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Abstract. We show that a family of quantum authentication protocols
introduced in [Barnum et al., FOCS 2002] can be used to construct a
secure quantum channel and additionally recycle all of the secret key if
the message is successfully authenticated, and recycle part of the key if
tampering is detected. We give a full security proof that constructs the
secure channel given only insecure noisy channels and a shared secret key.
We also prove that the number of recycled key bits is optimal for this
family of protocols, i.e., there exists an adversarial strategy to obtain all
non-recycled bits. Previous works recycled less key and only gave partial
security proofs, since they did not consider all possible distinguishers
(environments) that may be used to distinguish the real setting from the
ideal secure quantum channel and secret key resource.

1 Introduction

1.1 Reusing a One-Time Pad

A one-time pad can famously be used only once [31], i.e., a secret key as long as
the message is needed to encrypt it with information-theoretic security. But this
does not hold anymore if the honest players can use quantum technologies to
communicate. A quantum key distribution (QKD) protocol [5,30] allows players
to expand an initial short secret key, and thus encrypt messages that are longer
than the length of the original key. Instead of first expanding a key, and then
using it for encryption, one can also swap the order if the initial key is long
enough: one first encrypts a message, then recycles the key. This is possible due
to the same physical principles as QKD: quantum states cannot be cloned, so if
the receiver holds the exact cipher that was sent, the adversary cannot have a
copy, and thus does not have any information about the key either, so it may
be reused. This requires the receiver to verify the authenticity of the message
received, and if this process fails, a net key loss occurs— the same happens
in QKD: if an adversary tampers with the communication, the players have to
abort and also lose some of the initial secret key.

1.2 Quantum Authentication and Key Recycling

Some ideas for recycling encryption keys using quantum ciphers were already
proposed in 1982 [6]. Many years later, Damg̊ard et al. [13] (see also [14, 18])



showed how to encrypt a classical message in a quantum state and recycle the
key. At roughly the same time, the first protocol for authenticating quantum
messages was proposed by Barnum et al. [3], who also proved that quantum
authentication necessarily encrypts the message as well. Gottesman [20] then
showed that after the message is successfully authenticated by the receiver, the
key can be leaked to the adversary without compromising the confidentiality of
the message. And Oppenheim and Horodecki [25] adapted the protocol of [3]
to recycle key. But the security definitions in these initial works on quantum
authentication have a major flaw: they do not consider the possibility that an
adversary may hold a purification of the quantum message that is encrypted.
This was corrected by Hayden, Leung and Mayers [21], who give a composable
security definition for quantum authentication with key recycling. They then
show that the family of protocols from [3] are secure, and prove that one can
recycle part of the key if the message is accepted.

The security proof from [21] does however not consider all possible environ-
ments. Starting in works by Simmons in the 80’s and then Stinson in the 90’s
(see, for example, [33–36]) the classical literature on authentication studies two
types of attacks: substitution attacks—where the adversary obtains a valid pair
of message and cipher1 and attempts to substitute the cipher with one that will
decode to a different message— and impersonation attacks—where the adver-
sary directly sends a forged cipher to the receiver, without knowledge of a valid
message-cipher pair. To the best of our knowledge, there is no proof showing
that security against impersonation attacks follows from security against substi-
tution attacks, hence the literature analyzes both attacks separately.2 This is
particularly important in the case of composable security, which aims to prove
the security of the protocol when used in any arbitrary environment, therefore
also in an environment that first sends a forged cipher to the receiver, learns
wether it is accepted or rejected, then provides a message to the sender to be au-
thenticated, and finally obtains the cipher for this message. This is all the more
crucial when key recycling is involved, since the receiver will already recycle
(part of) the key upon receiving the forged cipher, which is immediately given
to the environment. The work of Hayden et al. [21] only considers environments
that perform substitution attacks— i.e., first provide the sender with a message,
then change the cipher, and finally learn the outcome of the authentication as
well as receive the recycled key. Hence they do not provide a complete compos-

1 Here we use the term cipher to refer to the authenticated message, which is often a
pair of the original message and a tag or message authentication code (MAC), but
not necessarily.

2 In fact, one can construct examples where the probability of a successful imper-
sonation attack is higher than the probability of a successful substitution attack.
This can occur, because any valid cipher generated by the adversary is considered a
successful impersonation attack, whereas only a cipher that decrypts to a different
message is considered a successful substitution attack.



able security proof of quantum authentication, which prevents the protocol from
being composed in an arbitrary environment.3

More recently, alternative security definitions for quantum authentication
have been proposed, both without [9,17] and with [19] key recycling (see also [2]).
These still only consider substitution attacks, and furthermore, they are, strictly
speaking, not composable. While it is possible to prove that these definitions
imply security in a composable framework (if one restricts the environment to
substitution attacks), the precise way in which the error ε carries over to the
framework has not been worked out in any of these papers. If two protocols
with composable errors ε and δ are run jointly (e.g., one is a subroutine of
the other), the error of the composed protocol is bounded by the sum of the
individual errors, ε+ δ. If a security definition does not provide a bound on the
composable error, then one cannot evaluate the new error after composition.4

For example, quantum authentication with key recycling requires a backwards
classical authentic channel, so that the receiver may tell the sender that the
message was accepted, and allow her to recycle the key. The error of the complete
protocol is thus the sum of errors of the quantum authentication and classical
authentication protocols. Definitions such as those of [9,17,19] are not sufficient
to directly obtain a bound on the error of such a composed protocol.

In the other direction, it is immediate that if a protocol is ε-secure accord-
ing to the composable definition used in this work, then it is secure according
to [9, 17, 19] with the same error ε. More precisely, proving that the quantum
authentication scheme constructs a secure channel is sufficient to satisfy [9,17]—
i.e., the ideal functionality is a secure channel which only allows the adversary
to decide if the message is delivered, but does not leak any information about
the message to the adversary except its length (confidentiality), nor does it al-
low the adversary to modify the message (authenticity). And proving that the
scheme constructs a secure channel that additionally generates fresh secret key
is sufficient to satisfy the definition of total authentication from [19]. Garg et
al. [19] also propose a definition of total authentication with key leakage, which
can be captured in a composable framework by a secure channel that generates
fresh key and leaks some of it to the adversary. This is however a somewhat
unnatural ideal functionality, since it requires a deterministic leakage function,
which may be unknown or not exist, e.g., the bits leaked can depend on the
adversary’s behavior— this is the case for the trap code [8, 9], which we discuss
further in Sect. 4. The next natural step for players in such a situation is to ex-
tract a secret key from the partially leaked key, and thus the more natural ideal
functionality is what one obtains after this privacy amplification step [7, 29]: a

3 For example, QKD can be broken if the underlying authentication scheme is vulner-
able to impersonation attacks, because Eve could trick Alice into believing that the
quantum states have been received by Bob so that she releases the basis information.

4 In an asymptotic setting, one generally does not care about the exact error, as long
as it is negligible. But for any (finite) implementation, the exact value is crucial,
since without it, it is impossible to set the parameters accordingly, e.g., how many
qubits should one send to get an error ε ≤ 10−18.



secure channel that generates fresh secret key, but where the key generated may
be shorter than the key consumed. The ideal functionality used in the current
work provides this flexibility: the amount of fresh key generated is a parameter
which may be chosen so as to produce less key than consumed, the same amount,
or even more.5 Hence, with one security definition, we encompass all these dif-
ferent cases— no key recycling, partial key recycling, total key recycling, and
even a net gain of secret key. Furthermore, having all these notions captured
by ideal functionalities makes for a particularly simple comparison between the
quite technical definitions appearing in [9, 17, 19].

1.3 Contributions

In this work we use the Abstract Cryptography (AC) framework [23] to model
the composable security of quantum authentication with key recycling. AC views
cryptography as a resource theory: a protocol constructs a (strong) resource given
some (weak) resources. For example, the quantum authentication protocols that
we analyze construct two resources: a secure quantum channel— a channel that
provides both confidentiality and authenticity—and a secret key resource that
shares a fresh key between both players. In order to construct these resources,
we require shared secret key, an insecure (noiseless) quantum channel and a
backwards authentic classical channel. These are all resources, that may in turn
be constructed from weaker resources, e.g., the classical authentic channel can
be constructed from a shared secret key and an insecure channel, and noiseless
channels are constructed from noisy channels. Due to this constructive aspect of
the framework, it is also called constructive cryptography in the literature [22,24].

Although this approach is quite different from the Universal Composability
(UC) framework [10, 11], in the setting considered in this work—with one dis-
honest player and where recipients are denoted by classical strings6— the two
frameworks are essentially equivalent and the same results could have been de-
rived with a quantum version of UC [37]. In UC, the constructed resource would
be called ideal functionality, and the resources used in the construction are setup
assumptions.

We thus first formally define the ideal resources constructed by the quan-
tum authentication protocol with key recycling— the secure channel and key
resource mentioned in this introduction— as well as the resources required by
this construction. We then prove that a family of quantum authentication proto-
cols proposed by Barnum et al. [3] satisfy this construction, i.e., no distinguisher
(called environment in UC) can distinguish the real system from the ideal re-
sources and simulator except with an advantage ε that is exponentially small in

5 One may obtain more key than consumed by using the constructed secure channel
to share secret key between the players. We use this technique to compensate for
key lost in a classical authentication subroutine, that cannot be recycled.

6 In a more general setting, a message may be in a superposition of “sent” and “not
sent” or a superposition of “sent to Alice” and “sent to Bob”, which cannot be
modeled in UC, but is captured in AC [28].



the security parameter. This proof considers all distinguishers allowed by quan-
tum mechanics, including those that perform impersonation attacks.

We show that in the case where the message is accepted, every bit of key
may be recycled. And if the message is rejected, one may recycle all the key
except the bits used to one-time pad the cipher.7 We prove that this is optimal
for the family of protocols considered, i.e., an adversary may obtain all non-
recycled bits of key. This improves on previous results, which recycled less key
and only considered a subset of possible environments. More specifically, Hayden
et al. [21], while also analyzing protocols from [3], only recycle part of the key
in case of an accept, and lose all the key in case of a reject. Garg et al. [19]
propose a new protocol, which they prove can recycle all of the key in the case
of an accept, but do not consider key recycling in the case of a reject either.
The protocols we analyze are also more key efficient than that of [19]. We give
two instances which need Θ(m+ log 1/ε) bits of initial secret key, instead of the
Θ((m + log 1/ε)2) required by [19], where m is the length of the message and ε
is the error. Independently from this work, Alagic and Majenz [2] proved that
one of the instances analyzed here satisfies the weaker security definition of [19].

Note that the family of protocols for which we provide a security proof is a
subset of the (larger) family introduced in [3]. More precisely, Barnum et al. [3]
define quantum authentication protocols by composing a quantum one-time pad
and what they call a purity testing code — which, with high probability, will
detect any noise that may modify the encoded message— whereas we require
a stricter notion, a strong purity testing code — which, with high probability,
will detect any noise. This restriction on the family of protocols is necessary to
recycle all the key. In fact, there exists a quantum authentication scheme, the
trap code [8,9], which is a member of the larger class from [3] but not the stricter
class analyzed here, and which leaks part of the key to the adversary, even upon
a successful authentication of the message— this example is discussed in Sect. 4.

We then give two explicit instantiations of this family of quantum authentica-
tion protocols. The first is the construction used in [3], which requires an initial
key of length 2m+ 2n, where m is the length of the message and n is the secu-
rity parameter, and has error ε ≤ 2−n/2+1

√

2m/n+ 2. The second is an explicit
unitary 2-design [15, 16] discovered by Chau [12], which requires 5m + 4n bits
of initial key8 and has error ε ≤ 2−n/2+1. Both constructions have a net loss of
2m+n bits of key if the message fails authentication. Since several other explicit
quantum authentication protocols proposed in the literature are instances of this
family of schemes, our security proof is a proof for these protocols as well— this
is discussed further in Sect. 4.

7 Key recycling in the case of a rejected message is not related to any quantum ad-
vantage. A protocol does not leak more information about the key than (twice) the
length of the cipher, so the rest may be reused. The same holds for classical authen-
tication [26].

8 The complete design would require 5m+5n bits of key, but we show that some of the
unitaries are redundant when used for quantum authentication and can be dropped.



In the full version of this paper [27], we additionally show how to construct
the resources used by the protocol from nothing but insecure noisy channels
and shared secret key, and calculate the joint error of the composed protocols.
We also show how to compensate for the bits of key lost in the construction of
the backwards authentic channel, so that the composed protocol still has a zero
net key consumption if no adversary jumbles the communication. Finally, the
full version [27] also contains a security proof of quantum without key recycling,
which is valid for weak purity testing codes and achieves an optimal error.

1.4 Structure of this Paper

In Sect. 2 we give a brief introduction to the main concepts of AC, which are nec-
essary to understand the notion of cryptographic construction and corresponding
security defintion. In Sect. 3 we then define the resources constructed and used
by a quantum authentication scheme with key recycling. We introduce the fam-
ily of protocols from [3] that we analyze in this work, and then prove that they
construct the corresponding ideal resources. We also prove that the number of
recycled bits is optimal. Finally, in Sect. 4 we discuss the relation between some
quantum authentication schemes that have appeared in the literature and those
analyzed here, as well as some open problems.

2 Constructive Cryptography

As already mentioned in Sect. 1.3, the AC framework [23] models cryptography
as a resource theory. In this section we give a brief overview of how these con-
structive statements are formalized. We illustrate this with an example taken
from [26], namely authentication of classical messages with message authentica-
tion codes (MAC). An expanded version of this introduction to AC is provided
in the full version of this paper [27].

In an n player setting, a resource is an object with n interfaces, that allows
every player to input messages and receive other messages at her interface. The
objects depicted in Fig. 1 are examples of resources. The insecure channel in
Fig. 1a allows Alice to input a message at her interface on the left and allows
Bob to receive a message at his interface on the right. Eve can intercept Alice’s
message and insert a message of her choosing at her interface. The authentic
channel resource depicted in Fig. 1b also allows Alice to send a message and
Bob to receive a message, but Eve’s interface is more limited than for the inse-
cure channel: she can only decide if Bob receives the message or not, but not
tamper with the message being sent. The key resource drawn in Fig. 1c provides
each player with a secret key when requested. If two resources K and C are
both available to the players, we write K‖C for the resource resulting from their
parallel composition— this is to be understood as the resources being merged
into one: the interfaces belonging to player i are simultaneously accessible to
her as one new interface, which we depict in Fig. 1d. In the full version of this



Insecure channel C

Alice Bob

Eve

(a) An insecure channel from Alice (on
the left) to Bob (on the right) allows
Eve (below) to intercept the message
and insert a message of her own.

Authentic channel A

Alice Bob

Eve

0, 1

(b) An authentic channel from Alice
(on the left) to Bob (on the right) al-
lows Eve (below) to receive a copy of
the message and choose whether Bob
receives it or an error symbol.

key

Secret key K
req. req.

k k

(c) A secret key resource distributes a
perfectly uniform key k to the players
when they send a request req.

Insecure channel C

key

Secret key K
req. req.

k k

Composed resource K‖C

(d) If two resources K and C are avail-
able to the players, we denote the com-
position of the two as the new resource
K‖C.

Fig. 1 – Some examples of resources. The insecure channel on the top left could
transmit either classical or quantum messages. The authentic channel on the top
right is necessarily classical, since it clones the message.
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Insecure channel C

k k

req. req.

x x′,⊥

(x, y) (x′, y′)

Fig. 2 – The real system for a MAC protocol. Alice authenticates her message by
appending a MAC to it. Bob checks if the MAC is correct and either accepts or
rejects the message.

work [27] we provide a more detailed description of the resources from Fig. 1
along a discussion of how to model them mathematically.

Converters capture operations that a player might perform locally at her
interface. For example, if the players share a key resource and an insecure channel,
Alice might decide to append a MAC to her message. This is modeled as a
converter πauth

A that obtains the message x at the outside interface, obtains a
key at the inside interface from a key resource K and sends (x, hk(x)) on the
insecure channel C, where hk is taken from a family of strongly 2-universal hash
functions [36,39]. We illustrate this in Fig. 2. Converters are always drawn with
rounded corners. If a converter αi is connected to the i interface of a resource R,
we write αiR or Rαi for the new resource obtained by connecting the two.9

A protocol is then defined by a set of converters, one for every honest player.
Another type of converter that we need is a filter. The resources illustrated
in Fig. 1 depict a setting with an adversary that has some control over these
resources. For a cryptographic protocol to be useful it is not sufficient to pro-
vide guarantees on what happens when an adversary is present, one also has
to provide a guarantee on what happens when no adversary is present, e.g., if
no adversary tampers with the message on the insecure channel, then Bob will
receive the message that Alice sent. We model this setting by covering the ad-
versarial interface with a filter that emulates an honest behavior. In Fig. 3 we
draw an insecure and an authentic channel with filters ♯E and ♦E that transmit
the message to Bob. In the case of the insecure channel, one may want to model
an honest noisy channel when no adversary is present. This is done by having
the filter ♯E add some noise to the message. A dishonest player removes this and
has access to a noiseless channel as in Fig. 1a.

We use the term filtered resource to refer to a pair of a resource R and a filter
♯E , and often write R♯ = (R, ♯E). Such an object can be thought of as having

9 In this work we adopt the convention of writing converters at the A and B inter-
faces on the left and converters at the E interface on the right, though there is no
mathematical difference between αiR and Rαi.



Insecure channel C

♯E

(a) When no adversary is present, Al-
ice’s message is delivered to Bob. In
the case of a noisy channel, this noise
is introduced by the filter ♯E .

Authentic channel A

♦E

0

(b) When no adversary is present, Bob
receives the message sent by Alice.

Fig. 3 – Channels with filters. The two channels from Figures 1a and 1b are
represented with filters on Eve’s interface emulating an honest behavior, i.e., when
no adversary is present.

two modes: it is characterized by the resource R♯E when no adversary is present
and by the resource R when the adversary is present.

The final object that is required by the AC framework to define the notion of
construction and prove that it is composable, is a (pseudo-)metric defined on the
space of resources that measures how close two resources are. In the following,
we use a distinguisher based metric, i.e., the maximum advantage a distinguisher
has in guessing whether it is interacting with resource R or S, which we write
d(R, S). More specifically, let D be a distinguisher, and le D[R] and D[S] be the
binary random variables corresponding to D’s output when connected to R and
S, respectively. Then the distinguishing advantage between R and S is defined
as

d(R, S) := sup
D

|Pr[D[R] = 0]− Pr[D[S] = 0]| .

Since we study information-theoretic security in this work, the supremum is
taken over the set of all possible distinguishers allowed by quantum mechanics.
This is discussed further in the full version of this work [27].

We are now ready to define the security of a cryptographic protocol. We do
so in the three player setting, for honest Alice and Bob, and dishonest Eve. Thus,
in the following, all resources have three interfaces, denoted A, B and E, and
a protocol is then given by a pair of converters (πA, πB) for the honest players.
We refer to [23] for the general case, when arbitrary players can be dishonest.

Definition 1 (Cryptographic security [23]). Let πAB = (πA, πB) be a pro-
tocol and R♯ = (R, ♯) and S♦ = (S,♦) denote two filtered resources. We say

that πAB constructs S♦ from R♯ within ε, which we write R♯
π,ε−−→ S♦, if the two

following conditions hold:

i) We have

d(πABR♯E , S♦E) ≤ ε .



Authentic channel A

σauth
E

x

x

x,⊥

0, 1

y = hk(x)
(x, y)

?
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(x′, y′)

(x, y) (x′, y′)

key

Fig. 4 – The ideal system with simulator for a MAC protocol. The simulator σauth
E

picks its own key and generates the MAC. If the value input by Eve is different
from the output at her interface (or is input before an output is generated), the
simulator prevents Bob from getting Alice’s message.

ii) There exists a converter10 σE —which we call simulator— such that

d(πABR,SσE) ≤ ε .

If it is clear from the context what filtered resources R♯ and S♦ are meant, we
simply say that πAB is ε-secure.

The first of these two conditions measures how close the constructed resource
is to the ideal resource in the case where no malicious player is intervening,
which is often called correctness in the literature. The second condition captures
security in the presence of an adversary. For example, to prove that the MAC
protocol πauth

AB constructs an authentic channel A♦ from a (noiseless) insecure
channel C� and a secret key K within ε, we need to prove that the real system
(with filters) πauth

AB (K‖C�E) cannot be distinguished from the ideal system A♦E

with advantage greater than ε, and we need to find a converter σauth
E such that the

real system (without filters) πauth
AB (K‖C) cannot be distinguished from the ideal

system Aσauth
E with advantage greater than ε. For the MAC protocol, correctness

is satisfied with error 0 and the simulator σauth
E drawn in Fig. 4 satisfies the

second requirement if the family of hash functions {hk}k is ε-almost strongly 2-
universal [26].

Remark 2. The protocols and simulators discussed in this work are all efficient.
The protocols we consider are either trivially efficient or taken from other work,
in which case we refer to these other works for proofs of efficiency. The efficiency
of the simulator used to prove the security of quantum authentication has been
analyzed in [9]. All other simulators used in the security proofs run the corre-
sponding honest protocols, and are thus efficient because the protocols are. We
therefore do not discuss efficiency any further in this work.
10 For a protocol with information-theoretic security to be composable with a proto-

col that has computational security, one additionally requires the simulator to be
efficient.



3 Quantum Authentication

We start with some technical preliminaries in Sect. 3.1, where we introduce
(strong) purity testing codes, which are a key component of the family of quan-
tum authentication protocols of [3]. In Sect. 3.2 we give a constructive view of
quantum authentication with key recycling: we define the resources that such a
protocol is expected to construct, as well as the resources that are required to
achieve this. In Sect. 3.3 we describe the family of protocols that we analyze in
this work, along with a variant in which the order of the encryption and encod-
ing operations has been swapped, which we prove to be equivalent. In Sect. 3.4
we give a security proof for the family of quantum authentication protocols de-
fined earlier. And in Sect. 3.5 we show that the number of recycled key bits is
optimal. Finally, in Sect. 3.6 we give two explicit constructions of purity testing
codes and get the exact parameters of the quantum authentication protocols
with these codes.

3.1 Technical Preliminaries

Pauli Operators. To denote a Pauli operator on n qubits we write either Px,z

or Pℓ, where x and z are n-bit strings indicating in which positions bit and phase
flips occur, and ℓ = (x, z) is the concatenation of x and z, which is used when
we do not need to distinguish between x and z. Two Pauli operators Pj and Pℓ

with j = (x, z) and ℓ = (x′, z′) commute (anti-commute) if the symplectic inner
product

(j, ℓ)Sp := x · z′ − z · x′ (1)

is 0 (is 1), where x · z is the scalar product of the vectors and the arithmetic is
done modulo 2. Hence, for any Pj and Pℓ

PjPℓ = (−1)(j,ℓ)SpPℓPj .

We use several times the following equality

∑

j∈{0,1}n

(−1)(j,ℓ)Sp =

{

2n if ℓ = 0,

0 otherwise,
(2)

where ℓ = 0 means that all bits of the string ℓ are 0.

Purity Testing Code. An error correcting code (ECC) that encodes an m
qubit message in a m+n qubit code word is generally defined by an isomorphism
from C2m to C2m+n

. In this work we define an ECC by a unitary U : C2m+n →
C2m+n

. The code word for a state |ψ〉 is obtained by appending a n qubit state
|0〉 to the message, and applying U , i.e., the encoding of |ψ〉 is U(|ψ〉 ⊗ |0〉). We
do not need to use the decoding properties of ECCs in this work, we only use
the them to detect errors, i.e., given a state |ϕ〉 ∈ C2m+n

, we apply the inverse
unitary U † and measure the last n qubits to see if they are |0〉 or not.



The first property we require of our codes, is that they map any Pauli error
Pℓ into another Pauli error Pℓ′ , i.e.,

U †PℓU = eiθℓPℓ′ , (3)

for some global phase eiθℓ . This is always the case for any U that can be imple-
mented with Clifford operators. In particular, all stabilizer codes have this prop-
erty, which are used in [3] to define purity testing codes. Note that the mapping
from ℓ to ℓ′ defined by (3) is a permutation on the set of indices ℓ ∈ {0, 1}2m+2n

that depends only on the choice of code.
A code will detect an error Pℓ if Pℓ′ = Px,z ⊗Ps,z′ for s 6= 0, where Px,z acts

on the first m qubits and Ps,z′ on the last n. Measuring these last qubits would
yield the syndrome s, since Ps,z′ flips the bits in the positions corresponding to
the bits of s. And an error Pℓ will act trivially on the message if Pℓ′ = P0,0⊗Ps,z.
In particular, if Pℓ′ = P0,0 ⊗ P0,z, then this error will not be detected, but not
change the message either.

For a code indexed by a key k, we denote by Pk the set of Pauli errors
that are not detected by this code, and by Qk ⊂ Pk we denote the undetected
errors which act trivially on the message. A purity testing code is a set of codes
{Uk}k∈K such that when a code Uk is selected uniformly at random, it will detect
with high probability all Pauli errors which act non-trivially on the message.

Definition 3 (Purity testing code [3]). A purity testing code with error ε is
a set of codes {Uk}k∈K, such that for all Pauli operators Pℓ,

|{k ∈ K : Pℓ ∈ Pk \ Qk}|
|K| ≤ ε .

As mentioned in Sect. 1.3, we use a stricter definition of purity testing code
in this work. We require that all non-identity Paulis get detected with high
probability, even those that act trivially on the message. Intuitively, the reason
for this is that, with the original definition of purity testing, if the adversary
introduces some noise Pℓ, by learning whether the message was accepted or
not, she will learn whether that error acts trivially on the message or not, and
thus learn something about the ECC used. This means that the adversary learns
something about the key used to choose the ECC, and hence it cannot be recycled
in its entirety.11

Definition 4 (Strong purity testing code). A strong purity testing code with
error ε is a set of codes {Uk}k∈K, such that for all non-identity Pauli operators
Pℓ,

|{k ∈ K : Pℓ ∈ Pk}|
|K| ≤ ε .

In Sect. 3.6 we provide explicit constructions of strong purity testing codes.

11 We conjecture that in this case only 1 bit of the key is leaked, see the discussion in
Sect. 4.



3.2 Secure Channel & Secret Key Resource

The main result in this paper is a proof that the family of quantum authenti-
cation protocols of Barnum et al. [3] restricted to strong purity testing codes
can be used to construct a resource that corresponds to the parallel composition
of a secure quantum channel Sm and a secret key resource K̄νrej,νacc , which are
illustrated in Fig. 5 and explained in more detail in the following paragraphs.

The secure quantum channel, Sm, drawn in Fig. 5a, allows an m-qubit mes-
sage ρ to be transmitted from Alice to Bob, which Alice may input at her in-
terface. Since in general the players cannot prevent Eve from learning that a
message has been sent, Eve’s interface has one output denoted by a dashed ar-
row, which notifies her that Alice has sent a message. But the players cannot
prevent Eve from jumbling the communication lines either, which is captured
in the resource Sm by allowing Eve to input a bit that decides if Bob gets the
message or an error symbol ⊥—Eve may also decide not to provide this input
(Eve cuts the communication lines), in which case the system is left waiting and
Bob obtains neither the message nor an error. Note that the order in which
messages are input to the resource Sm is not fixed, Eve may well provide her bit
before Alice inputs a message. In this case, Bob immediately receives an error
⊥ regardless of the value of Eve’s bit.

The secret key resource, K̄νrej,νacc , depicted in Fig. 5b distributes a uniformly
random key to Alice and Bob. Unlike the simplified key resource from Fig. 1c,
here the adversary has some control over the length of the key produced. This is
because in the real setting Eve can prevent the full key from being recycled by
jumbling the message. This is reflected at Eve’s interface of K̄νrej,νacc allowing her
to decide if the key generated is of length νrej or νacc. Furthermore, if in the real
setting Alice were to recycle her key before Bob receives the cipher, Eve could
use the information from the recycled key to modify the cipher without being
detected. So Alice must wait for a confirmation of reception from Bob, which Eve
can jumble, preventing Alice from ever recycling the key. This translates in the
ideal setting to Eve having another control bit, deciding whether Alice receives
the key or an error ⊥. Note that if Eve provides her two bits in the wrong order,
Alice always gets an error ⊥. This key resource is modeled so that the honest
players must request the key to obtain its value. If Bob does this before Eve has
provided the bit deciding the key length, he gets an error instead of a key. If
Alice makes the request before Eve has provided both her bits, she also gets an
error. Otherwise they get the key k.

If no adversary is present, a filter ♭E covers Eve’s interface of the resources
Sm and K̄νrej,νacc , which is drawn in Fig. 5c. This filter provides the inputs to the
resources that allow Bob to get Alice’s message and generate a key of length νacc
that is made available to both players.

To construct the filtered resource (Sm‖K̄νrej,νacc)♭, the quantum authentication
protocol will use a shared secret key to encrypt and authenticate the message.
This means that the players must share a secret key resource. For simplicity we
assume the players have access to a resource Kµ as depicted in Fig. 1c, that
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ρ ρ,⊥
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(a) A secure channel Sm is very similar
to the authentic channel from Fig. 1b.
It allows Alice (on the left) to send an
m-qubit message, and Eve (below) to
decide if Bob (on the right) gets it. But
this time, Eve only receives a notifica-
tion that the message has been sent
(denoted by the dashed arrow), not a
copy.

key

Secret key K̄
νrej,νacc

Alice Bob

Eve

req. req.

k,⊥ k

0, 1 0, 1

(b) A slightly weaker secret key re-
source than that from Fig. 1c, K̄νrej,νacc .
It allows Eve (below) to choose the
length of the key generated, either
|k| = νrej or |k| = νacc. Furthermore,
Eve can prevent Alice (on the left)
from getting the key at all.

♭E

Secure channel Sm

ρ ρ

0

key

Secret key K̄
νrej,νacc

req. req.

k k

0 0

(c) When no adversary is present, the filter ♭E covers Eve’s interface of the re-
source Sm‖K̄νacc,νrej . Once ♭E is notified that a message has been sent, it allows the
message through and notifies the secret key resource to prepare a key of length
νacc.

Fig. 5 – We depict here the filtered resource (Sm‖K̄νacc,νrej , ♭E) constructed by the
quantum authentication protocols analyzed in this work. It can be seen as the
composition of a secure channel Sm (Fig. 5a) and a secret key resource K̄

νacc,νrej

(Fig. 5b). The filter ♭E that emulates an honest behavior is drawn in Fig. 5c.



always provides them with a key of length µ.12 Note that the security of the
protocol is not affected if the players only have a weaker resource which might
shorten the key or not deliver it to both players—such as the one constructed by
the protocol, K̄νrej,νacc —because if either of the players does not have enough key,
they simply abort, which is an outcome Eve could already achieve by cutting or
jumbling the communication.

They also need to share an insecure quantum channel, which is used to send
the message, and is illustrated in Fig. 1a without a filter and in Fig. 3a with a
filter. The authentication protocol we consider is designed to catch any error, so
if it is used over a noisy channel, it will always abort, even though no adversary
is tampering with the message. We thus assume that the players share a noiseless
channel, which we denote C�, i.e., C is controlled by the adversary as in Fig. 1a.
But if no adversary is present, the filter �E is noiseless. In the full version of
this work [27] we explain how to compose the protocol with an error correcting
code so as to run it over a noisy channel.

Finally, the players need a backwards authentic channel, that can send one
bit of information from Bob to Alice. This is required so that Alice may learn
whether the message was accepted and recycle the corresponding amount of key.
The authentic channel and its filter A♦ are drawn in Figures 1b and 3b. Putting
all this together in the case of an active adversary, we get Fig. 6, where the
converters for Alice’s and Bob’s parts of the quantum authentication protocol
are labeled πq-auth

A and πq-auth
B , respectively.

According to Definition 1, a protocol πq-auth
AB = (πq-auth

A , πq-auth
B ) is then a

quantum authentication protocol (with key recycling) with error εq-auth if it
constructs (Sm‖K̄νrej,νacc)♭ from C�‖A♦‖Kµ within εq-auth, i.e.,

C�‖A♦‖Kµ πq-auth

AB
,εq-auth−−−−−−−−−→ (Sm‖K̄νrej,νacc)♭ . (4)

In Sect. 3.3 we describe the protocol, and in Sect. 3.4 we prove that (4) is
satisfied and provide the parameters µ, νrej, νacc, ε

q-auth.

3.3 Generic Protocol

The family of quantum authentication protocols from [3] consists in first encrypt-
ing the message to be sent with a quantum one-time pad, then encoding it with a
purity testing code and a random syndrome. We do the same, but with a strong
purity testing code. We also extend the protocol so that the players recycle all
the key if the message is accepted, and the key used to select the strong purity
testing code if the message is rejected. So that Alice may also recycle the key,
Bob uses the backwards authentic classical channel to notify her of the outcome.
We refer to this as the “encrypt-then-encode” protocol, the details of which are
provided in Fig. 7.

12 Since Eve’s interface of Kµ is empty, this resource has a trivial empty filter, which
we do not write down.
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Secret key K
µπq-auth
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ρ ρ′,⊥
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k′,⊥ k′

keyk k
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Fig. 6 – The real system for quantum authentication with key recycling. Upon
receiving a message ρ, πq-auth

A encrypts it with a key that it obtains from Kµ

and sends it on the insecure channel. Upon receiving a quantum state on the
insecure channel, πq-auth

B checks whether it is valid, and outputs the corresponding
message ρ′ or an error message ⊥. It may then recycle (part of) the key, k′, and
uses the authentic channel to notify πq-auth

A whether the message was accepted or
not. πq-auth

A then recycles the key as well. Concrete protocols for this are given in
Sect. 3.3.

Alternatively, one may perform the encoding and encryption in the opposite
order: Alice first encodes her message with the strong purity testing code with
syndrome 0, then does a quantum one-time pad on the resulting m + n qubit
state. This “encode-then-encrypt” protocol is described in Fig. 8.

The pseudo-code described in Figures 7 and 8 can easily be translated into
converters as used in the AC formalism, i.e., the objects πq-auth

A and πq-auth
B

from Fig. 6. More precisely, if πq-auth
A receives a message at its outer interface,

it requests a key from the key resource, encrypts the message as described and
sends the cipher on the insecure channel. It may receive three symbols from the
backwards authentic channel: an error ⊥, in which case it does not recycle any
key, a message 0 saying that πq-auth

B did not receive the correct state, in which
case it recycles the part of the key used to choose the code, or a message 1 saying
that πq-auth

B did receive the correct state, in which case it recycles all the key.

If πq-auth
A first receives a message on the backwards authentic channel before

receiving a message to send, it will not recycle any key. Similarly, when πq-auth
B

receives a cipher on the insecure channel, it requests a key from the key resource,
performs the decryption, outputs either the message or an error depending on
the result of the decryption, and sends this result back to πq-auth

A on the authentic
channel.

The encode-then-encrypt protocol uses n bits more key, and since these bits
are not recycled in case of a reject, it is preferable to use the encrypt-then-encode
protocol. These protocols are however identical: no external observer can detect



Quantum authentication— encrypt-then-encode

1. Alice and Bob obtain uniform keys k, ℓ, and s from the key resource, where
k is long enough to choose an element from a strong purity testing code that
encodes m qubits in m+ n qubits, ℓ is 2m bits and s is n bits.

2. Alice encrypts the message ρA she receives with a quantum one-time pad
using the key ℓ. She then appends an n qubit state |s〉〈s|S , and encodes the
whole thing with a strong purity testing code, obtaining the cipher σAS =
Uk(Pℓρ

APℓ ⊗ |s〉〈s|S)U†
k .

3. Alice sends σAS to Bob on the insecure channel.
4. Bob receives a message σ̃AS, he applies U†

k , decrypts the A part and measures
the S part in the computational basis.

5. If the result of the measurement is s, he accepts the message and recycles k,
ℓ and s. If the result is not s, he rejects the message, and recycles k.

6. Bob sends Alice a bit on the backwards authentic channel to tell her if he
accepted or rejected the message.

7. When Alice receives Bob’s bit, she either recycles all the keys or only k.

Fig. 7 – This protocol is identical to the scheme from [3], except that the players
use a strong purity testing code, recycle key, and have a backwards authentic
channel so that Alice may learn the outcome.

which of the two is being run. This holds, because the encode-then-encrypt pro-
tocol performs phase flips on a syndrome that is known to be in a computational
basis state |s〉. Thus, they have no effect and can be skipped. Likewise, Bob per-
forms phase flips on S before measuring in the computational basis— he might
as well skip these phase flips, since they have no effect either. We formalize this
statement by proving (in Lemma 5) that the converters corresponding to the two
different protocols are indistinguishable. This result is similar in spirit to proofs
that some prepare-and-measure quantum key distribution (QKD) protocols are
indistinguishable from entanglement-based QKD protocols, and thus security
proofs for one are security proofs for the other [32].

Since these two protocols are indistinguishable, we provide a security proof
in Sect. 3.4 for the encode-then-encrypt protocol. However, in Sect. 3.6, when
we count the number of bits of key consumed, we count those of the encrypt-
then-encode protocol.

Lemma 5. Let (π̄q-auth
A , π̄q-auth

B ) and (πq-auth
A , πq-auth

B ) denote the pairs of con-
verters modeling Alice’s and Bob’s behavior in the encrypt-then-encode and en-
code-then-encrypt protocols, respectively. Then

d(π̄q-auth

A , πq-auth

A ) = d(π̄q-auth

B , πq-auth

B ) = 0 .

Proof. We start with Alice’s part of the protocol. Let π̄q-auth
A and πq-auth

A receive
keys k, ℓ and s as in the protocol from Fig. 7, as well as an extra key z of length n



Quantum authentication— encode-then-encrypt

1. Alice and Bob obtain uniform keys k and ℓ from the key resource, where k

is long enough to choose an element from a strong purity testing code that
encodes m qubits in m+ n qubits and ℓ is 2m + 2n bits long.

2. Alice appends a n qubit state |0〉〈0| to the message ρA she receives, encodes it
with a strong purity testing code chosen according to the key k, and encrypts
the whole thing with a quantum one-time pad using the key ℓ. She thus obtains
the cipher σAS = PℓUk(ρ

A ⊗ |0〉〈0|S)U†
kPℓ.

3. Alice sends σAS to Bob on the insecure channel.
4. Bob receives a message σ̃AS, he applies Pℓ, then U†

k , and measures the S part
in the computational basis.

5. If the result of the measurement is 0, he accepts the message and recycles k

and ℓ. Otherwise, he rejects the message, and recycles k.
6. Bob sends Alice a bit on the backwards authentic channel to tell her if he

accepted or rejected the message.
7. When Alice receives Bob’s bit, she either recycles all the keys or only k.

Fig. 8 – This protocol is similar to the protocol from Fig. 7, except that the order
of the encryption and encoding have been reversed. To do this, the players need
an extra n bits of key.

that is needed by πq-auth
A , since it requires more key. The distinguisher prepares

a state ρRA, and sends the A part to the system. π̄q-auth
A outputs

UAS
k PA

ℓ

(

ρRA ⊗ |s〉〈s|S
)

PA
ℓ

(

UAS
k

)†

= UAS
k

(

PA
ℓ ⊗ PS

s,0

)

(

ρRA ⊗ |0〉〈0|S
)

(

PA
ℓ ⊗ PS

s,0

)(

UAS
k

)†

= UAS
k

(

PA
ℓ ⊗ PS

s,z

)

(

ρRA ⊗ |0〉〈0|S
)

(

PA
ℓ ⊗ PS

s,z

)(

UAS
k

)†

= PAS
ℓ′ UAS

k

(

ρRA ⊗ |0〉〈0|S
)

(

UAS
k

)†
PAS
ℓ′ ,

where in the last line we used (3). This is exactly the state output by πq-auth
A if

when receiving the key k, ℓ, s, z, the protocol uses the Pauli Pℓ′ for the quantum
one-time pad.

For Bob’s part of the protocol, let the distinguisher prepare a state σRAS

and send the AS part to the system. The subnormalized state held jointly by
π̄q-auth
B and the distinguisher after decoding and performing the measurement is



given by

〈s|PA
ℓ

(

UAS
k

)†
σRASUAS

k PA
ℓ |s〉

= 〈0|
(

PA
ℓ ⊗ PS

s,0

)(

UAS
k

)†
σRASUAS

k

(

PA
ℓ ⊗ PS

s,0

)

|0〉

= 〈0|
(

PA
ℓ ⊗ PS

s,z

)(

UAS
k

)†
σRASUAS

k

(

PA
ℓ ⊗ PS

s,z

)

|0〉

= 〈0|
(

UAS
k

)†
PAS
ℓ′ σRASPAS

ℓ′ UAS
k |0〉 .

We again obtain the state that is jointly held by πq-auth
B and the distinguisher if

when receiving the key k, ℓ, s, z, the protocol uses the Pauli Pℓ′ for the quantum
one-time pad. ⊓⊔

Remark 6. If part of the message is classical— i.e., it is diagonal in the compu-
tational basis and known not to have a purification held be the distinguisher—
then running the same proof as Lemma 5, one can show that it is sufficient to
perform bit flips on that part of the message, the phase flips are unnecessary.
This is used in the full version of this work [27] to save some key in a construction
that involves a message that is part classical.

3.4 Security Proof

Suppose that there exists a strong purity testing code {Uk}k∈K of size log |K| = ν
and with error ε that encodes an m qubit message in an m+n qubit cipher. And
let πq-auth

AB = (πq-auth
A , πq-auth

A ) denote Alice and Bob’s converters when running
the encode-then-encrypt protocol from Fig. 8. We are now ready to state the
main theorem, namely that πq-auth

AB is a secure authentication scheme with key
recycling.

Theorem 7. Let πq-auth
AB denote converteres corresponding to the protocol from

Fig. 8. Then πq-auth
AB constructs the secure channel and secret key filtered resource

(Sm‖K̄ν,ν+2m+2n)♭, given an insecure quantum channel C�, a backwards authen-
tic channel A♦ and a secret key Kν+2m+2n, i.e.,

C�‖A♦‖Kν+2m+2n πq-auth

AB
,εq-auth−−−−−−−−→ (Sm‖K̄ν,ν+2m+2n)♭ ,

with εq-auth =
√
ε+ ε/2, where ε is the error of the strong purity testing code.

In order to prove this theorem, we need to find a simulator such that the
real and ideal systems are indistinguishable except with advantage

√
ε + ε/2.

The simulator that we use is illustrated in Fig. 9, and works as follows. When it
receives a notification from the ideal resource that a message is sent, it generates
EPR pairs |Φ〉CR and outputs half of each pair (the C register) at its outer inter-
face. Once it receives a modified cipher (denoted C′ in the picture), it measures
this state and the half of the EPR pairs it kept in the Bell basis to decide if
they were modified. It accordingly activates the switches on the two resources
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Fig. 9 – The ideal quantum authentication system consisting of the constructed
resources S

m and K̄
ν,ν+2m+2n, and the simulator σq-auth

E .

controlling whether Bob gets the message and the length of the key generated,
and outputs the bit of backward communication from Bob to Alice— which is
always leaked to Eve. If it first receives the register C′ before generating the
EPR pairs, it always notifies the ideal resource to output an error and outputs
0 as the leak on the backwards authentic channel.

Proof. It is trivial to show that correctness holds with error 0, namely that

d
(

πq-auth
AB

(

C�E‖A♦E‖Kν+2m+2n
)

, (Sm‖K̄ν,ν+2m+2n)♭E

)

= 0 . (5)

We now prove the case of security, i.e.,

d
(

πq-auth
AB

(

C‖A‖Kν+2m+2n
)

, (Sm‖K̄ν,ν+2m+2n)σq-auth
E

)

≤
√
ε+ ε/2 . (6)

The real and ideal systems, drawn in Figures 6 and 9 have 5 inputs. The
distinguisher thus has the choice between 5! possible orders for providing inputs.
However, most of these orders are redundant and do not need to be analyzed.
Providing the requests for the secret keys before they are ready is pointless. So
it is sufficient to look at the case where these requests are made as soon as the
keys are available for recycling, i.e., after Bob has received the message from
Alice and after Alice has received the confirmation from Bob. What is more,
neither sending Alice an error on the backwards authentic channel nor allowing
her to get Bob’s confirmation will help either way, since the distinguisher already
knows what output Alice will produce, so we can completely ignore this input.
That leaves only 2 in-ports, and thus 2 orders to analyze:

1. The distinguisher first inputs a message at Alice’s interface, gets the cipher
at Eve’s interface, inputs a possibly modified cipher at Eve’s interface, gets
the output at Bob’s interface, and requests the recycled key.

2. The distinguisher first inputs a fake cipher at Eve’s interface, gets the output
at Bob’s interface, makes a request for his recycled key, then inputs a message
at Alice’s interface and receives the cipher for that message.



We start with the first case, the initial message is sent to Alice. The distin-
guisher prepares a message |ψ〉ME

and inputs the M part at Alice’s interface.
The ideal channel then notifies the simulator that a message has been input. The
simulator prepares a maximally entangled state |Φ〉CR

of dimension 22m+2n and
outputs the C register at Eve’s interface. The distinguisher now holds a bipartite
state in CE, to which it applies a unitary UCE . Without loss of generality, one
may write the unitary as UCE =

∑

j P
C
j ⊗EE

j , where PC
j are Paulis acting on the

cipher register C and EE
j act on the distinguisher’s internal memory E. The re-

sulting state in the C register is input back in the E interface. The simulator now
measures CR in the Bell basis defined by the projectors {Pj⊗I|Φ〉〈Φ|CR

Pj⊗I}j.
If the outcome is j = 0— where P0 = I— it tells the two resources that the
cipher was not modified. In which case the contents of the register M is output
at Bob’s interface with an acc flag. Furthermore, it generates a fresh uniform key
(k, ℓ), where |k| = ν and |ℓ| = 2m+ 2n. If the outcome is j 6= 0, then the simu-
lator notifies the channel to delete the message and output a rej flag, and tells
the key resource to prepare only the shorter key k. The distinguisher then sends
a request to obtain the fresh key. So the final state held by the distinguisher
interacting with the ideal system is

ζ = |acc〉〈acc| ⊗ τK ⊗ τL ⊗
[

(

IM ⊗ EE
0

)

|ψ〉〈ψ|ME
(

IM ⊗
(

EE
0

)†
)]

+
∑

j 6=0

|rej〉〈rej| ⊗ τK ⊗ EE
j ρ

E
(

EE
j

)†
, (7)

where τK and τL are fully mixed states and ρE = trM (|ψ〉〈ψ|ME
). One could

append states ⊥L and ⊥M in the rej branch of (7) so that both terms have the
same number of registers; we omit them for simplicity.

In the real system, for the secret key (k, ℓ), the state before Bob’s measure-
ment of the syndrome is given by

|ϕk,ℓ〉SME =
∑

j

(

(

USM
k

)†
PSM
ℓ PSM

j PSM
ℓ USM

k ⊗ EE
j

)

|0〉S |ψ〉ME

=
∑

j

(−1)(j,ℓ)Sp
(

(

USM
k

)†
PSM
j USM

k ⊗ EE
j

)

|0〉S |ψ〉ME
,

where (·, ·)Sp denotes the symplectic product defined in (1). Let J k
s be the set of

indices j such that the error PSM
j produces a syndrome s when code k is used,

i.e.,
(

USM
k

)†
PSM
j USM

k = eiθk,jPS
s,z ⊗ PM

j′ for some θk,j (see (3) and discussion

thereafter). For j ∈ J k
s , let

|s〉S |ψj,k〉ME :=
(

(

USM
k

)†
PSM
j USM

k ⊗ EE
j

)

|0〉S |ψ〉ME

= eiθk,j
(

PS
s,z ⊗ PM

j′ ⊗ EE
j

)

|0〉S |ψ〉ME
.



Then

|ϕk,ℓ〉 =
∑

s

∑

j∈J k
s

(−1)(j,ℓ)Sp
(

(

USM
k

)†
PSM
j USM

k ⊗ EE
j

)

|0〉S |ψ〉ME

=
∑

s

∑

j∈J k
s

(−1)(j,ℓ)Sp |s〉S |ψj,k〉ME
.

The next step in Bob’s protocol consists in measuring the syndrome. If s = 0
is obtained, he outputs the message as well as the key (k, ℓ) and a flag acc.
Otherwise he deletes the message, outputs k with the flag rej. The final state
held be the distinguisher in this case is

ξ =|acc〉〈acc| ⊗ 1

2ν+2m+2n

∑

k,ℓ

|k, ℓ〉〈k, ℓ|

⊗
∑

j1,j2∈J k
0

(−1)(j1⊕j2,ℓ)Sp |ψj1,k〉〈ψj2,k|ME

+ |rej〉〈rej| ⊗ 1

2ν+2m+2n

∑

k,ℓ

|k〉〈k|

⊗
∑

s6=0

∑

j1,j2∈J k
s

(−1)(j1⊕j2,ℓ)SpEE
j1ρ

E
(

EE
j2

)†
,

where we have used |ψj,k〉ME
=

(

VM
k,j ⊗ EE

j

)

|ψ〉ME
for some unitary VM

k,j .

Setting

ζacc :=
(

IM ⊗ EE
0

)

|ψ〉〈ψ|ME
(

IM ⊗
(

EE
0

)†
)

,

ζrej :=
∑

j 6=0

EE
j ρ

E
(

EE
j

)†
,

ξacck,ℓ :=
∑

j1,j2∈J k
0

(−1)(j1⊕j2,ℓ)Sp |ψj1,k〉〈ψj2,k|ME ,

ξrejk :=
1

22m+2n

∑

ℓ,s6=0

∑

j1,j2∈J k
s

(−1)(j1⊕j2,ℓ)SpEE
j1ρ

E
(

EE
j2

)†
,

the distance between real and ideal systems may be written as

1

2
‖ζ − ξ‖tr =

1

2 · 2ν+2m+2n

∑

k,ℓ

∥

∥ζacc − ξacck,ℓ

∥

∥

tr
+

1

2 · 2ν
∑

k

∥

∥

∥
ζrej − ξrejk

∥

∥

∥

tr
.

ζacc and ξacck,ℓ are both pure states, so using the fact that13

1

2
‖|ψ〉〈ψ| − |ϕ〉〈ϕ|‖tr ≤ ‖|ψ〉 − |ϕ〉‖ , (8)

13 See the full version of this work [27] for a proof that (8) holds.



we bound their distance as

1

2

∥

∥ζacc − ξacck,ℓ

∥

∥

tr
≤

∥

∥

∥

∥

∥

∥

(

IM ⊗ EE
0

)

|ψ〉ME −
∑

j∈J k
0

(−1)(j,ℓ)Sp |ψj,k〉ME

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∑

j∈J k
0 \{0}

(−1)(j,ℓ)Sp |ψj,k〉ME

∥

∥

∥

∥

∥

∥

=

√

∑

j1,j2∈J k
0 \{0}

(−1)(j1⊕j2,ℓ)Sp〈ψj1,k|ψj2,k〉 ,

where ‖|a〉‖ =
√

〈a|a〉 is the vector 2-norm and we used the fact that |ψ0,k〉ME
=

(

IM ⊗ EE
0

)

|ψ〉ME
. From Jensen’s inequality and using (2) we obtain

1

2 · 2ν+2m+2n

∑

k,ℓ

∥

∥ζacc − ξacck,ℓ

∥

∥

tr

≤
√

√

√

√

1

2ν+2m+2n

∑

k,ℓ

∑

j1,j2∈J k
0 \{0}

(−1)(j1⊕j2,ℓ)Sp〈ψj1,k|ψj2,k〉

=

√

√

√

√

1

2ν

∑

k

∑

j∈J k
0 \{0}

〈ψj,k|ψj,k〉 .

Finally, because the code is a strong purity testing code with error ε and that

〈ψj,k|ψj,k〉 = tr(EE
j ρ

E
(

EE
j

)†
) =: pj with

∑

j pj = 1, we get

1

2|K||L|
∑

k,ℓ

∥

∥ζacc − ξacck,ℓ

∥

∥

tr
≤

√

√

√

√

1

|K|
∑

j 6=0

∑

k:j∈J k
0

〈ψj,k|ψj,k〉

=

√

√

√

√

1

|K|
∑

j 6=0

∑

k:j∈J k
0

pj

≤
√

∑

j 6=0

εpj ≤
√
ε .

In the reject branch of the real system we have

ξrejk =
1

22m+2n

∑

ℓ,s6=0

∑

j1,j2∈J k
s

(−1)(j1⊕j2,ℓ)SpEE
j1ρ

E
(

EE
j2

)†

=
∑

s6=0

∑

j∈J k
s

EE
j ρ

E
(

EE
j

)†

=
∑

j /∈J k
0

EE
j ρ

E
(

EE
j

)†
,



where we used again (2). Thus

1

2 · 2ν
∑

k

∥

∥

∥
ζrej − ξrejk

∥

∥

∥

tr
=

1

2 · 2ν
∑

k

∥

∥

∥

∥

∥

∥

∑

j∈J k
0 \{0}

EE
j ρ

E
(

EE
j

)†

∥

∥

∥

∥

∥

∥

tr

≤ 1

2 · 2ν
∑

k

∑

j∈J k
0 \{0}

pj ≤ ε/2 .

Putting all this together we get

1

2
‖ζ − ξ‖tr ≤

√
ε+ ε/2 .

We now consider the second case: the distinguisher first prepares a state
|ψ〉CE and inputs the C part at Eve’s interface, then obtains the output at
Bob’s interface. Note that in the ideal case the channel always outputs a rej

message at Bob’s interface. Thus, if the cipher is accepted by Bob—who outputs
a state ζacc—the distinguisher must be interacting with the real system and can
already output this guess. In the case of a rejection, it now holds a bipartite
system KE— the recycled key K and its purifying system E. It then applies
an isometry U : HKE → HKME to this system and inputs the M part of
the resulting state at Alice’s interface. After which it obtains a cipher at Eve’s
interface and holds the tripartite system KCE—the recycled key K, the cipher
C and its internal memory E. We denote this state ζ in the ideal case and ξrej

in the real case, and we need to bound

1

2

∥

∥ζ − ξrej
∥

∥

tr
+

1

2
‖ξacc‖tr .

In a first step, we assume that the state |ψ〉CE
prepared by the distin-

guisher is an antisymmetric fully entangled state, which we denote |Ψ−〉CE
=

∑

x(−1)w(x)|x, x̄〉CE
, where w(x) is the Hamming weight of x ∈ {0, 1}m+n and

x̄ is the string x with all bits flipped. In the ideal case the simulator notifies
the channel to reject the cipher, and the state |rej〉〈rej| ⊗ τK is output at Bob’s
interface. The distinguisher then holds ζ = τK ⊗ τE . In the real case, Bob ap-

plies the decoding algorithm, i.e., first a Pauli PC
ℓ , then a unitary

(

UC
k

)†
and

finally measures n bits of the syndrome in the computational basis. Since the
antisymmetric state is invariant under U ⊗ U , one could equivalently apply the
inverse operation, PℓUk, to the E system, i.e., the state after Bob’s measurement
is given by

1

2ν+3m+3n

∑

k,ℓ,s,x1,x2

(−1)w(x1)⊕w(x2)|k, ℓ〉〈k, ℓ|

⊗
(

IC ⊗ PE
ℓ U

E
k

)

|s, x1, s̄, x̄1〉〈s, x2, s̄, x̄1|CE
(

IC ⊗
(

UE
k

)†
PE
ℓ

)

.



If s = 0 Bob accepts the cipher as being valid, which happens with probability
2−n, i.e., ‖ξacc‖tr = 2−n. In the case where s 6= 0, he deletes the cipher, so the
remaining state is given by

1

2ν+3m+3n

∑

k,ℓ,s6=0,x

|k, ℓ〉〈k, ℓ| ⊗
(

IC ⊗ PE
ℓ U

E
k

)

|s̄, x̄〉〈s̄, x̄|CE
(

IC ⊗
(

UE
k

)†
PE
ℓ

)

= τK ⊗ τL ⊗ τE − ρKLE ,

where

ρKLE =
1

2ν+3m+3n

∑

k,ℓ,x

|k, ℓ〉〈k, ℓ| ⊗ PE
ℓ U

E
k |0̄, x̄〉〈0̄, x̄|E

(

UE
k

)†
PE
ℓ ,

K is made public and the L system is the part of the key kept secret by the
players.

Let E denote the completely positive, trace-preserving (CPTP) map consist-
ing of the distinguisher’s next step— the isometry U : HKE → HKME — and
the final operation of the ideal system— deleting the message system M that
is input at Alice’s interface and outputting a fully mixed state τC . Let F de-
note the CPTP map consisting of the distinguisher’s next step and the final
operation of the real system— encoding the message system M according to
the protocol and outputting the resulting cipher. We have ζ = E

(

τK ⊗ τE
)

and

ξrej = F
(

τK ⊗ τL ⊗ τE
)

−F
(

ρKLE
)

. Thus,

1

2

∥

∥ζ − ξrej
∥

∥

tr
≤ 1

2

∥

∥E
(

τK ⊗ τE
)

−F
(

τK ⊗ τL ⊗ τE
)∥

∥

tr
+

1

2
2−n ,

since ‖ρKLE‖tr = 2−n. Finally, note that we have

E
(

τK ⊗ τE
)

= F
(

τK ⊗ τL ⊗ τE
)

= τC ⊗ σKE

for σKE = trM
[

U
(

τK ⊗ τE
)

U †
]

, since the random Pauli Pℓ applied by the
encryption algorithm completely decouples the cipher from KE. Putting this
together, we get

1

2
‖ζ − ξ‖tr ≤ 2−n ≤

√
ε ,

since a strong purity testing code will always have an error ε ≥ 22m+n−1
22m+2n−1 ≥ 2−2n.

The final case that remains to consider is when the distinguisher prepares a
state |ψ〉CE

that is not the antisymmetric state. We will reduce this case to that

of the entangled antisymmetric by using the entangled state |Ψ−〉CE
to teleport

the C′ part of any state |ψ〉C
′E′

. Due to space restrictions, the proof of this case
is provided in the full version of this work [27]. ⊓⊔

3.5 Optimality of the Recycled Key Length

It follows from Lemma 5 that Theorem 7 is also a proof of security for the
encrypt-then-encode protocol from Fig. 7, i.e.,

C�‖A♦‖Kν+2m+n π̄q-auth

AB
,εq-auth−−−−−−−−−→ (Sm‖K̄ν,ν+2m+n)♭ ,



with εq-auth =
√
ε+ ε/2. Thus, in the case where the message is not accepted by

Bob, 2m+ n bits of key are lost. We prove here that this is optimal: one cannot
recycle any extra bit of key.

Lemma 8. There exists an adversarial strategy to obtain all the secret bits that
are not recycled in the encrypt-then-encode protocol.

Proof. The distinguisher prepares EPR pairs |Φ〉ME and provides the M part
to Alice. It then receives the cipher and thus holds the state

USM
k PM

ℓ

(

|s〉S ⊗ |Φ〉ME
)

,

which it keeps. It then sends a bogus cipher to Bob, and obtains the key k after

Bob recycles it. It applies the decoding unitary
(

USM
k

)†
, measures the S register

to get the secret key s and measures the joint ME register in the Bell basis to
get the secret key ℓ. ⊓⊔

3.6 Explicit Constructions

The protocols we have given in Sect. 3.3 use strong purity testing codes, and the
parameters of the key used, key recycled and error depend on the parameters
of these codes. In this section we give two constructions of purity testing codes.
The first requires less initial secret key, the second has a better error parameter.
Both have the same net consumption of secret key bits.

The first construction is from Barnum et al. [3]. They give an explicit strong

purity testing code with ν = n and ε = 2m/n+2
2n .14 Plugging this in the pa-

rameters from Theorem 7 with the encrypt-then-encode protocol, we get the
following.

Corollary 9. The encrypt-then-encode protocol with the purity testing code of
[3] requires an initial key of length 2m+2n. It recycles all bits if the message is
accepted, and n bits if the message is rejected. The error is

εq-auth =

√

2m/n+ 2

2n
+
m/n+ 1

2n
.

The second construction we give is based on an explicit purity testing code by
Chau [12]—though he does not name it this way. Chau [12] finds a set of unitaries
U = {Uk} in dimension d such that, if k is chosen uniformly at random, any non-
identity Pauli is mapped to every non-identity Pauli with equal frequency, i.e.,
∀Pj , Pℓ with Pj 6= I and Pℓ 6= I,

∣

∣

∣

{

Uk ∈ U : UkPjU
†
k = eiθj,k,ℓPℓ

}∣

∣

∣
=

|U|
d2 − 1

,

14 In fact, [3] only prove that their construction is a purity testing code, not a strong
one. But one can easily verify that it is strong with the same parameters. What is
more, their construction has ν = log(2n +1) and ε = 2m/n+2

2n+1
. We remove one of the

keys (and thus increase the error), so as to get simpler final expressions.



where eiθj,k,ℓ is some global phase.
We prove in the full version of this work [27] that this is a strong purity

testing code with ε = 2−n for d = 2m+n. It also has |U| = 2m+n
(

22m+2n − 1
)

,

hence ν = m + n + log
(

22m+2n − 1
)

≤ 3m + 3n. Note that when composed
with Paulis as in the encode-then-encrypt protocol, {PℓUk}k,ℓ is a unitary 2-
design [15, 16]. It follows that any (approximate) unitary t-design is a good
quantum authentication scheme (see the full version of this work [27] for a formal
proof).

Corollary 10. The encrypt-then-encode protocol with the purity testing code
of [12] requires an initial key of length 5m+4n. It recycles all bits if the message
is accepted, and 3m + 3n bits if the message is rejected. The error is εq-auth =
2−n/2 + 2−n−1.

4 Discussion and Open Questions

The family of quantum authentication protocols of Barnum et al. [3] as well as
the subset analyzed in this work are large classes, which include many protocols
appearing independently in the literature. The signed polynomial code [1,4], the
Clifford code [1, 9, 17] (which is a unitary 3-design [38, 40]) and the unitary 8-
design scheme from [19] and all instances which use a strong purity testing code.
Our results apply directly to the Clifford and unitary 8-design schemes—which
have in the same error as the unitary 2-design scheme from Corollary 10. But
the signed polynomial code uses an ECC on qudits, not qubits, so our proof does
not cover this case, and would have to be adapted to do so.

The trap code [8, 9] is an example of a quantum authentication scheme that
uses a purity testing code that is not a strong purity testing code, i.e., errors
which do not modify the message do not necessarily provoke an abort. For exam-
ple, if the adversary performs a simple bit flip in one position, this will provoke
an abort with probability 2/3 in the variant from [8] and with probability 1/3
in the variant from [9], but leaves the message unmodified if no abort occurs. If
the adversary learns whether Bob accepted the message or not, she will learn
whether the ECC used detects that specific bit flip or not, and thus learn some-
thing about the key used to select the ECC. Hence, the players cannot recycle
the entire key, even in the case where the message is accepted. The restriction
to strong purity testing codes is thus necessary to recycle every bit. It remains
open how many bits of key can be recycled with the trap code, but we conjecture
that this bit leaked due the decision to abort or not is the only part of the key
leaked, and the rest can be recycled.

Another quantum authentication scheme, Auth-QFT-Auth, has been pro-
posed in [19], where the authors prove that some of the key can be recycled as
well. We do not know if this scheme fits in the family from [3] or not.

In the classical case, almost strongly 2-universal hash functions [36, 39] are
used for authentication, and any new family of such functions immediately yields
a new MAC. Likewise, any new purity testing code provides a new quantum au-
thentication scheme. However, it is unknown whether all quantum authentication



schemes can be modeled as a combination of a one-time pad and a purity testing
code, or whether there exist interesting schemes following a different pattern.

We have proven that a loss of 2m + n bits of key is inevitable with these
schemes if the adversary tampers with the channel. In the case of the unitary
2-design scheme, which has the smallest error, this is 2m+ 2 log 1/ε+ 2 bits of
key which are consumed. A loss of 2m bits will always occur, since these are
required to one-time pad the message. It remains open whether there exist other
schemes— which do not fit the one-time pad + purity testing code model—
which recycle more key.

The initial preprint of this work suggested that one should also investigate
whether it is possible to find a prepare-and-measure scheme to encrypt and
authenticate a classical message in a quantum state, so that all of the key may
be recycled if it is successfully authenticated. At the time of writing, a possible
solution had already been found by Fehr and Salvail [18]. Their protocol is
however not known to be composable, and it remains open to prove that it
achieves the desired result in such a setting.
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