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Abstract. We describe a new succinct zero-knowledge argument proto-
col with the following properties. The prover commits to a large data-
set M , and can thereafter prove many statements of the form ∃w :
Ri(M,w) = 1, where Ri is a public function. The protocol is succinct
in the sense that the cost for the verifier (in computation & communi-
cation) does not depend on |M |, not even in any initialization phase.
In each proof, the computation/communication cost for both the prover
and the verifier is proportional only to the running time of an oblivious
RAM program implementing Ri (in particular, this can be sublinear in
|M |). The only costs that scale with |M | are the computational costs of
the prover in a one-time initial commitment to M .

Known sublinear zero-knowledge proofs either require an initialization
phase where the work of the verifier is proportional to |M | and are there-
fore sublinear only in an amortized sense, or require that the computa-
tional cost for the prover is proportional to |M | upon each proof.

Our protocol uses efficient crypto primitives in a black-box way and is
UC-secure in the global, non-programmable random oracle, hence it does
not rely on any trusted setup assumption.

1 Introduction

A zero-knowledge proof (or argument) allows a prover to convince a verifier that
a statement ∃w : R(w) = 1 is true, without revealing anything about the witness
w. In this work we study the problem of zero-knowledge proofs concerning large
datasets. For example, suppose Alice holds a large collection of files, and wants
to prove that there is a file in her collection whose SHA3-hash equals some public
value.

Most techniques for zero-knowledge proofs are a poor fit for proving things
about large data, since they scale at least linearly with the size of the witness.
For realistically large data, it is necessary to adopt methods that have sublinear
cost. There are several existing techniques for zero-knowledge proofs/arguments
that have sublinear cost:
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PCP techniques: Kilian [27] and Micali [30] were the first to describe proof
systems in which the verifier’s cost is sublinear. The technique makes use of prob-
abilistically checkable proofs (PCPs), which are proofs that can be verified by
inspecting only a small (logarithmic) number of positions. Followup work has
focused on improving the performance of the underlying PCP systems [9,6,4].
Besides the fact that constructing a PCP proof is still quite an inefficient pro-
cedure, the main drawback of the PCP approach is that if the prover wants to
prove many statements about a single dataset M , he/she must expend effort
proportional to |M |, for each proof.

SNARKs: Succinct non-interactive arguments of knowledge (SNARKs)
[11,17,10,8] are the most succinct style of proof to-date. In the most efficient
SNARKs, the verifier only processes a constant number of group elements. Born
as a theoretically intriguing object that pushed the limit of proof length to the
extreme, SNARKs have won the attention of the practical community [33,8,7,13]
after an open-source library (libsnark [1]) was created, proving the concrete ef-
ficiency of such approach and resulting in its use in real-world applications such
as Zerocash [5]. However, similar to the PCP approach, the main drawback of
SNARKs is that each proof requires work for the prover that is proportional
to the size of the dataset. Moreover, while SNARKs do require a trusted CRS,
they are not directly compatible with the UC-framework due to their use of non
black-box knowledge extraction (A recent work [28] put forward “snark-lifting”
techniques to upgrade SNARKS into UC-secure NIZK. This transformation how-
ever results in zero-knowledge proofs whose sizes are linear in the witness instead
of constant as in regular SNARKs.)

Oblivious RAM: A recent trend in secure computation is to represent
computations as RAM programs rather than boolean circuits [22,2,24]. This
leads to protocols whose cost depends on the running time of the RAM program
(which can be sublinear in the data size). Looking more closely, however, the
RAM program must be an oblivious RAM. An inherent feature of oblivious
RAM programs is that there must be an initialization phase in which every
bit of memory is touched. In existing protocols, this initialization phase incurs
linear cost for all parties. Therefore, RAM-based protocols are sublinear only in
an amortized sense, as they incur an expensive setup phase with cost proportional
to the data size.

Our results. We construct a zero-knowledge argument based on RAM programs,
with the following properties:

– A prover can commit to a large (private) dataset M , and then prove many
statements of the form ∃wi : Ri(M,wi) = 1, for public Ri.

– The phase in which the prover commits to M has |M | computation cost for
the prover. This is the only phase in which the prover’s effort is linear in
M , but this effort can be reused for many proofs. Unlike prior ZK proofs
based on RAM programs [24], the cost to the verifier (in communication &
computation) is constant in this initial phase. Unlike other approaches based
on PCPs & SNARKs, the expensive step for the prover can be reused for
many proofs about the same data.
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– The communication/computation cost for both parties in each proof is pro-
portional to the running time of a (oblivious) RAM program implementing
Ri. In particular, ifRi is sublinear in |M |, then the verifier’s cost is sublinear.
In succinct proofs based on PCP/SNARKs, on the other hand, computation
cost for the prover is always proportional to |M |.

– The protocol is proven UC-secure based only on a global, non-programmable
random oracle. In particular, there are no trusted setup assumptions.

On non-standard assumptions. Our protocol uses a non-programmable random
oracle. We point out that if one wishes to achieve UC security in a succinct
protocol, then some non-standard-model assumption is required. In particular,
the simulator must be able to extract the dataset M of a corrupt prover during
the commitment phase. In the standard model, this would require the prover to
send at least |M | bits of data in the protocol.4

A global (in the sense of [12]), non-programmable random oracle is arguably
the mildest non-standard-model assumption. We point out that SNARKs also
use non-standard-model assumptions, such as the knowledge of exponent as-
sumptions (KEA), which are incompatible with the UC framework [28].

2 Our techniques

Our goal is to construct ZK proofs where the overhead of the verifier does not
depend on |M |, not even in the initialization phase. Moreover we insist the
computational overhead for P when computing a proof is proportional only to
the running time of the RAM program representing R(M,w), and not on |M |.
The latter requirement immediately rules out any circuit-based approach, such
as PCP proof, or SNARKs where the relation R(M,w) is unrolled into a boolean
circuit of size at least |M |.

Towards achieving complexity that is proportional only to the running time
of R, the starting point is to represent R as a (oblivious) RAM program. An
oblivious RAM [31] is a RAM program whose access pattern (i.e., the set I of
memory addresses accessed, along with whether the accesses are reads or writes)
leaks nothing about the private intermediate values of the computation. The
transformation from an arbitrary RAM computation to an oblivious one incurs
a small polylogarithmic overhead in running time and in the size of the memory.
However, once the memory is in an ORAM-suitable format, it can be persistently
reused for many different ORAM computations.

Hu et al. [24] provide a ZK proof of knowledge protocol for RAM programs
that is sublinear in the amortized sense: the protocol has an initial setup phase
in which both parties expend effort proportional to |M |. After this initializa-
tion phase, each proof of the form “∃w : R(M,w) = 1” has cost (for both
parties) proportional only to the running time of R(M,w). There are other
works [29,2,18,16,15] that can be used to construct malicious-secure two-party

4 Work that pre-dates the UC security model avoids this problem by using a simulator
that rewinds the prover — a technique that is not possible in the UC model.
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computation of general functionalities based on RAM programs. Compared to
[24], these other techniques are overkill for the special case of ZK functionalities.
All of these techniques result in sublinear performance only in the amortized
sense described above.

Our goal is to achieve similar functionality as [24] without expensive effort by
the verifier in the initialization phase. Looking more closely at the initialization
phase of [24], the two parties engage in a secure two-party protocol where they
jointly compute a shared representation of each block ofM (specifically, a garbled
sharing, where the verifiers has values l0, l1 for each bit, while the prover learns
lb if the corresponding bit of M is b).

Towards removing the verifier’s initial overhead, a natural approach is to
remove the participation of V in the setup phase, and have P commit succinctly
to the memory using a Merkle Tree. Then later in the proof phase, P can prove
that the RAM program accepts when executed on the values stored within the
Merkle Tree.

Technical challenge (Extraction): Unfortunately, this natural approach leads
to challenges in the UC model. Consider a malicious prover who convinces a
verifier of some statement. For UC security, there must exist a simulator that
can extract the (large) witness M . But since the main feature of this proof is that
the total communication is much shorter than |M |, it is information-theoretically
impossible for the simulator to extract M in the standard model.

Instead, we must settle for a non-standard-model assumption. We use the
global random oracle (gRO) of [12], which equips the UC model with a global,
non-programmable random oracle. Global here means that the same random
oracle is used by all the protocol executions that are run in the world, and
this framework was introduced precisely to model the real world practice of
instantiating the random oracle with a single, publicly known, hash function.

A non-programmable random oracle allows the simulator to observe the
queries made by an adversary. Suppose such an oracle is used as the hash func-
tion for the Merkle tree. Then the simulator can use its ability to observe an
adversary’s oracle queries to reconstruct the entire contents of the Merkle tree
from just the root alone.

Now that the Merkle tree is constructed with a random oracle as its hash
function, authenticating a value to the Merkle tree is a computation that in-
volves the random oracle. Hence, we cannot use a standard ZK proof to prove
a statement that mentions the logic of authenticating values in the Merkle tree.
Any Merkle-tree authentication has to take place “in the open.” Consequently,
the leaves of the Merkle tree need to be revealed “in the open” for each au-
thentication. Therefore, the leaves of the Merkle tree must not contain actual
blocks of the witness, but commitments to those blocks (more specifically, UC
commitments so the simulator can further extract the RAM program’s memory).

Another challenge for extraction comes from the fact that the Merkle tree
contains only an ORAM-ready encoding of the logical data M . A simulator can
extract the contents of the Merkle tree, but must provide the corresponding
logical data M to the ideal functionality. We therefore require an ORAM scheme
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with the following nonstandard extractability property: Namely, there should be
a way to extract, from any (possibly malicious) ORAM-encoded initial memory,
corresponding logical data M that “explains” the ORAM-encoded memory. We
formally define this property and show that a simple modification of the Path
ORAM construction [36] achieves it.

Consistency across Multiple ORAM Executions. An oblivious RAM program
necessarily performs both physical reads and writes, even if the underlying logi-
cal RAM operations are read-only. This means that each proof about the contents
of M modifies M . Now that the verifier has no influence on the Merkle-tree com-
mitment of M , we need a mechanism to ensure that the Merkle-tree commitment
to M remains consistent across many executions of ORAM programs.

Additionally, an ORAM also requires a persistent client state, shared be-
tween different program executions. However, in our setting it suffices to simply
consider a distinguished block of memory — say, M [0] — as the storage for the
ORAM client state.

To manage the modifications made by RAM program executions, we have
the prover present commitments to both the initial value and final value of each
memory block accessed by the program. The prover (A) proves that the values
inside these commitments are consistent with the execution of the program; (B)
authenticates the commitments of initial values to the current Merkle tree; (C)
updates the Merkle tree to contain the commitments to the updated values. In
this way, the verifier can be convinced that RAM program accepts, and that the
Merkle tree always encodes the most up-to-date version of the memory M .

In more detail, the protocol proceeds as follows. In the initialization phase,
the prover processes M to make it an ORAM memory. She commits individually
to each block of M and places these commitments in a Merkle tree. She sends
the root of the Merkle tree to the verifier.

Then (repeatedly) to prove R(M) = 1 for an oblivious RAM program R, the
parties do the following:

1. The prover runs R in her head. Let I be the set of blocks that were accessed
in this execution. Let M [I] denote the initial values in M at those positions,
and let M ′[I] denote the values in those positions after R has terminated.

2. The prover sends I to the verifier, which leaks no information if the RAM
program is oblivious.

3. The prover sends the commitments to the M [I] blocks which are stored in
the Merkle tree. She authenticates each of them to the root of the Merkle
tree.

4. The prover generates commitments to the blocks of M ′[I] and sends them
to the verifier. She gives authenticated updates to the Merkle tree to replace
the previous M [I] commitments with these new ones.

5. The prover then proves in zero-knowledge that the access pattern I, the val-
ues inside the commitments to M [I], and the values inside the commitments
to M ′[I] are consistent with an accepting execution of R (i.e., R indeed gen-
erates access pattern I and accepts when M [I] contains the values within
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the commitments that the prover has shown/authenticated). Importantly,
the witness to this proof consists of only the openings of the commitments
to M [I] and M ′[I] and not the entire contents of M . We can instantiate this
proof using any traditional (linear-time) ZK proof protocol.

Note that the cost to the prover is linear in |M | in the initialization phase, al-
though the communication cost is constant. The cost to both parties for each
proof depends only on the running time of R. Also, all Merkle-tree authentica-
tions are “in the open,” so the approach is compatible with a random-oracle-
based Merkle tree.

Note that ORAM computations inherently make read/write access to their
memory, even if their logical computation is a read-only computation. Hence our
protocol has no choice but to deal with reads and writes by the program R. As
a side effect, our protocol can be used without modification to provably perform
read/write computations on a dataset.

Technical challenge (black-box use of commitments): Since our construction will
already use the global random oracle model, we would like to avoid any further
setup assumptions. This means that the UC commitments in our scheme will
use the random oracle.

At the same time, the last step of our outline requires a zero-knowledge
proof about the contents of a commitment scheme. We therefore need a method
to prove statements about the contents of commitments in a way that treats the
commitment scheme in a black-box way.

Towards this, we borrow well-known techniques from previous work on black-
box (succinct) zero-knowledge protocol [25,23,32]. Abstractly, suppose we want
to commit to a value m and prove that the committed value satisfies f(m) = 1.
A black-box commitment to m will consist of UC-secure commitments to the
components of (e1, . . . , en), where (e1, . . . , en) ← Code(m) is an encoding of
m in an error correcting code. The prover uses (e1, . . . , en) as a witness in a
standard ZK proof that f(Decode(e1, . . . , en)) = 1. The statement being proven
does not mention commitments at all. However, we show how to modify the ZK
proof so that it reveals to the verifier a random subset of the ei components
as a side-effect. The verifier can then ask the prover to open the corresponding
ei-commitments to prove that they match.

Suppose the error-correcting encoding has high minimum distance. Then in
order to cheat successfully, the prover must provide a witness to the ZK proof
with many ei values that don’t match the corresponding commitments. But,
conditioned on the fact that enough ei’s are revealed, this would lead to a high
chance of getting caught. Hence the prover is bound to use a witness in the ZK
proof that coincides with the contents of the commitment.

We note that each black-box commitment is used in at most two proofs — one
when that block of memory is written and another when that block of memory
is read. This fact allows us to choose a coding scheme for which no information
about m is revealed by seeing two random subsets of ei’s.
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In summary it suffices to construct a modified ZK proof protocol that reveals
a random subset of the ei witness components. We show two instantiations:

– In the “MPC in the head” approach of [25], the prover commits to views of
an imagined MPC interaction, and opens some subset of them. For example,
the computation of f(Decode(e1, . . . , en)) may be expressed as a virtual 3-
party computation where each simulated party has an additive share of the
ei’s. The prover commits to views of these parties and the verifier asks for
some of them to be opened, and checks for consistency.
We modify the protocol so that the prover commits not only to each virtual
party’s view, but also commits individually to each virtual party’s share
of each ei. A random subset of these can also be opened (for all virtual
parties), and the verifier can check them for consistency. Intuitively, the ei’s
that are fully revealed are bound to the ZK proof. That is, the prover cannot
deny that these ei values were the ones actually used in the computation
f(Decode(e1, . . . , en)).

– The ZK protocol of Jawurek et al. [26] is based on garbled circuits. In fact,
their protocol is presented as a 2PC protocol for the special class of functions
that take input from just one party (and gives a single bit of output). This
special class captures zero-knowledge, since we can express a ZK proof as an
evaluation of the function fx(w) = R(x,w) for an NP-relation R, public x,
and private input w from the prover. In other words, ZK is a 2PC in which
the verifier has no input.
We show that their protocol extends in a very natural way to the case of 2PC
for functions of the form f(x, y) = (y, g(x, y)) — i.e., functions where both
parties have input but one party’s input is made public. Then in addition
to proving that f(Decode(e1, . . . , en)) = 1, we can let the verifier have input
that chooses a public, random subset of ei’s to reveal. As above, the prover
cannot deny that these are the ei values that were actually used in the
computation of f(Decode(e1, . . . , en)) = 1.

Technical Challenge (Non-interactive UC-commitments in the gRO): In the
above outline, we assume that the commitment scheme used in the construc-
tion is instantiated with a UC-secure commitment scheme in the gRO model.
For our application we crucially need a UC-commitment with non-interactive
commitment phase, meaning that a committer can compute a commitment
without having to interact with the verifier. To see why this is crucial, recall that
in the Setup phase the prover needs to commit to each block of the memory M
using a UC-commitment. If the commitment procedure was interactive, then the
verifier (who is the receiver of the commitment) will need to participate. This
would lead to a linear (in |M |) effort required for the verifier.

Unfortunately, known UC-commitments in the gRO model [12] are interac-
tive 5. Therefore, as an additional contribution, in this work we design a new

5 Several techniques exist that construct equivocal commitments from an extractable
commitment, and could be potentially adopted in the gRO model. Unfortunately, all
such techniques require interaction.
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commitment scheme that is UC-secure in the gRO and has non-interactive com-
mitment and decommitment. Our new commitment scheme is described in Fig. 5.

Optimal complexity by combining ORAM and PCP. It is possible to achieve
optimal complexity (i.e., polylog|M | for V and O(T ) for P , where T is the
program’s running time) by combining ORAM and PCP-based ZK proofs as
follows. Upon each proof, P runs the ORAM in his head and succinctly commits
to the ORAM states (using Merkle Tree, for example). Then P proves that the
committed ORAM states are correct and consistent with the committed memory
M , using PCP-based ZK. The use of PCP guarantees that V only reads a few
positions of the proof, while the use of ORAM bounds the work of P to O(T ).
Unfortunately, this approach requires a non-black-box use of the hash function,
and as such it is not compatible with the use of random oracles, and does not
yeild itself to efficient implementation.

Note that plugging in the black-box succinct ZK proof developed in [23]
would not give the desired complexity. Very roughly, this is because proving
consistency of T committed positions using [23]’s techniques, requires to open
at least T paths.

3 Preliminaries

3.1 The gRO model

This global random oracle model was introduced by Canetti et al. in [12] to
model the fact that in real world random oracles are typically replaced with a
single, publicly known, hash function (e.g., SHA-2) which is globally used by all
protocols running in the world. The main advantage of adopting gRO, besides
being consistent with the real world practice of using a global hash function, is
that we are not assuming any trusted setup assumption. In order to be global, the
gRO must be non programmable. This means that the power of the simulator
lies exclusively in his ability to observe the queries made by an adversary to
gRO. Therefore, when modeling a functionality in the gRO model, [12] provides
a mechanism that allows the simulator for a session sid to obtain all queries to
gRO that start with sid.

The global random oracle functionality GgRO of [12] is depicted Fig. 1. GgRO
has the property that “leaks” to an adversary (the simulator) all the illegitimate
queries 6. The reader is referred to [12] for further details on the gRO model.

3.2 Ideal Functionalities

We require a commitment functionality Ftcom for the gRO model; we defer details
to the full version. The main difference with the usual commitment functionality

6 In each session sid, an illegitimate query to GgRO is a query that was made with an
index sid′ 6= sid
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is that in Ftcom, the simulator of session sid, requests the set Qsid of queries
starting with prefix sid submitted to GgRO.

Our final protocol realizes the zero-knowledge functionality described in Fig. 2.
It captures proving recurring statements about a large memory M where M can
be updated throughout the process. This functionality consists of two phases:
in the Setup phase, the prover sends a dataset M , for a session sid. This is
a one-time phase, and all subsequent proofs will be computed by Fzk over the
committed dataset M . In the Proof phase, P simply sends the relation Rl that
he wishes to run over the data M , and possibly a witness w. A relation can be
seen as a RAM program that takes in input (M,w). The evaluation of the RAM
program can cause M to be updated.

Our main protocol can be seen as a way to reduce Fzk (succinct ZK of
RAM execution) to a series of smaller zero-knowledge proofs about circuits.

The functionality FC1,C2

check (Figure 3) captures a variant of ZK proofs for boolean
circuits that we require. In particular, while in standard ZK only the prover
has input (the witness), in this generalization the verifier also has input, but its
input will be revealed to the prover by the end of the proof. Later we show how
to instantiate this functionality using either the garbled-circuit-based protocol
of [26] or the MPC-in-the-head approach of [25,19].

3.3 Encoding Scheme

A pair of polynomial time algorithms (Code,Decode) is an encoding scheme with
parameters (d, t, κ) if it satisfies the following properties.

– The output of Code is a vector of length κ.
– Completeness. For all messages m, m = Decode(Code(m)).
– Minimum distance: For any m 6= m′, the two codewords Code(m) and

Code(m′) are different in at least d indices.
– Error correction: For any m, and any codeword C that is different from

Code(m) in at most d/2 positions, m← Decode(C).
– t-Hiding. For anym, any subset of 2t indices of Code(m) information-theoretically

hide m.

Let s ∈ N denote the statistical security parameter. We observe that we
can use Reed-Solomon codes to obtain an encoding satisfying the above prop-
erties with κ = 4s, d = 2s, and t = s. To encode a message m from a fi-
nite field F, we generate a random polynomial P of degree 2s over F such that
P (0) = m. The codeword is the evaluation of P at κ = 4s different points i.e.
C = (P (1), . . . , P (4s)). To decode a message, we use the well-known decoding
algorithm of Berlekamp and Welch for Reed-Solomon codes.

Hiding follows from the security of Shamir’s Secret Sharing: any t = 2s points
on a polynomial of degree 2s do not leak any information about the secret P (0).
Minimum distance d = 2s follows from the observation that if two encodings
agree in more than 2s points, then they must in fact be the same polynomial
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Functionality GgRO

Parameters: output length `(λ) and a list F̄ of ideal functionality programs.

1. Upon receiving a query x, from some party P = (pid, sid) or from the adversary
S do:

– If there is a pair (x, v) for some v ∈ {0, 1}`(λ) in the (initially empty) list Q
of past queries, return v to P . Else, choose uniformly v ∈ {0, 1}`(λ) and store
the pair (x, v) in Q. Return v to P .

– Parse x as (s, x′). If sid 6= s then add (s, x′, v) to the (initially empty) list of
illegitimate queries for SID s, that we denote by Q|s.

2. Upon receiving a request from an instance of an ideal functionality in the list F̄ ,
with SID s, return to this instance the list Q|s of illegitimate queries for SID s.

Fig. 1. GgRO

Functionality Fzk
Parties: P and V and adversary Sim.

– Setup. On input (sid, INIT,M) from P , if no previous init command has been
given, then record M . Else, do nothing.

– l-th Proof. On input (PROVE, sid|l,Rl, w) from P : evaluate (M ′, b)= Rl(M,w).
If b = 1 send (ACCEPT, sid|l) to V . Set M = M ′.

– When asked by the adversary, obtain from GgRO the list Qsid of illegitimate queries
that pertain to SID sid, and send Qsid to S.

Fig. 2. Fzk

Functionality FC1,C2
check

Parameterized by: Two check circuits C1, C2 that each take one input.
Parties: P and V and adversary Sim.

– Challenge. On input (CHALLENGE, sid, r) from V , if there is no previous sid and
C2(r) = 1, record r. Else, do nothing.

– Proof. On input (PROVE, sid,W) from P , if C1(W) = 1, the Fcheck outputs
(ACCEPT, sid, ({W[i]}i,ri=1) to party V and (r, sid) to P .

Fig. 3. FC1,C2
check

and hence encode the same value. Error correction follows from the Berlekamp-
Welch decoding algorithm, which can efficiently correct errors up to half the
minimum distance.

3.4 Oblivious RAM Programs

Oblivious RAM (ORAM) programs were first introduced by Goldreich & Ostro-
vsky [21]. ORAM provides a wrapper that encodes a logical dataset as a physical
dataset, and translates each logical memory access into a series of physical mem-
ory accesses so that the physical memory access pattern leaks nothing about the
underlying logical access pattern.
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Syntactically, let Π be a RAM program that operates on memory M and also
takes an additional auxiliary input w. We write (M ′, z) ← Π(M,w) to denote
that when Π runs on memory M and input w, it modifies the memory to result
in M ′ and outputs z.

We use M to represent the logical memory of a RAM program and M̂ to
indicate the physical memory array in Oblivious RAM program. We consider all
memory to be split into blocks, where M [i] denotes the ith block of M .

An Oblivious RAM (wrapper) consists of algorithms (RamInit,RamEval) with
the following meaning:

– RamInit takes a security parameter and logical memory M as input, and
outputs a physical memory M̂ and state st.

– RamEval takes a (plain) RAM program Π, auxiliary input w, and state st

as input, and outputs an updated memory M̂ ′, updated state st, and RAM
output z.

In general these algorithms are randomized. When we wish to explicitly refer to
specific randomness used in these algorithms, we write it as an additional explicit
argument ω. When we omit this extra argument, it means the randomness is
chosen uniformly.

Definition 1. Let (RamInit,RamEval) be an ORAM scheme. For all M and
sequences of RAM programs Π1, . . . ,Πn and auxiliary inputs w1, . . . , wn, and
all random tapes ω0, . . . , ωn, define the following values:

– RealOutput(M , Π1, . . ., Πn, w1, . . . , wn):
Set M0 = M . Then for i ∈ [n], do (Mi, zi) = Πi(Mi−1, wi). Return (z1, . . . , zn).

– OblivOutput(M , Π1, . . ., Πn, w1, . . ., wn, ω0, . . ., ωn):

Set (M̂0, st0) = RamInit(1k,M ;ω0). Then for i ∈ [n], do (M̂i, sti, z
′
i) =

RamEval(Πi, M̂i−1, sti−1, wi; ωi). Return (z′1, . . . , z
′
n).

The ORAM scheme is correct if RealOutput(M,Π1, . . . ,Πn, w1, . . . , wn) and
OblivOutput(M,Π1, . . . ,Πn, w1, . . . , wn, ω0, . . . , ωn) agree with overwhelming prob-
ability over choice of random ωi.

The ORAM scheme is sound if for all ω0, . . . , ωn, the vectors RealOutput(M ,
Π1, . . ., Πn, w1, . . ., wn) and OblivOutput(M , Π1, . . ., Πn, w1, . . ., wn, ω0, . . .,
ωn) disagree only in positions where the latter vector contains ⊥.

In our protocol, we allow the adversary to choose the randomness to the ORAM
construction. The soundness property guarantees that the adversary cannot use
this ability to falsify the output of the RAM program. At worst, the adversary
can influence the probability that the RAM program aborts.

In our protocol, the simulator for a corrupt prover can extract only the
ORAM-initialized memory M̂ . However, the simulator must give the logical
memory M to the ideal functionality. For this reason, we require an ORAM
construction that is extractable in the following sense:
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Definition 2. An ORAM scheme (RamInit,RamEval) is extractable if there is
a function RamExtract with the following property. For all (possibly maliciously

generated) (M̂, st), all M and sequences of RAM programs Π1, . . . ,Πn and aux-
iliary inputs w1, . . . , wn define the following:

– Set M0 ← RamExtract(M̂, st). Then for i ∈ [n], do (Mi, zi) = Πi(Mi−1, wi).
Return (z1, . . . , zn).

– Set (M̂0, st0) = (M̂, st). Then for i ∈ [n], do (M̂i, sti, z
′
i) = RamEval(Πi,

M̂i−1, sti−1, wi). Return (z′1, . . . , z
′
n).

Then with overwhelming probability z′i ∈ {zi,⊥} for each i.

In other words, RamExtract produces a plain RAM memory that “explains” the
effect of (M̂, st). The only exception is that a malicious M̂, st could cause the
ORAM construction to abort more frequently than a plain RAM program.

Let AccessPattern(Π, M̂,w, st;ω) denote the access pattern describing the

accesses to physical memory made by RamEval(Π, M̂,w, st;ω). The access pat-
tern is a sequence of tuples of the form (read, id) or (write, id), where id is a

block index in M̂ .

Definition 3. We say that a scheme (RamInit,RamEval) is secure if there exists
an efficent S such that, for all M , Π, and w, the following two distributions are
indistinguishable:

– Run S(1k, |M |, Π, |w|).
– Run (M̂, st)← RamInit(1k,M), then return AccessPattern(Π, M̂,w, st).

In other words, the access pattern leaks no information about M or w.

Note that the output of AccessPattern contains only the memory locations and
not the contents of memory. Hence, we do not require the ORAM construc-
tion to encrypt/decrypt memory contents — they will be protected via other
mechanisms in our protocol.

Our definitions of soundness and extractability are non-standard. We discuss
how to modify existing ORAM constructions to achieve these definitions in the
full version.

3.5 Trapdoor Commitment

We construct UC commitments from trapdoor commitments with the follow-
ing properties: (a) the trapdoor is used only to compute the decommitment,
(b) knowledge of the trapdoor allows to equivocate any previously computed
commitment (as long as the state z is known). Such a commitment scheme can
be based on Pedersen’s perfectly hiding commitment scheme [35]. Details and
formal definitions for this instantiation are given in the full version.
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4 Succinct Zero-Knowledge Proof for RAM Programs

4.1 Protocol Description

Overview. The protocol consists of two phases: a (one-time) setup phase, and a
proof phase.

In the setup phase the prover commits to the ORAM memory M̂ in a black-
box friendly manner. That is, for each memory location M̂ [i], P first computes an

encoding of M̂ [i] resulting in shares (xi,1, . . . , xi,κ), then it commits to each share
xi,j independently, obtaining commitments Ni = (cxi,1, . . . , cxi,κ). Committing
to each share independently will allows the prover to later selectively open a
subset of t shares. Ni is then placed in the i-th leaf of the Merkle Tree. Similarly,
P will also commit to the ORAM state st used to computed M̂ , by committing
to its shares (s1, . . . , sκ). At the end of the setup phase, the verifier receives the
root of the Merkle Tree, and the commitments to the encoding of the initial
ORAM state.

In the l-th proof phase, the prover first runs the ORAM program correspond-
ing to relation Rl in her head. From this, she will obtain the access pattern I,
the updated contents of memory, and the final ORAM state st′.

P will then commit to this information, using again the black-box friendly
commitment outlined above. The verifier at this point receives the set of positions
I as well as commitments to all the encodings. Then, to prove consistency of
such computation in a black-box manner, P will invoke the Fcheck functionality
(Figure 3) that does the following:

1. Decode the shares received in input and reconstruct initial ORAM state
st, initial memory blocks {M̂ [i]} read by the ORAM computatation, the

final ORAM state st′ and the updated value {M̂ [i]} of any memory blocks
accessed during the ORAM computation.

2. Run the ORAM evaluation on input st and the given initial memory block.
Check that the program indeed generates access pattern I, updates the
memory to the values provided, and outputs the updated state provided.

3. If the check above is successful, then output a subset of t shares from each
encoding received in input.

This invocation of Fcheck is described in greater detail below. It checks only that
the encodings provided by P lead to an accepting computation. As it is, this does
not prove anything about whether this computation is consistent with the initial
memory committed in the setup phase, and with the previous proofs. To glue
such encodings to the values that P has committed outside the functionality,
we have P open also to a subset of t commitments. In this way, the verifier
can be convinced that the values that made the Fcheck functionality accept are
consistent with the ones committed by P .

Notation. We use upper case letters to denote vectors, while we use lower case
letters to denote a string. For example, notation Z = (z1, . . . , zn) means that
vector Z has components z1, . . . , zn. Notation Z[i] denotes the ith component
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Setup Π.Setup(M, 1λ)
Let m = |M |.

– Run the initialization of the UC commitment scheme to obtain parameters pk.
– Initialize ORAM. Run (M̃, st)← RamInit(M, 1λ).

– Encode memory M̃ . For i ∈ [m]:

(encoding) Xi = (xi,1, . . . , xi,κ)
$← Code(M̃ [i]).

(commitment) CXi = (cxi,1, . . . , cxi,κ)
$← Com(pk, xi,1), . . . ,Com(pk, xi,κ).

(decommitment) DXi = (dxi,1, . . . , dxi,κ)
– Encode state st.

(encoding) S = (s1, . . . , sκ)
$← Code(st).

(commitment) CS = (cs1, . . . , csκ)
$← Com(pk, s1), . . . ,Com(pk, sκ).

(decommitment) DS = (ds1, . . . , dsκ)
– Build the tree. Let d = logm.

Leaves. For i = 1, . . . ,m. Set leaf Ni = gRO(sid, i,P, CXi).
Internal nodes. For v ∈ {0, 1}≤d−1, set Nv = gRO(sid,Nv0|Nv1).
Root. Let h = Nε.

– Publish values.
� Commitment to the ORAM state CS = (cs1, . . . , csκ).
� Root of the Merkle Tree h.

Fig. 4. Setup phase

of vector Z and is equivalent to value zi. We use bold upper case to denote a
collection of vectors. For example, S = {S1, S2, . . .}.

Moreover, in the protocol, we shall use notation Xi to denote the value of
memory block i before the proof is computed, while we use notation Yi to denote
the value of memory block i after the proof. Similarly we used notation S, S′ to
denote the encoding of a pre-proof and post-proof ORAM state, respectively.

Let UCCom = (Gen,Com,Dec,Ver) be a UC-secure commitment scheme that
has non-interactive commitment and the decommitment phase. In Section 5 we
give an instantiation of such a scheme in the gRO model. Let (Code,Decode) be
an encoding scheme with parameters (d, t, κ). Let (RamInit,RamEval) be a secure
ORAM scheme. Our (stateful) ZK protocol Π= (Π.Setup, Π.Proof) is described
in Figure 4 and Figure 5.

The FC1,C2

check Circuits

ORAM components: Let I be an ORAM memory access sequence. We define
read(I) = {i | (read, i) ∈ I}, write(I) = {i | (write, i) ∈ I}, and access(I) =
read(I) ∪ write(I); i.e., the indices of blocks that are read/write/accessed in I.
If S = {s1, . . . , sn} is a set of memory-block indices, then we define M [S] =
(M [s1], . . . ,M [sn]).

Next, we describe the exact check circuits C1 and C2 we need for our main
protocol. The check circuit C2,I(r) is straightforward. Given bit string r, it
returns 1 if rγ = 1 in at most t locations.
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l + 1-th Zero-knowledge Proof. Π.Proof(state)

Public Inputs: Relation Rl = (Πl, x). Root of the Merkle tree h, commitment to
ORAM sate: CS = (cs1, . . . , csκ).

Private Inputs for P : Witness w. Memory M̃ = M̃ l, ORAM state st = stl.
Encodings, commitments and decommitment information for memory blocks and
ORAM state. That is: (memory) Xi, CXi, DXi, for i ∈ [m]; (state) S, CS,DS.

1. Program evaluation and commitments to the updated memory/state.

– Program Evaluation. P runs (I, M̃ ′, st′) $← RamEval(Πl, M̃ , x, w, st).

Let access(I) = read(I) ∪ write(I). Let M̃
′

denotes the final version of the

memory M̃ .
– Commitment to updated memory blocks. For i ∈ access(I).

(Encoding) Yi = (yi,1, . . . , yi,κ)
$← Code(M̃

′
[i]).

(Commitment) CYi = (cyi,1, . . . , cyi,κ)
$← Com(pk, yi,1), . . . ,Com(pk, yi,κ).

(Decommitments) DYi = (dyi,1, . . . , dyi,κ)
$← Dec(cyi,1), . . . ,Dec(cyi,κ)

– Commitment to updated state.
(Encoding) S′ = (s′i, . . . , s

′
κ)← Code(st′).

(Commitment) CS′ = (cs′1, . . . , cs
′
κ)

$← Com(pk, s′1), . . . ,Com(pk, s′κ).

(Decommitments) DS′ = (ds′1, . . . , ds
′
κ)

$← Dec(cs′1), . . . ,Dec(cs′κ).

– Update root. Recompute the Merkle Tree root h′. Compute circuits
C1,I , C2,I

– Set W = (w S, S′, {Xi}i∈read(I), {Yi}i∈access(I)).
– Send to V . Access pattern I; commitments CYi (∀i ∈ access(I)); CS′, new

root h′ to V .
2. FCcheck

– V sends (CHALLENGE, sid`, r) to FC1,C2
check , for r

$← {0, 1}κ. P sends
(PROVE, sid,W) to FC1,C2

check

– V obtains partial encodings Yj [γ], Xi[γ], S[γ], S′[γ] for γ s.t. rγ = 1. P
receives r.

3. Verification.
– P sends: (1) decommitments DXi[γ] and authentication path πi from h to
Ni, ∀i ∈ read(I). (2)decommitments DYj [γ] for j ∈ access(I), (3) decommit-
ments DS[γ], DS′[γ].

– V checks validitya of path πi, ∀i ∈ [read(I)], and the validity of decommit-
ments by running procedure Ver(pk, ·).

a
An authentication path πi for a node Ni is a chain of hash values. In order to check validity

of a path, V checks that node Ni = gRO(sid, i,P, CXi) and that for each internal node v,

Nv = gRO(sid,Nv0‖Nv1).

Fig. 5. Proof phase

Given an ORAM access pattern I, we let the witness W consist of the aux-
iliary input w and a collection of encodings of: the initial ORAM state S, the
final ORAM state S′, the input memory blocks X = (X1, . . . , X|read(I)|), and
the output/resulting memory blocks Y = (Y1, . . . , Y|access(I)|). The check circuit
C1,I(W) is defined as follows:
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C1,I(w, S, S′,X,Y):

st := Decode(S)

simulate RamEval(Π, M̂, st, w) in the following way:

whenever a block i of M̂ is accessed:
if i 6∈ access(I) then return 0
else if the access is a read: take Decode(Xi) as the result of the access

else if the access is (write, v), set M̂ ′[i] = v
if the above simulation of RamEval does not return 1, then return 0
if the above simulation does not result in access pattern I, then return 0
if the above simulation results in ORAM state st′ 6= Decode(S′) then return 0

for i ∈ access(I): if M̂ ′[i] 6= Decode(Yi) then return 0
return 1

4.2 Instantiation Fcheck

Instantiating FC
check using JKO Protocol. JKO refers to a zero-knowledge

protocol of Jawurek, Kerschbaum, & Orlandi [26]. The protocol is based on
garbled circuits and is quite efficient, requiring only a single garbled circuit to
be sent.

We first give an overview of the JKO protocol. Abstractly, suppose the prover
would like to prove knowledge of a witness w such that R(w) = 1, where R is a
public function/circuit.

1. The verifier generates a garbled circuit implementing R. The parties then
perform instances of oblivious transfer, where the verifier acts as receiver.
The verifier sends the garbled inputs for the garbled circuit, and the prover
picks up a garbled input encoding the witness w.

2. The verifier sends the garbled circuit and the prover evaluates it, resulting
in a garbled output. Since R has a single output bit, this is a single wire
label (the wire label encoding output “true”, if the prover is honest). The
prover commits to this garbled output.

3. The verifier opens the garbled circuit so the prover can check that it was
garbled correctly. In the JKO protocol, this is done using committed OT in
step (1). The verifier “opens” its inputs to these OTs, revealing the entire
set of garbled inputs. This is enough for the prover to verify the correctness
of the garbled circuit.

4. If the prover is satisfied that the circuit was garbled correctly, then she opens
her commitment to the garbled output.

5. The verifier accepts the proof if the prover’s commitment is opened to the
“true” output wire label of the garbled circuit.

The protocol is zero-knowledge because a simulator can extract the entire
set of garbled inputs from the OTs in step (1). Then the simulator can compute
the “true” output wire label and commit to it instep (2).

The protocol is sound due to the authenticity property of the garbled circuit.
Namely, given a garbled input encoding w and the garbled circuit, it should
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be hard to guess an output wire label other than the one encoding truth value
R(w). (See [3] for the formal definition) This authenticity property holds in step
(2) when the prover must commit to the output wire label. After step (3), the
prover can compute any garbled output for the garbled circuit, but the prover
has already committed to the garbled output at that point.

Importantly, the prover is the only party with private input to the garbled
circuit. But the prover plays the role of garbled circuit evaluator. Hence, the
protocol does not use the traditional privacy security property of garbled circuits.
This is also the reason that the same garbled circuit can be both evaluated and
checked. Doing this in a more general 2PC is problematic since opening/checking
a circuit would reveal the secrets of the garbled circuit’s generator. In this case,
that party is the verifier and has no secrets to reveal.

Modifications. With some minor modifications, the JKO protocol can be used
to efficiently instantiate the FC1,C2

check functionality. The main differences are:

– The computation gives more than a single bit output.
– The computation takes input from the verifier (r) as well as the prover. We

are able to handle this in the JKO protocol paradigm because r is eventually
made public to the prover.

The modified JKO protocol proceeds as follows.

1. The verifier generates a garbled circuit computing the function C̃(W) =
[if C2(r) then C1(W, r) else ⊥]. The parties perform a committed OT for
each input bit, in which the prover obtains garbled input encoding W.

2. The verifier sends the garbled circuit and the prover evaluates it, resulting in
a garbled encoding of the (many-bit) output z = C̃(W). The prover commits
to the garbled output.

3. The verifier opens the committed OTs, revealing all garbled inputs. The
verifier also sends r at this point. The prover can check whether the garbled
circuit was generated correctly.

4. The prover, if satisfied, opens the commitment to the garbled output and
sends the plain output z = C̃(W). The prover outputs (r, sid).

5. The verifier outputs (z, sid) if the commitment is opened to the valid garbled
encoding of z.

Lemma 4. The modified JKO protocol above is a UC-secure realization of FC1,C2

check ,
in the committed-OT + commitment hybrid model, if the underlying garbling
scheme satisfies the authenticity property.

Instantiating FC1,C2

check using IKOS. IKOS refers to the general approach in-
troduced in [25] for obtaining ZK proofs in the commitment-hybrid model for
arbitrary NP statements, given any generic MPC protocol. Recently, Giacomelli
et. al [19] explored and implemented a concrete instantiation of the IKOS ap-
proach based on the GMW protocol [20] among three parties. Their optimized
construction is only slightly less efficient than the JKO protocol [26] but instead
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has the advantage of being a public-coin Σ protocol that can be efficiently made
a non-interactive Zero-knowledge proof using the Fiat-Shamir transform.

We first recall the IKOS approach and show how we can modify it to re-
alize the FC1,C2

check functionality for any circuits C1, C2. As mentioned above, the
main ingredient is a Σ protocol with special soundness and honest-verifier Zero-
knowledge property:

The prover has an input W and wants to prove that C1(W) = 1 where
C1 can be any public circuit. Let Π be a t-private n-party MPC protocol with
perfect correctness. The protocol proceeds as follows.

– Prover generates n random values Wi such that W =
⊕n

i=1 Wi.
– Prover runs (on its own) the n-party MPC Π for computing C1(

⊕
i Wi)

where party Pi’s input is Wi, and obtains the view vi = ViewPi(W) for all
i ∈ [n].

– Prover commits to to v1, . . . , vn.
– Verifier chooses a random subset E ⊂ [n] where |E| = t, and sends E to

prover.
– Prover opens the commitment to ve for all e ∈ E.
– Verifier checks that:
• For all e ∈ E, ve yields the output 1 for Pe.
• For all e, e′ ∈ E, the view of Pe and Pe′ (ve and v′e) are consistent.
• If any of the checks fail it rejects. Else it accepts.

The above protocol has a soundness probability that is a function of n and t.
But this probability can be easily amplified by repeating the protocol multiple
times in parallel for different runs of Π and using different random challenges E
each time. This parallel version remains a Σ protocol as desired.

We need to enhance the above protocol to also take a random string r sat-
isfying C2(r) for a circuit C2 as Verifier’s input and reveal those locations in
the witness W[i] where ri = 1. The above Σ protocol can be easily extended to
handle this case. We simply have the verifier send r along with E to the Prover.
Prover checks that C2(r) = 1 and if the case, it opens commitments W[i] for all
i where ri = 1. This is in addition to the views it opens to achieve soundness.

1. Prover generates n random values Wi such that W =
⊕n

i=1 Wi.
2. Prover runs (on its own) the n-party MPC Π for computing C1(

⊕
i Wi)

where party Pi’s input is Wi, and obtains the view vi = ViewPi(W) for all
i ∈ [n].

3. Prover commits to W1[j], . . . ,Wn[j] for all j ∈ [|W|] and v1, . . . , vn.
4. Verifier chooses a random subset E ⊂ [n] where |E| = t, and sends E and

its input r to the prover.
5. Prover aborts if C2(r) 6= 1. Else it opens commitment to Wi[j] for all i ∈ [n]

and all j where rj = 1.
6. Prover also opens the commitment to ve for all e ∈ E and to We[j] for all
j ∈ [|W|].

7. Verifier checks that:
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(a) For all e ∈ E, the opened We and ve are consistent, i.e. We is correctly
embedded in ve.

(b) For all e ∈ E, ve yields the output 1 for Pe.
(c) For all e, e′ ∈ E, the view of Pe and Pe′ (ve and v′e) are consistent.
(d) If any of the checks fail it rejects. Else it accepts.

The above protocol is a public-coin, honest-verifier protocol. We can trans-
form it into a zero-knowledge protocol by letting the verifier commit to his
random challenge before the prover sends the first message.

Lemma 5. The modified IKOS protocol above is a secure realization of the
FC1,C2

check functionality, when the commitments are instantiated with UC commit-
ments.

5 A new UC-Commitment in the gRO model

In [12], Canetti et al show a UC commitment scheme that is secure in the
gRO model. Such a commitment scheme is based on trapdoor commitments
(e.g., Pedersen’s Commitment). The main idea is to have the receiver choose
parameters (pk, sk) of a trapdoor commitment, have the sender commit using
pk, and later, in the decommitment phase, before revealing the opening, have
the receiver reveal the trapdoor sk (this is done in such a way that despite
revealing sk, binding is still preserved). This trick allows to achieve equivocability
without programming the RO. On the other hand, this trick has the fundamental
drawback of requiring that each commitment is computed under a fresh public
key pk. (To see why, note that if more than one commitment is computed under
the same public key, then binding holds only if all such commitments are opened
at the same time.). This is highly problematic in our setting, where the prover
commits to each element of the memory, as the verifier would need to provide
provide as many public keys as the size of the memory.

Therefore, we design a new commitment scheme in the gRO model that sat-
isfies the crucial property that the receiver can send one public key pk at the
beginning, and the sender can re-use it for all subsequent commitments.

The idea behind our new scheme is fairly simple. The receiver R will pick two
public keys (pk0, pk1) for a trapdoor commitment scheme. Additionally, R com-
putes a non-interactive witness indistinguishable proof of knowledge (NIWI) π,
proving knowledge of one of the secret keys skb. R then sets the parameters of the
commitment as pk = (pk0, pk1, π). NIWI proofs of knowledge can be constructed
from any Σ-protocol in the gRO model using the transformation of [34,14]. A
self-contained description of this technique is deferred to the full version. For
concrete efficiency, one can instantiate the trapdoor commitment with Peder-
sen’s commitment. In this case the public keys are of the form pk0 = g0, h

trap0

and pk1 = g1, h
trap1 , and proving knowledge of the secret key skb corresponds to

simply prove knowledge of the exponent trapb. The parameters pk so generated
are used for all subsequent commitments.
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To commit to a message m, S first splits m as m0,m1 s.t. m = m0 ⊕ m1.
Then S computes commitments C0 and C1 to m0 and m1 as follows.

First, commit to mb, i.e., cbmsg = TCom(pkb,mb) using the trapdoor com-

mitment scheme. Then, S queries gRO with the opening of cbmsg, and receives

an answer abC . At this point, S commits to the answer abC using again TCom,
resulting in commitment cbro. The commitment Cb will then consist of the pair
Cb = (cbmsg, c

b
ro). Intuitively, the commitment is extractable in the gRO model

since S is forced to commit to the answer of gRO, and hence the extractor can
simply extract the decommitments by observing the queries to gRO, and check-
ing that there exists at least a query q that corresponds to a valid opening of
cbmsg.

In the decommitment phase S simply opens the two commitments, and R
checks that cbro is indeed the commitment of the answer of gRO, on input the
decommitment of cbmsg. Note that the receiver R does not reveal any trapdoor (as
she already proved knowledge of one of them), and therefore the same pk can be
used again for a new commitment. To equivocate, the simulator simply extracts
the trapdoor skb from NIWI proof π (recall that π is straight-line extractable in
the gRO model), and uses it to equivocate commitments cbmsg, c

b
ro.

We describe the protocol in more details below. Further details proving
knowledge of a Pedersen commitment trapdoor are given in the full version.

Protocol UCCom. A New UC Commitment in the gRO model.
Let sid denote the session identifier.

Setup Phase 〈Gen(C(1λ), R(1λ)〉.

– R computes (pk0, sk0) ← TCGen(1λ), and (pk1, sk1) ← TCGen(1λ). R com-
putes a NIWI proof of knowledge π for proving knowledge of skd for a random
bit d. R sends pk = (pk0, pk1, π) to C.

– If π is accepting, C records parameters pk0, pk1.

i-th Commitment Phase Com(sid, i,m): C randomly picks m0,m1 such that
m = m0 ⊕m1. Then for each mb:

– Commit to mb: (cbmsg, d
b
msg)← TCom(pk,mb).

– Query gRO on input (sid, i,S‖mb‖dbmsg‖sb), where sb
$← {0, 1}λ. Let aC be

the answer of gRO.
– Commit to abC : (cbro, d

b
ro)← TCom(pk, aC). Set Cb = (cbmsg, c

b
ro).

Send C = [C0, C1] to R.

i-th Decommitment Phase: Dec(state)

– S sends D = [mb, dbmsg, d
b
ro, a

b
C , s

b] to R for each b ∈ {0, 1}.
– Ver(pk, D). The receiver R accepts m as the decommitted value iff all of

the following verifications succeed: (a) (b) TRec(cbro, a
b
C , d

b
ro) = 1, (c) abC =

gRO(sid,C‖mb‖dbmsg‖sb), (d) TRec(cbmsg, m
b, dbmsg) = 1 .

20



Theorem 6. Assume that (TCGen,TVer,TCom, TRec, TEquiv) is a Trapdoor
commitment scheme, that on-line extractable NIWI proof of knowledge exist
in the gRO model, then UCCom is UC-secure commitment scheme in the gRO
model.

Proof (Sketch).

Case R∗ is corrupted. We show that there exists a simulator, that for conve-
nience we call SimCom, that is able to equivocate any commitment. The strategy
of SimCom is to first extract the trapdoor of skb for some bit b from the NIWI
π, then use the tradpoor skb to appropriately equivocate the commitment Cb.
The key point is that, because m = m0⊕m1, equivocating one share mb will be
sufficient to open to any message m. The completed description of the simulator
SimCom is provided below.

Simulator SimCom

To generate a simulated commitment under parameters pk and sid:
– Parse pk as pk0, pk1, π. Extract skb from π (for some b ∈ {0, 1}) running

the extractor associated to the NIWI protocol, and by observing queries
to gRO for session sid. If the extractor fails, output Abort and halt.

– Compute cb̄msg, d
b̄
msg = TCom(pkb̄,mb̄), where mb̄ is a random string.

– Query gRO and obtain: ab̄C = gRO(sid,C‖mb̄‖db̄msg‖sb̄).
– Compute cb̄ro, d

b̄
ro = TCom(pkb̄, ab̄C).

– Compute cbmsg, c
b
ro as commitments to 0.

To equivocate the simulated commitment to a value m:
– Compute mb = m⊕mb̄. Compute dbmsg = TEquiv(skb, cmsg,m

b).

– Query gRO and obtain: abC = gRO(sid,C‖mb‖dbmsg‖sb). Compute dbro =

TEquiv(skb, cbro, a
b
C).

– Output (demsg, d
e
ro, s

e) for e = 0, 1.

Indistinguishability. The difference between the transcript generated by SimCom
and an honest S is in the fact that SimCom equivocates the commitments using
the trapdoor extracted form pk, and that SimCom will abort if such trapdoor is
not extracted. Indistinguishability then follows from the extractability property
of π (which holds unconditionally in the gRO model) and due to the trapdoor
property of the underlying trapdoor commitment scheme.

Case S∗ is corrupted. We show that there exists a simulator, that we denote by
SimExt, that is able to extract the messages m0,m1 already in the commitment
phase, by just observing the queries made to GgRO (with SID sid). The extraction
procedure follows identically the extraction procedure of the simulator shown
in [12]. We describe SimExt in details below.

SimExt(sid, pk, C = [C0, Cb]).

– Parse pk = pk0, pk1, π. If π is not accepting halt. Else, parse Cb = cbmsg, c
b
ro

for b = 0, 1. Let Qsid be the list of queries made to gRO by any party.
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– For b = 0, 1. If there exists a query q of the form q = sid‖‘C’‖mb‖dbmsg‖sb
such that TRec(cbmsg,m

b, dbmsg) = 1, the record mb, otherwise set mb = ⊥.
Set m = m0 ⊕m1.

– Send (commit, sid, ‘C’, ‘R’,m′) to Ftcom.
– Decommitment phase: If the openings is not accepting, halt. Else, let m∗ be

the valid messages obtained from the decommitment. If m∗ = m, it sends the
message (decommit, sid, ‘C’, ‘R’) to the trusted party. Otherwise, if m∗ 6= m,
then output Abort and halt.

Indistinguishability. The indistinguishability of the output of SimExt follows from
the witness indistinguishability property of the proof system, and the biding
property of the trapdoor commitment.

Due to the WI of π, any S∗ cannot extract secret key skb used by R. Thus,
if SimExt fails in extracting the correct opening, it must be that S∗ is breaking
the binding of commitment scheme. In such a case we can build an adversary A
that can use S∗ and the queries made by S∗ to gRO to extract two openings for
commitment cb̄msg, c

b̄
ro.

6 Security Proof

Theorem 7. If UCCom = (Gen,Com,Dec,Ver) is a UC-secure commitment
scheme, with non-interactive commitment and decommitment phase, (Code,Decode)
is an encoding scheme with parameters (d, t, κ), (RamInit,RamEval, Soram) is a
secure ORAM scheme, then protocol Π = (Π.Setup, Π.Proof) (Fig. 4, Fig. 5),
securely realizes Fzk functionality (Fig. 2).

Proof. The proof follows from Lemma 9 and Lemma 8.

6.1 Case P is corrupted

Lemma 8. If UCCom is UC-secure in the gRO model, (Code,Decode) is a en-
coding scheme with parameters (d, t, κ), (RamInit,RamEval, Soram) is a secure
ORAM scheme. Then, protocol Π = (Π.Setup, Π.Proof) in Fig.5 and Fig.4 se-

curely realizes Fzk in the FC1,C2

check (resp., FCcheck) hybrid model, in presence of
malicious PPT prover P ∗.

Proof. The proof consists in two step. We first describe a simulator Sim for the
malicious P ∗. Then, we prove that the output of the simulator is indistinguish-
able from the output of the real execution.

Simulator Intuition. At high level, the simulator Sim proceeds in two steps. In
the setup phase, Sim extracts the value committed in the nodes of the Merkle
Tree. Recall that a leaf Ni of the tree is just a concatenation of commitments of
shares of the memory block M̂ [i] (indeed, Ni = CXi= (cxi,1, . . . , cxi,κ)). Sim is
able to extract all commitments in CXi by observing the queries made to gRO
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that are consistent with the published root h. Moreover, given such commit-
ments, Sim is able to further extract the shares by exploiting the extractability
property of UCCom (which, in turns, uses the observability of gRO.) Therefore,
by the end of the setup phase, Sim has extracted shares for each block i ∈ [m],

and reconstructed “its view” of the memory, that we denote by M̂?, as well as
the initial ORAM state st. Given M̂?, Sim will then be able to determine the
memory M?, by running extractor RamExtract(M̂, st), and sends it to the ideal
functionality Fzk.

In the proof phase, the goal of the simulator Sim is to continuously monitor
that each computation (each proof) is consistent with the memory M? initially
sent to Fzk. Intuitively, the computation is consistent if the memory values
input by P ∗ in each successful execution of Fcheck (which are represented in
encoded form Xi = [xi,1, . . . , xi,κ]), are “consistent” with the memory M? that
Sim has computed by extracting from the commitments; or more precisely, with
the encoding of the block memory extracted so far.

Upon the first proof, the simulator will check that the shares of M [i] sub-
mitted to Fcheck agree with the shares for block M?[i] extracted in the setup
phase. Here agree means that they decode to the same values. (Note that we do
not require that all shares agree with the ones that were extracted by Sim, but
we required that enough shares agree so that they decode to the same value).

After the first proof, P ∗ will also send commitments to the updated version
of the blocks j touched during the computation. (Precisely, the shares of each
block). As in Setup phase, Sim will extract these new blocks and update his view
of M? accordingly. In the next proof then, Sim will check consistency just as in
the first proof, but consistency is checked against the newly extracted blocks.

In each proof, when checking consistency, two things can go wrong. Case 1.
(Binding/extraction failure) When decommitting to the partial encodings (Step
3 of Fig. 5), P ∗ correctly opens values that are different from the ones previously
extracted by Sim. If this happens, that P ∗ either has broken the extractability
property of UCCom or has found a collision in the output of gRO. Thus, due to
the security of UCCom, this events happens with negligible probability.

Case 2. (Encoding failure) Assume that the t shares extracted by Sim corre-
spond to the t shares decommitment by P ∗, but that among the κ−t shares that
were not open, there are at least d shares that are different. This means that
the values decoded by Fcheck are inconsistent with the values that are decoded
from the extracted shares, which means that the computation in the protocol
is taking a path that is inconsistent with the path dictated by the M? initially
submitted by Sim.

We argue that this events also happen with negligible probability. Indeed,
due to the security of Fcheck we know that the position γ that P ∗ will need to
decommit are unpredictable to P ∗. Thus, the probability that P ∗ is able to open
t consistent shares, while committing to d bad shares is bounded by: (1 − d

κ )t

which is negligible.

The algorithm Sim. We now provide a more precise description of the simulator
Sim. Notation. We use notation X? to denote the fact that this is the “guess”

23



that Sim has on the value X after extracting from the commitment of CX.
During the proof phase, Sim will keep checking if this guess is consistent with
the actual values that P ∗ is giving in input to Fcheck.

Let SimExt be the extractor associated to UCCom and outlined in Sec. 5

Setup Phase. Run SimExt for the generation algorithm Gen. Upon receiving
commitments: CS = (cs1, . . . , csκ) and root h from P .

1. (Extract Commitments at the Leaves of Merkle Tree) For each query
made by P ∗ to gRO (sid, i‖l, P, C), set CX?

i [l] = C iff sid′ = sid and the
outputs of gRO along the paths to i are consistent with the root h. This
is done by obtaining the list of queries Q|sid from GgRO. At the end of this
phase, Sim has collected commitments CX?

i [i] that need to be extracted.
2. (Extract Shares.) Invoke extractor SimExt on input (sid, pk, CX?

i [l]) for all
i ∈ [m] and l ∈ [κ].
Let X?

i = (x?i,1, . . . , x
?
i,κ) denote the openings extracted by SimExt.

Similarly, invoke SimExt on input (sid, pk, CS[l]) with for l ∈ [κ] and obtain
shares s?1, . . . , s

?
κ for the initial state. Note that the extracted values could

be ⊥. Record all such values.
3. (Decode memory blocks M̂?[i]) For each i ∈ m, run bi = Decode(x?i,1, . . . , x

?
i,κ).

If Decode aborts, then mark bi = ⊥. Set block memory: M̂?[i] = bi. Similarly,
set st = Decode(s1, . . . , sκ.

4. Determine the real memory M? as follows: M? = RamExtract(M̂, st). Send
(sid, INIT,M?) to Fzk.

l-proof. Input to this phase: (Public Input) Statement Rl, x. Private input
for Sim. For each memory block i, Sim has recorded the most updated shares
extracted: X?

i = [x?i,1, . . . , x
?
i,κ]. The first time X?

i are simply the ones extracted
in the setup phase. In the l sub-sequent proof, X?

i is set to the values extracted
from the transcript of the l− 1 proof. Similarly, Sim has recorded the extracted
encodings of the ORAM state S? = [s?1, . . . , s

?
κ].

1. Upon receiving commitments CYi (∀i ∈ access(I)); CS′, and new root h
′
.

Run SimExt on inputs (sid, pk, CYi) and obtain encoding Y ?i , and on input
(sid, CS′) to obtain the encoding of the ORAM state S′?.

2. Invoke SimFcheck
. If SimFcheck

aborts, then abort and output Fcheck failure!!.
If SimFcheck

halts, then halt.
Else, obtain P ∗’s inputs to Fcheck: W = (w S, S′, X,Y). Recall that X =
{X1, . . . , X|read(I)|} and Y = {Y1, . . . , Y|access(I)|}, where Xi, Yj are encodings
of blocks in position i and j. Sim records the above values as comparison
values for later.

3. Upon receiving decommitments DXi[γ], and authentication paths πi for i ∈
read(I); DYj [γ] for j ∈ access(I) and DS[γ], DS′[γ].
Let Xi[γ], Xj [γ], S[γ], S′[γ] the value obtained from the decommitment.
Perform the verification step as an honest verifier V (Step. 3 of Fig. 5). If
any check fails, alt and output the transcript obtained so far. Else, perform
the following consistency checks.
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(a) Check consistency of the commitments stored in the Merkle
tree. If there is exists an i s.t., the commitment CX?

i extracted in
Π.Setup phase, is different from the commitment CXi opened in the
proof phase (with accepting authentication path πi), then abort and
output Collision Failure!!!.

(b) Check binding/extraction.
Check that, for all i ∈ read(I), all γ s.t. rγ = 1 Xi[γ] = X?

i [γ], and for
all j ∈ access(I) Yi[γ] = Y ?i [γ], and S[γ] = S?[γ], S′[γ] = S′[γ]. If not,
abort and output Binding Failure!!.

(c) Check correct decoding.
Check that, for all i ∈ read(I), Decode(X?

i ) = Decode(Xi); that for
all j ∈ access(I), Decode(Y ?i ) = Decode(Yi), and that Decode(S?) =
Decode(S), Decode(S′) 6= Decode(S′?). If any of this check fails, abort
and output Decoding Failure!!.

4. Send (PROVE, sid,Rl, w) to Fzk.

5. Update extracted memory and extracted state. For each i ∈ access(I):
Set X?

i = Y ?i , and S? = S′?.7

Indistinguishability Proof. The proof is by hybrids arguments. As outlined
at the beginning of the section, the crux of the proof is to show that the memory
M? extracted by Sim in Π.Setup, is consistent with all the proofs subsequently
provided by P ∗. In other words, upon each proof, the updates performed to the
memory in the real transcript are consistent with the updates that Fzk performs
on the memory M? sent by Sim in the ideal world.

Recall that, for each proof, Sim continueuosly check that the memory blocks
used in Fcheck are consistent with the memory blocks committed (and extracted
by Sim). If this consistency is not verified, then Sim will declare failure and abort.

Intuitively, proving that the simulation is succesfull corresponds to prove that
the probability that Sim declares failure is negligible. Assuming secure implemen-
tation of Fcheck, the above follows directly from the (on-line) extractability of
UCCom, the collision resistance of gRO and the d-distance property of the en-
coding scheme. We now proceed with the description of the hybrid arguments.

H0 (Real world). This is the real world experiment. Here Sim runs just like an
honest verifier. It outputs the transcript obtained from the executions.

H1 (Extracting witness from Fcheck.) In this hybrid experiment Sim deviates
from the algorithm of the verifier V in the following way. In the proof phase, Sim
obtain the witness W used by P ∗ in Fcheck, and it aborts if it fails in obtain-
ing such inputs. Due to the security of Fcheck H1 and H0 are computationally
indistinguishable.

7 Recall that we use notation Xi to denote the in “initial version” of block i (before
the proof was computed) while we use notation Yi to denote the version of block i
after the proof. Similarly, S denotes the initial ORAM state (pre-proof), while S′

denotes the ORAM state obtained after the proof has been computed.
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H2 (Extracting the leaves of the Merkle Tree.) In this hybrid Sim uses
to observability of gRO to obtain commitments CX?

i [l] for i ∈ [m], l ∈ [κ], and
it aborts if an (accepting) path πi, revealed by P ∗ in the proof phase, lead
to a commitment CXi[l] 6= CX?

i [l]. This corresponds to the event Collision

Failure!!!. Due to the collision resistance property of gRO, probability of event
Collision Failure!!! is negligible, and hence, the transcript generated in H1

and H2 are statistically close.

H3 (Extracting openings from commitments.) In this hybrid Sim invokes
SimExt to extract the opening from all commitments. The difference between
H3 and H2 is that in H3 Sim aborts every time event Binding Failure!! oc-
curs, which is negligible under the assumption that UCCom is an extractable
commitment.

H4 (Decoding from extracted shares.) In this hybrid Sim determines each

memory block M̂?[i] by running Decode algorithm on the extracted shares X?
i .

That is, M̂?[i]=Decode(X?
i ).

Moreover, it checks that all the extracted encodings (i.e., Yi, S, S
′) decodes

to the same values used in Fcheck (Step (c) in the algorithm Sim). In this hybrid
Sim aborts everytime events Decoding Failure!! happen.

Hence, to prove that experiment H3 and H4 are statistically indistinguish-
able, it is sufficient to prove that: Pr[Event DecodingFailure!!] = negl(κ). As
we argued in the high-level overview, event Decoding Failure!!happens with
probability (1− d

κ )t, which is negligible in κ for t = 1/2κ.

H5 (Submit to Fzk the extracted memory M̂?.)Ideal world In this hybrid

Sim plays in the ideal world, using the memory M̂? extracted in the Setup phase.
We have proved that the value extracted by Sim are consistent with the values

sent in input to Fcheck. (Indeed, we have proved that all the failure events happen
with negligible probability). Due to the security of Fcheck it follows that each
proof l, is the a correct computation given the input blocks and the input ORAM
state8. Due to the above arguments we know that the value sent to Fcheck are
consistent with the memory blocks and ORAM state extracted so far. Putting
the two things together, we have that any accepting proof is computed on values
that are consistent with the committed values (extracted by Sim), which in turn

are generated from the first version of the memory M̂? extracted by Sim. This
experiment corresponds to the description of the simulator Sim, proving the
lemma.

6.2 Case V is corrupted

Lemma 9. If UCCom is an equivocal commitment scheme in the gRO model,
(Code,Decode) is an encoding scheme with parameters (d, 2k, κ), (RamInit, RamEval,

8 Here we are also using crucially the fact that choosing a bad ORAM state does not
effect the correctness of the ORAM computation, but it can only effect the security
guarantees for the prover.
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Soram) is a secure ORAM scheme. Then, protocol Π = (Π.Setup, Π.Proof) in

Fig.5 and Fig.4 securely realizes Fzk in the FC1,C2

check (resp., FCcheck) hybrid model,
in presence of malicious PPT verifier V ∗.

Proof Intuition. At high-level, assuming the Fcheck is securely implemented,
the transcript of the verifier simply consists of a set of commitments, and partial
encodings for each block memory touched in the computation and the ORAM
state. Due to the hiding (in fact equivocability) properties of the commitments
as well as the 2k hiding property of the encodings, it follows that by looking at
< 2t shares, V ∗ cannot distinguish the correct values of the memory/state from
commitments to 0. Moreover, due to the security of ORAM, the access pattern
I disclosed upon each proof, does not reveal any additional information about
the memory/ORAM state.

Following this intuition, the simulator for V ∗ follows a simple procedure. It
computes all commitments so that they are equivocal (i.e., it runs procedure
SimCom guaranteed by the security property of commitment scheme UCCom).
Upon each proof, Sim will run Soram to obtain the access pattern I, and the
simulator SimFcheck

to compute the transcript of Fcheck, and to obtain the partial
encodings that V ∗ is expected to see. Finally, Sim will simply equivocate the
commitments that must be opened, so that they actually open to the correct
partial encodings. The precise description of the simulator Sim is provided below.

The algorithm Sim.

Setup Phase. Compute all commitments using algorithm SimCom(sid, pk, com, ·).
Compute Merkle tree correctly.

l-proof. Upon receiving (PROVE, sid,Rl, 1) from Fzk.

1. Run ORAM simulator S(1λ, |M̂ |) and obtain I.
2. Run SimCom to obtain commitments CYi for all i ∈ access(I) and commit-

ments CS′. Update the root of the Merkle Tree accordingly.
3. Run SimFcheck

to obtain the transcript for Fcheck and obtain the partial
encodings: Xi[γ], Yj [γ] for i ∈ read(I) and j ∈ access(I); S[γ], S′[γ], where
γ is such that rγ = 1, where r is the verifier’s input to Fcheck.

4. Equivocate commitments.
- For each i ∈ read(I), compute DXi[γ] ← SimCom(sid, pk, equiv, CXi[γ],
Xi[γ]) Moreover, retrieve path π in the tree.
- For each j ∈ access(I), compute DYi[γ] ← SimCom(sid, pk, equiv, CYi[γ],
Yi[γ]).
- Compute DS[γ] ← SimCom(sid, pk, equiv, DS[γ], DS[γ]),
DS′[γ] ← SimCom(sid, pk, equiv, DS′[γ], DS′[γ]).

5. Send decommitments to V ∗.

Indistinguishability Proof The proof is by hybrid arguments. We will move
from an experiment where Sim computes the transcript for V ∗ using real input
M and following the algorithm run by P (hybrid H0), to an hybrid where Sim
has not input at all (hybrid H3)
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H0. This is the real world experiment. Sim gets in input M and simply follows
the algorithm of P (Fig. 4 and Fig. 5).

H1. (Compute Equivocal Commitments using SimCom) In this hybrid Sim
computes commitments using procedure SimCom(sid, pk, com, ·), which requires
no inputs, and decommit using SimCom(pk, equiv, · · · ), using the correct encod-

ings computed from M̂ . The difference between H1 and H2 is only in the way
commitments are computed. Due to the equivocability property of the commit-
ment scheme (in the gRO) model, it follows that H1 and H2 are statistically

indistinguishable. Note that at this point Sim still uses real values for M̂ to
compute the shares that will be later committed, and some of which will be
opened.

H2. (Run SimFcheck
). In this hybrid argument Sim computes the transcript of

Fcheck by running simulator SimFcheck
, and decommit to the share given in out-

put by Fcheck. Note that Fcheck will output t encodings for each block memory
and state. Note also that, if a block memory was accessed in a previous exe-
cution, then t shares of the encodings have been already revealed. For example
the encoding of the final state S′[1], . . . , S′[κ], which is the output state in an
execution `, will the the encoding used as initial state in proof `+ 1. This means
that for each encoding, the adversary R∗ collects 2k partials encodings. Due to
the security of ΠFcheck

, and to the 2k hiding property of the encoding scheme,
hybrids H2 and H1 are computationally indistinguishable.

H3 (Use ORAM simulator Soram.) In this hybrid Sim will replace executions
of RamInit and RamEval with Soram. This is possible because the actual values
computed by RamInit and RamEval are not used anywhere at this point. Due
to the statistical security of (RamInit,RamEval, Soram) hybrids H3 and H4 are
statistically instinguishable. Note that in this experiment the actual memory
M is not used anywhere. This experiment corresponds to the description of the
simulator Sim, proving the lemma.
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