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Abstract. Since May (Crypto’02) revealed the vulnerability of the small
CRT-exponent RSA using Coppersmith’s lattice-based method, several
papers have studied the problem and two major improvements have
been made. Bleichenbacher and May (PKC’06) proposed an attack for
small dq when the prime factor p is significantly smaller than the other
prime factor q; the attack works for p < N0.468. Jochemsz and May
(Crypto’07) proposed an attack for small dp and dq where the prime
factors p and q are balanced; the attack works for dp, dq < N0.073. Even
after a decade has passed since their proposals, the above two attacks
are still considered to be the state-of-the-art, and no improvements have
been made thus far. A novel technique seems to be required for further
improvements since the attacks have been studied with all the applica-
ble techniques for Coppersmith’s methods proposed by Durfee-Nguyen
(Asiacrypt’00), Jochemsz-May (Asiacrypt’06), and Herrmann-May (Asi-
acrypt’09, PKC’10). In this paper, we propose two improved attacks on
the small CRT-exponent RSA: a small dq attack for p < N0.5 (an im-
provement of Bleichenbacher-May’s) and a small dp and dq attack for
dp, dq < N0.091 (an improvement of Jochemsz-May’s). We use Copper-
smith’s lattice-based method to solve modular equations and obtain the
improvements from a novel lattice construction by exploiting useful al-
gebraic structures of the CRT-RSA key generation. We explicitly show
proofs of our attacks and verify the validities by computer experiments.
In addition to the two main attacks, we propose small dq attacks on
several variants of RSA.

Keywords: CRT-RSA, cryptanalysis, Coppersmith’s method, lattices, LLL al-
gorithm

1 Introduction

1.1 Background

Let N = pq be a public RSA modulus whose prime factors p and q are usually
the same bit-size. A public exponent e and a secret exponent d satisfy ed = 1
mod (p−1)(q−1). For encryption/verifying (resp. decryption/signing), the heavy
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modular exponentiation of e (resp. d) has to be computed. To achieve faster com-
putation, a simple solution is to use a small public or secret exponent. However,
Wiener [50] showed that a public RSA modulus is factorized in polynomial time
when the secret exponent is too small such that d < N0.25. Boneh and Durfee [5]
revisited the problem with Coppersmith’s lattice-based method [8,18] and im-
proved the bound to d < N0.284. Furthermore, in the same work, the bound was
improved to d < N0.292 by exploiting sublattice structures from the previous
one although the proof is involved.

To simultaneously thwart the small secret exponent attack and achieve faster
decryption/signing, the Chinese Remainder Theorem (CRT) is often used as de-
scribed by Quisquater and Couvreur [35]. Instead of the original secret exponent
d, there are CRT-exponents dp and dq that satisfy

edp = 1 mod (p− 1) and edq = 1 mod (q − 1).

Then a natural question to ask is whether there exist analogous attacks of
the Boneh-Durfee [5] to the small CRT-exponents. The first answer was given by
May (Crypto’02) [29]. May analyzed the unbalanced RSA whose prime factor p
is significantly smaller than the other prime factor q, and proposed an attack for
a small dq with an arbitrary large dp. The paper contains two attacks where the
former attack works for p < N0.382. The latter attack works only for smaller p,
however, is better than the former attack for p < N0.23 in the sense that a larger
dq can be recovered. Since May’s attack works only in the unbalanced setting,
it is an interesting open question if the attacks can be improved to cover the
balanced RSA.

Subsequently, several improved attacks on the small CRT-exponent RSA have
been proposed. Bleichenbacher and May (PKC’06) [3] revisited May’s work [29]
in the same attack scenario and proposed an improved attack. The attack works
for a larger p such that p < N0.468, and recovers a larger dq than May’s attack
for any size of p. However, the balanced prime factors still could not be captured.
To capture the balanced RSA, Bleichenbacher and May analyzed other attack
scenarios where both dp and dq are small in the same work. They proposed an
attack which works for e < N . Although the same situation was already studied
by Galbraith et al. [14], Sun and Wu [40], their attacks only work for a smaller
e. Jochemsz and May (Crypto’07) [22] proposed the first attack that works for
a full size e when dp, dq < N0.073.

In the past decade, no improved attacks of Bleichenbacher-May [3] and
Jochemsz-May [22] have been proposed. Hence, following these attacks seems
to be the best way to study the security of the CRT-RSA. Indeed, until recently,
several papers followed the attacks and reported the vulnerabilities of the CRT-
RSA, e.g., an attack on Takagi’s RSA [39], an attack on the RSA with multiple
exponent pairs [34], and partial key exposure attacks [4,27,38,45,47].

1.2 Technical Hardness

Coppersmith introduced two lattice-based methods; to solve a modular equa-
tion [8] and an integer equation [7]. May’s attack and Bleichenbacher-May’s
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attack used the former method whereas Jochemsz-May’s attack used the latter
method. Both methods first construct a lattice and then solve equations with a
small root in polynomial time. In this research area, constructing better attacks
is equivalent to designing better lattices that reflect the more useful algebraic
structure of the equation. For the purpose, several useful strategies and tech-
niques for lattice constructions have been introduced thus far. Currently best
known small CRT-exponent attacks [3,22,29] are based on the state-of-the-art
lattice constructions; the Durfee-Nguyen technique (Asiacrypt’00) [12] and the
Jochemsz-May strategy (Asiacrypt’06) [21]. Since the Durfee-Nguyen technique
is useful to handle the relationN = pq and the Jochemsz-May construction yields
good lattices for arbitrary polynomials, these approaches [3,29] seem appropriate
to study the attack. Moreover, to the best of our knowledge, there remained no
useful strategies to analyze the attack scenarios at that time. After the proposals
of [3,22,29], a new technique called unravelled linearization was introduced by
Herrmann and May (Asiacrypt’09) [16]. The technique has been used to study
various attack scenarios on RSA, e.g., [2,15,17,19,23,24,42,43,44,46,48,49], and
drastically developed the research area. For example, Herrmann and May [17]
showed an elementary proof of Boneh-Durfee’s attack [5] to exploit the sublattice
structures. However, unfortunately, unravelled linearization could not improve
small CRT-exponent attacks. Although Herrmann and May (PKC’10) [17] tried
to exploit sublattice structures, they could not obtain better asymptotic bounds.
Therefore, to obtain better bounds, a novel technique seems to be developed.

1.3 Our Results

In this paper, we develop a novel lattice construction technique for Coppersmith’s
modular method where the technique enables us to exploit more useful algebraic
structures of the CRT-RSA key generation. A basic application of the technique
is an improved small dq attack for unbalanced prime factors (Section 3). As
opposed to the previous results by May [29] and Bleichenbacher-May [3], our
attack is the first result to reach a meaningful bound, i.e., p < N0.5. Hence, we
solve one of the major open problems for the security of the small CRT-exponent
RSA. Moreover, our attack can recover a larger dq than [3,29] for any size of p. In
addition, our attack requires less lattice dimensions than Bleichenbacher-May’s
attack [3] since our technique exploits sublattice structures from [3]’s lattice
where the approach is similar to Boneh-Durfee [5]. Indeed, our experiments show
that Bleichenbacher-May’s attack works better than their theoretical analyses.

We claim that our technique is not limited to the small dq attack. The tech-
nique is also applicable to a small dp and dq attack (Section 4) that improves
Jochemsz-May’s attack [22]. As we mentioned, small dq attacks [3,29] and small
dp and dq attacks [22] were studied with different approaches in previous works;
the former attack used Coppersmith’s modular method whereas the latter at-
tack used Coppersmith’s integer method. However, our powerful technique en-
ables us to improve these attacks in the same manner. Our attack4 works for

4 In the full version, we further improve the bound to dp, dq < N0.122.
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dp, dq < N0.091 with a full size e where the exponent of N is about 25% larger
than Jochemsz-May’s attack.

Recently, numerous papers [13,20,26,28,33,34,36,37,39,42,46,48] have been
studying the security of RSA variants. We further show that we can extend
our small dq attack to the RSA variants (Section 5), i.e., the Multi-Prime RSA,
Takagi’s RSA, and the RSA with multiple exponent pairs. Our attacks signifi-
cantly improve previous attacks on these variants [34,39].

1.4 Key Technique

We show an overview of our technique. The CRT-RSA key generation for dq is
written as

edq = 1 + k(q − 1) (1)

with some integer k. By multiplying the equation by p, we obtain

edqp = p+ k(N − p) = N + (k − 1)(N − p). (2)

Recall in May’s and Bleichenbacher-May’s attack scenario [3,29], the prime p is
significantly smaller than the other prime q. They solved the latter equation (2)
modulo e to recover unknown (k−1, p). Since the prime p is significantly smaller
than the other prime q, to construct better attacks, solving the equation (2) is
more promising approach than solving the equation (1) to recover (k, q). Hence,
only the equation (2) was used in previous attacks. However, it means that the
constructions of previous attacks significantly rely on the fact that p is much
smaller than q. As a result, these attacks do not work when p is close to N0.5.

What we focus on is a fact that the equations (1) and (2) are essentially
the same; there are two representations for the same CRT-RSA key generation.
As opposed to previous works, our improved lattice constructions utilize the
algebraic structure of both equations (1) and (2) simultaneously not only the
equation (2). The two representations are compatible in the sense that the com-
bination enables us to exploit more useful algebraic structures. More specifically,
we use the equations (1) and (2) where the proportion can be adaptively deter-
mined by the sizes of p and q. Then, to solve the modulo e equation as previous
works, our framework always yields the better lattices than previous approaches.
Our attacks are better than Bleichenbacher-May’s attack for any size of p.

At a glance, our lattice construction technique is specialized to the improve-
ment of Bleichenbacher-May’s attack. As we pointed out, May’s attack and
Bleichenbacher-May’s attack used Coppersmith’s method to solve a modular
equation [8,18] whereas Jochemsz-May’s attack used the method to solve an
integer equation [7,11]. The modular equation for the former attack and the in-
teger equation for the latter attack have completely different algebraic structures.
However, surprisingly, our powerful technique enables us to construct better lat-
tices and improves Jochemsz-May’s attack, too. It suggests that our proposed
technique is quite useful to study the security of CRT-RSA over a wide range.
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2 Preliminaries

Consider a modular equation h(x1, . . . , xr) = 0 (mod W ), where all the abso-
lute values of the target solutions (x̃1, . . . , x̃r) are bounded above by X1, . . . , Xr.
When

∏r
j=1 Xj is reasonably smaller than W , Coppersmith’s method can find

all the solutions in polynomial time. In this section, we recall a simplified refor-
mulation of the method due to Howgrave-Graham [18] and its basis tools, i.e.,
Howgrave-Graham’s lemma and the LLL algorithm.

Let ∥h(x1, . . . , xr)∥ denote a norm of a polynomial which represents the Eu-
clidean norm of the coefficient vector. The following Howgrave-Graham’s lemma
reduces the modular equations into integer equations.

Lemma 1 (Howgrave-Graham’s Lemma [18]). Let h̃(x1, . . . , xr) ∈
Z[x1, . . . , xr] be a polynomial with at most n monomials. Let m,W,X1, . . . , Xr

be positive integers. Suppose that:

1. h̃(x̃1, . . . , x̃r) = 0 (mod Wm), where |x̃1| < X1, . . . , |x̃r| < Xr,
2. ∥h̃(x1X1, . . . , xrXr)∥ < Wm/

√
n.

Then h̃(x̃1, . . . , x̃r) = 0 holds over the integers.

To solve r-variate modular equations h(x1, . . . , xr) = 0 (mod W ), it suffices to
find r new polynomials h̃1(x1, . . . , xr), . . . , h̃r(x1, . . . , xr) whose root is the same
as the original one, i.e., (x1, . . . , xr) = (x̃1, . . . , x̃r), and whose norms are small
enough to satisfy Howgrave-Graham’s lemma.

To find such small norm polynomials from the original modular polynomial
h(x1, . . . , xr), lattices and the LLL algorithm are used. An n-dimensional lattice
is an additive discrete subgroup of Zn. In other words, a lattice represents all
integer linear combinations of its basis vectors. All vectors are row representa-
tion throughout the paper. Let b1, . . . , bm be n-dimensional linearly indepen-
dent vectors in Zn. A lattice spanned by these vectors as a basis is defined as
L(b1, . . . , bm) := {

∑m
j=1 cjbj : cj ∈ Z for all j = 1, 2, . . . , n}. We also use a

matrix representation for the basis. We define a basis matrix B as m×n matrix
which has the basis vectors b1, . . . , bm in each row. A lattice spanned by a basis
matrix B is denoted as L(B). We call a lattice full-rank if and only if n = m.
A determinant of a lattice det(L(B)) is defined as the m-dimensional volume of
the fundamental parallelepiped; P(B) := {cB : c ∈ Rm, 0 ≤ cj < 1, for all j =

1, 2, . . . ,m}. The determinant can be computed as det(L(B)) =
√
det(BBT ) in

general and that of a full-rank lattice can be computed as det(L(B)) = | det(B)|.
In this paper, we only use a full-rank lattice. More specifically, we only use a
lattice with a triangular basis matrix. Hence, the determinant of the lattice can
be computed easily as the absolute value of a product of all diagonals.

Lattice has been used in various ways in cryptographic research.
See [9,10,30,31,32] for more information. In cryptanalysis, finding non-zero short
lattice vectors is usually an essential operation. In this paper, we recall the LLL
algorithm [25] that outputs short lattice vectors in polynomial time.
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Proposition 1 (LLL algorithm [25,30]). Given linearly independent vectors
b1, . . . , bn in Zn, the LLL algorithm finds new basis vectors b̃1, . . . , b̃n for a
lattice L(b1, . . . , bn) that satisfy

∥b̃j∥ ≤ 2n(n−1)/4(n−j+1) det(L(B)))1/(n−j+1) for 1 ≤ j ≤ n,

in time polynomial in n and the maximum input length of b1, . . . , bn.

Again, we explain how to solve the modular equation h(x1, . . . , xr) = 0
(mod W ). At first, we construct n polynomials h1(x1, . . . , xr), . . . , hn(x1, . . . , xr)
that have the root (x̃1, . . . , x̃r) modulo Wm with some positive integer m. Then
we construct n basis vectors b1, . . . , bn and equivalently its matrix representa-
tion B. Each elements of a vector bj for j = 1, 2, . . . , n consist of coefficients of
hj(x1X1, . . . , xrXr). Since all vectors in a lattice L(B) are integer linear combi-
nations of the basis vectors, all polynomials whose coefficients are derived from
lattice vectors have the root (x̃1, . . . , x̃r) modulo Wm. We apply the LLL algo-
rithm to a lattice basis B and obtain r LLL-reduced vectors b̃1, . . . , b̃r. Then
new polynomials h̃1(x1, . . . , xr), . . . , h̃r(x1, . . . , xr) which are derived from the
above r LLL-reduced vectors satisfy Howgrave-Graham’s lemma provided that
det(L(B)))1/n < Wm. Here, we omit small terms. When we obtain r polynomials
h̃1(x1, . . . , xr), . . . , h̃r(x1, . . . , xr), the root (x̃1, . . . , x̃r) can easily be recovered
by computing resultant or Gröbner bases for the polynomials.

We should note that the method needs heuristic argument for multivariate
problems. The polynomials h̃1(x1, . . . , xr), . . . , h̃n(x1, . . . , xr) derived from LLL
output vectors have no assurance of algebraic independency. In this paper, we as-
sume that the polynomials are algebraic independent as previous works [3,22,29]
since there exist few negative reports. Moreover, we justify the validity of our
attacks by computer experiments.

3 Small dq Attack

In this section, we propose an attack for small dq when p is significantly smaller
than q. The attack improves Bleichnbacher-May’s attack [3].

3.1 An Overview of the Lattice Construction

At first, we explain our strategy for lattice constructions. Since our lattice con-
struction is highly technical, we show toy examples that compare previous lat-
tices [3,29] and ours. We hope that these examples help readers to understand
our technique easily.

Recall the CRT-RSA key generation;

edq = 1 + k(q − 1)

with some integer k. If we can solve the following modular equation:

fq(xq, yq) = 1 + xq(yq − 1) = 0 (mod e)
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whose root is (xq, yq) = (k, q), a public modulus N can be factorized. However,
since the prime factor q is significantly larger than the other prime factor p, i.e.,
p = Nβ and q = N1−β for β ≤ 1/2, May [29] multiplied the above equation by
p and obtain the following equation:

edqp = p+ k(N − p) = N + (k − 1)(N − p).

Hence, if the following modular equation can be solved, the public modulus N
can be factorized:

fp(xp, yp) = N + xp(N − yp) = 0 (mod e)

whose root is (xp, yp) = (k − 1, p). Let e = Nα and dq = Nδ. Then the absolute
values of the root (xp, xq, yp, yq) is bounded above by Xp := Nα+β+δ−1, Xq :=
Nα+β+δ−1, Yp := Nβ , Yq := N1−β respectively within constant factors. Later we
also use a notation X := Xp = Xq. In this setting, the other CRT-exponent dp
can be arbitrary large such that dp ≈ Nβ .

May’s Matrix. May [29] solved the modular equation fp(xp, yp) = 0 under
the standard lattice construction which can be captured by Jochemsz-May’s
strategy [22]. For example, although we omit the detail, he constructed the basis
matrix as the following:

e
0 eXp

N NXp −XpYp

0 0 0 eYp

0 0 NXpYp NYp −XpY
2
p

0 0 0 0 0 eY 2
p

0 0 0 0 NXpY
2
p NY 2

p −XpY
3
p


where the rows consist of coefficients of seven polynomials: e, exp, fp(xp, yp), eyp,
ypfp(xp, yp), ey

2
p, y

2
pfp(xp, yp). All the polynomials share the common root as

fp(xp, yp) modulo e. In addition to the base polynomials, i.e., e, exp, fp(xp, yp),
he added extra yp-shifts, i.e., eyp, ypfp(xp, yp), ey

2
p, y

2
pfp(xp, yp). Applying the

LLL reduction to the above matrix, polynomials derived from the LLL output
vectors satisfy Howgrave-Graham’s lemma when

X4
pY

9
p e

4 < e7 ⇔ 4(α+ β + δ − 1) + 9β < 3α

⇔ δ < 1− α+ 13β

4
.

The core idea of the approach is solving the equation (2) not (1) since p is
significantly smaller than q. Hence, if p becomes close to q such that β ≥ 0.382,
May’s attack does not work.
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Bleichenbacher-May Matrix. To improve May’s attack [29] based on the
above matrix, Bleichenbacher and May [3] made use of the relation ypyq = N
as Durfee and Nguyen [12]. Although the exact solution of yp is unknown, the
relation enables us to reduce powers of Yp in the diagonals by multiplying powers
of yq to all the polynomials. By optimizing the powers of yq, Bleichenbacher-
May’s matrix always offers better results than May’s matrix.

To explain our improvement later, we modify Bleichenbacher-May’s matrix
where the modified matrix offer the same bound as the original Bleichenbacher-
May matrix. The modification helps readers to understand the spirit of our
improvement. Previous May’s matrix used only extra yp-shifts, however, modified
Bleichenbacher-May’s matrix used both yp-shifts and yq-shifts. Hence, we omit
ey2p, y

2
pfp(xp, yp) from the above matrix and add eyq, N

−1 · yqfp(xp, yp) in turn
where the new polynomials share the common root as fp(xp, yp) modulo e:

e
0 eXp

N NXp −XpYp

0 0 0 eYp

0 0 NXpYp NYp −XpY
2
p

0 0 0 0 0 eYq

0 −Xp 0 0 0 Yq XpYq


.

Although the precise definition of the polynomial selection is slightly different
from the one in the original paper, they are essentially the same in the sense
that the above matrix yields the same bound as the original Bleichenbacher-May
attack. Applying the LLL reduction to the above matrix, polynomials derived
from the LLL output vectors satisfy Howgrave-Graham’s lemma when

X4
pY

4
p Y

2
q e

4 < e7 ⇔ 4(α+ β + δ − 1) + 4β + 2(1− β) < 3α

⇔ δ <
1

2
− α+ 6β

4
.

Compared with May’s matrix, the matrix reduces the powers of Yp by multiplying
the powers of Yq. It means that Bleichenbacher-May’s approach tries to control
the appearance of Yp and Yq. Then the attack works for larger p than May’s
attack up to p < N0.468. By optimizing the selection of yp-shifts and yq-shifts,
Bleichenbacher-May’s attack is always better than May’s attack.

Our Matrix. To improve the Bleichenbacher-May attack, what we focus on is
the representation of the polynomial. More concretely, previous works used the
only one representation, i.e., fp(xp, yp), however, there is the other representa-
tion, i.e., fq(xq, yq), for the same polynomial. Indeed, a useful algebraic property
can be exploited from the polynomial fq(xq, yq) by making use of the fact that
xq = xp + 1. For the above Bleichenbacher-May matrix to be triangular, the
polynomial eyq is necessary. Since eYq is larger than the modulus e, the poly-
nomial does not contribute to maximize the solvable root bound as explained
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in [31,41]. However, we make use of fq(xq, yq) and show that the matrix becomes
triangular without eyq as follows:

e
0 eXp

N NXp −XpYp

0 0 0 eYp

0 0 NXpYp NYp −XpY
2
p

0 −Xp 0 0 0 XqYq

 .

Although the above Bleichenbacher-May matrix used N−1 · yqfp(xp, yp) in the
bottom row, we use fq(xq, yq) in turn. Notice that fq(xq, yq) = N−1 ·yqfp(xp, yp)
and we use the same polynomial as the Bleichenbacher-May, however, the alge-
braic structure of fq(xq, yq) , i.e., the relation xq = xp + 1, enables the matrix
to be triangular without eyq. The operation means that Bleichenbacher-May’s
matrix contains better sublattices. The representation fq(xq, yq), which was not
used by Bleichenbacher and May, enables us to exploit the sublattices. Indeed,
by construction, our matrix always outperforms the above Bleichenbacher-May
matrix with less lattice dimensions. Applying the LLL reduction to our above
matrix, polynomials derived from the LLL output vectors satisfy Howgrave-
Graham’s lemma when

X3
pXqY

4
p Yqe

3 < e6 ⇔ 4(α+ β + δ − 1) + 4β + (1− β) < 3α

⇔ δ <
3

4
− α+ 7β

4
.

Since β ≤ 1/2, the bound is always better than the above Bleichenbacher-May
example.

May’s modulo q Attack. We should notice that our lattice construction
technique does not always offer the best attack. More concretely, as we dis-
cussed above, our lattice offers better results than all the existing lattices to
solve fp(xp, yp) = 0 and fq(xq, yq) = 0. However, there is the other formulations
to attack CRT-RSA, i.e., May’s modulo q approach [29]. From the CRT-RSA
key generation edq = 1 + k(q − 1), May solved a modular equation;

x+ ey = 0 (mod q)

whose root is (k − 1, dq). Since the modulo e and the modulo q approach is
different, we should check whether which method is the better. Although our
modulo e attacks are the better in most cases, we will show in Section 5.2 that
the modulo p approach outperforms modulo e approach for small dp attack with
a modulus N = prq.

3.2 Attack for Large e

Although the above discussion handled only toy examples, our approach im-
proves an asymptotic condition of the small CRT-exponent attack. In this sec-
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Fig. 1. Comparison between our attack (Theorem 1) and the Bleichenbacher-May for
α = 1.

tion, we propose an improved attack that works when α > β/(1−β). The attack
is the first result to cover the desired bound, i.e., β < 1/2 with a full size e.

Theorem 1. Let N = pq be an RSA modulus where p = Nβ and q = N1−β for
β ≤ 1/2. Let e = Nα and dq < N δ be a public/CRT exponent respectively such
that edq = 1 (mod (q − 1)). Given public elements N and e, if

δ <
(1− β)(3 + 2β)− 2

√
β(1− β)(αβ + 3α+ β)

3 + β
and α >

β

1− β
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

As opposed to previous results, when α = 1, the attack works to β < 1/2. Figure
1 compares our result and the Bleichenbacher-May for α = 1. Our attack covers
larger δ than the Bleichenbacher-May attack for all β.

Proof of Theorem 1. To solve the modular equation fq(xq, yq) = 0 and equiva-
lently fp(xp, yp) = 0, we use the following shift-polynomials:

g[i,j](xp, yp) := xj
pf

i
p(xp, yp)e

m−i,

g′[i,j](xp, yp) := yjpf
i
p(xp, yp)e

m−i,

g′′[i,j](xp, xq, yp, yq) := f i−j
p (xp, yp)f

j
q (xq, yq)e

m−i,

with some positive integer m. For non-negative integers i and j, all the shift-
polynomials share the same root as fp(xp, yp) and fq(xq, yq) modulo em. May [29]
used the same shift-polynomials as g[i,j](xp, yp) and g′[i,j](xp, yp). The (modified)
Bleichenbacher-May attack used an additional shift-polynomial which used only
fp(xp, yp). However, as we showed an example in the previous section, we use
the both representations fp(xp, yp) and fq(xq, yq) simultaneously. Then we can
construct triangular basis matrices that generalize the toy example as follows.
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Lemma 2. Let all the polynomials be defined as above. Let τp and τq be con-
stants such that τp ≥ 0 and 0 ≤ τq ≤ 1. Define sets of indices

Ix := {i = 0, 1, . . . ,m; j = 0, 1, . . . ,m− i},
Iy,p := {i = 0, 1, . . . ,m; j = 1, 2, . . . , ⌈τpm⌉},
Iy,q := {i = 1, 2, . . . ,m; j = 1, 2, . . . , ⌈τqi⌉}.

Let B be a matrix whose rows consist of coefficients of g[i,j](xpXp, ypYp),
g′[i,j](xpXp, ypYp), and g′′[i,j](xpXp, xqXq, ypYp, yqYq) with indices in Ix, Iy,p, and
Iy,q, respectively. If the shift-polynomials are ordered as

g[i,j] ≺ g′[i,j], g
′′
[i,j],

g[i,j] ≺ g[i′,j′], g
′
[i,j] ≺ g′[i′,j′], g

′′
[i,j] ≺ g′′[i′,j′] for i < i′,

g[i,j] ≺ g[i,j′], g
′
[i,j] ≺ g′[i,j′], g

′′
[i,j] ≺ g′′[i,j′] for j < j′,

and N−1 (mod em) is multiplied appropriately, then the matrix becomes trian-
gular with diagonals

– Xi+j
p Y i

p e
m−i for g[i,j](xpXp, ypYp),

– Xi
pY

i+j
p em−i for g′[i,j](xpXp, ypYp),

– Xi
qY

j
q e

m−i for g′′[i,j](xpYp, xqXq, ypYp, yqYq).

Here, we do not prove the lemma. Later, we prove a more general form of the
statement, i.e., Lemma 3.

We compute the resulting condition of Theorem 1. The dimension n and the
determinant of the lattice det(B) = XsXY

sYp
p Y

sYq
q ese can be computed as:

n =
∑

(i,j)∈Ix

1 +
∑

(i,j)∈Iy,p

1 +
∑

(i,j)∈Iy,q

1 =
1 + 2τp + τq

2
m2 + o(m2),

sX =
∑

(i,j)∈Ix

(i+ j) +
∑

(i,j)∈Iy,p

i+
∑

(i,j)∈Iy,q

i =
2 + 3τp + 2τq

6
m3 + o(m3),

sYp =
∑

(i,j)∈Ix

i+
∑

(i,j)∈Iy,p

(i+ j) =
1 + 3τp + 3τ2p

6
m3 + o(m3),

sYq =
∑

(i,j)∈Iy,q

j =
τ2q
6
m3 + o(m3),

se =
∑

(i,j)∈Ix

(m− i) +
∑

(i,j)∈Iy,p

(m− i) +
∑

(i,j)∈Iy,q

(m− i)

=
2 + 3τp + τq

6
m3 + o(m3).

Applying the LLL reduction, the polynomials obtained from the output vectors
satisfy Howgrave-Graham’s lemma if XsXY

sYp
p Y

sYq
q ese < enm, i.e.,

(α+ β + δ − 1)
2 + 3τp + 2τq

6
+ β

1 + 3τp + 3τ2p
6



12

+ (1− β)
τ2q
6

− α
1 + 3τp + 2τq

6
< 0

by omitting low order terms ofm. To minimize the left hand side of the inequality,
we substitute the parameters τp = (1−2β−δ)/(2β) and τq = (1−β−δ)/(1−β),
then the condition becomes

δ <
(1− β)(3 + 2β)− 2

√
β(1− β)(αβ + 3α+ β)

3 + β

as required. To satisfy the restriction τp ≥ 0, α > β/(1 − β) should hold. The
other parameter τq always satisfies 0 ≤ τq ≤ 1. ⊓⊔

3.3 Attack for Small e

The attack of Theorem 1 works only for α > β/(1 − β). The constraint comes
from the fact that the parameter τp used in the proof should be non-negative.
To capture the other case, i.e., α ≤ β/(1 − β), under the same algorithm con-
struction, we set the parameters τp = 0 and τq = (1 − β − δ)/(1− β), then the

attack works for δ < 2(1− β)−
√
(1 + α)(1− β).

However, by modifying the lattice construction, a better result can be ob-
tained as follows.

Theorem 2. Let N = pq be an RSA modulus where p < Nβ and q ≥ N1−β for
β ≤ 1/2. Let e = Nα and dq < N δ be a public/CRT exponent respectively such
that edq = 1 (mod (q − 1)). Given public elements N and e, if

δ < 1− β −
√
αβ(1− β) for β(1− β) ≤ α ≤ β

1− β
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

As we claimed, the bound of Theorem 2 is better than δ < 2(1 − β) −√
(1 + α)(1− β) which can be obtained from the same algorithm construction

as Theorem 1. We show the proof of Theorem 2. The proof is more technical
than that of Theorem 1, however, the spirit is almost the same. In the subsequent
sections, lattices which are similar to that of Theorem 2 will be used.

Proof of Theorem 2. To solve the modular equation fq(xq, yq) = 0 and equiva-
lently fp(xp, yp) = 0, we use the following shift-polynomials:

g[i,j],λ(xp, xq, yp, yq) := xj
pf

⌈λi⌉
p (xp, yp)f

⌊(1−λ)i⌋
q (xq, yq)e

m−i,

g′[i,j],λ(xp, xq, yp, yq) := yjqf
⌈λi⌉
p (xp, yp)f

⌊(1−λ)i⌋
q (xq, yq)e

m−i,

with some positive integer m and a parameter 0 < λ ≤ 1. For non-negative
integers i and j, all the shift-polynomials share the common root as fp(xp, yp)
and fq(xq, yq) modulo em. Here, notice that ⌈λi⌉+ ⌊(1− λ)i⌋ = i for all i. The
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shift-polynomials g′[i,j](xp, yp) and g′′[i,j](xp, yp) used in the proof of Theorem 1

is the special case of g[i,j],λ(xp, xq, yp, yq) and g′[i,j],λ(xp, xq, yp, yq) for λ = 1. As

the attack of Theorem 1, we use both representations fp(xp, yp) and fq(xq, yq)
simultaneously for all shift-polynomials. Using these shift-polynomials, we can
construct triangular basis matrices as follows.

Lemma 3. Let all the polynomials be defined as above. Let τ be a constant such
that 1− λ < τ ≤ 1. Let m be a positive integer. Define sets of indices as

Ix := {i = 0, 1, . . . ,m; j = 0, 1, . . . ,m− i},
Iyq := {i = 1, 2, . . . ,m; j = 1, 2, . . . , ⌈τi⌉ − ⌊(1− λ)i⌋}.

Let B be a matrix whose rows consist of coefficients of
g[i,j],λ(xpXp, xqXq, ypYp, yqYq) and g′[i,j],λ(xpXp, xqXq, ypYp, yqYq) with in-
dices in Ix and Iy,q respectively. If the shift-polynomials are ordered as

g[i,j],λ ≺ g′[i,j],λ,

g[i,j],λ ≺ g[i′,j′],λ, g
′
[i,j],λ ≺ g′[i′,j′],λ for i < i′,

g[i,j],λ ≺ g[i,j′],λ, g
′
[i,j],λ ≺ g′[i,j′],λ for j < j′,

and N−1 (mod em) is multiplied appropriately, then the matrix becomes trian-
gular with diagonals

– Xi+j
p Y

⌈λi⌉
p em−i for g[i,j],λ(xpXp, xqXq, ypYp, yqYq) with i such that i = 0 and

⌈λi⌉ − ⌈λ(i− 1)⌉ = 1,

– Xi+j
q Y

⌊(1−λ)i⌋
q em−i for g[i,j],λ(xpXp, xqXq, ypYp, yqYq) with i such that i ̸= 0

and ⌈λi⌉ − ⌈λ(i− 1)⌉ = 0,

– Xi
qY

⌊(1−λ)i⌋+j
q em−i for g′[i,j],λ(xpXp, xqXq, ypYp, yqYq).

A proof of the lemma is the most technical part of this paper. We prove it in
Section 3.4.

We compute the resulting condition of Theorem 2. The dimension n and the
determinant of the lattice det(B) = XsXY

sYp
p Y

sYq
q ese can be computed as:

n =
∑

(i,j)∈Ix

1 +
∑

(i,j)∈Iyq

1 =
λ+ τ

2
m2 + o(m2),

sX =
∑

(i,j)∈Ix

(i+ j) +
∑

(i,j)∈Iyq

i =
λ+ τ

3
m3 + o(m3),

sYp =
∑

(i,j)∈Ix

⌈λi⌉ = λ2

6
m3 + o(m3),

sYq =
∑

(i,j)∈Ix

⌊(1− λ)i⌋+
∑

(i,j)∈Iyq

(⌊(1− λ)i⌋+ j) =
τ2

6
m3 + o(m3),
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𝛼 

𝛿 
Theorem 4 Theorem 3 

Fig. 2. Comparison between our attack (Theorem 3) and the attack of Lu et al. (The-
orem 4) [28].

se =
∑

(i,j)∈Ix

(m− i) +
∑

(i,j)∈Iyq

(m− i) =
1 + λ+ τ

6
m3 + o(m3).

Applying the LLL reduction, the polynomials obtained from the output vectors
satisfy Howgrave-Graham’s lemma if XsXY

sYp
p Y

sYq
q ese < enm, i.e.,

(α+ β + δ − 1)
λ+ τ

3
+ β

λ2

6
+ (1− β)

τ2

6
− α

−1 + 2λ+ 2τ

6
< 0

by omitting low order terms ofm. To minimize the left hand side of the inequality,
we set the parameters λ = (1− β − δ)/β and τ = (1− β − δ)/(1− β), then the
condition becomes

δ < 1− β −
√
αβ(1− β)

as required. To satisfy the restrictions 0 < λ ≤ 1 and 1− λ < τ ≤ 1, β(1− β) ≤
α ≤ β/(1− β) should hold. ⊓⊔

As opposed to the attack of Theorem 1, that of Theorem 2 is applicable to
a balanced RSA, i.e., β = 1/2, for α ≤ 1. For a balanced RSA, we substitute
β = 1/2 and the attack becomes as follows.

Theorem 3. Let N = pq be an RSA modulus where the prime factors p and
q are the same bit-size. Let e = Nα and dq < N δ be a public/CRT exponent
respectively such that edq = 1 (mod (q − 1)). Given public elements N and e, if

δ <
1−

√
α

2
for α ≥ 1

4
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.
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By construction, the attack always outperforms that under Bleichenbacher-
May’s lattice construction. We also compare our attack with that of Lu et al. [29]
(Theorem 9 of [28]) which follows May’s modulo q approach.

Theorem 4 ([28]). Let N = pq be an RSA modulus where the prime factors p
and q are the same bit-size. Let e = Nα and dq < N δ be a public/CRT exponent
respectively such that edq = 1 (mod (q − 1)). Given public elements N and e, if

δ <
3− 4α

8
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

Figure 2 compares our attack (Theorem 3) and that of Lu et al. (Theorem
4). Our attack is better for all 1/4 < α < 1.

3.4 Proof of Lemma 3

In this section, we show a proof of Lemma 3 that is the most technical part of this
paper. Before the detailed proof, we explain the spirit of our triangular matrix.
The polynomials which we use contains four variables xp, xq, yp, yq. Furthermore,
there are two algebraic relations: xq = xp +1 and ypyq = N . By using the latter
relation, i.e., ypyq = N , we transform all monomials as they do not have both
yp and yq simultaneously where the same operation was also done in previous
works [3,12]. Moreover, we use an additional trick. By using the former relation,
i.e., xq = xp + 1, we transform all monomials as they do not have both xp and
xq simultaneously. More concretely, the variable xp appears only in monomials
where powers of yp are non-negative whereas the variable xq appears only in
monomials where powers of yq are positive. The simple operation is the key
technique of this paper.

Then we show the proof of Lemma 3.

Proof of Lemma 3. Since all g[i,j],λ(xp, xq, yp, yq) for i = 0 have only one mono-
mial xj

pe
m, these polynomials generate triangular basis matrix with diagonals

Xj
pe

m. Then remaining proof is inductive; we show that the basis matrix is still
triangular with other polynomials.

At first, we assume that polynomials g[i′,j′],λ(xp, xq, yp, yq) such that
g[i′,j′],λ(xp, xq, yp, yq) ≺ g[i,j],λ(xp, xq, yp, yq) generate a triangular matrix as
stated in Lemma 3. Then, we show that a matrix is still triangular with a new

polynomial g[i,j],λ(xp, xq, yp, yq) whose diagonal is xi+j
p y

⌈λi⌉
p em−i. By definition,

g[i,j],λ(xp, xq, yp, yq) = xj
pf

⌈λi⌉
p (xp, yp)f

⌊(1−λ)i⌋
q (xq, yq)e

m−i

= xj
p(N +Nxp − xpyp)

⌈λi⌉(1− xq + xqyq)
⌊(1−λ)i⌋em−i.

From the relation xq = xp + 1 and equivalently xp = xq − 1, the polynomial
becomes

= xj
p(Nxq − xpyp)

⌈λi⌉(xp + xqyq)
⌊(1−λ)i⌋em−i.
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By expanding (Nxq − xpyp)
⌈λi⌉ and (xp + xqyq)

⌊(1−λ)i⌋,

=xj
p

 ⌈λi⌉∑
ip=0

(
⌈λi⌉
ip

)
(−xpyp)

ip · (Nxq)
⌈λi⌉−ip

 ·

⌊(1−λ)i⌋∑
iq=0

(
⌊(1− λ)i⌋

iq

)
(xqyq)

iq · x⌊(1−λ)i⌋−iq
p

 em−i

=

⌈λi⌉∑
ip=0

⌊(1−λ)i⌋∑
iq=0

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N⌈λi⌉−ip ·

x⌊(1−λ)i⌋+ip−iq+j
p x⌈λi⌉−ip+iq

q yiqq yipp em−i.

From the relation ypyq = N , the polynomial becomes

=

⌊(1−λ)i⌋∑
iq=0

⌈λi⌉∑
ip=iq

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N⌈λi⌉−ip+iq ·

x⌊(1−λ)i⌋+ip−iq+j
p x⌈λi⌉−ip+iq

q yip−iq
p em−i

+

⌊(1−λ)i⌋−1∑
ip=0

⌊(1−λ)i⌋∑
iq=ip+1

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N⌈λi⌉·

x⌊(1−λ)i⌋+ip−iq+j
p x⌈λi⌉−ip+iq

q yiq−ip
q em−i.

Notice that there are no monomials that have yp and yq simultaneously. The
exponents of yp in the first summation are non-negative whereas the exponents
of yq in the second summation are positive. Hence, as we discussed above, we
replace all xq in the first summation by xp + 1 and replace all xp in the second
summation by xq − 1. Then, the polynomial becomes

=

⌊(1−λ)i⌋∑
iq=0

⌈λi⌉∑
ip=iq

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N⌈λi⌉−ip+iq ·

x⌊(1−λ)i⌋+ip−iq+j
p (xp + 1)⌈λi⌉−ip+iqyip−iq

p em−i

+

⌊(1−λ)i⌋−1∑
ip=0

⌊(1−λ)i⌋∑
iq=ip+1

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
N⌈λi⌉·

(xq − 1)⌊(1−λ)i⌋+ip−iq+jx⌈λi⌉−ip+iq
q yiq−ip

q em−i

=

⌊(1−λ)i⌋∑
iq=0

⌈λi⌉∑
ip=iq

⌈λi⌉−ip+iq∑
i′=0

(−1)ip
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)(
⌈λi⌉ − ip + iq

i′

)
·

N⌈λi⌉−ip+iqxi−i′+j
p yip−iq

p em−i

+

⌊(1−λ)i⌋−1∑
ip=0

⌊(1−λ)i⌋∑
iq=ip+1

⌊(1−λ)i⌋+ip−iq+j∑
i′=0

(−1)ip+i′
(
⌈λi⌉
ip

)(
⌊(1− λ)i⌋

iq

)
·
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⌊(1− λ)i⌋+ ip − iq + j

i′

)
N⌈λi⌉xi−i′+j

q yiq−ip
q em−i.

The polynomial has monomials for variables

– x
ipx
p y

ipy
p for ipy = 0, 1, . . . , ⌈λi⌉; ipx = ipy + ⌊(1− λ)i⌋+ j, . . . , i+ j,

– x
iqx
q y

iqy
q for iqy = 1, 2, . . . , ⌊(1− λ)i⌋; iqx = iqy + ⌈λi⌉, . . . , i+ j.

Then, we show that these variables except xi+j
p y

⌈λi⌉
p already appeared in the

diagonals of a basis matrix. The above variables appeared for diagonals of
g[i′,j′],λ(xpXp, xqXq, ypYp, yqYq) for

i′ = 0, 1, . . . , i− 1 such that ⌈λi′⌉ − ⌈λ(i′ − 1)⌉ = 1;

j′ = ⌊(1− λ)i⌋ − ⌊(1− λ)i′⌋+ j, . . . , i+ j − i′, and

i′ = 1, 2, . . . , i− 1 such that ⌈λi′⌉ − ⌈λ(i′ − 1)⌉ = 0;

j′ = ⌈λi⌉ − ⌈λi′⌉, . . . , i+ j − i′.

Since i′ < i, by our definition of the polynomial order,

g[i′,j′],λ(xpXp, xqXq, ypYp, yqYq) ≺ g[i,j],λ(xpXp, xqXq, ypYp, yqYq)

holds for all the above i′ and j′. All we have to show is that these polynomials
are selected in the lattice basis. For the purpose, we show that the indices

i′ = 0, 1, . . . , i− 1;

j′ = min{⌊(1− λ)i⌋ − ⌊(1− λ)i′⌋+ j, ⌈λi⌉ − ⌈λi′⌉}, . . . , i+ j − i′,

are contained in

i′ = 0, 1, . . . ,m; j′ = 0, 1, . . . ,m− i′.

Since 0 < λ ≤ 1, 0 ≤ i′ ≤ i, and j ≥ 0,

⌊(1− λ)i⌋ − ⌊(1− λ)i′⌋+ j ≥ 0 and ⌈λi⌉ − ⌈λi′⌉ ≥ 0

hold. Since i+ j ≤ m holds,

i+ j − i′ ≤ m− i′

holds. Then the statement holds. In the same manner, analogous proof is ob-
tained for the other polynomials g′[i,j],λ(xp, xq, yp, yq). We will show the remain-
ing proof in the full version. ⊓⊔

To end this section, we briefly show how to deduce Lemma 2 from Lemma 3.
The collection of shift-polynomials g[i,j](xp, yp) and g′′[i,j](xp, xq, yp, yq) in Lemma

2 are essentially the same as g[i,j],λ(xp, xq, yp, yq) and g′[i,j],λ(xp, xq, yp, yq) in

Lemma 3 for λ = 1. Hence, by setting the parameters (λ, τ) in Lemma 3 as (1, τq),
Lemma 3 show that g[i,j](xp, yp) and g′′[i,j](xp, xq, yp, yq) in Lemma 2 generate
a triangular matrix. To complete the proof of Lemma 2, we also use May’s
result [29] that showed that polynomials g[i,j](xp, yp) and g′[i,j](xp, yp) generate

a triangular matrix. As a result, g[i,j](xp, yp), g
′
[i,j](xp, yp), and g′′[i,j](xp, xq, yp, yq)

in Lemma 2 generates a triangular matrix.
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Fig. 3. Comparisons of recoverable bounds depending on lattice dimensions. The left
and the right figure is for β = 0.35 and β = 0.40, respectively.

3.5 Experimental results

We have implemented the experiment program in Magma 2.10 computer algebra
system [6] on a PC with Intel(R) Core(TM) Duo CPU(3.30GHz, 4.0GB RAM
Windows 7). Table 1 lists some theoretical and experimental results on factor-
ing two 1000-bit RSA moduli with varying bit-size of q. In all experiments, we
successfully find the factorization of these RSA moduli.

In [3], the experimental results are much better than their theoretical anal-
ysis. For example, for 440-bit factor q, with a lattice dimension of 63, in theory
the attack should not work (we can recover the small private key dp up to a size
of N−0.083), however, in practice, we succeed for dp with bit-size a 0.010-fraction
of N . Since our lattice construction captures the underlying sublattice structure
of [3]’s desired lattice, we can do better than [3]: with a lattice dimension of 66,
experimentally we can reconstruct dp with a size of N0.012.

Note that our result of Theorem 1 is an asymptotic improvement. In Table 2,
we present numerical values of δ for different values of β and lattice dimension.
Moreover, compared with [3], our method requires smaller lattice dimensions. For
β = 0.35 and β = 0.40, Figure 3 shows a comparison of these two approaches in
the terms of the bit-size of small secret exponent dp that can be attacked.

Table 1. For 1000-bit RSA moduli, asymptotic and experimental comparisons of small
dq attacks

Bitsize of q
Bleichenbacher-May [3] Our work

Asymptotic Expt. dim. L3 time Asymptotic Expt. dim. L3 time

305 0.210 0.160 63 53 min 0.230 0.170 56 15 min

355 0.140 0.100 63 44 min 0.164 0.100 58 16 min

405 0.075 0.050 63 35 min 0.103 0.055 66 57 min

440 0.033 0.010 63 35 min 0.064 0.012 66 60 min
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Table 2. Asymptotic bounds and lattice dimension for small δ with fixed lattice di-
mensions.

β = 0.45

δ 0.010 0.020 0.030 0.040 0.052

dim. 109 154 340 1055 Asymptotic

β = 0.48

δ 0.002 0.005 0.010 0.015 0.020

dim. 486 686 1491 5443 Asymptotic

4 Small dp and dq Attack

In this section, we propose an attack when both dp and dq are small. The attack
improves Jochemsz-May’s attack [22].

4.1 Our Attack

Recall the CRT-RSA key generation;

edq = 1 + kq(q − 1) and edp = 1 + kp(p− 1)

with some integers kq and kp. Hence, if we can solve the following simultaneous
modular equations, RSA modulus N can be factorized:

fq,1(xq,1, yq) = 1 + xq,1(yq − 1) = 0 mod e,

fp,2(xp,2, yp) = 1 + xp,2(yp − 1) = 0 mod e,

where the root is (xq,1, xp,2, yq, yp) = (kq, kp, q, p).
In addition, by multiplying p and q to the key generation equations respec-

tively, the following representations can be obtained:

edqp = p+ kq(N − p) = N + (kq − 1)(N − p),

edpq = q + kp(N − q) = N + (kp − 1)(N − q).

Then, we can also use the following modular equations:

fp,1(xp,1, yp) = N + xp,1(N − yp) = 0 mod e,

fq,2(xq,2, yq) = N + xq,2(N − yq) = 0 mod e,

where the root is (xp,1, xq,2, yp, yq) = (kq − 1, kp − 1, p, q).
To summarize the above discussion, we want to solve the following simulta-

neous modular equations:

fp,1(xp,1, yp) = N + xp,1(N − yp) = 0 mod e,

fq,1(xq,1, yq) = 1 + xq,1(yq − 1) = 0 mod e,

fp,2(xp,2, yp) = 1 + xp,2(yp − 1) = 0 mod e,
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fq,2(xq,2, yq) = N + xq,2(N − yq) = 0 mod e,

where the root is (xp,1, xq,1, xp,2, xq,2, yp, yq) = (kq − 1, kq, kp, kp − 1, p, q). Let
e = Nα, dp < Nδ, and dq < Nδ for a balanced RSA, i.e, q < p < 2q. The
absolute values of xp,1, xq,1, xp,2, xq,2 are bounded above by X = Nα+δ−1/2

within constant factors whereas the absolute values of yp and yq are bounded
above by Y = N1/2 within constant factors.

Unfortunately, an approach to solve the above four equations simultaneously
does not offer an improvement. The approach gives us only the same bound as
Theorem 3. Hence, we use an additional algebraic relation. From the CRT-RSA
key generation,

edq = 1 + kq(q − 1) and edp = 1 + kp(p− 1),

⇔ kq − 1 = kqq (mod e) and kp − 1 = kpp (mod e).

By multiplying these two equations, we obtain

(kq − 1)(kp − 1) = kqkpN (mod e).

Then the following new equation can be obtained:

h(xp,1, xq,1, xp,2, xq,2) = (N − 1)xp,1xp,2 + xp,1 +Nxp,2 = 0 (mod e)

= (N − 1)xq,1xq,2 +Nxq,1 + xq,2 = 0 (mod e).

The polynomial also has two representations as the previous polynomials. Notice
that the same equation as h(xp,1, xq,1, xp,2, xq,2) was already used by Galbraith
et al. [14]. We make use of these equations and obtain the following result.

Theorem 5. Let N = pq be an RSA modulus where p and q are the same bit-
size. Let e = Nα and dp, dq < N δ be a public/CRT exponent respectively such
that edq = 1 (mod (q − 1)) and edp = 1 (mod (p − 1)). Given public elements
N and e, if

δ <
1

2
−

√
α

6
for α ≥ 3

8
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

For the full size e, the attack works for δ < 1/2 − 1/
√
6 = 0.091 · · · which

is better than Jochemsz-May’s bound [22], i.e., δ < 0.073. Our attack is better
than all existing attacks.

Proof of Theorem 5. To solve the above modular equations, we use the following
shift-polynomials:

g[i1,i2,j1,j2,u](xp,1, xq,1, xp,2, xq,2, yp, yq)

:=xj1
p,1x

j2
p,2y

⌊(i1+i2)/2⌋
q f i1

p,1(xp,1, yp)f
i2
p,2(xp,2, yp)h

u(xp,1, xp,2, xq,1, xq,2)·
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em−(i1+i2+u),

g′[i1,i2,j1],p(xp,1, xq,1, xp,2, xq,2, yp, yq)

:=y⌊(i1+i2)/2⌋−j1
q f i1

p,1(xp,1, yp)f
i2
p,2(xp,2, yp)e

m−(i1+i2+u),

g′[i1,i2,j2],q(xp,1, xq,1, xp,2, xq,2, yp, yq)

:=y⌊(i1+i2)/2⌋+j2
q f i1

p,1(xp,1, yp)f
i2
p,2(xp,2, yp)e

m−(i1+i2+u),

with some positive integer m. For non-negative integers i1, i2, j1, i2, and u,
all the shift-polynomials share the common root as fp,1(xp,1, yp), fp,2(xp,2, yp),
fq,1(xq,1, yq), fq,2(xq,2, yq), and h(xp,1, xq,1, xp,2, xq,2) modulo em. Then we can
construct triangular basis matrices as follows.

Lemma 4. Let all the polynomials be defined as above. Let τ be a constant such
that 1/2 ≤ τ ≤ 1. Define sets of indices as

Ix :=



i1 = 0, 1, . . . ,m; i2 = 0, 1, . . . ,m− i1; j1 = j2 = 0;

u = 0, 1, . . . , ⌊m−(i1+i2)
2 ⌋, and

i1 = 0, 1, . . . ,m− 2; i2 = 1, 2, . . . ,m− 1− i1; j1 = 1;

j2 = 0;u = 0, 1, . . . , ⌊m−1−(i1+i2)
2 ⌋, and

i1 = 0, 1, . . . ,m; i2 = 0; j1 = 1, 2, . . . ,m− i1; j2 = 0;

u = 0, 1, . . . , ⌊m−(i1+j1)
2 ⌋, and

i1 = 0; i2 = 0, 1, . . . ,m; j1 = 0; j2 = 1, 2, . . . ,m− i2;

u = 0, 1, . . . , ⌊m−(i2+j2)
2 ⌋,


,

Iy,p :=

{
i1 = 0, 1, . . . ,m; i2 = 0, 1, . . . ,m− i1;

j1 = 1, 2, . . . , ⌈τ(i1 + i2)⌉ − ⌈(i1 + i2)/2⌉

}
,

Iy,q :=

{
i1 = 0, 1, . . . ,m; i2 = 0, 1, . . . ,m− i1;

j2 = 1, 2, . . . , ⌈τ(i1 + i2)⌉ − ⌊(i1 + i2)/2⌋

}
.

Let B be a matrix whose rows consist of coefficients
of g[i1,i2,j1,j2,u](xp,1Xp,1, xq,1Xq,1, xp,2Xp,2, xq,2Xq,2, ypYp, yqYq),
g′[i1,i2,j1],p(xp,1Xp,1, xq,1Xq,1, xp,2Xp,2, xq,2Xq,2, ypYp, yqYq), and

g′[i1,i2,j2],q(xp,1Xp,1, xq,1Xq,1, xp,2Xp,2, xq,2Xq,2, ypYp, yqYq) with indices in
Ix, Iy,p, and Iy,q, respectively. If the shift-polynomials are ordered as

g[i1,i2,j1,j2,u] ≺ g′[i1,i2,j1],p, g
′
[i1,i2,j2],q

,

g[i′1,i′2,j′1,j′2,u′] ≺ g[i1,i2,j1,j2,u] for i′1 + i′2 < i1 + i2,

g[i′1,i′2,j′1,j′2,u′] ≺ g[i1,i2,j1,j2,u] for i′1 + i′2 = i1 + i2, u
′ < u,

g[i′1,i′2,j′1,0,u] ≺ g[i1,i2,j1,0,u] for i′1 + i′2 = i1 + i2, j
′
1 < j1,

g[i′1,i′2,0,j′2,u] ≺ g[i1,i2,0,j2,u] for i′1 + i′2 = i1 + i2, j
′
2 < j2,

g′[i′1,i′2,j′1], g
′
[i′1,i

′
2,j

′
2],q

≺ g′[i1,i2,j1],p, g
′
[i1,i2,j2],q

for i′1 + i′2 < i1 + i2,

g′[i′1,i′2,j′1] ≺ g′[i1,i2,j1],p for i′1 + i′2 = i1 + i2, j
′
1 < j1,

g′[i′1,i′2,j′2],q ≺ g′[i1,i2,j2],q for i′1 + i′2 = i1 + i2, j
′
2 < j2,
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and N−1 (mod em) is multiplied appropriately, then the matrix becomes trian-
gular with diagonals

– Xi1+j1+u
p,1 Xi2+j2+u

p,2 Y
⌈(i1+i2)/2⌉
p em−(i1+i2+u) for g[i1,i2,j1,j2,u] if i1 + i2 is odd,

– Xi1+j1+u
q,1 Xi2+j2+u

q,2 Y
⌊(i1+i2)/2⌋
q em−(i1+i2+u) for g[i1,i2,j1,j2,u] if i1+ i2 is even,

– Xi1
p,1X

i2
p,2Y

⌈(i1+i2)/2⌉+j1
p em−(i1+i2) for g′[i1,i2,j1],p,

– Xi1
q,1X

i2
q,2Y

⌊(i1+i2)/2⌋+j2
q em−(i1+i2) for g′[i1,i2,j2],q.

We do not prove the lemma, however, the proof can be obtained in the same
manner as in Section 3.4. The polynomials which we use contain six variables
xp,1, xp,2, xq,1, xq,2, yp, yq. Furthermore, there are three algebraic relations, i.e.,
xq,1 = xp,1 + 1, xp,2 = xq,2 + 1, and ypyq = N . By using the last relation,
i.e., ypyq = N , we transform all monomials as they do not have both yp and yq
simultaneously as the proof of Lemma 3. In addition, by using the other relations,
i.e., xq,1 = xp,1 + 1 and xp,2 = xq,2 + 1, we transform all monomials as they do
not have both xp,1 and xq,1 simultaneously or both xp,2 and xq,2 simultaneously.
More concretely, the variables xp,1 and xp,2 appear only in monomials whose
exponents of yp are positive whereas the variables xq,1 and xq,2 appear only in
monomials whose exponents of yq are non-negative.

We compute the resulting condition of Theorem 5. The dimension n and the
determinant of the lattice det(B) = XsXY sY ese can be computed as:

n =
∑

(i1,i2,j1,j2,u)∈Ix

1 +
∑

(i1,i2,j1)∈Iy,p

1 +
∑

(i1,i2,j2)∈Iy,q

1

=
2τ

3
m3 + o(m3),

sX =
∑

(i1,i2,j1,j2,u)∈Ix

(i1 + i2 + j1 + j2 + 2u) +
∑

(i1,i2,j1)∈Iy,p

(i1 + i2)

+
∑

(i1,i2,j2)∈Iy,q

(i1 + i2)

=
τ

2
m4 + o(m4),

sY =
∑

(i1, i2, j1, j2, u) ∈
Ix s.t. i1 + i2 is odd

⌈
i1 + i2

2

⌉
+

∑
(i1, i2, j1, j2, u) ∈

Ix s.t. i1 + i2 is even

⌊
i1 + i2

2

⌋

+
∑

(i1,i2,j1)∈Iy,p

(⌈
i1 + i2

2

⌉
+ j1

)
+

∑
(i1,i2,j2)∈Iy,q

(⌊
i1 + i2

2

⌋
+ j2

)

=
τ2

4
m4 + o(m4),

se =
∑

(i1,i2,j1,j2,u)∈Ix

(m− (i1 + i2 + u)) +
∑

(i1,i2,j1)∈Iy,p

(m− (i1 + i2))
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+
∑

(i1,i2,j2)∈Iy,q

(m− (i1 + i2))

=
2τ + 1

12
m4 + o(m4).

Applying the LLL reduction, the polynomials obtained from the output vectors
satisfy Howgrave-Graham’s lemma if XsXY sY ese < enm, i.e.,(

α+ δ − 1

2

)
τ

2
+

1

2
· τ

2

4
+ α · 2τ + 1

12
< α · 2τ

3

by omitting low order terms ofm. To minimize the left hand side of the inequality,
we set the parameters τ = 1− 2δ, then the condition becomes

δ <
1

2
−
√

α

6

as required. To satisfy the restriction τ ≥ 1/2, δ ≤ 1/4 and equivalently α ≥ 3/8
should hold. ⊓⊔

4.2 Experimental results

We have implemented the experiment program of Section 4.1 in Magma
2.10 computer algebra system [6] on a PC with Intel(R) Core(TM) Duo
CPU(3.30GHz, 4.0GB RAM Windows 7). Table 3 lists the asymptotic and ex-
perimental results on factoring 1000-bit RSA moduli with varying dimension of
lattice under small decryption exponents. In all experiments, we successfully find
the factorization of these RSA moduli.

5 Attacks on the Variants

In this section, we study small CRT-exponent attacks on the RSA variants, i.e.,
the Multi-Prime RSA, Takagi’s RSA, and the RSA with multiple exponent pairs.
We extend our attack of Theorem 2 to the variants.

5.1 Multi-Prime RSA

In this section, we extends the small CRT-exponent attack for the Multi-Prime
RSA as follows.

Table 3. For 1000-bit RSA moduli, asymptotic and experimental comparisons of small
dp and dq attacks on balanced CRT-RSA

Bitsize of N Asymptotic Expt. (m,dim.) L3 time (in sec.)

1000 0.091
0.034 (4,95) 358.787
0.053 (6,252) 31390.147
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Fig. 4. Comparisons between our attacks of Theorem 6 and 7. The left and the right
figure is for r = 3 and 4, respectively.

Theorem 6. Let N =
∏r

i=1 pi be an RSA modulus where r ≥ 2 and all the
prime factors p1, . . . , pr are the same bit-size. Let e = Nα and dpi

< N δi be
a public/CRT exponent respectively such that edpi = 1 (mod (pi − 1)) for all
i = 1, . . . , r. Given public elements N and e, if

min
i∈{1,...,r}

δi <
1−

√
(r − 1)α

r
for α >

r − 1

r2
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for the Multi-Prime RSA in the sense that
Theorem 6 becomes the same as Theorem 3 for r = 2.

We also extend May’s modulo pi attack [29] for the Multi-Prime RSA as
follows.

Theorem 7 (Adapted from [28]). Let N =
∏r

i=1 pi be an RSA modulus
where r ≥ 2 and all the prime factors p1, . . . , pr are the same bit-size. Let e =
Nα and dpi < N δi be a public/CRT exponent respectively such that edpi = 1
(mod (pi − 1)) for all i = 1, . . . , r. Given public elements N and e, if

min
i∈{1,...,r}

δi <
r + 1− r2α

2r2
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for the Multi-Prime RSA in the sense
that Theorem 7 becomes the same as Theorem 4 for r = 2. We omit the proof
since it is almost the same as Theorem 9 of [28]. The bound of Theorem 6 is
always better than or equal to that of Theorem 7. Figure 4 compares the attack
condition between Theorem 6 and 7 for r = 3 and 4.
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5.2 Takagi’s RSA

In this section, we extends the small CRT-exponent attack for Takagi’s RSA as
follows.

Theorem 8. Let N = prq be an RSA modulus where r ≥ 1 and the prime
factors p and q are the same bit-size. Let e = Nα and dp < N δp , dq < N δq be a
public/CRT exponent respectively such that edp = 1 (mod (p− 1)) and edq = 1
(mod (q − 1)). Given public elements N and e, if

min{δp, δq} <
1−

√
rα

r + 1
for α >

r

(r + 1)2
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for Takagi’s RSA in the sense that
Theorem 8 becomes the same as Theorem 3 for r = 1. Although Shinohara et
al. [39] extended Bleichenbacher-May’s attack, our attack is always better.

We also extend May’s modulo a prime factor attack [29] for Takagi’s RSA as
follows.

Theorem 9 (Adapted from [29]). Let N = prq be an RSA modulus where
r ≥ 1 and the prime factors p and q are the same bit-size. Let e = Nα and
dp < N δp , dq < N δq be a public/CRT exponent respectively such that edp = 1
(mod (p− 1)) and edq = 1 (mod (q − 1)). Given public elements N and e, if

δp <
2r + 1− (r + 1)2α

2(r + 1)2
or δq <

r + 2− (r + 1)2α

2(r + 1)2
,

then N can be factorized in polynomial time by assuming that polynomials which
are derived from LLL reduced bases are algebraically independent.

We can successfully extend an attack for the Takagi’s RSA in the sense that
Theorem 9 becomes the same as Theorem 4 for r = 1. We omit the proof since
it is almost the same as Theorem 9 of [28]. The bound for δq of Theorem 8 is
always better than or equal to that of Theorem 9, however, the bound for δp of
Theorem 9 is better than or equal to that of Theorem 8. Figure 5 compares the
attack condition for small dp between Theorem 8 and 9 for r = 2 and 3.

5.3 RSA with Multiple Exponent Pairs

In this section, we extends the small CRT-exponent attack for the RSA with
multiple exponent pairs as follows.

Theorem 10. Let N = pq be an RSA modulus where the prime factors p and
q are the same bit-size. Let eℓ = Nα and dq,ℓ < Nδ for ℓ = 1, . . . , r be a
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Fig. 5. Comparisons between our attacks of Theorem 8 and 9. The left and the right
figure is for r = 2 and 3, respectively.

public/CRT exponent respectively such that eℓdq,ℓ = 1 (mod (q − 1)). Given
public elements N and e1, . . . , er, if

δ <
1

2
−
√

α

3r + 1
,

then N can be factorized in time polynomial in input length and exponential in
r by assuming that polynomials which are derived from LLL reduced bases are
algebraically independent.

We can successfully extend the attack for RSA with multiple exponent pairs in
the sense that Theorem 10 becomes the same as Theorem 3 for r = 1. We do not
think May’s modulo q approach is an appropriate way for the attack scenario,
hence, we do not extend it. Peng et al. proposed the attack (Theorem 2 of [34])
which extended Bleichenbacher-May’s [3] and works when δ < (9r−14)/(24r+8)
for an α = 1. Theorem 10 is always better than the attack of Peng et al. Indeed,
even if there are infinitely many exponent pairs r, the attack of Peng et al.
works for δ < 3/8 whereas our attack works for the same bound of δ with only
21 exponent pairs. Figure 6 compares recoverable sizes of dq between our attack
and that of Peng et al. [34].

6 Concluding Remarks

In this paper, we studied a lattice-based cryptanalysis of the small CRT-exponent
RSA. We developed a novel lattice construction technique that is specialized to
the CRT-RSA key generation and proposed several improved attacks. When a
prime factor p is significantly smaller than the other prime factor q with a small
dq, we solved an open problem which was claimed in [3,29]; we proposed an
attack that works for p < N0.5. When both dp and dq are small, we proposed an
attack that works for dp, dq < N0.091 with a full size e. We also proposed attacks
on the RSA variants, i.e., the Multi-Prime RSA, Takagi’s RSA, and RSA with
multiple exponent pairs.
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Fig. 6. Comparison between our attack (Theorem 10) and the attack of Peng et al. [34]
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