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Abstract. Functional encryption (FE) has emerged as an outstanding concept.
By now, we know that beyond the immediate application to computation over
encrypted data, variants with succinct ciphertexts are so powerful that they yield
the full might of indistinguishability obfuscation (IO). Understanding how, and
under which assumptions, such succinct schemes can be constructed has become
a grand challenge of current research in cryptography. Whereas the first schemes
were based themselves on IO, recent progress has produced constructions based
on constant-degree graded encodings. Still, our comprehension of such graded
encodings remains limited, as the instantiations given so far have exhibited dif-
ferent vulnerabilities.
Our main result is that, assuming LWE, black-box constructions of sufficiently
succinct FE schemes from constant-degree graded encodings can be transformed
to rely on a much better-understood object — bilinear groups. In particular, un-
der an über assumption on bilinear groups, such constructions imply IO in the
plain model. The result demonstrates that the exact level of ciphertext succinct-
ness of FE schemes is of major importance. In particular, we draw a fine line
between known FE constructions from constant-degree graded encodings, which
just fall short of the required succinctness, and the holy grail of basing IO on
better-understood assumptions.
In the heart of our result, are new techniques for removing ideal graded encoding
oracles from FE constructions. Complementing the result, for weaker ideal mod-
els, namely the generic group model and the random oracle model, we show a
transformation from collusion-resistant FE in either of the two models directly to
FE (and IO) in the plain model, without assuming bilinear groups.

1 Introduction

Functional Encryption (FE) is a fascinating object. It enables fine-grained con-
trol of encrypted data, by allowing users to learn only specific functions of the
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data. This ability is captured trough the notion of function keys. A function key
SKf , associated with a function f , allows to partially decrypt a ciphertext CTx
encrypting an input x in a way that reveals f(x) and nothing else.

A salient aspect of FE schemes is their ciphertext succinctness. Focusing on
the setting of (indistinguishability-based) single-key FE where only one func-
tion key SKf is supported, we say that an FE scheme is weakly succinct if the
ciphertext size scales sub-linearly in the size of the circuit f ; namely,

|CTx| ≤ |f |γ · poly(|x|), for some constant compression factor γ < 1.3

While non-succinct single-key FE schemes (where we allow the size of cipher-
texts to grow polynomially with |f |) are equivalent to public-key encryption
(or just one-way functions, in the secret-key setting) [42, 29], weakly succinct
schemes are already known to be extremely strong. In particular, subexponentially-
secure weakly-succinct FE for functions in NC1 implies indistinguishability ob-
fuscation (IO) [6, 1, 11], and has far reaching implications in cryptography and
beyond (e.g., [25, 24, 43, 10, 7, 18]).4

Thus, understanding how, and under which assumptions, weakly-succinct
FE can be constructed has become a central question in cryptographic research.
While schemes for Boolean functions in NC1 have been constructed from LWE
[28], the existence of such FE scheme for non-Boolean functions (which is re-
quired for the above strong implications) is still not well-founded, and has been
the subject of a substantial body of work. The first construction of general pur-
pose FE that achieves the required succinctness relied itself on IO [25]. Sub-
sequent constructions were based on the algebraic framework of multilinear
graded encodings [22]. Roughly speaking, this framework extends the tradi-
tional concept of encoding in the exponent in groups. It allows encoding values
in a field (or ring), evaluating polynomials of a certain bounded degree d over
the encoded values, and testing whether the result is zero.

Based on graded encodings of polynomial degree Garg, Gentry, Halevi, and
Zhandry [26] constructed unbounded-collusion FE, which in turn is known to
lead to weakly succinct FE [2, 11]. Starting from the work of Lin [32], sev-
eral works [36, 3, 33] have shown that assuming also pseudorandom gener-
ators with constant locality, weakly-succinct FE can be constructed based on
constant-degree graded encodings under simple assumptions like asymmetric
DDH. However, these constructions require constant degree d ≥ 5.

3 Here weak succinctness is in contrast to full succintness, where the ciphertext size does not
depend at all on the function size.

4 Formally, [1, 11] require that not only the ciphertext is succinct, but also the encryption circuit
itself. This difference can be bridged assuming LWE [35], and for simplicity is ignored in this
introduction. Our results will anyhow rely on LWE.
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Despite extensive efforts, our understanding of graded encodings of any de-
gree larger than two is quite limited. Known instantiations are all based on little-
understood lattice problems, and have exhibited different vulnerabilities [22,
20, 21, 15, 39]. In contrast, bilinear group encodings [14, 30], akin to degree-
2 graded encodings, have essentially different instantiations based on elliptic
curve groups, which are by now quite well understood and considered standard.
Bridging the gap between degree 2 and degree d > 2 is a great challenge.

Our Main Result in a Nutshell: Size Matters. We show that the exact level of
succinctness in FE schemes has a major impact on the latter challenge. Roughly
speaking, we prove that black-box constructions [41] of weakly-succinct FE
from degree-d graded encodings, with compression factor γ < 1

d , can be trans-
formed to rely only on bilinear groups. Specifically, assuming LWE 5 and for
any constant ε, starting from 1

d+ε -succinct FE in the ideal degree-d graded en-
coding model, we construct weakly-succinct FE in the ideal bilinear model.

The ideal graded encoding model generalizes the classical generic-group
model [44]. In this model, the construction as well as the adversary perform all
graded encoding operations through an ideal oracle, without access to an ex-
plicit representation of encoded elements. Having this ideal model as a starting
point allows capturing a large class of constructions and assumptions, as it mod-
els perfectly secure graded encodings. Indeed, the FE schemes in [32, 36, 3, 33]
can be constructed and proven secure in this model.

The resulting construction from ideal bilinear encodings can further be in-
stantiated in the plain model using existing bilinear groups, and proven secure
under an über assumption on bilinear groups [13, 16]. In particular, assuming
also subexponential-security, it implies IO in the plain model.

How Close are We to IO from Bilinear Maps? Existing weakly-succinct FE
schemes in the ideal constant-degree model [32, 36, 3, 33] have a compression
factor γ = C/d, for some absolute constant C > 1. Thus, our result draws a
fine line that separates known FE constructions based on constant-degree graded
encodings and constructions that would already take us to the promised land of
IO based on much better-understood mathematical objects. Crossing this line
may very well require a new set of techniques. Indeed, one may also interpret
our result as a negative one, which puts a barrier on black-box constructions of
FE from graded encodings.

Discussion: Black-Box vs Non-Black-Box Constructions. For IO schemes
(rather than FE), a combination of recent works [40, 12] demonstrates that

5 More precisely, we need to assume the hardness of LWE with subexponential modulus-to-
noise ratio. For simplicity, we ignore the parameters of LWE in this introduction; see Section 4
for more details.

3



black-box constructions from constant-degree graded encodings are already very
powerful. They show that any IO construction relative to a constant-degree or-
acle can be converted to a construction in the plain model (under standard as-
sumptions, like DDH). Since weakly-succinct FE schemes imply IO, we may be
lead to think that weakly-succinct black-box constructions of FE from constant-
degree graded encodings would already imply IO in the plain model from stan-
dard assumptions. Interestingly, this is not the case.

The crucial point is that the known transformations from FE to IO [1, 11] are
non-black-box, they use the code of the underlying FE scheme, and thus do not
relativize with respect to graded encoding oracle. That is, we do not know how
to move from an FE scheme based on graded encodings to an IO scheme that
uses graded encodings in a black-box way. Indeed, if there existed such a black-
box transformation between FE and IO, then combining [40, 37, 12, 32, 36], IO
in the plain model could be constructed from standard assumptions.

Instead, we show how to directly remove constant-degree oracles from FE.
Our transformation relies on new techniques that are rather different than those
used in the above works for removing such oracles from IO.

1.1 Our Results in More Detail

We now describe our results in further detail. We start by describing the ideal
graded encoding model and the ideal bilinear encoding model more precisely.

The Ideal Graded Encoding Model. A graded encoding [23] is an encoding
scheme for elements of some field.6 The encoding supports a restricted set of
homomorphic operations that allow one to evaluate certain polynomials over the
encoded field elements and test whether these polynomials evaluate to zero or
not. Every field element is encoded with respect to a label (sometimes called the
level of the encoding). For a given sequence of encodings, their labels control
which polynomials are valid and can be evaluated over the encodings. The de-
gree of the graded encoding is the maximal degree of a polynomial that is valid
with respect to any sequence of labels.

In the ideal graded encoding model, explicit encodings are replaced by ac-
cess to an oracle that records the encoded field elements and provides an inter-
face to perform operations over the elements. Different formalizations of such
ideal graded encoding oracles exist in the literature (e.g. [17, 5, 4, 40]) and differ
in details. In this work, we follow the model of Pass and shelat in [40].

6 For ease of exposition, we consider graded encodings over fields. Our results can also be
obtained with any commutative ring in which it is computationally hard to find non-unit ele-
ments.
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The ideal graded encoding oracleM is specified by a field F and a validity
predicate V operating on a polynomial and labels taken from a set L. The oracle
M = (F, V ) provides two functions — encoding and zero-testing.

Encoding: Given a field element ξ ∈ F and a label ` ∈ L the oracle M
samples a sufficiently long random string r to create a handle h = (r, `). It
records the pair (h, ξ) associating the handle with the encoded field element.

Zero-testing: a query to M consists of a polynomial p and a sequence of
handles h1, · · · , hm where hi encodes the field elements ξi relative to la-
bel `i. M tests if the polynomial and the labels satisfy the validity predi-
cate and whether the polynomial vanishes on the corresponding field ele-
ments. That is,M returns true if and only if V (p, `1, · · · `m) = true and
p(ξ1, · · · ξm) = 0.

Like in [40], we restrict attention to well-formed validity predicates. For
such predicates, a polynomial p is valid with respect to labels `1, · · · , `m, if and
only if every monomial Φ in p is valid with respect to the labels of the handles
that Φ acts on. Indeed, existing graded encodings all consider validity predicates
that are well-formed.7

The Ideal Bilinear Encoding Model. The ideal bilinear encoding model cor-
responds to the ideal graded encoding model where valid polynomials are of
degree at most two. We note that in the ideal graded encoding model described
above, encoding is a randomized operation. In particular, encoding the same
element and label (ξ, `) twice gives back two different handles. In contrast, tra-
ditional instantiations of the ideal bilinear encoding model are based on bilinear
pairing groups (such as elliptic curve groups) where the encoding is a deter-
ministic function. We can naturally capture such instantiations, by augmenting
the ideal bilinear encoding model to use a unique handle for every pair of field
element and label (as done for instance in [4, 45, 36]).

The Main Result. Our main result concerns FE schemes in the ideal graded
encoding model. In such FE schemes, all algorithms (setup, key derivation, en-
cryption, and decryption), as well as all adversaries against the scheme, have
access to a graded encoding oracleM. We show:

Theorem 1 (Informal). Assume the hardness of LWE. For any constants d ∈ N
and γ ≤ 1

d , any γ-succinct secret-key FE scheme for P/poly, in the ideal degree-
d graded encoding model, can be transformed into a weakly-succinct public-key
FE scheme for P/poly in the ideal bilinear encoding model.

7 In the body, we make another structural requirement on validity predicates called decom-
posability. This requirement is somewhat more technical, but is also satisfied by all known
formulations of graded encodings. For the simplified technical exposition in this introduction
it can be ignored. See further details in Definition 4.
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IO in the Plain Model under an Über Assumption. Our main transformation
results in a weakly-succinct public-key FE scheme in the ideal bilinear encoding
model. By instantiating the ideal bilinear encoding oracle with concrete bilin-
ear pairing groups, we get a corresponding FE scheme in the plain model. For
security to hold, we make an über assumption [13] on the bilinear groups. An
über assumption essentially says that two encoded sequences of elements in the
plain model can be distinguished only if they are also distinguishable in the ideal
model. There are no known attacks on the über security of existing instantiations
of bilinear pairing groups.

Since weakly-succinct public-key FE with subexponential security in the
plain model implies IO we deduce the following corollary

Corollary 1 (Informal). Assume subexponential hardness of LWE and bilinear
groups with subexponential über security. For any constants d ∈ N, γ < 1

d ,
any subexponentially-secure, γ-succinct, secret-key FE for P/poly in the ideal
degree-d graded encoding model, can be transformed into an IO scheme for
P/poly in the plain model.

FE in Weaker Ideal Models. We also consider FE schemes in ideal models that
are weaker than the ideal bilinear encoding model. Specifically, we consider the
generic-group model (that corresponds to the ideal degree-1 graded encoding
model) and the random-oracle model. We give transformations from FE in these
models directly to FE in the plain model without relying on bilinear encodings.

In the transformation given by Theorem 1, from the ideal constant-degree
graded encoding model to the ideal bilinear encoding model, we considered
the notion of single-key weakly succinct FE. In contrast, our transformations
from the generic-group model and the random-oracle model to the plain model
require that we start with a stronger notion of collusion-resistant FE. Collusion-
resistance requires security in the presence of an unbounded number of func-
tional keys. Crucially, ciphertexts are required not to grow with the number of
keys (but are allowed to grow polynomially in the size of the evaluated func-
tions).

Collusion-resistant FE is known to imply weakly-succinct FE through a
black-box transformation [2, 11]. In the converse direction, only a non-black-
box transformation is known [27, 31], and therefore we cannot apply it to ideal
model constructions of FE.

Theorem 2 (Informal). Assume the hardness of LWE. Any collusion-resistant
secret-key FE scheme in the generic-group model, or in the random-oracle
model, can be transformed into a collusion-resistant public-key FE scheme in
the plain model.
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1.2 Our Techniques

We next give an overview of the main ideas behind our degree-reduction trans-
formation given by Theorem 1.

Can We Adopt Techniques from IO? As already mentioned, we do not know
how to transform FE schemes into IO schemes in a black-box way. Thus, we
cannot rely directly on existing results that remove ideal oracles from IO [40].
Furthermore, trying to import ideas from these results in the IO setting to the
setting of FE encounters some inherent difficulties, which we now explain.

Roughly speaking, removing ideal oracles from IO is done as follows. Start-
ing with a scheme in an ideal oracle model, we let the obfuscator emulate the
oracle by itself and publish, together with the obfuscated circuit, some partial
view of the self-emulated oracle. This partial view is on one hand, sufficient
to preserve the functionality of the obfuscated circuit on most inputs, and on
the other hand, does not compromise security. The partial view is obtained by
evaluating the obfuscation on many random inputs (consistently with the self-
emulated oracle), observing how evaluation interacts with the oracle, and per-
forming a certain learning process. Arguing that the published partial view does
not compromise security crucially relies on the fact that evaluating the obfus-
cated program is a public procedure that does not share any secret state with
the obfuscator.

The setting of FE, however, is somewhat more complicated. Here rather than
an evaluator we have a decryptor that given a function key SKf and ciphertext
CT encrypting x, should be able to compute f(x). In contrast to the evaluator in
obfuscation, the state of the decryptor is not publicly samplable. Indeed, gener-
ating function keys SKf for different functions requires knowing a master secret
key. Accordingly, it is not clear how to follow the same approach as before.

XIO instead of IO. Nevertheless, we observe that there is a way to reduce
the problem to a setting much more similar to IO. Specifically, there exists [9]
a black-box transformation from FE to a weaker version of IO called XIO.
XIO [34], which stands for exponentially-efficient IO, allows the obfuscation
and evaluation algorithms to run in exponential time 2O(n) in the input size n,
and only requires that the size of an obfuscation C̃ of a circuit C is slightly
subexponenetial in n:

|C̃| ≤ 2γn · poly(|C|) for some constant compression factor γ < 1 .

Despite this inherent inefficiency, [34] show that XIO for logarithmic-size inputs
implies IO assuming subexponential hardness of LWE. A natural direction is
thus to try and apply the techniques used to remove oracles from IO to remove
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the same oracles also from XIO; indeed, if this can be done, such oracles can
also be removed from FE, due to the black-box transformation between the two.

This, again, does not work as is. The issue is that the transformations re-
moving degree-d graded encoding oracle from IO may blow up the size of the
original obfuscation from |C̃| in the oracle model to roughly |C̃|2d in the plain
model. However, the known black-box construction of XIO from FE [9] is not
sufficiently compressing to account for this blowup. Even starting from FE with
great compression, say γFE < d−10, the resulting XIO has a much worst com-
pression factor γXIO > 1/2. In particular, composing the two would result in a
useless plain model obfuscation of exponential size 2n·d.

Motivating our Solution. To understand our solution, let us first describe an
over-simplified candidate transformation for reducing XIO with constant-degree
graded encoding oracles to XIO with degree-1 oracles (akin to the generic-group
model). This transformation will suffer from the same size blowup of the trans-
formations mentioned above.

For simplicity of exposition, we first restrict attention to XIO schemes with
the following simple structure:

– Any obfuscated circuit C̃ consists of a set of handles h1, . . . , hm corre-
sponding to field elements ξ1, . . . , ξm encoded during obfuscation, under
certain labels `1, . . . , `m.

– Evaluation on any given input x consists of performing valid zero-tests over
the above handles, which are given by degree-d polynomials p1, . . . , pk.

A simple idea to reduce the degree-d oracle to a linear oracle is to change the ob-
fuscation algorithm so that it computes ahead of time the field elements ξΦ cor-
responding to all valid degree-d monomials Φ(ξ1, . . . , ξm) =

∏
i∈[d] ξji . Then,

rather than using the degree-d oracle, it uses the linear oracle to encode the
field elements ξΦ, and publishes the corresponding handles {hΦ}Φ. Evaluation
is done in a straight forward manner by writing any zero-test polynomial p of
degree d as a linear function in the corresponding monomials

p(ξ1, · · · , ξm) =
∑
Φ

αΦΦ(ξ1, . . . , ξm) ,

and making the corresponding zero-test query Lp({hΦ}) :=
∑

Φ αΦhΦ to the
linear oracle.

Indeed, the transformation blows up the size of the obfuscated circuit from
roughlym, the number of encodings in the original obfuscation, tomd, the num-
ber of all possible monomials. While such a polynomial blowup is acceptable in
the context of IO, for XIO with compression d−1 ≤ γ < 1, it is devastating.
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Key Idea: XIO in Decomposable Form. To overcome the above difficulty, we
observe that the known black-box construction of XIO from FE [9] has certain
structural properties that we can exploit. At a very high level, it can be decom-
posed into smaller pieces, so that instead of computing all monomials over all
the encodings created during obfuscation, we only need to consider a much
smaller subset of monomials. In this subset, each monomial only depends on a
few small pieces, and thus only on few encodings.

To be more concrete, we next give a high-level account of this construction.
To convey the idea in a simple setting of parameters, let us assume that we have
at our disposal an FE scheme that support an unbounded number of keys, rather
than a single key scheme, with the guarantee that the size of ciphertexts does
not grow with the number of keys. In this case, the XIO scheme in [9] works as
follows:

– To obfuscate a circuit C with n input bits, the scheme publishes a collec-
tion of function keys {SKDτ }τ for circuits Dτ , indexed by prefixes τ ∈
{0, 1}n/2 (will be specified shortly), and a collection of ciphertexts

{
CTρ‖C

}
ρ
,

each encrypting the circuit C and a suffix ρ ∈ {0, 1}n/2.
– Decrypting a ciphertext CTρ‖C with key SKDτ revealsDτ (ρ‖C) := C(τ, ρ).

The obfuscated circuit indeed has slightly subexponential size . It contains:

– 2n/2 function keys SKDτ , each of size poly(|C|),
– 2n/2 ciphertexts CTρ‖C , each of size poly(|C|).

Going back to the ideal graded-encoding model, the FE key generation and
encryption algorithms use the ideal oracle to encode elements. Therefore, gener-
ating the obfuscation involves generating a set of k encodings hτ = {hτ,i}i∈[k]
for each secret key SKDτ and a set of k encodings hρ = {hρ,i}i∈[k] for each
ciphertext CTρ‖C , for some k = poly(|C|). The crucial point is that now, evalu-
ating the obfuscation on a given input (τ, ρ) only involves the two small sets of
encodings hτ ,hρ. In particular, any zero-test made by the decryption algorithm
is a polynomial defined only over the underlying field elements ξτ = {ξτ,i}i∈[k]
and ξρ = {ξρ,i}i∈[k].

This gives rise to the following degree reduction strategy. In the obfuscation,
rather then precomputing all monomials in all encodings as before, we precom-
pute only the monomials corresponding to the different pieces

{
Φ(ξρ)

}
ρ,Φ

, {Φ(ξτ )}τ,Φ.
Now, rather than representing zero-tests made by the decryption algorithm as
linear polynomials in these monomials, they can be represented as quadratic
polynomials

p(ξτ , ξρ) = Qp

(
{Φ(ξτ )}Φ ,

{
Φ(ξρ)

}
Φ

)
.
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To support such quadratic zero tests, we resort to bilinear groups. We use the bi-
linear encoding oracle to encode the values

{
Φ(ξρ)

}
ρ,Φ

, {Φ(ξτ )}τ,Φ, and pub-
lish the corresponding handles {hτ,Φ}τ,Φ , {hρ,Φ}ρ,Φ. Evaluation is done in a
straight forward manner by testing the quadratic polynomial Qp.

The key gain of this construction is that now the blowup is tolerable. Now,
each set of k encodings, blows up to kd, which is acceptable since k = poly(|C|)
is small (and not proportional to the size of the entire obfuscation as before,
which is exponential in n). In the body, we formulate a general product form
property for XIO schemes, which can be used as the starting point of the above-
described transformation; we further show that single-key FE schemes with
1
d+ε -succinctness implies such XIO schemes.

A Closer Look. The above exposition is oversimplified. To actually fulfill our
strategy, we need to overcome two main challenges.

Challenge 1: Explicit Handles. The core idea described above assumes that
the obfuscation is simply given as an explicit list of handles, which may not
be the case starting from an arbitrary FE scheme. In particular, the obfuscator
may use the oracle M to produce a set of encodings, but not output them ex-
plicitly; indeed, it can output an arbitrary string. In this case, we can no longer
apply the degree reduction technique, since we do not know which encodings
are actually contained in the obfuscation. Naïvely publishing all monomials in
all field elements ever encoded by the obfuscator may be insecure — some of
these encodings, which are never explicitly included in the obfuscation, may
leak information.

To handle XIO schemes constructed from general FE schemes, we need
a way to make any “implicit” handles explicit, without compromising security.
Our idea is to learn the significant handles that would later suffice for evaluation
on most inputs, and publish them explicitly. This idea is inspired by [19, 40,
37] and their observation (already mentioned above) that in obfuscation, the
evaluator’s view, including all the handles it sees, is publicly and efficiently
samplable.

Roughly speaking, the learning process involves evaluating the obfuscated
circuit on many random inputs and making explicit all handles involved in these
evaluations. When doing this naïvely, the number of such test evaluations re-
quired to guarantee reasonable correctness is proportional to the number of el-
ements encoded by the obfuscator. This would result in a quadratic overhead in
the size of the obfuscation, which would again completely foil XIO compres-
sion. Avoiding the blowup requires a somewhat more sophisticated learning
process that once again exploits the local structure of the construction in [9].
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The scheme resulting from the above learning process is only approximately
correct — the obfuscation with explicit handles errs on say 10% of the inputs.
We show that even such approximate XIO is sufficient for obtaining FE and IO
in the plain model (this step is described later in this overview).

Challenge 2: Invalid Monomials. Another main challenge is that it may be
insecure to publish encodings of all the monomials

{
Φ(ξρ)

}
ρ,Φ

, {Φ(ξτ )}τ,Φ.
The problem is that some products Φ(ξρ) ·Φ′(ξτ ) may result in monomials that
would have been invalid in the degree-d ideal model. For example, Φ(ξρ) could
correspond to a degree-(d − 2) monomial Φ. In the degree-d ideal model, it
would only be possible to multiply such a monomial by degree-2 monomials
Φ′(ξτ ), and zero test. In the the described new scheme, however, it can multiply
monomials Φ′(ξτ ) of degree 3, or even d, which might compromise security.

Our solution proceeds in two steps. First, we show how to properly preserve
validity by going to a more structured model of bilinear encodings that gener-
alizes asymmetric bilinear groups. In this model, every encoding contains one
of many labels and only pairs of encodings with valid labels can be multiplied.
We then encode the monomials

{
Φ(ξρ)

}
ρ,Φ

, {Φ(ξτ )}τ,Φ with appropriate labels
that preserve the information regarding the original set of labels. This guaran-
tees that the set of monomials that can be zero-tested in this model corresponds
exactly to the set of valid monomials in the constant-degree graded encoding
model we started from.

Second, we show how to transform any construction in this (more struc-
tured) ideal model into one in the standard ideal bilinear encoding model (cor-
responding to symmetric bilinear maps). At a very high-level, we develop a
“secret-key transformation” from asymmetric bilinear groups to symmetric bi-
linear groups. The transformation allows anyone in the possession of a secret
key to translate encodings in the asymmetric setting to new encodings in the
symmetric setting in a manner that enforces the asymmetric structure.

From Approximately-Correct XIO back to FE. After applying all the above
steps, we obtain an approximately-correct XIO scheme in the ideal bilinear en-
coding model. The only remaining step is going from such an XIO scheme back
to FE. The work of [35] showed how to construct FE from XIO with perfect
correctness, assuming in addition LWE. We modify their transformation to con-
struct FE starting directly from approximately-correct XIO. This is done using
appropriate Error Correcting Codes to accommodate for the correctness errors
from XIO.8 The transformation uses XIO as a black-box, and can thus be per-
formed in the ideal bilinear model.

8 We note that existing transformations for removing errors from IO [12] do not work for XIO.
See Section 4 for details.
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Putting It All Together. Putting all pieces together, we finally obtain our trans-
formation from 1

d+ε -succinct FE in the constant-degree graded encoding model
to weakly-succinct FE in the bilinear encoding model. To recap the structure of
the transformation:

1. Start with a 1
d+ε -succinct (single-key) FE in the ideal constant-degree graded

encoding model.
2. Transform it into an XIO scheme in the ideal constant-degree graded encod-

ing model satisfying an appropriate decomposition property (which we call
product form).

3. Transform it into an approximate XIO scheme in the ideal bilinear encoding
model.

4. Use the resulting approximate XIO scheme and LWE to get a weakly-succinct
FE (still, in the ideal bilinear encoding model).

Instantiating the oracle in bilinear groups with über security gives a correspond-
ing construction in the plain model.

Organization In Section 2, we define (oracle-aided) XIO, and introduce the
constant-degree oracles considered in this work. In Section 3, we show how to
transform XIO, in a certain product form, relative to constant-degree oracles to
approximate XIO relative to symmetric bilinear oracles. In Section 4, we explain
how to move from approximate XIO and LWE, to IO. Due to the space limit,
some of the details and proofs are omitted. These can be found in the full version
of this paper [8], where we additionally describe how to remove generic-group
oracles and random oracles from unbounded collusion FE schemes.

2 Preliminaries

2.1 XIO

We next formally define the notion of exponentially-efficient indistinguishabil-
ity obfuscation (XIO) for any collection of circuit classes C ⊆ Plog/poly, where
Plog/poly is the collection of all classes of polynomial-size circuits with loga-
rithmic size input. The definition extends the one in [34] by considering also
approximate correctness.

Definition 1 (Plog/poly). The collection Plog/poly includes all classes C =
{Cλ} for which there exists a constant c = c(C), such that the input of any
circuit C ∈ Cλ is bounded by c log λ and the size of C is bounded by λc.
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Definition 2 (XIO [34]). A pair of algorithms xiO = (xiO.Obf, xiO.Eval) is an
exponentially-efficient indistinguishability obfuscator (XIO) for a collection of
circuit classes C = {C = {Cλ}} ⊆ Plog/poly if it satisfies:

– Functionality: for any C ∈ C, security parameter λ ∈ N, and C ∈ Cλ with
input size n,

Pr
xiO

x←{0,1}n
[xiO.Eval(C̃, x) = C(x) : C̃ ← xiO.Obf(C, 1λ)] ≥ 1− α(λ) .

We say that xiO.Obf is correct if α(λ) ≤ negl(λ) and approximately-correct
if α(λ) ≤ 1/100 .

– Non-trivial Efficiency: there exists a constant γ < 1 and a fixed polyno-
mial poly(·), depending on the collection C (but not on any specific class
C ∈ C), such that for any class C ∈ C security parameter λ ∈ N, cir-
cuit C ∈ Cλ with input length n, and input x ∈ {0, 1}n the running time
of both xiO.Obf(C, 1λ) and xiO.Eval(C̃, x) is at most poly(2n, λ, |C|) and
the size of the obfuscated circuit C̃ is at most 2nγ · poly(|C|, λ). We call γ
the compression factor, and say that the scheme is γ-compressing.

– Indistinguishability: for any C = {Cλ} ∈ C and polynomial-size distin-
guisher D, there exists a negligible function µ(·) such that the following
holds: for all security parameters λ ∈ N, for any pair of circuits C0, C1 ∈
Cλ of the same size and such that C0(x) = C1(x) for all inputs x,∣∣∣Pr [D(xiO.Obf(C0, 1

λ)) = 1
]
− Pr

[
D(xiO.Obf(C1, 1

λ)) = 1
]∣∣∣ ≤ µ(λ) .

We further say that xiO.Obf is δ-secure, for some concrete negligible func-
tion δ(·), if for all polynomial-size distinguishers the above indistinguisha-
bility gap µ(λ) is smaller than δ(λ)Ω(1).

Remark 1 (Logarithmic Input). Indeed, for XIO to be useful, we must restrict
attention to circuit collections C ⊆ Plog/poly. This ensures that obfuscation and
evaluation are computable in time 2O(n) = poly(λ).

Remark 2 (Probabilistic xiO.Eval). Above, we allow the evaluation algorithm
xiO.Eval to be probabilistic. Throughout most of the paper, we restrict attention
to deterministic evaluation algorithms. This typically will simplify exposition
and is without loss of generality.

XIO with an Oracle. We say that an XIO scheme xiO = (xiO.Obf, xiO.Eval)
is constructed relative to an oracle O if the corresponding algorithms, as well
as the adversary, may access the oracle O. Namely, the obfuscation algorithm
xiO.ObfO(C, 1λ) and the evaluation algorithm xiO.EvalO(C̃, x) are given ora-
cle access to O. In the security definition, the adversarial distinguisher DO also
gets access to the oracle.
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2.2 The Ideal Graded Encoding Model

The ideal graded-encoding model we consider is inspired by previous generic
group and ideal graded-encoding models [44, 38, 17, 5] and is closest to the
model of Pass and Shelat [40]. As in [40], we consider well-formed predicates
that are determined by the validity of monomials.

Definition 3 (Well-Formed Validity Predicate). V is well-formed if for any
d ∈ N and degree-d polynomial p(v1, . . . , vm) =

∑
i≤d,j1,...,ji∈[m] ρj1,...,jivj1 · · · vji ,

it holds that V (p, `1, . . . , `m) =
∧
i≤d,j1,...,ji∈[m], ρj1,...,ji 6=0 V ({`j1 , . . . , `ji});

namely, p is valid relative to the labels `1, . . . , `m if every monomial of p is
valid relative to the corresponding multi-set of labels {`j1 , . . . , `ji}.
We additionally consider the following decomposability requirement.

Definition 4 (Decomposable Validity Predicate). V is decomposable if it is
well-formed and there exist a projection function Π and a two-input predi-
cate VΠ satisfying: For every two multisets A = {`1,1, . . . , `1,k1} and B =
{`2,1, . . . , `2,k2} of labels, the validity of their union is given by

V (A ]B) = VΠ(Π(A), Π(B)) .9

The arity of a decomposable predicate V is

Arity(V ) := max
A
|{Π(B) : VΠ(Π(A), Π(B)) = 1 }| ;

namely, it is the maximum number of projections Π(B) that satisfy the validity
predicate together with any given projection Π(A), where A and B are multi-
sets of labels.

Intuitively, a decomposable validity predicate has the property that any two dif-
ferent pairs of multi-sets (A,B) 6= (A′, B′) share the same validity decision
if they have the same projection (Π(A), Π(B)) = (Π(A′), Π(B′)). In other
words, any information about the multi-sets beyond their projection does not
matter. In the literature, all known ideal graded encoding models consider de-
composable validity predicates with arity bounded by the degree (or even less).
For instance, in set-based graded encodings, the labels correspond to subsets of
some fixed universe U, and a set of labels {S1, . . . , Sk | Si ⊆ U} is valid if the
sets are disjoint and

⊎
Si = U. Therefore, we can define the projection of any

A = {S1, . . . , Si} to be Π(A) =
⊎
Si (or ⊥ if the sets are not disjoint), in

which case the arity is exactly one (indeed, for any Π(A) only U \Π(A) may
satisfy the induced validity predicate).

We now formally define the ideal graded encoding model.

9 For two multisets A = {a1, . . . , an} , B = {b1, . . . , bm}, their union A ] B =
{a1, . . . , an, b1, . . . , bm} counts multiplicity; e.g., {1, 1} ] {1, 2} = {1, 1, 1, 2}.
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Definition 5 (Ideal Graded Encoding Oracle). The oracle MF,V is a state-
ful oracle, parameterized by a field F and a validity predicate V . The oracle
answers queries of two forms:

1. Encoding Queries: Given a field element ξ ∈ F and label `, the oracle
samples a uniformly random string r ← {0, 1}log |F|, returns the handle
h = (r, `), and stores (h, ξ).

2. Zero-Test Queries: Given a polynomial p ∈ F[v1, . . . , vm], and handles
h1, . . . , hm, the oracle does the following:

– For each i ∈ [m], obtains a tuple (hi, ξi) from the stored list. If no such
tuple exists, stops and returns false .

– From each hi = (ri, `i), obtains `i, and checks that V (p, `1, . . . , `m) =
true to verify the query is valid and if not, returns false .

– Performs a zero test, returning true if p(ξ1, . . . , ξm) = 0 and false oth-
erwise.

An ideal graded encoding oracle M = {MFλ,Vλ} is a collection of oracles
MFλ,Vλ , one for each λ ∈ N, where |F| = 2Θ(λ).

The oracleM is said to be degree-d, if for every polynomial p of degree deg(p) >
d, and any label vector `, V (p, `) = false . We say that an oracleM is decom-
posable if it has a decomposable validity predicate with bounded polynomial
arity poly(λ).

Remark 3. In some previous models (e.g., [40]), the ability to make encoding
queries is further restricted. The above definition does not enforce any such
restrictions. The results in this paper are presented in a public encoding model,
which allows anyone to encode at any time. Our results on removing generic
group oracle and random oracle from FE schemes can be extended to the model
of private encodings, and the same holds for our results on reducing the degree
of graded encoding oracles (Section Section 3), under certain mild assumptions.
See the full version [8] for more details.

3 Reducing Constant-Degree Oracles to Bilinear Oracles

We show that any XIO scheme with a constant-degree decomposable ideal or-
acle can be transformed into an approximately-correct one with an ideal sym-
metric bilinear oracle (analogous to symmetric bilinear groups), provided that
the XIO scheme is in a certain product form. We start by defining formally the
notion of XIO in product form and of a symmetric bilinear oracle.

Definition 6 (Product Collection). X = {Xn}n∈N ,Y = {Yn}n∈N are said to
be a product collection if:
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1. Equal-Size Partition: For any X,X ′ ∈ Xn and Y, Y ′ ∈ Yn:

|X| = |X ′|, X ∩X ′ = ∅ |Y | = |Y ′|, Y ∩ Y ′ = ∅ ,

2. Product Form: letXn =
⊎
X∈Xn X,Y n =

⊎
Y ∈Yn Y then the input space

{0, 1}n factors:
{0, 1}n ∼=Xn × Y n .

Definition 7 (XIO in Product Form). We say that an XIO scheme xiO =
(xiO.ObfO, xiO.EvalO), relative to oracle O, for a collection of circuit classes
C, is in (X ,Y)-product form for a product collection (X ,Y) if:

– The obfuscation algorithm xiO.ObfO factors into two algorithms (xiO.ObfOX ,
xiO.ObfOY ), such that for any circuit C ∈ C, xiO.ObfO(C, 1λ; r), outputs({

C̃X ← xiO.ObfOX (C,X, 1
λ; r)

}
X∈Xn

,
{
C̃Y ← xiO.ObfOY (C, Y, 1

λ; r)
}
Y ∈Yn

)
,

and all executions may use joint randomness r.
– There is an evaluation algorithm xiO.EvalOX ,Y such that for any (X,Y ) ∈
Xn × Yn,

xiO.EvalOX ,Y(C̃X , C̃Y ) =
(
xiO.EvalO(C̃, (x, y))

)
(x,y)∈X×Y

.

Corresponding notation:

– We denote by qXo = qXo (C, λ) the maximal total size
∑

Q∈QX
o
|Q| of all

oracle queries QX
o = {Q} made by xiO.ObfOX (C,X, 1

λ) when obfuscating
an n-bit input circuit C ∈ C for any X ∈ Xn. Symmetrically, we denote by
qYo = qYo (C, λ) the bound on the total size

∑
Q∈QY

o
|Q| of oracle queries

QY
o = {Q} made by xiO.ObfOY (C, Y, 1

λ) for any Y ∈ Yn.

Definition 8 (Symmetric Bilinear Oracle). The symmetric Bilinear OracleB2 ={
B2Fλ,V

}
is a special case of the ideal graded encoding oracle, where the va-

lidity predicate V is of degree two and is defined over a single label `B. That is,
V (L) = true for a multiset of labels L, if and only if L ⊆ {`B, `B}.

We now state the main theorem of this section.

Theorem 3. Let xiO = (xiO.ObfM, xiO.EvalM) be an xiO.Obf scheme, rela-
tive to a degree-d decomposable ideal graded encoding oracle M, for a col-
lection of circuit classes C that is in (X ,Y)-product form, for some product
collection (X ,Y). Further assume that for some constant γ < 1,

|Xn| ·
(
qXo ·min

(
qXo , |Yn| · log qXo

))d
+ |Yn| ·

(
qYo ·min

(
qYo , |Xn| · log qYo

))d
≤ 2γn · poly(|C|, λ) .
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Then xiO can be converted into an approximately-correct scheme xiO? relative
to the symmetric bilinear oracle B2.

Remark 4. A slightly easier to parse version of the above condition, with some
loss in parameters, is that |Xn| ·

(
qXo
)2d

+ |Yn| ·
(
qYo
)2d ≤ 2γn · poly(|C|, λ).

Remark 5. Our ideal symmetric bilinear oracle captures symmetric bilinear pair-
ing groups, but with two small gaps: Our oracle generates randomized encod-
ings (following the Pass-shelat model) whereas bilinear pairing groups have
unique encodings (of the form ga), and our oracle does not support homomor-
phic opeartions whereas bilinear paring groups do. These differences are not
consequential. In the full version of this paper [8], we show how to instantiate
the transformed XIO schemes produced by the above theorem using concrete
bilinear pairing groups.

Without Loss of Generality. Throughout this section, we make the following
assumptions without loss of generality.

– Obfuscator only encodes: The XIO obfuscation algorithm only performs
encoding queries and does not perform any zero tests. This is without loss of
generality, as the obfuscator knows the field elements and labels underlying
any generated handle (it encoded them itself), so zero-tests can be internally
simulated.

– Evaluator and adversary only zero-test: The XIO evaluation algorithm
as well as the adversary only perform zero tests and do not encode any
elements themselves. Indeed, encoding of any (ξ, `) can be internally sim-
ulated by sampling a corresponding handle h̃. Then, whenever a zero-test
(p, h1, . . . , hm, h̃1, . . . , h̃m̃) includes such self-simulated handles h̃i, it is
translated to a new zero test that does not include such handles, by hard-
wiring the required field elements into the polynomial p.

3.1 Step 1: Explicit Handles

In this section, we show how to transform any XIO in product form relative
to an ideal degree-d oracle (not necessarily decomposable) into one where all
handles required for evaluation are given explicitly (also in product form). We
start by defining the notion of explicit handles in product form and then state
and describe the transformation.

Definition 9 (Explicit Handles in Product Form). An XIO scheme xiO =
(xiO.ObfM, xiO.EvalM), relative to an ideal graded encoding oracle, for a col-
lection of circuit classes C, is said to have explicit handles in (X ,Y)-product
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form, for a product collection (X ,Y), if the obfuscation and evaluation algo-
rithms satisfy the following structural requirement:

– The algorithm xiO.ObfM(C, 1λ) outputs C̃ =
(
Z̃, {H̃X}X∈Xn , {H̃Y }Y ∈Yn

)
,

where each H̃X and H̃Y are sets of handles generated by the oracleM dur-
ing obfuscation, and Z̃ is arbitrary auxiliary information.

– All true zero-test queries (p, h1, . . . , hm) — that is, zero-test queries that
evaluate to true— made by the evaluation algorithm xiO.EvalM

(
C̃, (x, y)

)
are such that for all j ∈ [m], hj ∈ H̃X ∪ H̃Y , where (X,Y ) ∈ Xn×Yn are
the (unique) sets such that (x, y) ∈ X × Y .

Corresponding notation:

– We denote by qXh = qXh (C, λ) the bound maxX∈Xn |H̃X | on the maximum
size of the set of explicit handles corresponding to any X ∈ Xn. We denote
by qYh = qYh (C, λ) the bound on maxY ∈Yn |H̃Y |.

We show that any xiO.Obf scheme relative to an ideal graded encoding oracle
that is in product form can be turned into one that has explicit handles in product
form, but is approximately correct.

Lemma 1. Let xiO = (xiO.ObfM, xiO.EvalM) be an xiO.Obf scheme, relative
to an ideal graded encoding oracleM, for a collection of circuit classes C, that
is in (X ,Y)-product form, for some product collection (X ,Y). Then xiO can be
converted into a new approximately-correct scheme xiO? with explicit handles
in (X ,Y)-product form (relative to the same oracleM).

Furthermore, the size of the explicit handle sets are bounded as follows

qXh ≤ O
(
qXo
)
·min

(
qXo , |Yn| · log qXo

)
, qYh ≤ O

(
qYo
)
·min

(
qYo , |Xn| · log qYo

)
.

Our New XiO Scheme with Explicit Handles We now describe the new obfus-
cator xiO. We assume w.l.o.g that qXo ≥ qYo (otherwise, the obfuscator reverses
the roles of X ,Y).

The Obfuscator xiO?.Obf: Given a circuit C ∈ C with input size n, and secu-
rity parameter 1λ, xiO?.ObfM(C, 1λ) does the following:

– Obfuscate: Emulate the obfuscator xiO.ObfM(C, 1λ) to obtain(
{C̃X ← xiO.ObfMX (C,X, 1λ)}X∈Xn , {C̃Y ← xiO.ObfMY (C, Y, 1λ)}Y ∈Yn

)
.

For eachX ∈ Xn store a listLX of all tuples (h, ξ) such that xiO.ObfMX (C,X,
1λ) requested the oracle M to encode (ξ, `) and obtained back a handle
h = (r, `). Store a similar list LY for each execution xiO.ObfMY (C, Y, 1λ).
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– Learn Heavy Handles for Xn: for each X ∈ Xn, let H̃X = ∅.
For i ∈

{
1, . . . ,KX = min

(
400qXo , |Yn| · log

(
400qXo

))}
do:

• Sample a random Yi ← Yn.
• Emulate xiO.Eval

(·)
X ,Y(C̃X , C̃Yi). To answer zero-test queries, emulate

M using the lists (LX , LYi) constructed during the obfuscation phase.
• In the process, for every zero-test query (p, h1, . . . , hm), ifM(p, h1, . . . ,
hm) = true, namely it is a valid zero test and the answer is indeed zero,
add h1, . . . , hm to H̃X .

Store the resulting H̃X .
– Learn Remaining Handles for Yn: for each Y ∈ Yn, let H̃Y = ∅.

For i ∈
{
1, . . . ,KY = min

(
200qYo , |Xn| · log

(
200qYo

))}
do the following:

• Sample a random Xi ← Xn, and let H̃Xi,Y = ∅.
• Emulate xiO.Eval

(·)
X ,Y(C̃Xi , C̃Y ). To answer zero-test queries, emulate

M using the lists (LXi , LY ) constructed during the obfuscation phase.
• In the process, for every zero-test query (p, h1, . . . , hm), ifM(p, h1, . . . ,
hm) = true, namely it is a valid zero test and the answer is indeed zero,
add h1, . . . , hm to H̃Xi,Y .
• Remove from H̃Xi,Y all handles in H̃Xi .
• If |H̃Xi,Y | ≤ qYo (C, λ), add H̃Xi,Y to H̃Y . Otherwise discard H̃Xi,Y .

Store the resulting H̃Y .
– Output:

C̃? = (Z̃, {H̃X}X∈Xn , {H̃Y }Y ∈Yn), where Z̃ = ({C̃X}X∈Xn , {C̃Y }Y ∈Yn) .

The Evaluator xiO?.Eval: Given an obfuscation C̃? = (C̃, {H̃X}X∈Xn ,
{H̃Y }Y ∈Yn), (x, y) ∈Xn × Y n, xiO?.EvalM(C̃?, (x, y)) does the following:

– Let (X,Y ) ∈ Xn × Yn be the (unique) sets such that (x, y) ∈ X × Y .
– Emulate xiO.Eval

(·)
X ,Y(C̃X , C̃Y ).

– Whenever xiO.Eval makes a zero-test query (p, h1, . . . , hm):
• If for some i, hi /∈ H̃X ∪ H̃Y , answer false .
• Forward any other zero-test to the oracleM and return its answer.

In the full version [8], we show that the new obfuscator is approximately correct,
secure, and efficient as stated in Lemma 1.

3.2 Step 2: From Constant-Degree to Degree Two

We show that any XIO scheme with explicit handles in product form, relative
to a degree-d decomposable ideal oracle (for arbitrary d = O(1)), can be trans-
formed into one relative to a degree-2 decomposable ideal oracle. The resulting
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degree-2 oracle is defined with respect to a validity predicate V 2 related to the
validity predicate V d of the degree-d oracle we start with.

Intuitively, this model can be seen as an extension of the standard asymmet-
ric bilinear maps, where instead of two base groups we may have more. That is,
instead of two asymmetric base-groupsG1, G2 where (ga1 , g

b
2) ∈ G1×G2 can be

mapped to e(g1, g2)ab in the target group GT , we possibly have a larger number
of groups G1, . . . , Gn and a collection of valid mappings {ek : Gik × Gjk →
GT }, which may be a strict subset of all possible bilinear maps.

Lemma 2. let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme, for a col-
lection of circuit classes C, defined relative to a degree-d decomposable ideal
oracle Md = {Md

Fλ,Vλ}, with explicit handles in (X ,Y)-product form, for
some product collection (X ,Y). Assume further that for some constant γ < 1,

|Xn| ·
(
qXh
)d

+ |Yn| ·
(
qYh
)d ≤ 2γn · poly(|C|, λ) .

Then xiO can be converted to a new scheme xiO?, also with explicit handles
in (X ,Y)-product form, relative to a degree-2 decomposable oracleM2.

We now present our new XiO scheme relative to a degree-2 decomposable
oracle; see the full version for its analysis.

The New XiO Scheme Relative to a Degree-2 Oracle M2 In what follows,
let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme with explicit handles in
product form, defined relative to a degree-d decomposable ideal oracleMd =
{Md

Fλ,Vλ}. We describe a new scheme xiO? = (xiO?.Obf(·), xiO?.Eval(·)) (also,
with explicit handles in product form) defined relative to a degree-2 decompos-
able ideal oracleM2 = {M2

Fλ,V ?λ
}.

The Obfuscator xiO?.Obf: Given a circuit C ∈ C with input size n, and se-
curity parameter 1λ, and oracle access toM2, xiO?.ObfM

2
(C, 1λ) does as fol-

lows:

– Emulate Obfuscation:
• Emulate xiO.ObfM

d
(C, 1λ).

• Throughout the emulation, emulate the oracle Md, storing a list L =
{(h, ξ)} of encoded element-label pairs (ξ, `) and corresponding han-
dles h = (r, `).
• Obtain the obfuscation (Z̃, {H̃X}X∈Xn , {H̃X}Y ∈Yn).

– Encode Monomials:
• For each X ∈ Xn:

1. Retrieve H̃X = (h1, . . . , hm) and the corresponding field elements
and labels (ξ1, `1), . . . , (ξm, `m) from the stored list L.
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2. For every formal monomial Φ(v1, . . . , vm) = vi1 . . . vij , where j ≤
d and i1, . . . , ij ∈ [m], compute

Φ(ξ) := ξi1 · · · ξij , Φ(`) :=
{
`i1 , . . . , `ij

}
, Φ(h) :=

{
hi1 , . . . , hij

}
.

(For simplicity of notation, we overload Φ to describe different func-
tions when acting on field elements, labels, and handles.) Then, re-
quest M2 to encode the field element and label (ξ?X,Φ, `

?
X,Φ) :=

(Φ(ξ), Φ(`)), and obtain a handle h?X,Φ.

3. Store H̃?
X =

{
(h?X,Φ, Φ(h))

}
Φ

• For each Y ∈ Yn:
1. Symmetrically perform the above two steps with respect to H̃Y (in-

stead of H̃X ).
2. Store H̃?

Y =
{
(h?Y,Φ, Φ(h))

}
Φ

.

– Output:

C̃? = (C̃, {H̃?
X}X∈Xn , {H̃?

Y }Y ∈Yn), where C̃ := (Z̃, {H̃X}X , {H̃Y }Y ) .

The Evaluator xiO?.Eval: Given an obfuscation C̃? = (C̃, {H̃?
X}X∈Xn ,

{H̃?
Y }Y ∈Yn), input (x, y) ∈Xn×Y n, and oracleM2, xiO?.EvalM

2
(C̃?, (x, y))

does the following:

– Emulate xiO.EvalM
d
(C̃, (x, y)).

– Emulate any zero-test query (p, h1, . . . , hm) it makes toMd as follows:
1. Parse C̃ = (Z̃, {H̃X}X∈Xn , {H̃Y }Y ∈Yn).
2. Let (X,Y ) ∈ Xn × Yn be the (unique) sets such that (x, y) ∈ X × Y .

Retrieve H̃X , H̃Y .
3. Split h = (h1, . . . , hm) into two verctors of handles hX ⊆ H̃X and
hY ⊆ H̃Y . (Such a partition always exists, by the guarantee of explicit
handles in product form.)

4. Viewing p(h) as a formal polynomial in variables h, factor it as

p(h) =
∑
i

γiΦi(h) =
∑
i

γiΦX,i(hX)ΦY,i(hY ) ,

where γi ∈ F \ {0} are the coefficients, and each monomial Φi(h) is
factored into ΦX,i(hX) · ΦY,i(hY ).

5. Translate {ΦX,i(hX), ΦY,i(hY )}i into handles {h?X,i, h?Y,i}i by locating
(h?X,i, ΦX,i(hX)) ∈ H̃?

X and (h?Y,i, ΦY,i(hY )) ∈ H̃?
Y .
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6. Consider the degree-2 formal polynomial:

p?(h?) =
∑
i

γih
?
X,ih

?
Y,i .

7. Make the zero-test (p?,h?) to the oracleM2 and return the result.

Labels and Validity Predicate V 2 of OracleM2. Note that labels with respect
toM2 are subsets of the label set ofM. Let V d be the decomposable validity
predicate associated withMd. We define a new validity predicate of degree 2,
which is also decomposable. For this purpose, we need to define V 2 for labels
corresponding to bilinear monomials given by a multi-set {`?1, `?2}. For all other
multi-sets L (with cardinality larger than 2), V 2(L) = false , capturing that
this is a degree 2-predicate.
The validity predicate V 2({`?1, `?2}) is computed as follows:

– Parse `?1 and `?2 as as two multi-sets {`1,1, . . . , `1,k1} , {`2,1, . . . , `2,k2}.
– Apply the original predicate to the disjoint union multi-set:

V 2({`?1, `?2}) := V d(`?1 ] `?2) = V d({`1,1, . . . , `1,k1} ] {`2,1, . . . , `2,k2}) .

Recall that the fact that V d is decomposable means that there exist a projec-
tion function Πd and predicate V d

Π , such that, for every two multi-sets `?1, `
?
2,

V d(`?1 ] `?2) = V d
Π(Π

d(`?1), Π
d(`?2)). We show that V 2 is also decomposable,

by defining its corresponding projection function Π2 and predicate V 2
Π , and

showing that on input two multisets A = {`?i }i and B = {`?j}j , V 2(A ] B) =

V 2
Π(Π

2(A), Π2(B)). The projection function Π2 on input a multiset A com-
putes: Π2(A) =

(
|A|, Πd(]`?∈A`?)

)
. The predicate V 2

Π on input two multisets
A,B outputs false if |A| + |B| > 2. Otherwise, if A,B contain exactly two
labels `?1, `

?
2, the predicate computes:

V 2
Π(Π2(A), Π2(B)) = V d(Πd(]`?∈A`?), Πd(]`?∈B`?))

= V d((]`?∈A`?) ] (]`?∈B`?)) = V d(`?1 ] `?2) = V 2(A ]B)

Therefore V 2 is decomposable. Moreover, it is easy to see that the arity of V 2

is exactly that of V d, which is bounded by a fixed polynomial.

3.3 Step 3: Asymmetric Oracles to Symmetric Oracles

We show that any XIO scheme with explicit handles relative to the oracleM2

can be converted to a scheme relative to a symmetric bilinear oracle B2 (also
with explicit handles). This model is analogous to the symmetric bilinear pairing
groups where there is a single base groupGwith a bilinear map e : G×G→ GT
(Definition 8). The transformation will incur a certain blowup depending on the
arity of the oracleM2, which is a bounded polynomial.
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Lemma 3. let xiO = (xiO.Obf(·), xiO.Eval(·)) be an XIO scheme, for a col-
lection of circuit classes C, defined relative to the (asymmetric) decomposable
oracleM2, with explicit handles in (X ,Y)-product form, for some product col-
lection (X ,Y). Then xiO can be converted to a new scheme xiO? relative to the
(symmetric) oracle B2, also with explicit handles in (X ,Y)-product form.

Towards the lemma, we show a transformation that reduces the oracleM2 to a
symmetric bilinear oracle B2. In the full version [8], we use this transformation
to convert any XiO scheme relative toM2 to one relative to B2.

Reducing Oracle M2 to Oracle B2 The transformation consists of a recod-
ing process E that takes a secret key K, and an arbitrary encoding query of
the form (ξ, `) to M2, and transforms it into a set of new encoding queries
(ξ?1 , `B), . . . , (ξ

?
k, `B) which it gives B2 (all with respect to the unique label `B).

E then outputs a handle h representing (ξ, `) consisting of a list of handles
h = (h?1, . . . , h

?
k) generated by B2 for ξ?1 , . . . , ξ

?
k .

The encoder E is associated with a (public) decoder D. The decoder D is
given as input a zero-test query (p,h1, . . . ,hm) for M2 to be evaluated over
underlying field elements ξ = (ξ1, . . . , ξm), and now represented by ξ? =
(ξ?1,1, . . . , ξ

?
1,k, . . . , ξ

?
m,1, . . . , ξ

?
m,k) encoded inB2 with handlesh? = (h?1,1, . . . ,

h?1,k, . . . , h
?
m,1, . . . , h

?
m,k). The decoder then translates it into a new zero-test

query (p?,h?) and submits it to B2, with the guarantee that if the zero test is
valid with respect to the validity predicate V associated withMd, then p(ξ) =
p?(ξ?), and otherwise, p?(ξ?) evaluates to non-zero with overwhelming proba-
bility.

We next turn to a more formal description of the transformation. In what follows,
let V be an arbitrary degree-2 decomposable validity predicate, defined over
pairs of labels (`, `′) ∈ L×L from a label set L, and associated with projection
function Π and predicate VΠ with bounded arity Arity(VΠ) ≤ poly(λ).

Secret Encoding Key. The secret key K consists of random invertible field
elements η`, ϕ` ← F \ {0} for each label ` ∈ L, and random invertible field
elements απ, βπ, γπ, δπ ← F \ {0} for every π in the corresponding set of
projections Γ = {Π({`}) : ` ∈ L}.

Remark 6 (Lazy Secret-Key Sampling). Note that the total number of labels and
their projection could be superpolynomial, making the secret key superpolyno-
mial in length. To deal with such cases, the recoder uses lazy sampling to sample
the above random invertible elements only when needed and keeps a record of
all sampled elements. As we argue below, the total number of random invert-
ible elements to be sampled is polynomial in the number of tuples (ξ, `) to be
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recoded. For simplicity of exposition, we describe the procedure with respect to
a key consisting of all possible random invertible elements.

Recoding. Given the secret keyK and (ξ, `) ∈ F×L, the encoder EB2((ξ, `),K)
does the following:

– Samples two secret shares ξL, ξR at random from F subject to ξL + ξR = ξ.
– Let π = Π({`}) be the projection of {`}. Generates the field elements:

ξ?◦ :=
(
ξ?◦,α,L = απ · ξL, ξ?◦,β,R = βπ · ξR, ξ?◦,γ,L = γπ · ξL, ξ?◦,δ,R = δπ · ξR

)
.

– Let match(π) = {π′ : VΠ(π, π′) = true} be the set of projections that
evaluates to true with π. (For every π′ ∈ match(π), and every `′, such
that, π′ = Π({`′}), it holds that V ({`, `′}) = true.)
For each π′ ∈ match(π), generates the field elements:

ξ?π′ :=
(
ξ?
π′, 1

α
,L

=
1

απ
· ξL, ξ?

π′, 1
β
,L

=
1

βπ
· ξL,

ξ?
π′, 1

γ
,R

=
1

γπ
· ξR, ξ?

π′, 1
δ
,R

=
1

δπ
· ξR
)
.

– If V ({`}) = true, generates field elements

ξ?M :=

(
ξ?M,η,L = η` · ξL, ξ?M, 1

η

=
1

η`
, ξ?M,ϕ,R = ϕ` · ξR, ξ?M, 1

ϕ

=
1

ϕ`

)
,

– Asks B2 to encode (with respect to the unique label `B) the field elements
ξ?◦, (ξ

?
π′)π′∈match(π) , ξ

?
M generated above, obtaining corressponding handles

h? =
(
h?◦, (h

?
π′)π′∈match(π) ,h

?
M

)
.

– Outputs handles h?.

We argue that when V has bounded poly(λ) arity, the size of the new encod-
ing h? is bounded by poly(λ). This is because, h?◦ and h?M each consists of 4
encodings, while (h?π′)π′∈match(π) consists of O(|match(π)|) = Arity(VΠ) ≤
poly(λ).

Decoding. Given a degree-2 polynomial p and handles (h?1, . . . ,h
?
m), where

h?i = h
?
i,◦,
(
h?i,π′

)
π′∈match(π)

,h?i,M the decoder DB2(p,h?1, . . . ,h?m):

– Writes p as a formal polynomial

p(h?1, . . . ,h
?
m) = σ +

∑
k

ρkh
?
k +

∑
i≤j

ρi,jh
?
ih

?
j .
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– If for any monomial h?k in p, V ({`k}) = false , or for any monomial
h?ih

?
j , V ({`i, `j}) = false , return false . Otherwise, continue.

– Generates a new degree-2 formal polynomial

p?(h?) = σ +
∑
k

ρk ·
(
h?k,M,η,Lh

?
k,M, 1

η
+ h?k,M,ϕ,Rh

?
k,M, 1

ϕ

)
+

∑
i≤j

ρi,j ·
(
h?i,◦,α,Lh

?
j,πi,

1
α
,L + h?i,◦,γ,Lh

?
j,πi,

1
γ
,R + h?i,◦,β,Rh

?
j,πi,

1
β
,L + h?i,◦,δ,Rh

?
j,πi,

1
δ
,R

)
.

– It submits to B2 the zero test (p?,h?) and returns the result.

3.4 Putting it All Together

We conclude the proof of Theorem 3.

Proof (of Theorem 3). To obtain xiO?, we apply to xiO Lemmas 1, 2, 3.

– Lemma 1 turns xiO into an approximately-correct XIO scheme xiO1 with
explicit handles, relative to the same degree-d decomposable oracle Md

that xiO uses.
– Lemma 2 turns xiO1 into an approximately-correct XiO scheme xiO2 with

explicit handles, relative to an asymmetric bilinear oracle M2 that is also
decomposable.

– Lemma 3 turns xiO2 into an approximately-correct XiO scheme xiO3 with
explicit handles, relative to a symmetric bilinear oracle B2.

The final XiO scheme xiO3 is exactly the new XiO scheme xiO?. By composing
the three lemmas, we have that xiO? is approximately correct and secure. The
only thing to argue that xiO? is also weakly succinct. Note that the obfuscated
circuits of xiO? have the form

C̃ =
(
Z̃, {H̃X}, {H̃Y }, {H̃?

X}, {H̃?
Y }, {H̃ ′X}, {H̃ ′Y }

)
where Z̃ is an obufscated circuit of the original scheme xiO, H̃X and H̃Y are
the sets of explicit handles of Md added by Lemma 1, H̃?

X and H̃?
Y are the

encodings of monomials of M2 added by Lemma 2, H̃ ′X and H̃ ′Y are the re-
encodings of B2 added by Lemma 3. By the three lemmas and the fact that the
original scheme xiO is γ?-compressing and satisfies the efficiency requirement
stated in Theorem 3, we have,

|C̃| ≤ |Z̃|+O
(∣∣∣{H̃ ′X}, {H̃ ′Y }∣∣∣)

≤ 2γ
?npoly(λ, |C|) +

(
|Xn| ·

(
qXo ·min

(
qXo , |Yn| · log qXo

))d
+|Yn| ·

(
qYo ·min

(
qYo , |Xn| · log qYo

))d ) · poly(λ)
≤ (2γ

?n + 2γn) · poly(λ, |C|) ≤ 2γ
′n · poly(λ, |C|) ,
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for some γ′ < 1. Thus,the new XIO scheme is weakly succinct.

4 From (Approximate) XIO and LWE to FE

We describe at a high-level how to use approximate XIO to construct 1-key
weakly succinct FE for P/poly, assuming LWE. The formal transformation can
be found in the full version of this paper [8].

Theorem 4. Assuming LWE with subexponential modulus-to-noise ratio and
the existence of an approximate XIO scheme for Plog/poly, there exists a single-
key weakly-succinct FE scheme FE for P/poly.

A Failed Attempt. Lin, Pass, Seth and Telang [34] showed a transformation
from correct XIO for Plog/poly to IO for P/poly, assuming LWE.10 Previously,
Bitansky and Vaikuntanathan [12] showed how to make any approximately cor-
rect IO correct (assuming, say, LWE). Thus, to prove the above theorem, a nat-
ural idea is to amplify the correctness of approximate XIO to obtain correct
XIO by [12], and then invoke the transformation of [34]. This approach turns
out to completely fail. Indeed, the [12] transformation only works for classes
of circuits that are expressive enough; in particular, it relies on the ability of
circuits in the class to process encrypted inputs, which must inherently be of
super-logarithmic length in the security parameter. However, XIO for such cir-
cuit classes, which lie outside of Plog/poly, is inefficient (see Remark 1).

Instead, we show how to modify the transformation of [34], based on error-
correcting codes, so that, it works directly with approximate XIO. Below, we
briefly review the [34] transformation and describe our key ideas.

Review of the [34] Transformation. Goldwassar et al. [28] constructed, from
LWE with subexponential modulus-to-noise ratio, a fully succinct, public-key,
single-key, FE scheme for Boolean NC1 circuits; namely, the encryption circuit
of their scheme has size poly(n, λ), where n is the message length.

Starting from such an FE scheme bFE for Boolean circuits, the first ob-
servation in [34] is as follows: To construct an FE scheme, FE for any (pos-
sibly non-Boolean) circuit C, one can use bFE to issue a key for the corre-
sponding Boolean circuit B that produces one output bit at a time, that is,
B(m, i) = (C(m))i. Then to enable evaluating the circuit C, it suffices to pub-
lish a list of bFE ciphertexts encrypting all pairs (m, i). This, however, leads to
a scheme with encryption time linear in the length of the output (as it needs to
produce a ciphertext for every output bit), and is not weakly succinct. The key

10 The LWE assumption was later weakened to the existence of public key encryption by [9], but
only for sufficiently-compressing XIO.
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idea in [34] is using XIO to generate the list of encrypted pairs (m, i). Namely,
obfuscate a circuit that given as input i, outputs the encryption of (m, i), where
randomness is derived with a pseudorandom function. Since XIO achieves “sub-
linear compression”, the resulting FE scheme is now weakly succinct for all of
NC1, including circuits with non-Boolean output.

Our Approach. The basic idea behind replacing XIO with approximate XIO
is to use good error-correcting codes to allow recovering the output of a given
function even if some of the encryptions (m, i) are faulty. Specifically, we make
the following modification to the transformation of [34]. Instead of deriving a
key for the Boolean function B(m, i) = (C(m))i, which computes the i-th bit
of the circuit’s output, we consider the function B?(m, i) = (ECC(C(m)))i
that outputs the i-th bit of an error-corrected version of this output. As before,
we use XIO to to generate the list of encryptions (m, i), only that now, with
approximate XIO, some of these encryptions may be faulty. Nevertheless, we
can still recover (ECC(C(m)))i for a large enough fraction of indices i, and
can thus correct, and obtain C(m). By using codes with constant rate, and a
linear-size constant-depth encoding circuit, we can show that this transformation
achieves the required compression.

Acknowledgements: We thank V. Vaikuntanathan for enlightening discussions.

References
1. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-

tional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in
Cryptology – CRYPTO 2015, Part I, volume 9215 of Lecture Notes in Computer Science,
pages 308–326, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Ger-
many.

2. Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness generically:
Indistinguishability obfuscation from non-compact functional encryption. IACR Cryptology
ePrint Archive, 2015:730, 2015.

3. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indistin-
guishability obfuscation from degree-5 multilinear maps. IACR Cryptology ePrint Archive,
2016:1097, 2016.

4. Benny Applebaum and Zvika Brakerski. Obfuscating circuits via composite-order graded
encoding. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory
of Cryptography Conference, Part II, volume 9015 of Lecture Notes in Computer Science,
pages 528–556, Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

5. Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Protecting
obfuscation against algebraic attacks. In Phong Q. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 221–238, Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg,
Germany.

6. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vad-
han, and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the ACM,
59(2):6, 2012.

27



7. Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod Vaikuntanathan, and
Brent Waters. Time-lock puzzles from randomized encodings. In Madhu Sudan, editor,
ITCS 2016: 7th Innovations in Theoretical Computer Science, pages 345–356, Cambridge,
MA, USA, January 14–16, 2016. Association for Computing Machinery.

8. Nir Bitansky, Huijia Lin, and Omer Paneth. On removing graded encodings from functional
encryption. IACR Cryptology ePrint Archive, 2016:962, 2016.

9. Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryptomania to
obfustopia through secret-key functional encryption. In Theory of Cryptography - 14th In-
ternational Conference, TCC 2016-B, 2016.

10. Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a
Nash equilibrium. In Venkatesan Guruswami, editor, 56th Annual Symposium on Founda-
tions of Computer Science, pages 1480–1498, Berkeley, CA, USA, October 17–20, 2015.
IEEE Computer Society Press.

11. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional
encryption. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS
2015, Berkeley, CA, USA, 17-20 October, 2015, pages 171–190, 2015.

12. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation: From approximate
to exact. In Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv,
Israel, January 10-13, 2016, Proceedings, Part I, pages 67–95, 2016.

13. Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with
constant size ciphertext. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, pages 440–456, 2005.

14. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. In
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pages 213–229, 2001.

15. Dan Boneh, David J. Wu, and Joe Zimmerman. Immunizing multilinear maps against ze-
roizing attacks. IACR Cryptology ePrint Archive, 2014:930, 2014.

16. Xavier Boyen. The uber-assumption family. In Pairing-Based Cryptography - Pairing 2008,
Second International Conference, Egham, UK, September 1-3, 2008. Proceedings, pages
39–56, 2008.

17. Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits via
generic graded encoding. In Yehuda Lindell, editor, TCC 2014: 11th Theory of Cryptography
Conference, volume 8349 of Lecture Notes in Computer Science, pages 1–25, San Diego,
CA, USA, February 24–26, 2014. Springer, Heidelberg, Germany.

18. Mark Bun and Mark Zhandry. Order-revealing encryption and the hardness of private learn-
ing. In Theory of Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv,
Israel, January 10-13, 2016, Proceedings, Part I, pages 176–206, 2016.

19. Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On obfuscation with random oracles. In
Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015: 12th Theory of Cryptography
Conference, Part II, volume 9015 of Lecture Notes in Computer Science, pages 456–467,
Warsaw, Poland, March 23–25, 2015. Springer, Heidelberg, Germany.

20. Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Crypt-
analysis of the multilinear map over the integers. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages 3–12,
2015.

21. Jean-Sébastien Coron, Craig Gentry, Shai Halevi, Tancrède Lepoint, Hemanta K. Maji, Eric
Miles, Mariana Raykova, Amit Sahai, and Mehdi Tibouchi. Zeroizing without low-level
zeroes: New MMAP attacks and their limitations. In Rosario Gennaro and Matthew J. B.

28



Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part I, volume 9215 of Lecture
Notes in Computer Science, pages 247–266, Santa Barbara, CA, USA, August 16–20, 2015.
Springer, Heidelberg, Germany.

22. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lat-
tices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EU-
ROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1–17, Athens,
Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

23. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices.
In Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30,
2013. Proceedings, pages 1–17, 2013.

24. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC
from indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014: 11th Theory
of Cryptography Conference, volume 8349 of Lecture Notes in Computer Science, pages
74–94, San Diego, CA, USA, February 24–26, 2014. Springer, Heidelberg, Germany.

25. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
Annual Symposium on Foundations of Computer Science, pages 40–49, Berkeley, CA, USA,
October 26–29, 2013. IEEE Computer Society Press.

26. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption with-
out obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory
of Cryptography Conference, Part II, volume 9563 of Lecture Notes in Computer Science,
pages 480–511, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Germany.

27. Sanjam Garg and Akshayaram Srinivasan. Unifying security notions of functional encryp-
tion. IACR Cryptology ePrint Archive, 2016:524, 2016.

28. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and Nickolai
Zeldovich. Reusable garbled circuits and succinct functional encryption. In Dan Boneh,
Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual ACM Symposium on Theory
of Computing, pages 555–564, Palo Alto, CA, USA, June 1–4, 2013. ACM Press.

29. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Advances in Cryptology - CRYPTO
2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012.
Proceedings, pages 162–179, 2012.

30. Antoine Joux. The weil and tate pairings as building blocks for public key cryptosystems. In
Algorithmic Number Theory, 5th International Symposium, ANTS-V, Sydney, Australia, July
7-12, 2002, Proceedings, pages 20–32, 2002.

31. Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional encryp-
tion. IACR Cryptology ePrint Archive, 2016:561, 2016.

32. Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, volume 9665 of
Lecture Notes in Computer Science, pages 28–57. Springer, 2016.

33. Huijia Lin. Indistinguishability obfuscation from DDH on 5-linear maps and locality-5 prgs.
IACR Cryptology ePrint Archive, 2016:1096, 2016.

34. Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation
with non-trivial efficiency. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and
Bo-Yin Yang, editors, PKC 2016: 19th International Conference on Theory and Practice of
Public Key Cryptography, Part II, volume 9615 of Lecture Notes in Computer Science, pages
447–462, Taipei, Taiwan, March 6–9, 2016. Springer, Heidelberg, Germany.

29



35. Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing randomized
encodings and applications. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th
Theory of Cryptography Conference, Part I, volume 9562 of Lecture Notes in Computer Sci-
ence, pages 96–124, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Germany.

36. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like as-
sumptions on constant-degree graded encodings. In IEEE 57th Annual Symposium on Foun-
dations of Computer Science, FOCS 2016, 2016.

37. Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji. On the impossibility
of virtual black-box obfuscation in idealized models. In Eyal Kushilevitz and Tal Malkin,
editors, TCC 2016-A: 13th Theory of Cryptography Conference, Part I, volume 9562 of
Lecture Notes in Computer Science, pages 18–48, Tel Aviv, Israel, January 10–13, 2016.
Springer, Heidelberg, Germany.

38. Ueli M. Maurer. Abstract models of computation in cryptography (invited paper). In Nigel P.
Smart, editor, 10th IMA International Conference on Cryptography and Coding, volume
3796 of Lecture Notes in Computer Science, pages 1–12, Cirencester, UK, December 19–21,
2005. Springer, Heidelberg, Germany.

39. Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. In Advances in Cryptology
- CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part II, pages 629–658, 2016.

40. Rafael Pass and Abhi Shelat. Impossibility of VBB obfuscation with ideal constant-degree
graded encodings. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A: 13th Theory
of Cryptography Conference, Part I, volume 9562 of Lecture Notes in Computer Science,
pages 3–17, Tel Aviv, Israel, January 10–13, 2016. Springer, Heidelberg, Germany.

41. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility between cryp-
tographic primitives. In Theory of Cryptography, First Theory of Cryptography Conference,
TCC 2004, Cambridge, MA, USA, February 19-21, 2004, Proceedings, pages 1–20, 2004.

42. Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS
10: 17th Conference on Computer and Communications Security, pages 463–472, Chicago,
Illinois, USA, October 4–8, 2010. ACM Press.

43. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In David B. Shmoys, editor, 46th Annual ACM Symposium on Theory of
Computing, pages 475–484, New York, NY, USA, May 31 – June 3, 2014. ACM Press.

44. Victor Shoup. Lower bounds for discrete logarithms and related problems. In Walter Fumy,
editor, Advances in Cryptology – EUROCRYPT’97, volume 1233 of Lecture Notes in Com-
puter Science, pages 256–266, Konstanz, Germany, May 11–15, 1997. Springer, Heidelberg,
Germany.

45. Joe Zimmerman. How to obfuscate programs directly. In Elisabeth Oswald and Marc Fis-
chlin, editors, Advances in Cryptology – EUROCRYPT 2015, Part II, volume 9057 of Lecture
Notes in Computer Science, pages 439–467, Sofia, Bulgaria, April 26–30, 2015. Springer,
Heidelberg, Germany.

30


	On Removing Graded Encodings  from Functional Encryption

