−1,−ε−2, . . . , ε−2, ε−1, 1, ε, ε2, . . .

}
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for a unique ε ∈ O×L with ε > 1. This ε, the smallest element of O×L larger than
1, is the normalized fundamental unit of OL. For example, the normalized
fundamental unit is 1+

√
2 for d = 2; 2+

√
3 for d = 3; and (1+

√
5)/2 for d = 5.

Sometimes the literature says “fundamental unit” instead of “normalized fun-
damental unit”, but sometimes it defines all of ε, −ε, 1/ε, −1/ε as “fundamental
units”. The phrase “normalized fundamental unit” is unambiguous.

The size of the normalized fundamental unit ε is conventionally measured by
the regulator R = ln(ε). A theorem by Hua states that R <

√
d(ln(4d) + 2),

and experiments suggest that R is typically d1/2+o(1), although it is often much
smaller. Write ε as a + b

√
d with a, b ∈ Q; then both 2a and 2b

√
d are very

close to exp(R), and there are standard algorithms that compute a, b in time
essentially R, i.e., at most essentially d1/2. See generally [36] and [43].

For our time analysis we assume that d is quasipolynomial in N , i.e., log d ∈
(logN)O(1). Then the time to compute ε is also quasipolynomial in N .

Take, for example, d = d1 · · · dn, where d1, . . . , dn are the first n primes,
and write N = 2n. The product of primes ≤y is approximately exp(y), so
ln d ≈ n lnn = (log2N) ln log2N . As a larger example, if d1, . . . , dn are primes
between N3 and N4, and again d = d1 · · · dn, then log2 d is between 3n2 and
4n2, i.e., between 3(log2N)2 and 4(log2N)2. In both of these examples, d is
quasipolynomial in N .

Subexponential algorithms. There are much faster algorithms that compute ε
as a product of powers of smaller elements of L. There is a deterministic algo-
rithm that provably takes time essentially R1/2, i.e., at most essentially d1/4;
see [11]. Heuristic algorithms take subexponential time exp((ln(d))1/2+o(1)), and
thus time polynomial in N if ln(d) ∈ O((logN)2−ε); see [15,1,19,40]. Quantum
algorithms are even faster, as mentioned in the introduction, but in this paper
we focus on pre-quantum algorithms.

This representation of units is compatible with computing products, quo-
tients, quadratic characters (see Section 4), and automorphisms, but we also
need to be able to compute square roots. One possibility here is to generalize
from “product of powers” to any algebraic algorithm, i.e., any chain of addi-
tions, subtractions, multiplications, and divisions. This seems adequate for our
square-root algorithm in Section 3.7 (in the full version of this paper): for exam-
ple, h0 inside Algorithm 3.3 can be expressed as the chain (h + σ(h))/2 for an
appropriate automorphism σ, and the base case involves square roots of small
integers that can be computed explicitly. However, it is not clear whether our
recursive algorithms produce chains of polynomial size. We do not explore this
possibility further.

5.2 Units in multiquadratic fields

Let d1, . . . , dn be integers satisfying the conditions of Theorem 2.1. Assume fur-
ther that d1, . . . , dn are positive. Then L = Q(

√
d1, . . . ,

√
dn) is a real multi-

quadratic field.
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This field has N − 1 = 2n − 1 quadratic subfields, all of which are real. Each
quadratic subfield is constructed as follows: take one of the N−1 nonempty sub-
sets J ⊆ {1, . . . , n}; define dJ =

∏
j∈J dj ; the subfield is Q(

√
dJ). We write the

normalized fundamental units of these N−1 quadratic subfields as ε1, . . . , εN−1.
The set of multiquadratic units of L is the subgroup 〈−1, ε1, . . . , εN−1〉 of

O×L ; equivalently, the subgroup of O×L generated by −1 and all units of rings of
integers of quadratic subfields of L. (The “−1 and” can be suppressed except for
L = Q.) A unit in OL is not necessarily a multiquadratic unit, but Theorem 5.2
states that its Nth power must be a multiquadratic unit.

The group O×L is isomorphic to (Z/2)×ZN−1 by Dirichlet’s unit theorem. For
N ≥ 2 this isomorphism takes the Nth powers to {0} × (NZ)N−1, a subgroup
having index 21+n(N−1). The index of the multiquadratic units in O×L is therefore
a divisor of 21+n(N−1). One corollary is that ε1, . . . , εN−1 are multiplicatively
independent: if

∏
ε
aj
j = 1, where each aj ∈ Z, then each aj = 0.

Lemma 5.1 Let L be a real multiquadratic field and let σ, τ be distinct non-
identity automorphisms of L. Define στ = σ ◦ τ . For ` ∈ {σ, τ, στ} let K` be the
subfield of L fixed by `. Define U = O×Kσ · O

×
Kτ
· σ(O×Kστ ). Then

(O×L )2 ≤ U ≤ O×L .

Proof. O×Kσ , O×Kτ , and O×Kστ are subgroups of O×L . The automorphism σ pre-

serves O×L , so σ(O×Kστ ) is a subgroup of O×L . Hence U is a subgroup of O×L .

For the first inclusion, let u ∈ O×L . Then NL:K`(u) ∈ O×K` for ` ∈ {σ, τ, στ}.
Each non-identity automorphism of L has order 2, so in particular each ` ∈
{σ, τ, στ} has order 2 (if στ is the identity then σ = σστ = τ , contradiction), so
NL:K`(u) = u · `(u). We thus have

NL:Kσ (u)NL:Kτ (u)

σ(NL:Kστ (u))
=
u · σ(u) · u · τ(u)

σ(u · στ(u))
= u2.

Hence u2 = NL:Kσ (u)NL:Kτ (u)σ(NL:Kστ (u−1)) ∈ U . This is true for each u ∈
O×L , so (O×L )2 is a subgroup of U . ut

Theorem 5.2 Let L be a real multiquadratic field of degree N . Let Q be the
group of multiquadratic units of L. Then O×L = Q if N = 1, and (O×L )N/2 ≤ Q
if N ≥ 2. In both cases (O×L )N ≤ Q.

Proof. Induct on N . If N = 1 then L = Q so O×L = 〈−1〉 = Q. If N = 2 then
L is a real quadratic field so O×L = 〈−1, ε1〉 = Q where ε1 is the normalized
fundamental unit of L.

Assume from now on that N ≥ 4. By Theorem 2.2, L can be expressed as
Q(
√
d1, . . . ,

√
dn) where d1, . . . , dn are positive integers meeting the conditions

of Theorem 2.1 and N = 2n.
Define σ as the automorphism of L that preserves

√
d1, . . . ,

√
dn except for

negating
√
dn. The field Kσ fixed by σ is Q(

√
d1, . . . ,

√
dn−1), a real multi-

quadratic field of degree N/2. Write Qσ for the group of multiquadratic units of
Kσ. By the inductive hypothesis, (O×Kσ )N/4 ≤ Qσ ≤ Q.
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Define τ as the automorphism of L that preserves
√
d1, . . . ,

√
dn except for

negating
√
dn−1. Then the field Kτ fixed by τ is Q(

√
d1, . . . ,

√
dn−2,

√
dn), and

the field Kστ fixed by στ is Q(
√
d1, . . . ,

√
dn−2,

√
dn−1dn). Both of these are

real multiquadratic fields of degree N/2, so (O×Kτ )N/4 ≤ Q and (O×Kστ )N/4 ≤ Q.

The automorphism σ preserves Q, so σ(O×Kστ )N/4 ≤ Q.

By Lemma 5.1, (O×L )2 ≤ O×Kσ · O
×
Kτ
· σ(O×Kστ ). Simply take (N/4)th powers:

(O×L )N/2 ≤ (O×Kσ )N/4 · (O×Kτ )N/4 · σ(O×Kστ )N/4 ≤ Q. ut

5.3 Representing units: logarithms and approximate logarithms

Sections 5.4 and 5.5 will use Lemma 5.1, quadratic characters, and square-root
computations to obtain a list of generators for O×L . However, this is usually far
from a minimal-size list of generators. Given this list of generators we would like
to produce a basis for O×L . This means a list of N − 1 elements u1, . . . , uN−1 ∈
O×L such that each element of O×L can be written uniquely as ζue11 · · ·u

eN−1

N−1
where ζ is a root of unity; i.e., as ±ue11 · · ·u

eN−1

N−1 . In other words, it is a list of

independent generators of O×L /{±1}.
A basis u1, . . . , uN−1 for O×L is traditionally viewed as a lattice basis in

the usual sense: specifically, as the basis Log u1, . . . ,Log uN−1 for the lattice
LogO×L , where Log is Dirichlet’s logarithm map. However, this view complicates
the computation of a basis. We instead view a basis u1, . . . , uN−1 for O×L as a
basis ApproxLog u1, . . . ,ApproxLog uN−1 for the lattice ApproxLogO×L , where
ApproxLog is an “approximate logarithm map”. We define our approximate
logarithm map here, explain why it is useful, and explain how we use the ap-
proximate logarithm map in our representation of units. In Section 5.5 we use
ApproxLog to reduce a list of generators to a basis.

Dirichlet’s logarithm map. Let σ1, σ2, . . . , σN be (in some order) the embeddings
of L into C, i.e., the ring homomorphisms L → C. Since L is Galois, these are
exactly the automorphisms of L. Dirichlet’s logarithm map Log : L× → RN
is defined as follows:

Log(u) = (ln |σ1(u)|, ln |σ2(u)|, . . . , ln |σN (u)|).

This map has several important properties. It is a group homomorphism from the
multiplicative group L× to the additive group RN . The kernel of Log restricted
to O×L is the cyclic group of roots of unity in L, namely {1,−1}. The image
Log(O×L ) forms a lattice of rank N − 1, called the log-unit lattice.

Given units u1, . . . , ub generating O×L , one can compute Log(u1), . . . ,Log(ub)
in RN , and then reduce these images to linearly independent vectors in RN by
a chain of additions and subtractions, obtaining a basis for the log-unit lattice.
Applying the corresponding chain of multiplications and divisions to the original
units produces a basis for O×L .

However, elements of R are conventionally represented as nearby rational
numbers. “Computing” Log(u1), . . . ,Log(ub) thus means computing nearby vec-
tors of rational numbers. The group generated by these vectors usually has rank
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larger than N − 1: instead of producing N − 1 linearly independent vectors and
b−(N−1) zero vectors, reduction can produce as many as b linearly independent
vectors.

One can compute approximate linear dependencies by paying careful atten-
tion to floating-point errors. An alternative is to use p-adic techniques as in [7].
Another alternative is to represent logarithms in a way that allows all of the
necessary real operations to be carried out without error: for example, one can
verify that Log u > Log v by using interval arithmetic in sufficiently high pre-
cision, and one can verify that Log u = Log v by checking that u/v is a root of
unity.

Approximate logarithms. We instead sidestep these issues by introducing an
approximate logarithm function ApproxLog as a replacement for the logarithm
function Log. This new function is a group homomorphism from O×L to RN . Its
image is a lattice of rank N − 1, which we call the approximate unit lattice. Its
kernel is the group of roots of unity in L. The advantage of ApproxLog over
Log is that all the entries of ApproxLog(u) are rationals, allowing exact linear
algebra.

To define ApproxLog, we first choose N linearly independent vectors

(1, 1, . . . , 1),ApproxLog(ε1), . . . ,ApproxLog(εN−1) ∈ QN ,

where ε1, . . . , εN−1 are the normalized fundamental units of the quadratic sub-
fields of L as before; (1, 1, . . . , 1) is included here to simplify other computations.
We then extend the definition by linearity to the group 〈−1, ε1, . . . , εN−1〉 of
multiquadratic units: if

u = ±
N−1∏
j=1

ε
ej
j

then we define ApproxLog(u) as
∑
j ej ApproxLog(εj). Finally, we further extend

the definition by linearity to all of O×L : if u ∈ O×L then uN is a multiquadratic
unit by Theorem 5.2, and we define ApproxLog(u) as ApproxLog(uN )/N . It is
easy to check that ApproxLog is a well-defined group homomorphism.

For example, one can take ApproxLog(ε1) = (1, 0, . . . , 0, 0), ApproxLog(ε2) =
(0, 1, . . . , 0, 0), and so on through ApproxLog(εN−1) = (0, 0, . . . , 1, 0). Then
ApproxLog(u) = (e1/N, e2/N, . . . , eN−1/N, 0) if uN = ±εe11 ε

e2
2 · · · ε

eN−1

N−1 . In other
words, write each unit modulo ±1 as a product of powers of ε1, . . . , εN−1;
ApproxLog is then the exponent vector.

We actually define ApproxLog to be numerically much closer to Log. We
choose a precision parameter β, and we choose each entry of ApproxLog(εj) to be
a multiple of 2−β within 2−β of the corresponding entry of Log(εj). Specifically,
we build ApproxLog(εj) as follows:

– Compute the regulator R = ln(εj) to slightly more than β + log2R bits of
precision.

– Round the resulting approximation to a (nonzero) multiple R′ of 2−β .
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– Build a vector with R′ at the N/2 positions i for which σi(εj) = εj , and
with −R′ at the remaining N/2 positions i.

The resulting vectors ApproxLog(ε1), . . . ,ApproxLog(εN−1) are orthogonal to
each other and to (1, 1, . . . , 1).

How units are represented. Each unit in Algorithms 5.1 and 5.2 is implicitly
represented as a pair consisting of (1) the usual representation of an element of
L and (2) the vector ApproxLog(u). After the initial computation of ln(εj) for
each j, all subsequent units are created as products (or quotients) of previous
units, with sums (or differences) of the ApproxLog vectors; or square roots of
previous units, with the ApproxLog vectors multiplied by 1/2. This approach
ensures that we do not have to compute ln |σ(u)| for the subsequent units u.

As mentioned in Section 5.1, we assume that each quadratic field Q(
√
d) has

log d ∈ (logN)O(1) = nO(1), so logR ∈ nO(1). We also take β ∈ nO(1), so each
entry of ApproxLog(εj) has nO(1) bits. One can deduce an nO(1) bound on the
number of bits in any entry of any ApproxLog vector used in our algorithms, so
adding two such vectors takes time nO(1)N , i.e., essentially N .

For comparison, recall that multiplication takes time essentially NB, where
B is the maximum number of bits in any coefficient of the field elements being
multiplied. For normalized fundamental units, this number of bits is essentially
R, i.e., quasipolynomial in N , rather than logR, i.e., polynomial in n.

5.4 Pinpointing squares of units inside subgroups of the unit group

Algorithm 5.1, UnitsGivenSubgroup, is given generators u1, . . . , ub of any group
U with (O×L )2 ≤ U ≤ O×L . It outputs generators of O×L /{±1}.

The algorithm begins by building enough characters χ1, . . . , χm that are de-
fined and nonzero on U . Recall from Section 4.2 that m is chosen to be slightly
larger than N .

For each u ∈ U define X(u) as the vector (log−1(χ1(u)), . . . , log−1(χm(u))) ∈
(Z/2)m. If u ∈ (O×L )2 then X(u) = 0. Conversely, if u ∈ U and X(u) = 0 then
(heuristically, with overwhelming probability) u = v2 for some v ∈ L; this v
must be a unit, so u ∈ (O×L )2.

The algorithm assembles the rows X(u1), . . . , X(ub) into a matrix M ; com-
putes a basis S for the left kernel of M ; lifts each element (Si1, . . . , Sib) of this
basis to a vector of integers, each entry 0 or 1; and computes si = uSi11 · · ·uSibb . By
definition X(si) = Si1X(u1) + · · ·+SibX(ub) = 0, so si ∈ (O×L )2. The algorithm
computes a square root vi of each si, and it outputs u1, . . . , ub, v1, v2, . . . .

To see that −1, u1, . . . , ub, v1, v2, . . . generate O×L , consider any u ∈ O×L . By
definition u2 ∈ (O×L )2, so u2 ∈ U , so u2 = ue11 · · ·u

eb
b for some e1, . . . , eb ∈

Z. Furthermore X(u2) = 0 so e1X(u1) + · · · + ebX(ub) = 0; i.e., the vector
(e1 mod 2, . . . , eb mod 2) in (Z/2)b is in the left kernel of M . By definition S is
a basis for this left kernel, so (e1 mod 2, . . . , eb mod 2) is a linear combination
of the rows of S modulo 2; i.e., (e1, . . . , eb) is some (2f1, . . . , 2fb) plus a linear

combination of the rows of S; i.e., u2 is u2f11 · · ·u2fbb times a product of powers

of si; i.e., u is ±uf11 · · ·u
fb
b times a product of powers of vi.



14 J. Bauch, D. J. Bernstein, H. de Valence, T. Lange & C. van Vredendaal

Algorithm 5.1: UnitsGivenSubgroup(L, (u1, . . . , ub))

Input: A real multiquadratic field L; elements u1, . . . , ub of O×L such that
(O×L )2 ⊆ 〈u1, . . . , ub〉.

Result: Generators for O×L /{±1}.
1 χ1, . . . , χm ← EnoughCharacters(L, (u1, . . . , ub))
2 M ← [log−1(χk(uj))]1≤j≤b,1≤k≤m
3 S ← Basis(LeftKernel(M))
4 for i = 1, . . . ,#S do

5 si ←
∏
j u

Sij
j , interpreting exponents in Z/2 as {0, 1} in Z

6 vi ←
√
si

7 return u1, . . . , ub, v1, . . . , v#S

Complexity analysis and improvements. Assume that the inputs u1, . . . , ub have
at most B bits in each coefficient. Each of the products s1, s2, . . . is a product of
at most b inputs, and thus has, at worst, essentially bB bits in each coefficient.

Computing the character matrix M takes time essentially bN(b + B); see
Section 4.2. Computing S takes O(N3) operations by Gaussian elimination over
F2; one can obtain a better asymptotic exponent here using fast matrix multi-
plication, but this is not a bottleneck in any case. Computing one product si
takes time essentially bNB with a product tree, and computing its square root
vi takes time essentially bN log2 3B. There are at most b values of i.

Our application of this algorithm has b ∈ Θ(N). The costs are essentially
N3 + N2B for characters, N3 for kernel computation, N3B for products, and
N2+log2 3B for square roots.

These bounds are too pessimistic, for three reasons. First, experiments show
that products often have far fewer factors, and are thus smaller and faster to
compute. Second, one can enforce a limit upon output size by integrating the
algorithm with lattice-basis reduction (see Section 5.5), computing products and
square roots only after reduction. Third, we actually use the technique of Sec-
tion 3.5 (in the full version of this paper) to compute products of powers.

5.5 A complete algorithm to compute the unit group

Algorithm 5.2 computes a basis for O×L , given a real multiquadratic field L.
As usual write N for the degree of L. There is no difficulty if N = 1. For

N = 2, the algorithm calls standard subroutines cited in Section 5.1. For N ≥ 4,
the algorithm calls itself recursively on three subfields of degree N/2; merges
the results into generators for a subgroup U ≤ O×L such that (O×L )2 ≤ U ;
calls UnitsGivenSubgroup to find generators for O×L ; and then uses lattice-basis
reduction to find a basis for O×L . A side effect of lattice-basis reduction is that
the basis is short, although it is not guaranteed to be minimal.

The subgroup and the generators. Lemma 5.1 defines U = O×Kσ · O
×
Kτ
· σ(O×Kστ )

where σ, τ are distinct non-identity automorphisms of L.
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Fig. 5.1: How to pick subfields for the recursive algorithm for multiquadratic
fields of degree 8.
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Fig. 5.2: How to pick subfields for the recursive algorithm for multiquadratic
fields of degree 16.

The three subfields used in the algorithm are Kσ, Kτ , and Kστ . The recursive
calls produce lists of generators for O×Kσ/{±1}, O×Kτ /{±1}, and O×Kστ /{±1}
respectively. The algorithm builds a list G that contains each element of the
first list; each element of the second list; σ applied to each element of the third
list; and −1. Then G generates U . As a speedup, we sort G to remove duplicates.

We cache the output of Units(L) for subsequent reuse (without saying so
explicitly in Algorithm 5.2). For example, if L = Q(

√
2,
√

3,
√

5), then the three
subfields might be Q(

√
2,
√

3), Q(
√

2,
√

5), and Q(
√

2,
√

15), and the next level
of recursion involves Q(

√
2) three times. We perform the Units(Q(

√
2)) compu-

tation once and then simply reuse the results the next two times.

The overall impact of caching depends on how σ and τ are chosen (which
is also not specified in Algorithm 5.2). We use the following specific strategy.
As usual write L as Q(

√
d1, . . . ,

√
dn), where d1, . . . , dn are integers meeting the

conditions of Theorem 2.1. Assume that 0 < d1 < · · · < dn. Choose σ and τ such
that Kσ = Q(

√
d1,
√
d2, . . . ,

√
dn−1) and Kτ = Q(

√
d1,
√
d2, . . . ,

√
dn−2,

√
dn).

We depict the resulting set of subfields in Figures 5.1 and 5.2. Notice that, in
Figures 5.1 and 5.2, the leftmost field in each horizontal layer is a subfield used
by all fields in the horizontal layer above it.

With this strategy, the recursion reaches exactly 2n−`+1 − 1 subfields of de-
gree 2`, namely the subfields of the form Q(

√
d1, . . . ,

√
d`−1,

√
D) where D is

a product of a nonempty subset of {d`, . . . , dn}. With a less disciplined strat-
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Algorithm 5.2: Units(L)

Input: A real multiquadratic field L. As a side input, a parameter H > 0.
Result: Independent generators of O×L /{±1}.

1 if [L : Q] = 1 then
2 return ()

3 if [L : Q] = 2 then
4 return the normalized fundamental unit of L

5 σ, τ ← distinct non-identity automorphisms of L
6 for ` ∈ {σ, τ, στ} do
7 G` ← Units(fixed field of `)

8 G← −1, Gσ, Gτ , σ(Gστ )
9 (u1, . . . , ub)← UnitsGivenSubgroup(L,G)

10 A←


1 0 . . . 0 H ·ApproxLog(u1)
0 1 . . . 0 H ·ApproxLog(u2)
...

...
. . .

...
...

0 0 . . . 1 H ·ApproxLog(ub)


11 A′ ← LLL(A), putting shortest vectors first
12 for i = 1, . . . , N − 1 where N = [L : Q] do

13 wi ←
∏

1≤j≤b u
A′b−(N−1)+i,j

j

14 return w1, . . . , wN−1

egy, randomly picking 3 subfields of degree N/2 at each step, we would instead
end up with nearly 3n−` subfields of degree 2`. “Nearly” accounts for accidental
collisions and for the limited number of subfields of low degree.

Finding short bases given generators. Applying Pohst’s modified LLL algorithm
[37] to the vectors ApproxLog(u1), . . . ,ApproxLog(ub) would find b − (N − 1)
zero vectors and N − 1 independent short combinations of the input vectors.
The algorithm is easily extended to produce an invertible b × b transformation
matrix T that maps the input vectors to the output vectors. (The algorithm in
[37] already finds the part of T corresponding to the zero outputs.) We could
simply use the entries of any such T as exponents of uj in our algorithm. It is
important to realize, however, that there are many possible choices of T (except
in the extreme case b = N − 1), and the resulting computations are often much
slower than necessary. For example, if u3 = u1u2, then an output u1/u2 might
instead be computed as u10011 u9992 /u10003 .

We instead apply LLL to the matrix A shown in Algorithm 5.2. This has
three effects. First, if H is chosen sufficiently large, then the right side of A is
reduced to b− (N − 1) zero vectors and N − 1 independent short combinations
of the vectors H ·ApproxLog(u1), . . . ,H ·ApproxLog(ub). (We check that there
are exactly b − (N − 1) zero vectors.) Second, the left side of A keeps track
of the transformation matrix that is used. Third, this transformation matrix
is automatically reduced: short coefficients are found for the b − (N − 1) zero
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vectors, and these coefficients are used to reduce the coefficients for the N − 1
independent vectors.

An upper bound on LLL cost can be computed as follows. LLL in dimension
N , applied to integer vectors where each vector has O(B) bits, uses O(N4B)
arithmetic operations on integers with O(NB) bits; see [35, Proposition 1.26].
The total time is bounded by essentially N5B2. To bound B one can bound each
H ·ApproxLog(· · · ). To bound H one can observe that the transformation matrix
has, at worst, essentially N bits in each coefficient (see, e.g., [39]), while the
required precision of ApproxLog is essentially 1, so it suffices to take essentially
N bits in H. The total time is, at worst, essentially N7.

Our experiments show much better LLL performance for these inputs. We
observe LLL actually using very few iterations; evidently the input vectors are
already very close to being reduced. It seems plausible to conjecture that the
entries of the resulting transformation matrix have at most nO(1) bits, and that
it suffices to take H with nO(1) bits, producing B bounded by nO(1). The total
time might be as small as essentially N3, depending on how many iterations
there are.

6 Finding generators of ideals

This section presents the main contribution of this paper: a fast pre-quantum
algorithm to compute a nonzero g in a multiquadratic ring, given the ideal
generated by g. For simplicity we focus on the real case, as in Section 5. The
algorithm takes quasipolynomial time under reasonable heuristic assumptions if
d1, . . . , dn are quasipolynomial.

The algorithm reuses the equation g2 = NL:Kσ (g)NL:Kτ (g)/σ(NL:Kστ (g))
that was used for unit-group computation in Section 5. To compute NL:K(g),
the algorithm computes the corresponding norm of the input ideal, and then
calls the same algorithm recursively.

The main algebraic difficulty here is that there are many generators of the
same ideal: one can multiply g by any unit, such as −1 or 1 +

√
2, to obtain

another generator. What the algorithm actually produces is some ug where u
is a unit. This means that the recursion produces unit multiples of NL:Kσ (g)
etc., and thus produces some vg2 rather than g2. The extra unit v might not
be a square, so we cannot simply compute the square root of vg2. Instead we
again use the techniques of Section 4, together with the unit group computed in
Section 5, to find a unit u such that u(vg2) is a square, and we then compute
the square root.

6.1 Representing ideals and computing norms of ideals

Let L be a real multiquadratic field of degree N = 2n. Let R be an order inside
L, such as Z[

√
d1, . . . ,

√
dn] inside Q(

√
d1, . . . ,

√
dn). Our algorithm does not

require R to be the ring of integers OL, although its output allows arbitrary
units from the ring of integers; i.e., if the input is a principal ideal I of R then
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the output is some g ∈ OL such that gOL = IOL. Equivalently, one can (with
or without having computed OL) view I as representing the ideal IOL of OL.

We consider three representations of an ideal I of R:

– One standard representation is as a Z-basis ω1, ω2, . . . , ωN ∈ R, i.e., a basis
of I as a lattice.

– A more compact standard representation is the “two-element representation”
(α1, α2) representing I = α1R + α2R, typically with α1 ∈ Z. If R 6= OL
then I might not have a two-element representation, but failure to convert
I to a two-element representation reveals a larger order.

– Our target cryptosystem in Appendix A uses another representation that
works for many, but certainly not all, ideals ofR = Z[

√
d1, . . . ,

√
dn]: namely,

(q, s1, . . . , sn) ∈ Zn+1, where each sj is a nonzero square root of dj modulo q
and where q is odd, representing I = qR+(

√
d1−s1)R+ · · ·+(

√
dn−sn)R.

Our algorithm works with any representation that allows basic ideal operations,
such as ideal norms, which we discuss next. Performance depends on the choice
of representation.

Let σ be a nontrivial automorphism of L, and let K be its fixed field; then
K is a subfield of L with [L : K] = 2. Assume that σ(R) = R, and let S
be the order K ∩ R inside K. For example, if R = Z[

√
d1, . . . ,

√
dn] and σ pre-

serves
√
d1, . . . ,

√
dn−1 while negating

√
dn, then S = Z[

√
d1, . . . ,

√
dn−1]; ifR =

Z[
√
d1, . . . ,

√
dn] and σ preserves

√
d1, . . . ,

√
dn−2 while negating

√
dn−1,

√
dn,

then S = Z[
√
d1, . . . ,

√
dn−2,

√
dn−1dn].

The relative norm NL:K(I) is, by definition, Iσ(I) ∩K, which is the same
as Iσ(I) ∩ S. This is an ideal of S. It has two important properties: it is not
difficult to compute; and if I = gR then NL:K(I) = NL:K(g)S. See, e.g., [20].

Given a Z-basis of I, one can compute a Z-basis of NL:KI by computing
{ωi · σ(ωj) | 1 ≤ i ≤ j ≤ N}, transforming this into a Hermite-Normal-Form
(HNF) basis for Iσ(I), and intersecting with S. A faster approach appears in [6]:
compute a two-element representation of I; multiply the two elements by a Z-
basis for σ(I); convert to HNF form; and intersect with S, obtaining a Z-basis
for NL:KI. This takes total time essentially N5B.

The (q, s1, . . . , sn) representation allows much faster norms, and is used in
our software. The norm to Z[

√
d1, . . . ,

√
dn−1] is simply (q, s1, . . . , sn−1), and

the norm to Z[
√
d1, . . . ,

√
dn−2,

√
dn−1dn] is simply (q, s1, . . . , sn−2, sn−1sn).

6.2 Computing a generator of I from a generator of I2

Assume now that we have a nonzero principal ideal I ⊆ OL, and a generator
h for I2. To find a generator g for I, it is sufficient to find a square generator
for I2 and take its square root. To this end we seek a unit u ∈ O×L such that
uh = g2 for some g. Applying the map X from Section 4.2 to this equation, we
obtain

X(uh) = X(g2) = 2X(g) = 0.

Therefore X(u) = X(h).
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Algorithm 6.1: IdealSqrt(L, h)

Input: A real multiquadratic field L; an element h of O×L · (L
×)2.

Result: Some g ∈ L× such that h/g2 ∈ O×L .

1 u1, . . . , uN−1 ← Units(L)
2 u0 ← −1
3 χ1, . . . , χm ← EnoughCharacters(L, (u0, . . . , uN−1, h))
4 M ← [log−1 χj(ui)]0≤i≤N−1,1≤j≤m
5 V ← [log−1 χj(h)]1≤j≤m
6 [e0, . . . , eN−1]← SolveLeft(M,V )

7 u←
∏
j u

ej
j , interpreting exponents in Z/2 as {0, 1} in Z

8 g ←
√
uh

9 return g

We start by computing X(h) from h. We then compute a basis u1, . . . , uN−1
for O×L , and we define u0 = −1, so u0, u1, . . . , uN−1 generate O×L . We then solve
the matrix equation

[e0, e1, . . . , eN−1]


X(u0)
X(u1)

...
X(uN−1)

 = X(h)

for [e0, e1, . . . , eN−1] ∈ (Z/2)N and set u =
∏
j u

ej
j . Then uh is (almost certainly)

a square, so its square root g is a generator of I. This algorithm is summarized
in Algorithm 6.1.

The subroutine SolveLeft(M,V ) solves the matrix equation eM = V for
the vector e. One can save time by precomputing the inverse of an invertible
full-rank submatrix of M , and using only the corresponding characters.

Note that for this computation to work we need a basis of the full unit group.
If we instead use units v1, . . . , vN−1 generating, e.g., the group U = (O×L )2, and
if h = vg2 for some v ∈ O×L − U , then uh cannot be a square for any u ∈ U : if
it were then h would be a square (since every u ∈ U is a square), so v would be
a square, so v would be in U , contradiction.

There are several steps in this algorithm beyond the unit-group precomputa-
tion. Characters for u0, . . . , uN−1 take time essentially N3 +N2B and can also
be precomputed. Characters for h take time essentially N2+NB. Linear algebra
mod 2 takes time essentially N3, or better with fast matrix multiplication; most
of this can be precomputed, leaving time essentially N2 to multiply a precom-
puted inverse by X(h). The product of powers takes time essentially N2B, and
the square root takes time essentially N1+log2 3B, although these bounds are too
pessimistic for the reasons mentioned in Section 5.4.
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6.3 Shortening

Algorithm 6.2, ShortenGen, finds a bounded-size generator g of a nonzero prin-
cipal ideal I ⊆ OL, given any generator h of I. See Section 8 for analysis of the
success probability of this algorithm at finding the short generators used in a
cryptosystem.

Recall the log-unit lattice Log(O×L ) defined in Section 5.3. The algorithm
finds a lattice point Log u close to Log h, and then computes g = h/u.

In more detail, the algorithm works as follows. Start with a basis u1, . . . , uN−1
for O×L . Compute Log h, and write Log h as a linear combination of the vec-
tors Log(u1), . . . ,Log(uN−1), (1, 1, . . . , 1); recall that (1, 1, . . . , 1) is orthogonal to
each Log(uj). Round the coefficients in this combination to integers (e1, . . . , eN ).
Compute u = ue11 · · ·u

eN−1

N−1 and g = h/u.
The point here is that Log h is close to e1 Log(u1) + · · ·+ eN−1 Log(uN−1) +

eN (1, 1, . . . , 1), and thus to Log u+eN (1, 1, . . . , 1). The gap Log g = Log h−Log u
is between −0.5 and 0.5 in each of the Log(uj) directions, plus some irrelevant
amount in the (1, 1, . . . , 1) direction.

Normally the goal is to find a generator that is known in advance to be short.
If the logarithm of this target generator is between −0.5 and 0.5 in each of the
Log(uj) directions then this algorithm will find this generator (modulo ±1). See
Section 8 for further analysis of this event.

Approximations. The algorithm actually computes Log h only approximately,
and uses ApproxLog uj instead of Log uj , at the expense of marginally adjusting
the 0.5 bounds mentioned above.

Assume that h has integer coefficients with at most B bits. (We discard the
denominator in any case: it affects only the irrelevant coefficient of (1, 1, . . . , 1).)
Then |σj(h)| ≤ 2B

∏
i(1 +

√
|di|), so ln |σj(h)| ≤ B ln 2 +

∑
i ln(1 +

√
|di|). By

assumption each di is quasipolynomial in N , so ln |σj(h)| ≤ B ln 2 + nO(1).
To put a lower bound on ln |σj(h)|, consider the product of the other con-

jugates of h. Each coefficient of this product is between −2C and 2C where C
is bounded by essentially NB. Dividing this product by the absolute norm of
h, a nonzero integer, again produces coefficients between −2C and 2C , but also
produces exactly 1/σj(h). Hence ln |1/σj(h)| ≤ C ln 2 + nO(1).

In short, ln |σj(h)| is between essentially −NB and B, so an approxima-
tion to ln |σj(h)| within 2−β uses roughly β + log(NB) bits. We use interval
arithmetic with increasing precision to ensure that we are computing Log h ac-
curately; the worst-case precision is essentially NB. Presumably it would save
time here to augment our representation of ideal generators to include approx-
imate logarithms, the same way that we augment our representation of units,
but we have not implemented this yet.

Other reduction approaches. Finding a lattice point close to a vector, with a
promised bound on the distance, is called the Bounded-Distance Decoding Prob-
lem (BDD). There are many BDD algorithms in the literature more sophisti-
cated than simple rounding: for example, Babai’s nearest-plane algorithm [4].
See generally [25].
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Algorithm 6.2: ShortenGen(L, h)

Input: A real multiquadratic field L, and a nonzero element h ∈ L. As a side
input, a positive integer parameter β.

Result: A short g ∈ L with g/h ∈ O×L .

1 u1, . . . , uN−1 ← Units(L)

2 M ←


ApproxLog(u1)

...
ApproxLog(uN−1)
1 1 . . . 1 1


3 v ← approximation to Log(h) within 2−β in each coordinate
4 e←

⌊
−vM−1

⌉
5 g ← hue11 · · ·u

eN−1

N−1

6 return g

Algorithm 6.3: QPIP(Q, I)

Input: Real quadratic field Q and a principal ideal I of an order inside Q
Result: A short generator g for IOQ

1 h← FindQGen(Q, I)
2 g ← ShortenGen(Q,h)
3 return g

Our experiments show that, unsurprisingly, failures in rounding are triggered
most frequently by the shortest vectors in our lattice bases. One cheap way
to eliminate these failures is to enumerate small combinations of the shortest
vectors.

6.4 Finding generators of ideals for quadratics

We now have all the ingredients for the attack algorithm. It will work in a
recursive manner and in this subsection we will treat the base case.

Recall from Section 5.1 that there are standard algorithms to compute the
normalized fundamental unit ε of a real quadratic field Q(

√
d) in time essentially

R = ln(ε), which is quasipolynomial under our assumptions. There is, similarly,
a standard algorithm to compute a generator of a principal ideal of OQ(

√
d) in

time essentially R+B, where B is the number of bits in the coefficients used in
the ideal. We call this algorithm FindQGen.

There are also algorithms that replace R by something subexponential in d;
see [8,14,41]. As in Section 5.1, these algorithms avoid large coefficients by work-
ing with products of powers of smaller field elements, raising other performance
questions in our context.

Algorithm 6.3, QPIP, first calls FindQGen to find a generator h, and then
calls ShortenGen from Section 6.3 to find a short generator g. For quadratics
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Algorithm 6.4: MQPIP(L, I)

Input: Real multiquadratic field L and a principal ideal I of an order inside L
Result: A short generator g for IOL

1 if [L : Q] = 1 then
2 return the smallest positive integer in I
3 if [L : Q] = 2 then
4 return QPIP(L, I)

5 σ, τ ← distinct non-identity automorphisms of L
6 for ` ∈ {σ, τ, στ} do
7 K` ← fixed field of `
8 I` ← NL:K`(I)
9 g` ← MQPIP(K`, I`)

10 h← gσgτ/σ(gστ )
11 g′ ← IdealSqrt(L, h)
12 g ← ShortenGen(L, g′)
13 return g

this is guaranteed to find a generator with a minimum-size logarithm, up to the
limits of the approximations used in computing logarithms.

6.5 Finding generators of ideals for multiquadratics

Algorithm 6.4 recursively finds generators of principal ideals of orders in real
multiquadratic fields. The algorithm works as follows.

Assume, as usual, that d1, . . . , dn are positive integers meeting the conditions
of Theorem 2.1. Let L be the real multiquadratic field Q(

√
d1, . . . ,

√
dn) of degree

N = 2n. Let I be a principal ideal of an order inside L, for which we want to
find a generator.

If N = 1 then there is no difficulty. If N = 2, we find the generator with the
QPIP routine of the previous section. Assume from now on that N ≥ 4.

As in Section 5.5, choose distinct non-identity automorphisms σ, τ of L, and
let Kσ,Kτ ,Kστ be the fields fixed by σ, τ, στ respectively. These are fields of
degree N/2.

For each ` ∈ {σ, τ, στ}, compute I` = NL:K`(I) as explained in Section 6.1,
and call MQPIP(K`, I`) recursively to compute a generator g` for each I`OK` .
Notice that if g is a generator of IOL, then g`(g) generates I`OK` , so g` =
u`g`(g) for some u` ∈ O×K` . Therefore

gσgτ
σ(gστ )

=
uσgσ(g)uτgτ(g)

σ(uστgστ(g))
= g2uσuτσ(u−1στ ),

so that h = gσgτ/σ(gστ ) is a generator of I2OL. Now use IdealSqrt to find a
generator of IOL, and ShortenGen to find a bounded-size generator.

Table 6.1 summarizes the scalability of the subroutines inside MQPIP. Many
of the costs are in precomputations that we share across many ideals I, and
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Precomp? Subroutine Cost

yes units for all quadratic fields NB
yes characters of units (in UGS, IS) N3 +N2B
yes linear algebra (in UGS, IS) N3 without fast matrix multiplication
yes basis reduction (in Units) N7; experimentally closer to N3

yes products (in UGS, Units) N3B

yes square roots (in UGS) N2+log2 3B

no generators for all quadratic fields NB
no characters for h (in IS) N2 +NB
no linear algebra for h (in IS) N2

no products (in IS, SG, MQPIP) N2B

no square roots (in IS) N1+log2 3B

Table 6.1: Complexities of subroutines at the top and bottom levels of recursion
of MQPIP. Logarithmic factors are suppressed. B is assumed to be at least as
large as regulators. “UGS” means UnitsGivenSubgroup; “IS” means IdealSqrt;
“SG” means ShortenGen. “Precomp” means that the results of the computation
can be reused for many inputs I.

these costs involve larger powers of N than the per-ideal costs. On the other
hand, the per-ideal costs can dominate when the ideals have enough bits B per
coefficient.

7 Timings

This section reports experiments on the timings of our software for our algo-
rithms: specifically, the number of seconds used for various operations in the
Sage [23] computer-algebra system on a single core of a 4GHz AMD FX-8350
CPU.

7.1 Basic subroutine timings

Table 7.1 shows the time taken for multiplication, squaring, etc., rounded to the
nearest 0.0001 seconds: e.g., 0.0627 seconds to multiply two elements of a degree-
256 multiquadratic ring, each element having random 1000-bit coefficients. The
table is consistent with the analysis earlier in the paper: e.g., doubling the degree
approximately doubles the cost of multiplication, and approximately triples the
cost of square roots.

We have, for comparison, also explored the performance of multiquadratics
using Sage’s tower-field functions, Sage’s absolute-number-field functions (us-
ing the polynomial F defined in Appendix A), and Sage’s ring constructors.
The underlying polynomial-arithmetic code inside Sage is written in C, avoiding
Python overhead, but suffers from poor algorithm scalability. Sage’s construc-
tion of degree-2 relative extensions (in towers of number fields or in towers of
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n 2n mult square relnorm absnorm div sqrt

3 8 0.0084 0.0062 0.0080 0.0515 0.0140 0.3547
4 16 0.0100 0.0075 0.0088 0.1119 0.0153 1.0819
5 32 0.0132 0.0101 0.0106 0.2364 0.0176 3.3507
6 64 0.0209 0.0163 0.0145 0.5013 0.0231 10.2689
7 128 0.0347 0.0275 0.0221 1.0199 0.0341 31.2408
8 256 0.0627 0.0501 0.0367 2.1024 0.0573 93.9827

Table 7.1: Observed time for basic operations in Z[
√
d1, . . . ,

√
dn], with d1 = 2,

d2 = 3, d3 = 5, etc., and λ = 64. The “mult” column is the time to compute h =
fg where f, g have each coefficient chosen randomly between−21000 and 21000−1.
The “square” column is the time to compute f2. The “relnorm” column is the
time to compute fσ(f) where σ is any of the automorphisms in Theorem 2.1.
The “absnorm” column is the time to compute NQ(

√
d1,...,

√
dn):Qf . The “div”

column is the time to divide h = fg by g, recovering f . The “sqrt” column is
the time to recover ±f from f2. Each timing is the median of 21 measurements.

rings) uses Karatsuba arithmetic, losing a factor of 3 for each extension, with
no obvious way to enable FFTs. Working with one variable modulo F produces
good scalability for multiplication but makes norms difficult. Division is very
slow in any case: for example, it takes 0.2 seconds, 2.8 seconds, and 93 seconds
in degrees 32, 64, and 128 respectively using the tower-field representation, and
it takes 0.15 seconds, 1.16 seconds, and 11.3 seconds in degrees 32, 64, and 128
respectively using the single-variable representation, while we use under 0.06
seconds in degree 256.

7.2 Timings to compute the unit group and generators

The difference in scalability is much more striking for unit-group computation, as
shown in Table 7.2. Our algorithm uses 2.34 seconds for degree 16, 7.80 seconds
for degree 32, 26.62 seconds for degree 64, 146.60 seconds for degree 128, etc.,
slowing down by a factor considerably below 25 for each doubling in the degree.
Sage’s internal C library uses 4.8 seconds for degree 32, but we did not see it
successfully compute a unit group for degree 64.

Table 7.2 also shows that our short-generator algorithm has similar scaling
to our unit-group algorithm, as one would expect from the structure of the al-
gorithms. As inputs we used public keys from a Gentry-style multiquadratic
cryptosystem;6 see Appendix A. The number of bits per coefficient in this cryp-
tosystem grows almost linearly with 2n, illustrating another dimension of scal-

6 The dimensions we used in these experiments are below the N = 8192 recommended
by Smart and Vercauteren for 2100 security against standard lattice-basis-reduction
attacks, specifically BKZ. However, the Smart–Vercauteren analysis shows that BKZ
scales quite poorly as N increases; see Appendix A. Our attack should still be feasible
for N = 8192, and a back-of-the-envelope calculation suggests that N ≈ 220 is
required for 2100 security against our attack.
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n 2n tower absolute new new2 new3 attack attack2 attack3

3 8 0.05 0.03 0.63 0.65 0.66 0.10 0.11 0.11
4 16 0.51 0.24 2.34 2.21 2.18 0.27 0.35 0.36
5 32 7.24 4.80 7.80 7.71 8.22 0.96 1.36 1.47
6 64 >700000 >700000 26.62 28.08 81.78 4.36 6.68 7.48
7 128 146.60 192.19 2332.79 26.14 37.23 42.30
8 256 942.36 2364.18 65932 181.26 239.05 239.90

Table 7.2: Observed time to compute (once) the unit group of Z[
√
d1, . . . ,

√
dn],

with d1 = 2, d2 = 3, d3 = 5, etc.; and to break the cryptosystem presented in Ap-
pendix A. The “tower” column is the time used by Sage’s tower-field unit-group
functions (with proof=False); for n = 6 these functions ran out of memory after
approximately 710000 seconds. The “absolute” column is the time used by Sage’s
absolute-field unit-group functions (also with proof=False), starting from the
polynomial F defined in Appendix A. The “new” column is the time used by
this paper’s unit-group algorithm. The “attack” column is the time to find a
generator of the public key, after the unit group is precomputed. In “new2” and
“attack2” the same timings are given for the field with the first n consecutive
primes after n. In “new3” and “attack3” the same timings are given for the field
with the first n consecutive primes after n2.

ability of our algorithm. See Section 8 for analysis of the success probability of
the algorithm as an attack against the cryptosystem.

8 Key-recovery probabilities

In this section we analyze the success probability of our algorithm recovering
the secret key g in a Gentry-style multiquadratic cryptosystem.

The specific system that we target is the system defined in Appendix A (in
the full version of this paper), the same system used for timings in Section 7.2.
The secret key g in this cryptosystem is g0 +g1

√
d1 +g2

√
d2 +g3

√
d1
√
d2 + · · ·+

gN−1
√
d1 · · ·

√
dn, where g0, g1, g2, . . . are independent random integers chosen

from intervals [−G,G], [−G/
√
d1, G/

√
d1], [−G/

√
d2, G/

√
d2], . . .. The distribu-

tion within each interval is uniform, except for various arithmetic requirements
(e.g., g must have odd norm) that do not appear to have any impact on the
performance of our attack.

Section 8.1 presents heuristics for the expected size of Log g on the basis
Log ε1, . . . ,Log εN−1 for the logarithms of multiquadratic units, a sublattice of
the log-unit lattice. Section 8.2 presents experimental data confirming these
heuristics. Section 8.3 presents experimental data regarding the size of Log g
on the basis that we compute for the full log-unit lattice. Section 8.4 presents
an easier-to-analyze way to find g when Log ε1, . . . ,Log εN−1 are large enough.
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8.1 MQ unit lattice: heuristics for Log g

Write UL for the group of multiquadratic units in L. Recall that UL is defined
as the group 〈−1, ε1, . . . , εN−1〉, where ε1, . . . , εN−1 are the normalized funda-
mental units of the N − 1 quadratic subfields Q(

√
D1), . . . ,Q(

√
DN−1).

The logarithms Log ε1, . . . ,Log εN−1 form a basis for the MQ unit lattice
LogUL. This is an orthogonal basis: for example, for Q(

√
2,
√

3), the basis vectors
are (x,−x, x,−x), (y, y,−y,−y), and (z,−z,−z, z) with x = log(1 +

√
2), y =

log(2 +
√

3), and z = log(5 + 2
√

6). The general pattern (as in Section 5.3) is
that Log εj is a vector with Rj = ln εj at N/2 positions and −Rj at the other
N/2 positions, specifically with Rj at position i if and only if σi(εj) = εj .

One consequence of orthogonality is that rounding on this basis is a perfect
solution to the closest-vector problem for the MQ unit lattice. If 0 is the closest
lattice point to Log g, and u is any multiquadratic unit, then rounding Log gu
produces Log u. One can decode beyond the closest-vector problem by enumer-
ating some combinations of basis vectors, preferably the shortest basis vectors,
but for simplicity we skip this option.

Write cj for the coefficient of Log g on the jth basis vector Log εj ; note that
if each cj is strictly between −0.5 and 0.5 then 0 is the closest lattice point to
Log g. Another consequence of orthogonality is that cj is simply the dot product
of Log g with Log εj divided by the squared length of Log εj ; i.e., the dot product
of Log g with a pattern of N/2 copies of Rj and N/2 copies of −Rj , divided by
NR2

j ; i.e., Y/(NRj), where Y is the dot product of Log g with a pattern of N/2
copies of 1 and N/2 copies of −1.

We heuristically model g0 as a uniform random real number from the interval
[−G,G]; g1 as a uniform random real number from [−G/

√
d1, G/

√
d1]; etc. In

this model, each conjugate σi(g) is a sum of N independent uniform random
real numbers from [−G,G]. For large N , the distribution of this sum is close to
a Gaussian distribution with mean 0 and variance G2N/3; i.e., the distribution
of (G

√
N/3)N , where N is a normally distributed random variable with mean

0 and variance 1. The distribution of ln |σi(g)| is thus close to the distribution
of ln(G

√
N/3) + ln |N |.

Recall that Log(g) is the vector of ln |σi(g)| over all i, so Y is ln |σ1(g)| −
ln |σ2(g)|+· · · modulo an irrelevant permutation of indices. The mean of ln |σ1(g)|
is close to the mean of ln(G

√
N/3) + ln |N |, while the mean of − ln |σ2(g)| is

close to the mean of − ln(G
√
N/3) − ln |N |, etc., so the mean of Y is close

to 0. (For comparison, the mean of the sum of entries of Log(g) is close to
N ln(G

√
N/3) +Nc. Here c is a universal constant, the average of ln |N |.)

To analyze the variance of Y , we heuristically model σ1(g), . . . , σN (g) as inde-
pendent. Then the variance of Y is the variance of ln |σ1(g)| plus the variance of
− ln |σ2(g)| etc. Each term is close to the variance of ln |N |, a universal constant
V , so the variance of Y is close to V N . The deviation of Y is thus close to

√
V N ,

and the deviation of cj = Y/(NRj) is close to
√
V /(
√
NRj) ≈ 1.11072/(

√
NRj).

To summarize, this model predicts that the coefficient of Log g on the jth
basis vector Log εj has average approximately 0 and deviation approximately

1.11072/(
√
NRj), where Rj = ln εj . Recall that Rj typically grows as D

1/2+o(1)
j .



Short generators without quantum computers: the case of multiquadratics 27

8.2 MQ unit lattice: experiments for Log g

The experiments in Figure 8.1 confirm the prediction of Section 8.1. For each
n, we took possibilities for n consecutive primes d1, . . . , dn below 100. For each
corresponding multiquadratic field, there are N − 1 blue dots. For each D in
{d1, d2, d1d2, . . . , d1d2 · · · dn}, one of these N − 1 dots is at horizontal position
D. The vertical position is the observed average absolute coefficient of Log g in
the direction of the basis vector corresponding to D, where g ranges over 1000
secret keys for the Q(

√
d1, . . . ,

√
dn) cryptosystem. There is also a yellow dot at

the same horizontal position and at vertical position 1.11
√

2/π/(
√
N · ln εD);

here
√

2/π accounts for the average of |N |.
For all experiments we see a similar distribution in the yellow dots (predic-

tions) and the blue dots (experiment). We can even more strongly see this by
rescaling the x-axis from D to 1.11

√
2/π/(

√
N · ln εD), where εD is again the

normalized fundamental unit of Q(
√
D). This rescaling of the blue dots is shown

in Figure 8.2. In purple we compare these to the x = y line.
After exploring these geometric aspects of the MQ unit lattice, we ran ex-

periments on the success probability of rounding in the lattice. Figure 8.3 shows
how often Log(g) is rounded to 0 (by simple rounding without enumeration) in
our basis for the MQ unit lattice.

This graph shows a significant probability of failure if d1 and n are both
small. Fields that contain the particularly short unit (1 +

√
5)/2 seem to be the

worst case, as one would expect from our heuristics. However, even in this case,
failures disappear as n increases. The success probability seems to be uniformly
bounded away from 0, seems to be above 90% for all fields with d1 ≥ 7 and
n ≥ 4, and seems to be above 90% for all fields with n ≥ 7.

8.3 Full unit lattice: experiments for Log g

Analyzing the full unit lattice is difficult, so we proceed directly to experiments.
We first numerically compare the MQ unit lattice basis to the full unit lattice ba-
sis. The results of this are shown in Table 8.1. The index of Log(UL) in Log(O×L )
seems to grow as roughly N0.3N .

In Table 8.2 we see the total success probability of the attack, with public
keys provided as inputs, and with each successful output verified to match the
corresponding secret key times ±1.

We see that as the size and the number of the primes grow, the success
probability increases, as was the case for the MQ unit basis. Specifically for the
first n primes after n2 the success probability seems to rapidly converge towards
1, as was mentioned in Section 1.

8.4 Full unit lattice: an alternative strategy

The following alternative method of computing g is easier to analyze asymptot-
ically, because it does not require understanding the effectiveness of reduction
in the full unit lattice. It does require d1, . . . , dn to be large enough compared
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(a) n = 4

(b) n = 5

(c) n = 6

Fig. 8.1: Blue dots: For n = 4, 5, 6, the observed average absolute coefficient of
Log(g) in the direction of the basis vector corresponding to Q(

√
D). Yellow dots:

Predicted values.
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Fig. 8.2: Rescaling of the experiments of Figure 8.1, also including n = 3.

n 3 4 5 6 7 8

average log2 ||u∗|| for UL 1.095 1.762 2.345 2.899 3.487 4.040
average log2 ||u∗|| for O×L 0.964 1.642 2.223 2.797 3.386 3.926
average log2(#(O×L /UL)) 5.711 17.462 44.095 108.133 253.722 580.099

Table 8.1: Experimental comparison of the MQ unit lattice Log(UL), with basis
formed by logarithms of the fundamental units of the quadratic subfields, and
the full unit lattice Log(O×L ), with basis produced by Algorithm 5.2. For each
dimension 2n, UL and O×L were computed for 1130 (except for n = 8: first 832
that have finished) random multiquadratic fields L = Q(

√
d1, . . . ,

√
dn), with

di primes bounded by 2n2. First row shows the average over these fields of
log2 ||u∗||, where ||u∗|| is the length of the smallest Gram–Schmidt vector of the
basis for UL. Second row shows the same for O×L . Third row shows the average
of log2 of the index of Log(UL) in Log(O×L ).

to N , say larger than N1.03, and it will obviously fail for many smaller di where
our experiments succeed, but it still covers a wide range of real multiquadratic
number fields.

The point of requiring d1, . . . , dn to be larger than N1.03 is that, for suffi-
ciently large N and most such choices of d1, . . . , dn, the n corresponding regula-
tors log ε are heuristically expected to be larger than N0.51, and the remaining
regulators for d1d2 etc. are heuristically expected to be even larger. The coef-
ficients of Log g on the MQ unit basis are then predicted to have deviation at
most 1.11072/N1.01; see Section 8.1. We will return to this in a moment.

Compute, by our algorithm, some generator gu of the public key I. From
Theorem 5.2 we know that uN is an MQ unit. Compute N Log gu and round
in the MQ unit lattice. The coefficients of N Log g on the MQ unit basis are
predicted to have deviation at most 1.11072/N0.01, so for sufficiently large N
these coefficients have negligible probability of reaching 0.5 in absolute value.
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Fig. 8.3: Curves: n = 2, 3, 4, 5, 6, 7, 8. Horizontal axis: d1, specifying n consecutive
primes d1, . . . , dn. Vertical axis: Observed probability, for 1000 randomly drawn
secret keys g in the cryptosystem, that Log g is successfully rounded to 0 in the
MQ unit lattice.

Rounding thus produces Log(uN ) with high probability, revealing Log(gN ) and
thus ±gN . Use a quadratic character to deduce gN , compute the square root
±gN/2, use a quadratic character to deduce gN/2, and so on through ±g.

One can further extend the range of applicability of this strategy by finding
a smaller exponent e such that ue is always an MQ unit. Theorem 5.2 says N/2
for N ≥ 2. By computing the MQ units for a particular field one immediately
sees the minimum value of e for that field; our computations suggest that N/2
is usually far from optimal.
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with large regulator. J. théorie des nombres de Bordeaux, 12(2):293–307, 2000.

14. J. Buchmann and U. Vollmer. Binary Quadratic Forms: An Algorithmic Approach.
Algorithms and Computation in Mathematics. Springer Berlin Heidelberg, 2007.

15. J. A. Buchmann. A subexponential algorithm for the determination of class groups
and regulators of algebraic number fields. In Séminaire de Théorie des Nombres,
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34. T. Kubota. Über den bizyklischen biquadratischen Zahlkörper. Nagoya Math. J.,
10:65–85, 1956.

35. A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. MATH. ANN, 261:515–534, 1982.

36. H. W. Lenstra. Solving the Pell equation. Notices Amer. Math. Soc., 49:182–192,
2002.

37. M. Pohst. A modification of the LLL reduction algorithm. J. Symb. Comput.,
4:123–127, 1987.

38. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In PKC 2010, pages 420–443, 2010.

39. W. van der Kallen. Complexity of an extended lattice reduction algorithm, 1998.
http://www.staff.science.uu.nl/~kalle101/complexity.pdf.

40. U. Vollmer. Asymptotically fast discrete logarithms in quadratic number fields. In
ANTS-IV, pages 581–594, 2000.

41. U. Vollmer. Rigorously Analyzed Algorithms for the Discrete Logarithm Problem in
Quadratic Number Fields. PhD thesis, Technische Universität, Darmstadt, 2004.

42. H. Wada. On the class number and the unit group of certain algebraic number
fields. J. Fac. Sci., Univ. Tokyo, Sect. I, 13:201–209, 1966.

43. H. C. Williams. Solving the Pell equation. In Number theory for the millennium,
III, pages 397–435. A K Peters, 2002.

A A multiquadratic cryptosystem

See full version of paper on multiquad.cr.yp.to.

B Recent progress in attacking Ideal-SVP

See full version of paper on multiquad.cr.yp.to.

http://www.sagemath.org
https://crypto.stanford.edu/craig
http://www.staff.science.uu.nl/~kalle101/complexity.pdf
https://multiquad.cr.yp.to
https://multiquad.cr.yp.to

	Short generators without quantum computers:the case of multiquadratics

