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Abstract. We prove that, assuming there exists an injective one-way function f ,
at least one of the following statements is true:

– (Infinitely-often) Non-uniform public-key encryption and key agreement ex-
ist;

– The Feige-Shamir protocol instantiated with f is distributional concurrent
zero knowledge for a large class of distributions over any OR NP-relations
with small distinguishability gap.

The questions of whether we can achieve these goals are known to be subject to
black-box limitations. Our win-win result also establishes an unexpected connec-
tion between the complexity of public-key encryption and the round-complexity
of concurrent zero knowledge.

As the main technical contribution, we introduce a dissection procedure for
concurrent adversaries, which enables us to transform a magic concurrent adver-
sary that breaks the distributional concurrent zero knowledge of the Feige-Shamir
protocol into non-black-box constructions of (infinitely-often) public-key encryp-
tion and key agreement.

This dissection of complex algorithms gives insight into the fundamental
gap between the known universal security reductions/simulations, in which a
single reduction algorithm or simulator works for all adversaries, and the nat-
ural security definitions (that are sufficient for almost all cryptographic primi-
tives/protocols), which switch the order of qualifiers and only require that for
every adversary there exists an individual reduction or simulator.

1 Introduction

The seminal work of Impagliazzo and Rudich [IR89] provides a methodology
for studying the limitations of black-box reductions. Following this method-
ology, plenty of black-box barriers, towards building cryptographic systems on
simpler primitives/assumptions and achieving more efficient constructions, have
been found in the last three decades. These findings have long challenged us to
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develop new reduction methods and get around the limitations of black-box re-
duction, however, the progress towards this goal is quite slow, and for most of
the known black-box barriers, it is still unclear whether they even hold for arbi-
trary reductions.

We revisit two seemingly unrelated fundamental problems, for both of which
the black-box impossibility results are well known.

The first problem is to identify the weakest complexity assumptions re-
quired for public-key encryption. Ever since the invention of public key cryp-
tography by Diffie and Hellman [DH76], the complexity of public-key cryptog-
raphy, i.e., lowering the underlying complexity assumptions for cryptograph-
ic primitives/protocols, is one of the most basic problems. In the past four
decades, for some primitives, including pseudorandom generators, signatures
and statistically-hiding commitments, we witnessed huge success on this line of
research and can now base them on the existence of one-way functions [Rom90,
HILL99, HR07], which is the minimum assumption in the sense that, as showed
by [IL89], almost all cryptographic primitives/protocols imply the existence of
one-way functions.

But for public-key encryption and key agreement– the concepts that were
conceived in the original paper of Diffie and Hellman, we did not make that suc-
cessful progress yet. Impagliazzo and Rudich proved in their seminal work [IR89]
that there is no black-box reduction of one-way permutations to key agreement,
and since public-key encryption implies key agreement, their result also sepa-
rates one-way permutations from public-key encryption with respect to black-
box reduction.

In [Imp95] Impagliazzo describes five possible worlds of complexity theo-
ry. The top two worlds among them are Cryptomania, where public-key crypg-
raphy exists, and Minicrypt where there are one-way functions but no public-
key cryptography. Though the above black-box separation provides some strong
negative evidences, they do not rule out the possibility of constructing public-
key encryption from one-way functions, i.e., do not prove that we live in Minicryp-
t.

The other fundamental problem we consider is that of the round-complexity
of concurrent zero knowledge. The notion of concurrent zero-knowledge, put
forward by Dwork, Naor and Sahai [DNS98], extends the standard-alone zero-
knowledge security notion [GMR89] to the case where multiple concurrent ex-
ecutions of the same protocol take place and an adversarial verifier may corrupt
multiple verifiers and control the scheduling of the messages.

As observed in [DNS98], the traditional black-box simulator does not work
for the classic constant-round protocols (including the Feige-Shamir type pro-
tocol [FS89] and the Goldreich-Kahan type protocol [GK96]) in the concurrent
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setting. Indeed, Canetti et al. [CKPR01] proved that concurrent zero-knowledge
with black-box simulation requires a logarithmic number of rounds for lan-
guages outside BPP. Prabhakaran et al. [PRS02] later refined the analysis of
the Kilian and Petrank’s [KP01] recursive simulator and gave an (almost) loga-
rithmic round concurrent zero knowledge protocol for NP.

In his breakthrough work, Barak [Bar01] introduced a non-black-box sim-
ulation technique based on PCP mechanism and constructed a constant-round
public-coin bounded-concurrent zero knowledge protocol for NP, which breaks
several known lower bounds for black-box zero knowledge. There has been a
vast body of work (see Section 1.4) since then on developing new non-black-
box techniques and reducing the round-complexity of zero knowledge protocol
in the concurrent setting. However, The problem of whether we can achieve
constant-round concurrent zero knowledge based on standard assumptions is
still left open.

Note also that the known constructions that beat the lower bound on the
black-box round-complexity are rather complicated and therefore impractical.
Given the current state of the art, a more ambitious question is whether we can
prove the concurrent zero knowledge property of the classic 4-round protocol-
s (such as the Feige-Shamir protocol), although it is known to be impossible
to give such a proof for these simple and elegant constructions via black-box
simulations.

1.1 Universal Simulator “∃S∀A” Versus Individual Simulator “∀A∃S”

We observe that almost all known reduction and simulation techniques are u-
niversal in the sense that, in the security proof of a protocol/premitive, the re-
duction R (or simulator S) works for all possible efficient adversaries and turn
the power of a given adversary A into the power of breaking the underlying as-
sumptions (i.e., “∃R or S ∀A”). However, for most natural security definitions,
it is only required that for every adversaryA there exists an individual reduction
R (or a simulator S) that works for A (i.e., “∀A∃R or S”).

This motivates us to step back and look at the concurrent security of the
simplest Feige-Shamir protocol. We will show that there is an individual simu-
lator for the specific adversarial verifier (and thus it is not a concrete “attacker”)
constructed by Canetti et al. [CKPR01], though it was shown that for such a
adversary the known black-box simulator fails. Sure, showing the existence of
a simulator for a specific verifier does not mean that the Feige-Shamir protocol
is concurrent zero knowledge, but this example does reveal a gap between the
universal simulation “∃S∀A” and the individual simulation “∀A∃S” .

The Feige-Shamir protocol for proving x ∈ L proceeds as follows. In the
first phase, the verifier picks two random strings α1 and α2, computes two im-
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ages, β1 = f(α1), β2 = f(α2), of a one-way function f , and then proves to the
prover via a constant-round witness indistinguishability protocol that he knows
either α1 or α2; in the second phase, the prover proves that either x ∈ L or
he knows one of α1, α2. The adversary V ∗ constructed in [CKPR01] adopts a
delicate scheduling strategy, and when computing a verifier message, it applies
a hash function h with high independence to the history hist sofar and generates
the randomness r = h(hist) for computing the current message. In our case, the
randomness for the first verifier step of a session includes the two pre-images
α1 and α2.

Canetti et al. showed that it is impossible for an efficient simulator to simu-
late V ∗’s view when treating it as a black-box1. However, as mentioned before,
the natural concurrent zero knowledge condition does not require a universal
(or black-box) simulator that works for all adversarial verifiers, but just requires
that for every specific V ∗ there exists an individual simulator.

Note that the individual simulator may depends on the specific verifier, and
more importantly, since we are only required to show the mere existence of such
a simulator, we can assume that the individual simulator knows (or equivalently,
takes as input) the verifier’s functionality, randomness, etc.

Indeed, for the adversary V ∗ of [CKPR01], there exists, albeit probably not
efficiently constructible from a given (possibly obfuscated) code of V ∗, a simple
simulator for the above specific V ∗: Note that there exists an adversary V ′ that
acts exactly in the same way as V ∗ except that at each step V ′ outputs r =
h(hist) together with the current message, and thus a trivial simulator Sim(V ′),
incorporating V ′ and using the fake witness (one of α1 and α2

2) output by V ′

at the first verifier step of each session, can easily generate a transcript that is
indistinguishable from the real interaction between V ∗ and honest provers .

1.2 Our Work

We prove an unexpected connection between the complexity of public-key en-
cryption and the round-complexity of concurrent zero knowledge. Specifically,
we show how to transform an attacker that can break a weak version of distri-
butional concurrent zero knowledge of the Feige-Shamir protocol instantiated
with injective one-way functions into (infinitely-often) constructions of public-
key encryption and key agreement. This means at least one of the two problems
(with respect to infinitely-often version and distributional version respectively)
mentioned above has a positive answer.

1 I.e., the simulator is given only oracle access to V ∗, and does not have knowledge about its
code, running time, etc.

2 Note that α1 and α2 are part of the randomness r used in the first verifier message of a session.
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A formal statement of our result. Let L and RL be an arbitrary NP language
and its associated NP relation respectively. The OR language L ∨ L3 and the
corresponding relation RLOR

are defined in a natural way.
Given an arbitrary efficiently samplable distribution ensembleD = {Dn}n∈N

over RL (each Dn is over RnL := {(x,w) : (x,w) ∈ RL ∧ |x| = n}), and an
arbitrary efficiently samplable distribution Zn over {0, 1}∗4, we define the joint
distribution {(Xn,Wn, Zn)}n∈N over RLOR

× {0, 1}∗ in the following way:
Sample (x1, w1) ← Dn,(x2, w2) ← Dn, z ← Zn, b ← {1, 2}, and output
((x1, x2), wb).

Theorem 1. Assume that there exists an injective one-way function f . Then, at
least one of the following statements is true:

– (Infinitely-often) Non-uniform public-key encryption and key agreement ex-
ist;

– For every inverse polynomial ε, the Feige-Shamir protocol instantiated with
f is distributional concurrent zero knowledge on {(Xn,Wn, Zn)}n∈N de-
fined as above with distinguishability gap bounded by ε.

In an infinitely-often version of a primitive, the correctness and security of
a construction are required to hold only for infinitely many security parameter
n. The notion of ε-distributional concurrent zero knowledge (first defined in
[CLP15b]) differs from the traditional zero knowledge in that its zero knowledge
property holds on average (i.e., holds for distributions over the statements), and
that the indistinguishability gap for any efficient distinguisher is bounded by an
arbitrary inverse polynomial (instead of a negligibly function).

Very roughly, Theorem 1 says the Feige-Shamir protocol is concurrent se-
cure in the Minicrypt: In the world where there are injective one-way functions
but no public-key encryption, the Feige-Shamir protocol satisfies certain version
of concurrent zero knowledge.

Remark 1. We note that the black-box lower bounds [IR89, CKPR01] also hold
for the infinitely-often version of public-key encryption and the ε-distributional
concurrent zero knowledge5. We stress that our public-key encryption (and the
key agreement) is based on the injective one-way function f and the specific

3 For simplicity, we consider only the OR composition of the same NP language L, but our
result holds with respect to the OR composition of any two NP languages.

4 The element z from Zn will be given as auxiliary input to the verifier of Feige-Shamir proto-
col.

5 Our result holds with respect to distributions that are not always over YES instances. By
applying the lower-bound proof strategy of [CKPR01], we conclude that the Feige-Shamir
protocol cannot be ε-distributional concurrent black-box zero knowledge for any non-trivial
distribution over hard problems, see the full version of this work for more details.
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attacker against the Feige-Shamir protocol, and is non-uniform and non-black-
box in nature: The key generation, encryption and decryption algorithms in our
public-key encryption scheme are all non-unform, and make non-black-box us-
age of the underlying function f and the attacker.

Dissecting a complex adversary: Revealing the Creation of a Trapdoor. The
basic proof strategy of Theorem 1 is to transform a magic verifier against the
Feige-Shamir protocol into constructions for (infinitely-often) public-key en-
cryption and key agreement. This proof idea is somewhat similar in spirit to
the one appeared in [DNRS03] but still quite unusual in cryptography. In our
setting, formalizing such a proof idea is very complicated and requires substan-
tially new techniques.

To deal with the complex concurrent adversary, we introduce a dissection
procedure to pinpoint where a supposed successful adversary magically endow
a set of images of the injective one-way function f with a trapdoor, which is the
key step towards our construction of public-key encryption via the Goldreich-
Levin Theorem. On the very high level, if an adversarial verifier V ∗ that can
break concurrent zero knowledge of the Feige-Shamir protocol, then in the real
interaction there must exist a step i (verifier steps are ordered according to their
appearance in the concurrent setting) such that:

– With high probability, V ∗ will output a pair of images β1 and β2, i.e., the
first verifier message of some session j at this step i, and at a later time it
will reach its second step of session j, i.e., completes its 3-round proof that
it knows one pre-image of β1 and β2 under f .

– But for any efficient algorithm T , even taking the code of V ∗ and the history
prefix up to its i-th step, the probability that T inverts any one of these two
images β1 and β2 is bounded away from 1.

The intuition behind this observation is as follows. If the above two item-
s does not hold simultaneously, then at each verifier step, either V ∗ does not
output a pair of images of a session, or it outputs a pair of images of session
j but will never reach its second message of session j, or there is an efficient
algorithm that can find one of the corresponding pre-images. In each case we
will have a simple simulator that can simulate the view of the V ∗, which leads
to a contradiction.

Thus, for a given successful adversary V ∗ the above two items must hold
simultaneously. This means V ∗ magically endow the images β1 and β2 output
at its step i with a trapdoor (i.e., the witness w to the common input x): With
the trapdoor w, one can play the role of honest prover until V ∗ completes his
3-round proof, then using standard rewinding technique to obtain one of the pre-
images; while, without the knowledge ofw, no efficient algorithm can invert any
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one of β1 and β2 with overwhelming probability. This is the key observation
that enables us to construct public key encryption and key agreement from the
injective one-way f .

The major challenge in the actual dissection is to show the existence of
infinitely many security parameter n for each of which the above conditions
hold (as required by infinitely-often public key encryption and key agreement).
To cope with this difficulty, we develop a set of techniques that convert concrete
security into asymptotic security, which may be of independent interest.

An overview of the proof. We divide the proof into four steps, which will be
presented in sections 3 to 6 respectively. Roughly, the proof proceeds as follows.

STEP I: We introduce a dissection procedure and prove that there must be in-
finitely many n, for each of which there exists a step i of V ∗, such that the
above two items hold simultaneously. This illustrates the power of V ∗ that
magically endows the images of f output by V ∗ at its step i with a sort of
trapdoor.

STEP II: Note that V ∗ outputs a pair of images of f at its step i. To avoid that
the sender and the receiver (both with a witness to x) may recover different
pre-images from V ∗, we construct a pair of non-interactive algorithms C
and E from the code of V ∗ such that for each (n, i) obtained in the above
step:

– C (with knowledge of a witness w to x) outputs a single image β of f
with high probability;

– E (with knowledge of a witness w to x) will extract the pre-image of β
output by C;

– No efficient algorithm can compute the pre-image of β with probability
close to 1.

STEP III: Using standard techniques, we amplify the gap between the success
probability of E and the success probability of any efficient inverting al-
gorithm without knowing a witness to x, and obtain two algorithms M and
Find, where M takes a sequence of (x,w) as input and outputs a sequence of
images β of f , and Find takes the same sequence of (x,w) and outputs all
pre-images corresponding to the sequence of images β, both with probabili-
ty negligibly close to 1; further, there is no efficient algorithm that can invert
all the images output by M simultaneously with non-negligible probability.

STEP IV: Note that the Feige-Shamir protocol is concurrent witness indistin-
guishable, and thus the above holds when M and Find use different witness-
es. Starting with a magic adversary V ∗ that breaks the distributional con-
current zero knowledge of the Feige-Shamir protocol for distribution over
OR NP-statements of the form (x1 ∨ x2), we construct the public-key en-
cryption scheme (and key-exchange scheme) in a natural way: The receiver
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generates a sequence of (x1, w1) as the public/secret key pair; to encrypt a
bit, the sender generates a sequence of (x2, w2) and runs M on input the se-
quence of OR statements (x1 ∨x2) and their corresponding witnesses w2 to
generate a set of images of f , computes the hard-core of the corresponding
pre-images and XOR the plaintext bit with the hardcore; to decrypt, the re-
ceiver runs Find on input the ciphertext and the sequence of witnesses w1 to
obtain the corresponding pre-images, and then computes the hardcore and
gets the plaintext.

Remark 2. We use the code of V ∗ in our final construction of public-key en-
cryption. However, what we actually need to construct public-key encryption is
the functionality of V ∗, that is, we can replace the code of V ∗ with any code6

of the same functionality in the intermediate algorithms in each of above steps
along the way.

1.3 A Wide Perspective on Reductions

As mentioned, the mostly common used security proof techniques– black-box
techniques (see [RTV04, BBF13] for refined treatments) and the known non-
black-box techniques [Bar01, DGS09, BP15]– are universal, where a single
universal reduction algorithm works for all possible adversaries. Here in this
section we abuse the term reduction and view simulation as a type of reduction.
Note that the description of an adversary that the reduction algorithm has access
to probably is an obfuscated code. This causes a trouble in cases where the func-
tionality of the adversary is crucial for the reduction to go through (as showed in
the above example of simulation for the adversary in [CKPR01], and see also
[DGL+16]), since we cannot expect the efficient reduction algorithm to figure
out the functionality from a given obfuscated code of an arbitrary adversary.

However, in almost all cases, in a security proof the reduction can be ar-
bitrary. This means the reduction is allowed to depend not only on the code
of the adversary, but also on any “nice” properties of the adversary (if exist),
such as functionality, good random tapes, etc. Furthermore, to show the mere
existence of such an arbitrary reduction, we do not need to care about whether
such properties can be efficiently extracted from the code of the adversary, but
just assume that the reduction takes these properties as input. We refer to an ar-
bitrary reduction as individual reduction, which is also called non-constructive
reduction or non-uniform reduction in some previous work [BU08, CLMP13].
We stress that it is not always possible to turn an individual reduction into a
universal reduction with a non-uniform advice because, in many cases, even if

6 As long as it is of polynomial size.
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we can prove all possible adversaries share a certain property, this property may
not have a short description. (This will be clear in the following example.)

Recall that, to complete a security proof, we have to show for every adver-
sary there is an individual reduction. This would be impossible unless we can
prove that all possible adversaries have certain properties in common. Indeed,
we observe that a few exceptional individual reductions in complexity (e.g.,
[Adl78]) and hardness amplification (e.g., [GNW95, CHS05, HS11]) literature
are based on a property– the existence of “good” random tapes– shared by al-
l possible adversaries. Let’s take the reduction for BPP ⊆ P/poly [Adl78] as
an example. The first step of the proof of [Adl78] is to show a common prop-
erty that every machine deciding a language L ∈ BPP must have at least one
good random tape on which this machine will make correct decisions on all in-
stances of a given size. Using the mere existence of a good random tape, we
can then simply hardwire this good random tape into the circuit family that de-
cide the language L deterministically. This circuit family can be thought of as a
reduction, which varies depending on the specific BPP machine since different
machines may have different good random taps.

Besides the structure (success/failure) of the random tapes, there seems
to be a more important structure of the adversaries, i.e., the structure of the
adversary’s computation, that would empower the individual reduction great-
ly. In cryptography, we actually already exploited structures of this type, such
as the knowledge of exponent assumption and extractable one-way function-
s [Dam91, BCPR14], but most of them are viewed as just non-standard assump-
tion. Our work seems to raise some hope that we may be able to prove highly
non-trivial structures of the adversary’s computation in some settings under s-
tandard assumptions in the future.

1.4 Related Work

There have been numerous efficient constructions ([RSA78, Rab79, GM82, CS99,
Reg09, HKS03], to name a few) for public-key encryption with various securi-
ty notions based on specific assumptions with various algebraic structures, and
some less efficient constructions [NY90, BHSV98, Sah99, Lin03a] based on
more abstract assumptions– enhanced trapdoor permutations or trapdoor func-
tions with polynomial pre-image size. Since public-key encryption implies key
agreement (secure against eavesdropping adversaries), the same assumptions
are sufficient for the latter. On the negative side, the recent work of [DS16]
strengthens the black-box separation of public-key encryption and general one-
way functions in [IR89] by allowing the reduction to take the code of the under-
lying primitive as input.
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In the line of research on concurrent zero knowledge, Goyal [Goy13] ex-
tended Barak’s idea to achieve fully concurrent zero knowledge in polyno-
mial rounds. In the globe hash model, Canetti et al. [CLP13a] showed that
public-coin concurrent zero knowledge can be obtained with logarithmic round-
complexity. Recently, Chung et al. [CLP15a] (based on [CLP13b]) presented
the first constant-round concurrent zero knowledge protocol based on indis-
tinguishability obfuscation with super-polynomial security. Assuming the ex-
istence public-coin input-differing obfuscation, Pandey et al. [PPS15] presented
a 4-round concurrent zero knowledge protocol. Over the last two decades, con-
current zero knowledge protocols have been used as a key building block in the
construction of generally composable cryptographic protocols [CLOS02, PR03,
Lin03b, PR05, Pas04, Lin08, GGJ13, GGJS12, GGS15, GLP+15].

2 Preliminaries

In this section we mainly present the definition of ε-distributional concurrent ze-
ro knowledge and some related new notions and definitions that we will use, and
refer readers to [Gol01, KL07] for some other standard notions and definitions.

If D is a distribution (or random variable), we denote by x ← D the
process of sampling x according to D, and by {xi}ki=1 ← D

⊗
k the pro-

cess of sampling k times x from D independently. Similarly, for a function
f : {0, 1}n → {0, 1}`(n), f

⊗
k denotes the function that maps (x1, x2, ..., xk)

to (f(x1), f(x2), ..., f(xk)).
We abbreviate probabilistic polynomial-time with PPT. Throughout this pa-

per, all PPT algorithms/Turing machines are allowed to be non-uniform, and we
use non-uniform PPT algorithms/Turing machines interchangeably with circuit
families of polynomial size. In our default setting, the circuit families are also
probabilistic.

Given a two-party protocol Π = (P1, P2), for i ∈ {1, 2}, we denote by
TransPi(P1(x), P2(y)) the transcript of an execution of Π (including the input
to Pi) when P1’s input is x and P2’s input is y. For a joint distribution (X,Y )
over the two parties’ inputs, TransPi(P1(X), P2(Y )) naturally defines the dis-
tribution over all possible view of Pi.

Throughout the paper, we let n be the security parameter and denote by
negl(n) a negligible function. We write {Xn}n∈N

c
≈ {Yn}n∈N to indicate that

the two distribution ensembles {Xn}n∈N and {Yn}n∈N are computationally dis-
tinguishable.

A zero knowledge argument system is an interactive argument for which
the view of the (even malicious) verifier in an interaction can be efficiently re-
constructed. In this paper, we consider distributional zero knowledge, defined
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by Goldreich [Gol93], for which the indistinguishability between the real inter-
action and the simulation is only required to hold for any distribution over the
inputs to each party, rather than to hold for every individual inputs. We follow
the definition of [CLP15b], which departs from the one of [Gol93] in that it
only requires that for each distribution over the inputs there exists an efficien-
t simulator7, and consider the case (following [DNRS03, CLP15b]) where the
indistinguishability gap between the simulation and the real interaction is less
than any inverse polynomial ε (instead of a negligible function). As we will
show, the size of encryption algorithm of our encryption scheme is polynomi-
al in the value 1

ε , which needs to be upper-bounded by a fixed (but arbitrary)
polynomial.

Steps of the Concurrent Verifier and Steps of a Session. We also allow the
adversary V ∗ to launch a concurrent attack [DNS98, PRS02] in which it inter-
acts with a polynomial number of independent provers over an asynchronous
network, and fully controls over the scheduling of all messages in these interac-
tions.

We refer to the action of sending a message by V ∗ as a step (of V ∗). In a real
concurrent interaction, we order the steps of V ∗ according to their appearance.
Note that in the concurrent setting, sessions of the Feige-Shamir protocol are
executed in interleaving way, and thus, “the second verifier step of a session”
refers to the second verifier step that appears in this specific session, not to the
second step of V ∗ in the real concurrent interaction.

Definition 1 (ε-Distributional Concurrent zero knowledge). We say that an
interactive argument (P, V ) for language L is ε-distributional concurrent zero
knowledge if for every concurrent adversary V ∗, and every distribution ensem-
ble {(Xn,Wn, Zn)}n∈N overRnL×{0, 1}∗, there exists a non-uniform PPT Sim
such that for all non-uniform PPT D and sufficient large n it holds that

Pr[D(TransV ∗(P (Xn,Wn), V
∗(Zn)), Zn) = 1]

− Pr[D(Sim(V ∗, Xn, Zn), Zn) = 1] < ε(n),

where both distributions are over (Xn,Wn, Zn) and the random tapes of P and
V ∗.

The Feige-Shamir ZK Argument for NP. We here describe the Feige-Shamir
constant-round8 zero knowledge argument for NP based on an injective one-way
function f : {0, 1}n → {0, 1}`(n).

7 Instead, the definition of [Gol93] requires an efficient simulator for all distributions over the
inputs.

8 By merging the first and the second prover messages, one can obtain a 4-round Feige-Shamir
protocol.
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PROTOCOL FEIGE-SHAMIR

Common input: x ∈ L.
The prover P ’s input: w such that (x,w) ∈ RL.
The verifier V ’s (auxiliary) input:z

First phase:
Execute the n-parallel-repetition of the 3-round Blum’s protocol in which V plays
the role of the prover:

V −→ P : Choose α1, α2 ← {0, 1}n independently and at random, compute β1 =
f(α1), β2 = f(α2), and compute the first prover message a of the 3-
round n-parallel-repetition of the Blum’s protocol in which V proves to
P that he knows one of α1, α2.
Send β1, β2 and a.

P −→ V : Send a random challenge e← {0, 1}n.
V −→ P : Send t.

Second phase:
P and V execute the n-parallel-repetition of the 3-round Blum’s protocol in which
P proves to V that either x ∈ L or he knows one of α1, α2.

3 The Dissection of a Concurrent Verifier

In this section we develop a technique to dissect concurrent verifiers that reveals
where a supposed concrete attacker against the Feige-Shamir protocol magically
endows some images of an injective one-way function with a trapdoor. This is
the key step towards constructing public-key encryption (and key agreement)
from an injective one-way function.

As mentioned in the introduction, we show that a magic adversary V ∗ will
endow a set of images of f with a trapdoor in the following sense: there are
infinitely many n, for each of which there exists a step index in, such that the
images (β1, β2) output by V ∗ at its step in can only be inverted by PPT algo-
rithms with the trapdoor knowledge of a witness to the common input x with
overwhelming probability.

3.1 The Main Lemma

We need the following notations to give a formal statement of our main lemma:

– Transin and h← Transin : The former denotes the distribution of the history
prefix in the view of V ∗ up to its in-th step in the real concurrent interaction
TransV ∗(P (Xn, Wn), V ∗(Zn)); the latter denotes the event of drawing a

12



history prefix h from Transin , i.e., the event of generating h in the real
concurrent interaction between honest prover(s) and V ∗, where h consists
of the statement x, the auxiliary input z to V ∗ and the interaction history
prefix upto the step in of the verifier.

– V ∗ |h (j, 2) denotes the event that, conditioned on the given history prefix
h, V ∗ reaches the second verifier step of session j in the real concurrent
interaction, i.e., V ∗ completes its proof of knowledge of one pre-image in
session j.

– PartRh consists of the randomness used by V ∗ and the partial randomness
used by honest provers in those incomplete sessions in h (i.e., sessions in
which the last prover message does not appear in h) in a real concurrent
interaction.
Observe that in a session of the Feige-Shamir protocol, the honest prover
uses the knowledge of corresponding witness w only in its last step, and the
transcript of a session before the prover last step is independent of w. Thus,
the transcript of an incomplete session together with the prover’s random-
ness used do not help reveal the witness w, but this is not the case for a
complete session.

In the real concurrent interaction, given a history prefix h up to the in-th
step of V ∗, we denote by h = h′||(βj1, β

j
2, a

j) the event that V ∗ outputs the
first verifier message (βj1, β

j
2, a

j) of some session j at its in-th step, where “||”
denotes concatenation of messages.

Let ε be an arbitrary inverse polynomial, and poly(·) be an arbitrary polyno-
mial. Define

p(·) := ε(·)
2poly2(·)

.

Lemma 1. (Main Lemma) Let ε, p, poly be as above, and f be the one-way
function used in the Feige-Shamir protocol. Assume that there is a non-uniform
PPT verifier V ∗, running in at most poly(n) steps, that breaks ε-distributional
concurrent zero knowledge of the Feige-Shamir protocol on a joint distribution
ensemble {(Xn,Wn, Zn)}n∈N over a NP relation RL9 and auxiliary inputs.
Then, there exists an infinite set I = {(n, in)} for which the following two
conditions simultaneously hold:

1. For a random history prefix generated in the real concurrent interaction,

9 Though in our final construction of public-key encryption we need to assume a magic adver-
sarial verifier against the Feige-Shamir protocol for a distribution {(Xn,Wn)}n∈N over some
OR NP-relation, Lemma 1 and the results in Section 4 and 5 hold with respect to distribution
{(Xn,Wn)}n∈N over any NP relation.

13



Pr

[
h← Transin :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
≥ p(n).

2. For every circuit family T of polynomial size, there is N0 such that for every
n > N0 (s.t. (n, ·) ∈ I) it holds that,

Pr

[
T (h,PartRh) ∈ {f−1(βj1), f

−1(βj2)}
∣∣∣∣h′||(βj1, βj2, aj) = h← Transin

∧ Pr[V ∗ |h (j, 2)] ≥ p(n)

]
≤ 1− p(n).

Remark 3. Note that if, conditioned on outputting the first verifier message
(βj1, β

j
2, a

j) of session j at its in-th step, V ∗ reaches the second verifier step
of session j (i.e., completes the proof of knowledge of one pre-image) in the
real concurrent interaction with probability greater than an inverse polynomial,
we can construct an efficient algorithm, taking the corresponding witness w as
input and playing the role of the honest prover, that extracts one of pre-images
of (βj1, β

j
2) from V ∗ by rewinding it with probability negligibly close to 1. The

first condition of our lemma asserts that it is relatively easy to obtain images
of f for which there is an efficient algorithm with knowledge of w can invert
one of them with overwhelming probability, while the second condition of the
above lemma guarantees that for any efficient algorithm without knowledge of
w the success probability of inversion is bounded away from 1. This illustrates
the magic power that the supposed adversary V ∗ endows the images output at
its step in with a sort of trapdoor.

As we shall see later, in the final construction of public key encryption,
the partial randomness PartRh together with some images of f will be part of
cipher-text, and to ensure the semantic security it is naturally required that for
any efficient algorithm with PartRh as input the success probability of inverting
the images of f is small. This is guaranteed by the second condition of the above
lemma.

Remark 4. (On the role of the value ε) The main reason we deal only with ε-
distributional concurrent zero knowledge, rather than the standard one, is that,
as we will see later, our approach will yield encryption algorithm that runs in
time poly(1ε ), and thus the value 1

ε has to be upper-bounded by a fixed (but
arbitrarily) polynomial.

3.2 The Dissection Procedure Leading to a Proof of Lemma 1

Formally, if for an arbitrary inverse polynomial ε, V ∗ breaks ε-distributional
concurrent zero knowledge of Feige-Shamir protocol over distribution {(Xn,Wn,

14



Zn)}n∈N, then ∀ Sim ∃ D and infinitely many n, such that

Pr[D(TransV ∗(P (Xn,Wn), V
∗(Zn)), Zn) = 1]

−Pr[D(Sim(V ∗, Xn, Zn), Zn) = 1] > ε(n). (1)

As mentioned, the intuition behind Lemma 1 is quite straightforward: For
a successful V ∗, there must exist a step i at which V ∗ outputs a pair of images
and will complete the proof of knowledge of one pre-image at a later time in the
real concurrent interaction with high probability, but without knowledge of the
corresponding witness no efficient algorithm can invert one of the images, since
otherwise, if for every step of V ∗ there is an efficient algorithm that can extract
the target pre-images with overwhelming probability, we are able to show that
there exists a simulator, incorporating all these efficient inverting algorithms as
its subroutines, that will simulate the view of V ∗ successfully.

To formalize this intuition in the asymptotic setting, we view the behaviour
of V ∗ as an infinite table, in which the entry in the i-th row and n-th column
represents the i-th step of V ∗ (followed immediately by the response from the
honest prover) in its concurrent interaction on input the security parameter n
(c.f. Fig 1).

(P (w), V ∗)

1
2

i

V ∗’s steps

1 2 n

concurrent executions of FS on
security parameter n

n+ 1
security

parameter

Fig. 1: V ∗’s behaviour.
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With this table, we dissect V ∗ and examine its every step across all security
parameters n ∈ N, i.e., examine the set of entries {(n, in = i)}n∈N. A few
terminologies follow.

Imaginary steps. Note that for the i-th row of the table (i.e., V ∗’s step i), if a
security parameter n satisfies poly(n) < i, V ∗ on the input security parameter
n will never reach step i. To simplify the presentation, we think of the step i in
every n-th column with poly(n) < i as an imaginary step of V ∗ with

Pr

[
h← Transi :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
= 0.

Significant/insignificant entries. Given a (possibly infinite) set K of security
parameters, and a set K ′ = {(n, in)}n∈K , we say the entry (n, in) ∈ K ′ is
significant if for which the first condition of Lemma 1 holds, i.e.,

Pr

[
h← Transin :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
> p(n).

Otherwise, we call it insignificant.

Solving a set of entries. Given a set (possibly infinite)K of security parameters,
and a set K ′ = {(n, in)}n∈K , we say a circuit family T of size P solves the set
K ′, if for every significant entry (n, in) ∈ K ′, T breaks the second condition of
Lemma 1 on (n, in), i.e., for all n ∈ K,

Pr

[
T (h,PartRh) ∈ {f−1(βj1), f

−1(βj2)}
∣∣∣∣h′||(βj1, βj2, aj) = h← Transin

∧ Pr[V ∗ |h (j, 2)] ≥ p(n)

]
> 1− p(n). (2)

Otherwise, we say T fails to solve the setK ′, i.e., there are some entries inK ′ on
which the above inequality does not hold for T . When we say T of size P fails
to solve any entry in the set K ′, we mean that every entry in K ′ is significant
and T cannot solve even a single entry in K ′.

Note that we don’t make any requirement on T for those insignificant entries
K ′ (i.e., those entries for which the first condition of Lemma 1 does not hold). To
take an extreme example, if for all (n, in) ∈ K ′ the first condition of Lemma 1
fails to hold, i.e.,

Pr

[
h← Transin :

h = h′||(βj1, β
j
2, a

j) ∧
Pr[V ∗ |h (j, 2)] ≥ p(n)

]
< p(n),
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then, by definition, any circuit family can solve the setK ′. For simplicity, we let
the circuit family that solves such a set K ′ to be a special dummy circuit family
denoted by φ, which is of size 0.

With these definitions, we observe the following fact.

Fact 1. Fix a verifier step i. If for any polynomial P, there does not exist a circuit
family of size P that solves the set {(n, in = i)}n∈N, then there is an infinite set
I on which both conditions of Lemma 1 hold.

Proof. Observe first that if for any polynomial P, there is no P-size circuit fam-
ily that solves the set {(n, i)}n∈N, then for every P-size circuit family T , there
exists an infinite setK of security parameters such that T cannot solve any entry
in the set {(n, i)}n∈K . To see this, suppose for the sake of contradiction that,
there is a P-size circuit family T for which there is a finite set K such that T
solves the set {(n, in = i)}n∈N\K . Let ck be the largest security parameter in
K, and the circuit family T ′ be the inverting algorithm that, upon receiving a
pair of images, inverts one of them by exhausting all possible pre-images. We
now have a new circuit family of size P(n) + 2ck , denoted by Ti, which applies
T on the security parameters n ∈ N \ K and T ′ on n ∈ K, can solve the set
{(n, i)}n∈N, which contradicts the hypothesis of this fact since P(n) + 2ck is
still a polynomial in n.

We now fix a polynomial (monomial) nc, and construct a best possible nc-
size circuit family T := {Tn}: Each circuit Tn is of size nc and achieves the
highest success probability of inverting. It follows from the observation above
that there is an infinite set Kc of security parameters such that T cannot solve
any entry in {(n, i)}n∈Kc .

Since for each security parameter n, the circuit Tn is best possible, we con-
clude that, for any nc-size circuit family T ′ := {T ′n}, T ′ cannot solve any entry
in {(n, i)}n∈Kc (note that the success probability of the inverting circuit T ′n is
less than the one of Tn).

Note that Kc ⊆ Kc−1 for all c ∈ N. The desired infinite set I can be
constructed as follows. Let n0 = 0 and nc := min{Kc\{nc−1, nc−1, · · ·, n0}}10

for each c ∈ N. We define I to be

I := {(nc, i)}c∈N.

It is easy to verify that the first condition of Lemma 1 holds on I .11 Consider
an arbitrary polynomial size circuit family T , say, of size P†, and suppose that

10 Note that in case Kc is identical to Kc−1, then nc−1 ∈ Kc.
11 Note that for every c ∈ N, for any entry (n, i) in {(n, i)}n∈Kc , the first condition of Lemma 1

holds for (n, i), since otherwise the entry (n, i) is insignificant, and by definition can be solved
by any circuit family.
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P†(n) ≤ nc
′12. Then T cannot solve any entry (nc, i) ∈ I for any c > c′. Note

that c > c′ implies nc > nc′ , we have that T cannot solve any entry (nc, i) ∈ I
for any nc > nc′ . This establishes the second condition of Lemma 1.

ut

The following dissection procedure (c.f. Fig 2) will yield an infinite set I as
desired.
The dissection procedure. Initially set I0 := {(n0 = 0, in0 = 0)}, S0 :=
{(T0 = φ,P0 = 0)}.

For i = 1, 2, ..., given Ii−1 = {(n0, in0), ..., (nk−1, ink−1
)}13,Si−1 = {(T0,

P0), ..., (Ti−1,Pi−1)} and P = max{P0,P1, ...,Pi−1}, we check the i-th step
of V ∗ for all n ∈ N and do the following:

1. If for any polynomial P′ there is no P′-size circuit family that solves the
set {(n, in = i)}n∈N, let I be as defined in the above Fact 1, and stop this
process;

2. If there are a polynomial Pi such that Pi ≤ P, and a Pi-size circuit family Ti
that solves the set {(n, in = i)}n∈N, set Si ← Si−1∪(Ti,Pi), and Ii ← Ii−1
(Note that we do not update the set Ii−1);

3. If there are a polynomial Pi such that Pi > P, and a Pi-size circuit family Ti
that solves the set {(n, in = i)}n∈N, but no circuit family of size less than P
that can solve the set {(n, in = i)}n∈N, then
(a) set Si ← Si−1 ∪ {(Ti,Pi)}, and,
(b) if i > poly(nk−1)14, find a nk > nk−1 on which the first condition of

Lemma 1 holds, but no circuit family of size less than P can solve the
set Ii−1 ∪ {(nk, ink

= i)}15. Set Ii ← Ii−1 ∪ {(nk, ink
= i)}.

Denote by I the set resulted from the above dissection procedure, which
is either of the form {(nc, i)}c∈N (when we encounter the first case during the
dissection procedure), or of the form {(nk, ink

)} (otherwise).
Lemma 1 follows from the following two claims. Due to space limitations,

we provide detailed proofs of these claims in the full version of this work [Den16].
Claim 1. If we encounter the first case during the above dissection, or there is
no polynomial P s.t. P = sup{Pi : i ∈ N}, i.e., there is no polynomial upper-
bound on the infinite set {Pi : i ∈ N}, then the set I is infinite and on which
both conditions of Lemma 1 hold.
12 A little bit oversimplified. In case that, for some N , P†(n) ≤ nc′ only when n > N , we

should set N0 to be max{N,nc′} and conclude that T cannot solve any entry (nc, i) ∈ I for
any nc > N0.

13 Here k ≤ i− 1. Note that we may not update the set I at each step i.
14 This means that the current i-step is an imaginary step of V ∗ for those n ≤ nk−1.
15 As will be showed in proof of claim 1 in the next section, we can always find such a nk.
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1
2

in1

ink−1

i

V ∗’s steps

1 2 n1

on input Ii−1 and Si−1, check if ∃Ti

that solves the i-th row for all n

nk−1 nk
security

parameter

Fig. 2: The dissection procedure. For a magic adversary V ∗ there must exist
either a single row (a step of V ∗) from which we find the desired infinite set I ,
or infinite many rows from each of which we add a new entry to the set I .

Claim 2. If we will never encounter the first case during the above dissection,
and there is a polynomial P s.t. P = sup{Pi : i ∈ N}, then there is a non-
uniform PPT simulator that breaks the inequality (1).

Remark 5. (On the mere existence of Ti and the dependence between Ti’s) Note
that at each step of the dissection procedure we only ask if there exists a good
extractor Ti, and that these algorithms may depend on a specific verifier. It may
be the case that these Ti exist but we cannot construct them from the code V ∗

efficiently, as we showed for the concrete adversary from [CKPR01].
However, the mere existence of good extractors Ti, satisfying that all of

them have size upper-bounded by a fixed polynomial as in Claim 2, helps us
show the existence of a simulator for V ∗ under the natural security definition of
“∀V ∗∃S”.

We stress that the dependence between the possible algorithms Ti’s is irrel-
evant here. Note that at each step i, we set a clear bar P and check if there exists
a circuit family Ti of size less than P that can solve all those significant entries
in the i-th row. If there exists a circuit family Ti that solves this row but the
minimal size Pi required is strictly greater than P, we record this new Pi and
when we enter the next step (i+ 1), we have a higher bar on the circuit size for
checking the existence of Ti+1.
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Nevertheless, if one can construct a verifier V ∗ for which there is a deep
dependence between these Ti’s such that, say, the size of Ti−1 is twice that of
Ti for many i, then we will soon find a desired set I as required by Lemma 1.

4 Tuning in to the Same Channel

As showed in the previous section, the real concurrent interaction between the
honest prover and a successful adversary V ∗ will magically generate a history
prefix of the form h′||(β1, β2, a) for which only algorithms with knowledge of
the corresponding witness can extract one of the pre-images of (β1, β2) with
overwhelming probability. However, different algorithms using different wit-
nesses/randomness may recover different pre-images from this history. Thus, to
exploit the power of V ∗ in our setting, we first need to make sure that all parties
are in the same channel, i.e., recover the same pre-image from a given history.

In this section we construct non-interactive algorithms C and E from the
magic adversary V ∗ such that, taking as input the witness to x, C generates a β
and E can obtain the pre-image of the same β. Detailed analyses of these two
algorithms can be found in [Den16].

Lemma 2. Let p, f , {(Xn,Wn, Zn)}n∈N , the infinite set I , and V ∗ be as in
Lemma 1. Then there exist two non-unifrom PPT algorithms C and E such that
for every (n, in) ∈ I the following conditions hold:

1. C generates β, α and an auxiliary string aux satisfying β = f(α) with
probability

Pr[(x,w, z)← (Xn,Wn,Zn) : C(x,w,z) = (β,α,aux)] ≥ p2 −negl(n).

2. It is easy for E with knowledge of w to invert the image output by C with
probability

Pr

[
(x,w, z)←(Xn,Wn,Zn) :E(β, aux,w)=f−1(β)

∣∣∣∣ C(x,w, z)= (β,α,aux)

]
≥ 1−negl(n).

3. For any polynomial-size circuit family T without knowing w, there is N0

such that for every n > N0 (s.t. (n, ·) ∈ I) it holds that:

Pr

[
(x,w, z)←(Xn,Wn,Zn) :T (β, aux) =f

−1(β)

∣∣∣∣ C(x,w, z)= (β,α,aux)

]
≤ 1−p.
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The Algorithm C

input : (x,w, z)← (Xn,Wn, Zn)

1. Run P and V ∗ on input (x,w, z) until obtain the history prefix h up to the step i of
V ∗. If the V ∗’s step imessage vi is the first verifier message of the form (β1, β2, a)
in a session, say, session j, then continue; otherwise, return ⊥.

2. Resume the interaction between P and V ∗ until V ∗ terminates. If the second ac-
cepting verifier message t in session j appears in this interaction, continue; other-
wise, return ⊥.

3. Repeat the following two steps n
p

times (there are at most n2

p2
iterations of step 2

within this step):
(a) Run the above step 2 using fresh randomness (based on the same history prefix

h) until either the second accepting verifier message in session j appears twice
or the n

p
-th iteration is reached. If two accepting transcripts of the first phase in

session j of the Feige-Shamir protocol are obtained within these n
p

iterations
(for the purpose of simplifying the analysis of the algorithm E, here we don’t
use the transcript obtained in step 2), compute α such that βb = f(α) from
them; otherwise, return ⊥.

(b) Store (βb, α) in a list.
4. Set β to be βb for which the corresponding pair (βb, α) appears most often in the

above list, and aux to be (h, PartRh, x, z), where PartRh includes only the random-
ness used by V ∗ and the randomness used by honest provers in those incomplete
sessions in producing h.

output: (β, α, aux).

Fix (n, i) ∈ I (from here on we drop the n on in for simplicity). Incor-
porating V ∗ and the honest prover P , (n, i) and the inverse polynomial p, the
algorithm C, on input (x,w, z), plays the role of the honest prover and extracts
(by rewinding) one-pre-image of the pair images of f output by V ∗ at its i-th
step, and then outputs the pre-image extracted and the corresponding image (to-
gether with some auxiliary information). To make sure that different algorithms
can extract the same pre-image, we haveC repeat the extraction precedure many
times and output the image corresponding to the most-often extracted pre-image.
See below for the detailed description of C.

The algorithm E, taking (β, aux,w) as input, simply repeats n
p times the

step 3(a) of the algorithm C to extract the pre-image of β.

The Algorithm E

input : (β, aux,w)

1. Parse aux into (h, PartRh, x, z), and parse the last message vi in h into (β1, β2, a).
2. Suppose that β = βb. Repeat the step 3(a) of C until the pre-image α of βb is

extracted or the n
p

-th iteration is reached, and if all iterations fail, return ⊥.
output: α.
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5 Hardness Amplification and a Tailored Hard-Core Lemma

For our applications, we need to increase the success probability of the algo-
rithm C significantly while decreasing T ’s success probability (as in the third
condition of Lemma 2) to a negligible level. In addition, if the statement x has
multiple witnesses, we also want the algorithm E to work when given an arbi-
trary one (not necessarily the same as the one given as input to C) as input.

Our basic strategy for achieving these goals is to use classic hardness ampli-
fication method with some careful modifications. Let p be as in Lemma 1, and
define

q1 :=
n

(p)2
, q2 :=

n

p
and q := q1q2.

Given as input a q1×q2 matrix of simples from (Xn,Wn, Zn), M runs C on each
column and outputs a vector of q2 number of images of f (together with the
corresponding pre-images and some auxiliary strings). The formal descriptions
of algorithms M and Find are given below.

The Algorithm M
input : {(xk, wk, zk)}qk=1

1. Arrange {(xk, wk, zk)}qk=1
into q1 × q2 tuples, denoted by {(xji , w

j
i , z

j
i )}

q2,q1
i,j=1

.
2. For i = 1, 2, ..., q2, run C on each (xji , w

j
i , z

j
i ), j ∈ [1, q1], until C output-

s (β, α, aux). If for some i all these q1 runs of C fail, return ⊥; otherwise, set
(βi, αi, auxi) to be (β, α, aux).

output: {(βi, αi, auxi)}q2i=1
.

The Algorithm Find
input : {(xk, wk, zk)}qk=1

, {(βi, auxi)}q2i=1

1. Arrange {(xk, wk, zk)}qk=1
in the same way as M and obtain {(xji , w

j
i , z

j
i )}

q2,q1
i,j=1

.
2. For i = 1, 2, ..., q2, obtain the statement xi from auxi, find the j-th entry

(xji , w
j
i , z

j
i ) from {(xji , w

j
i , z

j
i )}

q1
j=1

such that xji = xi and fetch the correspond-
ing wj

i , set wi = wj
i and run E on input (βi, auxi, wi). If E fails, output ⊥,

otherwise, set αi to be the output of E.

output: {αi}q2i=1
.

It easily follows from Lemma 2 that the algorithms M and Find enjoys the
following security properties.
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Lemma 3. The following properties hold for algorithms M and Find:

1. The probability that M outputs {(βi, αi, auxi)}q2i=1 such that βi = f(αi)
holds for each i is negligibly close to 1.

2. Conditioned on M outputting {(βi, αi, auxi)}q2i=1 , the probability that Find
inverts all these βi’s successfully is negligibly close to 1.

3. Conditioned on M outputting {(βi, αi, auxi)}q2i=1 , for any polynomial-size
circuit family T , given as input only ({(xk, zk)}qk=1 , {(βi, auxi)}

q2
i=1) (with-

out any witnesses to the xk’s), the probability that T inverts all these βi’s
successfully is negligible.

4. For any two inputs to Find with different witnesses, ({(xk, wk, zk)}qk=1 , {(βi,
auxi)}q2i=1) and ({(xk, w′k, zk)}

q
k=1 , {(βi, auxi)}

q2
i=1) such that {wk}qk=1 6=

{w′k}
q
k=1 , Find succeeds on each input with almost (negligibly close to each

other) the same probability.

The algorithm M generates q2 number of images (β1, β2, ..., βq2) of one-
way function f : {0, 1}n → {0, 1}`(n) in a way such that they are hard for
any polynomial-size circuit family (without knowing the corresponding witness-
es) to invert simultaneously. This enables us to apply Goldreich-Levin hard-
core predicate for the function of f

⊗
q2 with respect to the distribution on

(β1, β2, ..., βq2) generated by M. Formally, we need the following form of the
Goldreich-Levin theorem.

Lemma 4 (Goldreich-Levin). Let f : {0, 1}n → {0, 1}`(n) be a function com-
putable in polynomial time, G be a PPT algorithm. If for every polynomial-size
circuit family T ,

Pr[(f(x), aux)← G(1n) : T (1n, f(x), aux) ∈ f−1(f(x))] ≤ negl(n),

then, the inner product of x and a random r modulo 2, denoted by 〈x, r〉, is a
hardcore predicate for f , i.e., for every polynomial-size circuit family T ′

Pr[(f(x), aux)← G(1n), r ← {0, 1}n : T ′(1n, f(x), r, aux) = 〈x, r〉]

≤ 1

2
+ negl(n).

The Goldreich-Levin theorem typically states for the distribution f(U), i.e.,
for x being drawn from uniform distribution, but its proof ignores the distribu-
tion on the images of f and the auxiliary input (as long as both T and T ′ are
given the same auxiliary string as input) completely, so the same proof applies
to Lemma 4 (c.f. [Gol01]).

In our setting, this means that the inner product (modulo 2) 〈(α1, α2, ..., αq2),
r ← {0, 1}n×q2〉 is a hard core predicate for f

⊗
q2 : {0, 1}n×q2 → {0, 1}`(n)×q2

against arbitrary circuit families of polynomial size that takes as auxiliary input
({(xk, zk)}qk=1 , {(βi, auxi)}

q2
i=1).
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6 Constructions for Public-Key Encryption and Key Agreement

In this section, we construct semantic secure (under chosen-plaintext-attack)
public-key encryption and key agreement from a supposed adversary V ∗ against
the Feige-Shamir protocol and an injective one-way function. This completes
the proof of Theorem 1.

Let ε, q, q2, M, Find and the infinite set I be as defined in previous sections.
The final construction of public-key encryption scheme proceeds as follows.
The key generation algorithm generates q number of YES instances togeth-
er with their corresponding witnesses, {(x1,k, w1,k)}qk=1 , where {w1,k} qk=1 is
kept secret and {x1,k} qk=1 is made public. To encrypt a bit m, the encryption
algorithm generates {(x2,k, w2,k)}qk=1 , prepares a sequence of OR statements
{(x1,k ∨ x2,k)}qk=1 (thus each {wb,k}qk=1 , b ∈ [1, 2], are valid witnesses), and
then applies M on {w2,k}qk=1 to generate an image of f

⊗
q2 and encrypts m

using Goldreich-Levin; to decrypt the cipher-text, the decryption algorithm ap-
plies Find on {w1,k}qk=1 as witnesses to obtain the corresponding pre-image
and then computes the plain-text.

Formally, we need to assume the following for our constructions of public-
key encryption and key agreement:

– An arbitrary injective one-way function f : {0, 1}n → {0, 1}`(n) (used in
the Feige-Shamir protocol). The injectiveness will be used for one party to
recover the same hardcore bit that generated by the other party.

– An arbitrary efficiently samplable distribution ensemble D = {Dn}n∈N
over RL for an arbitrary NP language L.

– An arbitrary efficiently samplable distribution ensemble {Zn}n∈N over {0,1}∗.
– A joint distribution ensemble {(Xn,Wn, Zn)}n∈N on which the adversary
V ∗ breaks the ε-distributional concurrent zero knowledge of Feige-Shamir
protocol, where each distribution (Xn,Wn, Zn) defined in the following
way: Sample (x1, w1) ← Dn, (x2, w2) ← Dn, z ← Zn, b ← {1, 2},
and output ((x1, x2), wb).

We now construct public-key encryption for a single bit message on each secu-
rity parameter n s.t. (n, ·) ∈ I .

Key generation Gen(1n): {(x1,k, w1,k)} qk=1 ← D
⊗
q

n , and set pk = {x1,k} qk=1 ,
sk = {w1,k} qk=1 .

Encryption Enc(pk = {x1,k} qk=1 ,m) (m ∈ {0, 1}):

1. {(x2,k, w2,k)}qk=1 ← D
⊗
q

n , {zk} qk=1 ← Z
⊗
q

n .
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2. for k ∈ [1, q], set xk to be a random order of the pair (x1,k, x2,k).

3. {(βi, αi, auxi)}q2i=1 ← M({(xk, w2,k, zk)} qk=1).

4. r ← {0, 1}n×q2 , h← 〈(α1, α2, ..., αq2), r〉 ∈ {0, 1}.

5. Output c = ({(xk, zk)} qk=1 , {(βi, auxi)}
q2
i=1 , r, h

⊕
m).

Decryption Dec(sk = {w1,k} qk=1 , c):

1. Parse c into {(xk, zk)} qk=1 ||{(βi, auxi)}
q2
i=1 ||r||c

′.

2. {αi}q2i=1 ← Find({(xk, w1,k, zk)} qk=1 , {(βi, auxi)}
q2
i=1).

3. h← 〈(α1, α2, ..., αq2), r〉.

4. Output m = h
⊕
c′.

Notice that the input to M in the encryption algorithm can be viewed as being
drawn from (Xn,Wn, Zn) defined above. The correctness of this scheme fol-
lows from properties 1, 2, 4 of algorithms M and Find presented in the previous
section. It should be noted that our scheme is not perfectly correct since it is
possible for M/Find to fail during the encryption/decryption process. However,
this happens only with negligible probability.

It is also easy to verify the semantic security under chosen-plaintext-attack,
which is essentially due to the property 3 of M, together with the security of the
hardcore bit for f

⊗
q2 .

Following the well-known paradigm, one can transform a semantic secure
(under chosen-plaintext-attack) public-key encryption scheme into a key agree-
ment protocol (A,B) with security against eavesdropping adversary in a simple
way: the party A generates a public/secrete key pair and send the public-key to
B, and thenB sends back a ciphertext of the session secret key underA’s public
key to A. This establishes a common session secret key between A and B.

Extensions to Multiparty Key Agreement. Our key agreement protocol can
be easily extended to the multiparty setting. Roughly, if V ∗ is able to break
ε-distributional concurrent zero knowledge of the Feige-Shamir protocol on a
distribution over instances of the form (x1∨x2∨ ...∨xn), then the n parties can
establish a session secret key as follows. Each party Ai generates a sequence
of pairs {(xi,k, wi,k)}qk=1). In their first round the parties A1, A2, ..., An−1 send
their sequences of {(xi,k)}n−1,qi,k=1 ) to the n-th party, then the n-th party uses these
sequences as a public key of the above public-key encryption scheme to encrypt
the session secret key and send the ciphertext to all n−1 parties. Upon receiving
the ciphertext, each Ai, i = [1, n− 1], decrypts it and obtains the session secret
key using their own {(wi,k)}qk=1 .
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7 Concluding Remarks

We prove a win-win result regarding the complexity of public-key encryption
and the round-complexity of concurrent zero knowledge. We believe that when
one can prove one of these two statements listed in Theorem 1, one might obtain
a much stronger result (e.g., result with respect to the (nicer) standard definition)
than the ones stated therein. The ideas and techniques used here may be applied
to investigate some other black-box lower bounds in cryptography.

Our result can be viewed as a step toward breaking the known black-box
or universal reduction barriers, and a proof (or disproof) of either one of the
two statements in Theorem 1 will be exciting. A construction of public-key en-
cryption (key agreement) from general one-way functions will, borrowing from
the Impagliazzo’s terminology [Imp95], rule out the world Minicrypt and build
for the first time the world Cryptomania from (trapdoor/algebraic) structure-free
hardness assumption, which definitely is a major achievement in cryptography.

On the other hand, a concurrent security proof of the Feige-Shamir protocol
will also be an exciting breakthrough, both technically and conceptually. On the
technical level, such a proof will reveal a fascinating fact that all possible ef-
ficient adversaries against the Feige-Shamir protocol have in common a highly
non-trivial structure of computation– e.g., the existence of those good extrac-
tors {Ti}i∈N from the second claim in Section 3.2, which might shed light on
the longstanding open problem of constructing extractable one-way functions
from standard assumptions; on the conceptual level, it will bring a new individ-
ual reduction/simulation for cryptography and refute the impression that a new
reduction technique always gives more complicated and inefficient construc-
tions.
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