
New Impossible Differential Search Tool from
Design and Cryptanalysis Aspects

Revealing Structural Properties of Several Ciphers

Yu Sasaki and Yosuke Todo

NTT Secure Platform Laboratories
3-9-11 Midori-cho, Musashino-shi, Tokyo 180-8585 Japan

{sasaki.yu,todo.yosuke}@lab.ntt.co.jp

Abstract. In this paper, a new tool searching for impossible differen-
tials is presented. Our tool can detect any contradiction between input
and output differences. It can also take into account the property inside
the S-box when its size is small e.g. 4 bits. This is natural for ciphers with
bit-wise diffusion like PRESENT, while finding such impossible differen-
tials for ciphers with word-wise diffusion is novel. In addition, several
techniques are proposed to evaluate 8-bit S-box. The tool improves the
number of rounds of impossible differentials from the previous best re-
sults for Midori128, Lilliput, and Minalpher. The tool also finds new
impossible differentials for ARIA and MIBS. We manually verify the im-
possibility of the searched results, which reveals new structural properties
of those designs. The tool can be implemented by slightly modifying the
previous differential search tool using Mixed Integer Linear Programming
(MILP). This motivates us to discuss the usage of our tool particular for
the design process. With this tool, the maximum number of rounds of
impossible differentials can be proven under reasonable assumptions and
the tool is applied to various concrete designs.

Key words: symmetric-key, impossible differential, mixed integer linear
programming, Midori, Lilliput, Minalpher, ARIA, MIBS

1 Introduction

Designing symmetric-key primitives becomes more and more complicated to si-
multaneously satisfy various goals such as security against many notions, effi-
ciency in high-end software, low-implementation cost in hardware, and so on.

A popular design approach is substitution-permutation network (SPN), in
which a state is composed of small words, and is updated by iteratively applying
a round function consisting of a non-linear layer and a linear layer. In the non-
linear layer, the state is updated by looking up a word-wise precomputed table
called S-box. In the linear layer, the state is mixed with some linear operations.

A lot of designs were proposed in the last decade. It is now necessary for the
community to carefully but quickly evaluate their security. Automated evalua-
tion tools are useful to evaluate various designs in short term. Regarding the

differential cryptanalysis and linear cryptanalysis, automated tools have been
well-developed. In particular, evaluating the lower bound of the number of active
S-boxes with mixed-integer-linear programming (MILP) is becoming popular in
the design of SPN primitives [1]. Meanwhile, automated tools for other cryptana-
lytic approaches are not as sophisticated as differential and linear cryptanalysis.

Impossible differential cryptanalysis [2, 3] is one of the most major and effec-
tive cryptanalytic approaches. In short, for a target keyed cipher EK , it exploits
a pair of input and output differences (∆i, ∆o) that cannot be connected for
any K. Namely, two input values x, x′ satisfying x ⊕ x′ = ∆i never satisfy
EK(x)⊕ EK(x′) = ∆o.

Such (∆i, ∆o) are detected by the miss-in-the-middle approach [4]. The first
automated search attempt was done in [3] with a technique called shrink. It
shrinks the word size to 3 bits and finds impossible differentials of the global
structure of the cipher by exhaustively testing all possible differences and values.
The shrink technique is useful when the cipher consists of small number of words
with big word size, e.g. 4 words of 32 bits in Skipjack, while the recent design
trend is using many words with small word size, e.g. 16 words of 8 bits in AES.

Kim et al. [5] presented the automated tool called U-method. Suppose that
one wants to examine if (∆i, ∆o) is impossible. First it propagates ∆i in forwards
(with F) by rf rounds, and checks if the difference of each word is known active,
active, inactive, or unknown. Then, it propagates ∆o in backwards (with F−1)
by rb rounds and checks the same information. Finally, it finds contradiction in
the middle, detecting that (∆i, ∆o) is impossible for rf + rb rounds.

Several researches extended the U-method, e.g. UID-method by Luo et al. [6,
7] or some extension by Wu and Wang [8]. Those detect more complicated con-
tradiction than the U-method. Although some advancement was made, usability
of the previous tools is limited as explained below.

– To be as generic as possible, the recent tools consider complicated differential
impact through the linear layer, which requires more sensitive implementa-
tion. Even with this effort, only particular contradictions can be analyzed.

– Most of the previous tools cannot take into account differential property
inside the S-box. Several analysis against a particular S-box in a particu-
lar primitive may analyze its differential property [9, 10], however such an
analysis cannot be extended to a generic tool.

– Most of the previous tools for impossible differential cryptanalysis cannot be
used to evaluate other cryptanalytic approaches, e.g. differential and linear
cryptanalysis. Derbez and Fouque proposed a tool for the meet-in-the-middle
attack that can also be used for impossible differential cryptanalysis [11].
However, it cannot find better impossible pairs compared to [5, 6, 8].

Our Contributions. In this paper, we propose a new automated tool to find
impossible differentials. Our tool is based on the previous MILP-based tools for
(standard) differential cryptanalysis, which models S-boxes in bitwise [12–14].

In the differential search with MILP, the attacker describes possible differen-
tial propagation patterns in a round function by using linear inequalities. Then,

the attacker runs a solver for MILP, which returns the minimum number of ac-
tive S-boxes under the given propagation patterns. In this research, to examine
the impossibility of (∆i, ∆o), we simply add constraints to fix the input and
output differences to (∆i, ∆o). Due to the added constraints, the lower bound of
the number of active S-boxes usually increases. In some case, (∆i, ∆o) cannot be
satisfied, thus the MILP solver returns an error code implying that no solution
exists. In other words, ∆i and ∆o are impossible pairs.

We then iterate this test to examine multiple pairs of (∆i, ∆o) e.g. all pairs
with 1 active word both in input and output. We note that, for all existing
ciphers, the longest impossible differentials have only 1 active word in both
input and output. Thus, it is reasonable to conjecture that if such impossible
differentials do not exist, any impossible differentials do not.

Our tool leads to stronger cryptanalytic results than the previous tools owing
to the following advantages.

Analyzing inside S-boxes: The previous differential-bound search using MILP
[12] can model the possible differential propagation patterns in the differen-
tial distribution table (DDT) of the S-box. Our tool inherits this advantage.
Thus impossible differentials taking into account DDT can be found.

Arbitrary Contradiction: The MILP solver automatically judges whether or
not the solution exists. Thus, the attacker does not have to predict the mech-
anism of contradiction in advance, which significantly increases the versatil-
ity of the tool.

Multi-Purpose Tool: We convert the previous MILP-based differential search
into impossible differential search by just adding constraints to fix input and
output differences. Thus only with a single tool, security against differential
cryptanalysis and impossible differential cryptanalysis can be evaluated. This
feature is especially useful for future primitive designers who need to evaluate
both cryptanalyses.

Arbitrary S-box Mode: MILP requires too many inequalities to represent
differential propagations in DDT of 8-bit S-boxes. Thus, the tool is infea-
sible for 8-bit S-boxes in a straightforward manner. Here, we introduce an
arbitrary S-box where impossible differentials for the arbitrary S-box are al-
ways valid for arbitrary S-box choice. The arbitrary S-box can be described
efficiently, which enables us to evaluate 8-bit S-boxes. We note that previous
work on MILP based tool aimed to model DDT precisely. One can see the
catchphrase “MILP whose feasible region is exactly the set of all valid dif-
ferential” in [13, 15], while modeling 8-bit S-box precisely is infeasible. Our
approach is opposite of previous work, which describes DDT only roughly
but can be executed in practice.

Quick Search for Truncated Impossible Differential: A single pair of in-
put and output differences can be impossible for more rounds than truncated
differentials. Meanwhile, evaluating all the pairs is infeasible and the search
range is often limited to single-active word. Here we present a technique to
make the tool more efficient only by aiming truncated impossible differen-
tials, which can be implemented only by changing the constraints of input
and output differences.

Table 1. Application Results. ‘KR’ denotes ‘key recovery.’

Target Ref. #Rounds Search Mode Goal Remarks
Prev. Ours

Midori128 [16] 6 7 specific S-box characteristic
Lilliput [17] 8 9 specific S-box characteristic
Minalpher [18] 6.5 7.5 arbitrary S-box truncated large state

ARIA [19] 4 4 arbitrary S-box truncated 8-bit S-box, improve KR
MIBS [20] 8 8 specific S-box characteristic new impossible differentials

Note that running time of our tool for a single pair of input and output differences
is significantly shorter than the differential search. This can be explained that the
solver can stop only by detecting one characteristic. In the previous differential
bound search, the bottleneck of the tool is increasing the lower bound. Finding
some upper bound (some solution of the system) is usually fast.

We apply the proposed tool to various designs. The results improving the
existing impossible differentials are summarized in Table 1. Although one of
the advantages of the tool is that the attacker can detect impossible differ-
entials without analyzing contradicting reasons, we manually analyze why the
detected (∆i, ∆o) is impossible. The manual verification not only demonstrates
the correctness of the tool, but also reveals the structural properties of the tar-
get designs that have not been known before. We believe that the contradicting
reasons analyzed in this paper for Midori128, Lilliput, and Minalpher lead to
new understanding about their designs.

Our automated tool is useful to test many design choices during the design
process of new primitives. Thus, we also discuss the usage of the tool for the
design. For example, when the tool finds several impossible pairs of (∆i, ∆o),
the designers may want to patch the design to avoid such (∆i, ∆o). By using
the arbitrary S-box mode, we can easily check whether (∆i, ∆o) is dependent on
the S-box. If it is dependent on the S-box, it may be prevented by replacing the
S-box. If it is independent, it needs to modify the linear layer to prevent it.

Moreover, because it catches any contradiction, the tool provides a certain
level of provable security about the existence of impossible differentials with rea-
sonable assumptions and reasonable search range. In details, provable security
can be discussed when a single word is active in the input and output differ-
ences, and we can set two-level of the assumption; 1) S-box is public and each
subkey is chosen independently and uniformly at random and 2) keyed S-box is
used and for each key the S-box is chosen uniformly at random. We apply the
tool to various designs to prove the maximum number of rounds of impossible
differentials. Finally, we propose an optimal pick technique which dramatically
reduces the execution time only when the tool is used for obtaining the proof.

Paper Outline. Notations and related work are introduced in Sect. 2. Frame-
work of our tool is introduced in Sect. 3. Application on various designs improv-

ing previous impossible differentials are shown in Sect. 4. A technique to reduce
the search complexity is explained in Sect. 5. Advantages of our tool in the de-
sign process are explained in Sect. 6. Our research is partially overlapped with
[21]. The relationship between [21] and this paper is explained in Appendix A.

2 Related Work

2.1 Terminologies in Impossible Differential Cryptanalysis

– We call a pair of input and output differences (∆i, ∆o) that cannot be con-
nected an impossible differential characteristic or impossible characteristic.

– We call a pair of a closed set of input differences and a closed set of output
differences in which any pair cannot be connected as a truncated impossible
differential.

– When we do not distinguish the above two, we call it impossible differential.

2.2 Differential Search with Mixed Integer Linear Programming

Here we explain an automated tool for differential cryptanalysis, not impossible
differential cryptanalysis, which will be a base of our tool.

Mouha et al. [1] showed that the problem to search for the minimum num-
ber of active S-boxes can be modeled with mixed integer linear programming
(MILP). The approach is now very popular for designing a new primitive. For
example, resistance against differential and linear cryptanalysis of Skinny [22]
recently proposed at CRYPTO 2016 was evaluated by MILP.

The approach by Mouha et al. [1] is effective for evaluating word-oriented
ciphers, while several ciphers are not word-oriented. For example, PRESENT
[23] applies 4-bit S-box, then the bit-permutation moves four bits from a single
S-box to four different S-boxes. In order to apply MILP to such a structure, Sun
et al. [12] developed a method to model all possible differential propagations bit
by bit even for the S-box.

Modeling Differential Propagations with MILP. We explain how to model
valid differential propagations of PRESENT in bitwise. Note that one round of
PRESENT consists of subkey addition, S-box applications, and bit-permutation.

At first, binary variables to represent whether the bits are active or inac-
tive are defined for all rounds; x0, x1, . . . , x63 are for 64 bits in the plaintext,
x64, x65, . . . , x127 are for 64 bits after round 1, x128, x129, . . . , x191 are for 64 bits
after round 2, and so on. Each variable takes ‘1’ if the bit has the difference, and
takes ‘0’ otherwise. Then, the constraint to ensure at least 1 active bit is added,
which can be written as ‘x0 +x1 + · · ·+x63 ≥ 1.’ Finally, constraints to be valid
differential propagations are added. Here, the bit-permutation only changes the
order of variables and subkey addition can be ignored because it does not change

the difference. The following denotes the variables involved in the first round, in
which a 64-bit plaintext difference x0, . . . , x63 are updated to x64, . . . , x127.

x0, x1, x2, x3
x4, x5, x6, x7
x8, x9, x10, x11
x12, x13, x14, x15

· · ·
x60, x61, x62, x63

S-box−→

x64, x68, x72, x76
x80, x84, x88, x92
x96, x100, x104, x108
x112, x116, x120, x124

· · ·
x115, x119, x123, x127

BitPerm−→

x64, x65, x66, x67
x68, x69, x70, x71
x72, x73, x74, x75
x76, x77, x78, x79

· · ·
x124, x125, x126, x127

The most difficult part is describing all possible propagation patterns for 16
S-boxes, e.g. x0, x1, x2, x3 −→ x64, x68, x72, x76, with a system of linear inequal-
ities. Sun et al. [12] showed two approaches to solve the problem.

Fact 1 Linear inequalities to constrain input and output variables of the S-box
only to valid patterns can be generated by using either the computation tool called
SageMath or several logical operations.

How to use SageMath is well explained in [12] and more details of logical com-
putations can be seen in [14]. We rely on Fact 1 about the description of S-box,
and the choice of SageMath and logical operations does not impact to our tool.
Meanwhile, the following limitation of those approaches should be noted.

Fact 2 Both of SageMath and the logical operations can be used only when the
S-box size is small.

In our computational environment, both methods are feasible for S-boxes of size
five bits or less. No method is known to model bigger S-box, e.g. 8-bit S-box.

MILP returns a solution of the system optimizing a given objective function.
In differential cryptanalysis, the attacker’s goal is minimizing the number of
active S-boxes, which can be defined as “Minimize

∑
i(x4i∨x4i+1∨x4i+2∨x4i+3).”

The system can be solved by the MILP solver to find the optimal solution.
We use Gurobi Optimizer [24] as the MILP solver.

3 Composite Framework for Differential and Impossible
Differential Searches

We begin with explaining the basic concept of our impossible differential search
tool, which has been independently discovered by Cui et al. and their paper
was posted on Cryptology ePrint Archive prior to our paper [21]. Comparison
between [21] and this work will be explained in Appendix A.

The tool adds several constraints to the previous differential bound search for
fixing an input and output difference to a specific pair (∆i, ∆o). Due to those
additional constraints, the MILP solver may not be able to find the solution,
thus returns some error code indicating that the system is infeasible, which tells
that (∆i, ∆o) is an impossible differential characteristic.

Algorithm 1 Generating System of Inequalities in Previous Differential Search

Require: number of rounds r, system of inequalities for S-boxes and linear layer
Ensure: system of inequalities

1: Write an objective function.A
2: Write constraints ensuring at least 1 active bit in input.B
3: for round = 1 to r do
4: Write constraints for the S-boxes.C
5: Write constraints for the linear layer.
6: end for

Example 1 Let p0, p1, . . . , pb−1 and c0, c1, . . . , cb−1 be variables that represent
active/inactive of plaintext bits and ciphertext bits, respectively, where b is the
block size. To test if (∆i, ∆o) = (0x1, 0x1) is impossible, the MILP solver should
run with the following constraints added.

p0 = 1, p1 = 0, c2 = 0, . . . , pb−1 = 0,

c0 = 1, c1 = 0, c2 = 0, . . . , cb−1 = 0.

We then iterate this test to examine multiple pairs of (∆i, ∆o) e.g. all pairs with
1 active word both in input and output.

3.1 Composite Framework

A remarkable advantage of our tool is that users can switch differential-bound
search and impossible-differential search very easily. This helps primitive de-
signers, generally required to evaluate the resistance against both of differential
and impossible differential cryptanalyses. Here we introduce our framework to
generate system of inequalities depending on the target to evaluate.

Most of the symmetric-key primitives can be described as an iteration of the
round function consisting of the non-linear and linear layers. We explain our tool
by following this structure. Our tool focuses on the primitive whose non-linear
layer is the parallel application of S-boxes. The tool relies on the previous MILP-
based differential search that models differential propagations through S-box in
bitwise [12–14]. Here, we recall how a system of inequalities is generated.

First, the number of rounds, r, is fixed. Then, an objective function, e.g. min-
imizing the number of active S-boxes, is defined. It also constrains the system so
that at least one S-box is activated. The remaining is writing constraints for the
valid differential propagations through the S-boxes and linear layer for r rounds,
which can be done with [12–14]. The procedure is summarized in Algorithm 1.
Underlines in Algorithm 1 will be later referred by Algorithm 2.

We slightly modify Algorithm 1 so that impossible differentials can be eval-
uated with several techniques. The goal of the tool can be either the differential
bound (DB) or the impossibility of the given input and output differences (ID),
which can be specified in the parameter “GOAL”. For converting DB to ID, the
users need to modify only two parts; make the objective function empty and
specify input and output differences.

Algorithm 2 Generating System of Inequalities in Composite Framework

Require: number of rounds r, system of inequalities for S-boxes and linear layer,
GOAL ∈ {DB, ID}, MODE ∈ {SPECIFIC, ARBITRARY}, and OBJECT ∈
{TRUNCATED,CHARACTERISTIC}
Ensure: system of inequalities

/* Lines 1–5 correspond to A in Alg. 1. */
1: if GOAL = DB then
2: Write an objective function.
3: else if GOAL = ID then
4: Leave an objective function empty.
5: end if

/* Lines 6–14 correspond to B in Alg. 1. */
6: if GOAL = DB then
7: Write constraints ensuring at least 1 active bit in input.
8: else if GOAL = ID then
9: if OBJECT = CHARACTERISTIC then

10: Fully specify active or inactive for each input and output bit.
11: else if OBJECT = TRUNCATED then
12: Specify input and output difference in a truncated level.
13: end if
14: end if

15: for round = 1 to r do

/* Lines 16–20 correspond to C in Alg. 1. */
16: if TARGET = ID and MODE = ARBITRARY then
17: Write constraints for the differentially ideal S-box.
18: else
19: Write constraints for the S-boxes as in specification.
20: end if

21: Write constraints for the linear layer.
22: end for

For impossible differentials, the users can further choose several search modes
specified in the parameter “MODE”. To be more precise, the S-boxes can be fixed
to particular ones (SPECIFIC) or can be treated as general ones (ARBITRARY).

The users can also choose which of truncated differential (TRUNCATED) or
a single impossible differential characteristic (CHARACTERISTIC) is searched
as a parameter “OBJECT”.

The updated framework to generate the system of inequalities for each setting
is given in Algorithm 2. Note that the basic idea in [21] corresponds to “GOAL
= ID”, “MODE = SPECIFIC”, and “OBJECT = CHARACTERISTIC.” In the
following sections, we will discuss the purpose of each search mode.

Hereafter, we explain details of impossible differential search (“GOAL=ID”).
We first explain how to search impossible differential characteristics (“OBJECT
=CHARACTERISTIC”) with the specific S-box mode and the arbitrary S-box

mode in Sect. 3.2 and 3.3, respectively. We then explain the case of truncated
impossible differential (“OBJECT=TRUNCATED”) in Sect. 3.4.

3.2 Specific S-box Mode for Impossible Characteristic

In the specific S-box mode, the users derive the differential distribution table
(DDT) from the actual S-boxes, and construct the MILP model to describe all
valid differential propagations by using the existing method [12–14]. Then dif-
ferences in all input and output bits are constrained to the target pair. The
analysis is iterated for various input and output differences chosen from a rea-
sonable subset, i.e. only one word is active.

The specific S-box mode can maximize the number of rounds of impossible
differentials. Thus the attackers may prefer to choose this mode.

Impact of Key Schedule. The tool does not take into account the key sched-
ule, thus we need a careful discussion about the impact of its omission.

The search by MILP describes a system of inequalities for the entire rounds
by iterating a system of one-round differential propagation. Thus all valid prop-
agations for one round are also valid in the evaluation of multiple rounds inde-
pendently of the propagation in neighboring rounds and subkey values. This is
true only if all subkeys are independent and chosen uniformly at random, which
is not true in practical designs with a particular key schedule.

In summary, what the MILP simulates is the worst-case scenario (for the at-
tackers). Namely, even if some differential propagations cannot occur for multiple
rounds, the tool regards it possible, which leads to the following observation.

Observation 1 Impossible differential characteristics found in the specific S-
box mode are always impossible independently of the choice of key schedule.

3.3 Arbitrary S-box Mode for Impossible Characteristic

In the arbitrary S-box mode, we assume an imaginary S-box in which any non-
zero input difference can be propagated to any non-zero output difference. Then,
a set of valid differential propagations of any bijective S-box can be a subset of
the one in the arbitrary S-box.

Valid differential propagations of the n-bit arbitrary S-box can be described
only by 2n inequalities. Let i0, i1, . . . , in−1 and o0, o1, . . . , on−1 be binary vari-
ables to represent whether input and output bits are active or inactive, respec-
tively. We write the constraints such that if input (resp. output) is 0, each output
bit (resp. input bit) is 0, namely

i0 + i1 + · · ·+ in−1 − o0 ≥ 0, o0 + o1 + · · ·+ on−1 − i0 ≥ 0,

i0 + i1 + · · ·+ in−1 − o1 ≥ 0, o0 + o1 + · · ·+ on−1 − i1 ≥ 0,

· · · · · ·
i0 + i1 + · · ·+ in−1 − on−1 ≥ 0, o0 + o1 + · · ·+ on−1 − in−1 ≥ 0.

The advantage of the arbitrary S-box compared to the specific S-box is ef-
ficiency owing to a small number of constrains to describe differential propaga-
tions. The arbitrary S-box mode is useful in the following two cases.

8-bit S-boxes: There is no known method to describe differential propagations
of 8-bit S-boxes in MILP. Here by using the arbitrary S-box, the tool can be
applied to 8-bit S-boxes.

Large Block Size: Even if the S-box size is small, say 4 bits, it is computa-
tionally hard to evaluate a large block size, say 256 bits. Again the arbitrary
S-box enables analysis.

Note that, differently from the specific S-box mode, the analysis can no longer
exploit properties inside the S-box. However, the analysis can still exploit another
advantage that the tool catches any contradiction, and this advantage is often
big enough to find new impossible differential characteristics. Actually, we found
new characteristics of ARIA (8-bit S-boxes) [19] and of Minalpher (4-bit S-box,
256-bit block) [18], which will be explained in Sect. 4.

Similarly to Sect. 3.2, MILP simulates the worst-case scenario. Namely, even
if some differential propagations cannot occur for some specific S-box, the tool
regards it possible.

Observation 2 Impossible differential characteristics found in the arbitrary S-
box mode are always impossible independently of the choice of S-box and key
schedule.

3.4 Searching for Truncated Impossible Differential

The tool for a single characteristic can be extended to truncated differentials by
simply running the tool for multiple pairs of input and output differences. How-
ever, this approach easily becomes computational infeasible when the number of
active words is more than 1. Actually, searching for two active words is already
too heavy. Let n and c be the number of S-boxes per round and the size of each
S-box, respectively. Then, the number of pairs of input and output differences

with 1-active word is
(
n · (2c − 1)

)2
, which is O(n2 · 22c), while one with two

active words is
((

n
2

)
·(22c−1)

)2
, which is O(n4 ·24c). Generally for d input active

words and d′ output active words, the number of pairs to test is given by

O(nd+d′
· 2(d+d′)c). (1)

With n = 16 and c = 4, which is a popular choice for lightweight ciphers, we
need to evaluate 216 pairs for single-active word (d = d′ = 1) while 232 pairs for
2-active words (d = d′ = 2).

Here, we show a technique to make the tool more efficient only by aiming
truncated impossible differentials in both of the specific S-box and the arbitrary
S-box modes. Let i0, i1, . . . , in−1 and o0, o1, . . . , on−1 be variables to represent
whether n input and n output bits in the truncated position are active or inactive.

Then, we write the following constraint (along with constraints fixing the other
bits to 0):

i0 + i1 + · · ·+ in−1 ≥ 1, o0 + o1 + · · ·+ on−1 ≥ 1.

Note that if there exists at least one solution satisfying the constraints, the tool
returns that the system is feasible. Hence, the truncated impossible differential
search is less accurate than the impossible characteristic search, while execution
time is significantly reduced. Compared to Eq. (1), 1 inequality is enough for
each active word position. Thus the number of pairs to test is given by

O(nd+d′
), (2)

which enables to evaluate multiple active words differences. Actually, we searched
for truncated impossible differentials on ARIA [19] with this technique. Then,
we found new truncated impossible differentials with d = 2 active input words
and d′ = 5 output active words, which will be explained in Sect. 4.3.

4 Applications from Cryptanalysis Aspect

4.1 Midori128

Midori is a low energy block cipher designed by Banik et al. in 2015 [16]. Mi-
dori provides two different block lengths; Midori64 and Midori128 have 64-bit and
128-bit block lengths, respectively. Both ciphers accept 128-bit secret key.

Specification. Midori128 uses the SPN structure with AES-like state. The state
is arranged in a 4× 4 matrix as

S =

s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

 . (3)

The bit length of every cell si is 8 bits.
The round function consists of SubCell, ShuffleCell, MixColumn, and KeyAdd.

In SubCell, 8-bit S-boxes SSb0, SSb1, SSb2, and SSb3 are used and si ← SSbi mod 4(si)
where 0 ≤ i ≤ 15. Four 8-bit S-boxes SSbi are constructed by 4-bit S-box Sb1,
where Sb1 is defined as follows.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

Sb1(x) 1 0 5 3 E 2 F 7 D A 9 B C 8 4 6

Then, SSbi are constructed as SSbi = p−1i ◦ (Sb1‖Sb1)◦pi, where two Sb1 are ap-
plied to top and bottom halves in (Sb1‖Sb1). Note that SSbi is involution, and we
later show that impossible differentials are improved by exploiting this property.
Figure 1 shows the specification of SSbi. In ShuffleCell, each cell is permuted

Sb1

SSb0

Sb1

MSB

LSB

x0

x7

8 8

Sb1

SSb1

Sb1

MSB

LSB

x0

x7

8 8

Sb1

SSb2

Sb1

MSB

LSB

x0

x7

8 8

Sb1

SSb3

Sb1

MSB

LSB

x0

x7

8 8

Fig. 1. SSb0, SSb1, SSb2, and SSb3

as (s0, s1, . . . , s15) ← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8).
In MixColumns, the following multiplication

si
si+1

si+2

si+3

 =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

si
si+1

si+2

si+3

is applied for i = 0, 4, 8, 12. In KeyAdd, the i-th n-bit round key is XORed with
a state. The number of rounds of Midori128 is 20. Moreover, only SubCell is
applied in the final round function.

Previous Cryptanalysis. Several third-party cryptanalyses have been pro-
posed, and the full-round Midori64 was broken by the invariant subspace at-
tack [25] and nonlinear invariant attack [26] under the weak-key setting. On the
other hand, there are no cryptanalysis against full-round Midori128. Regarding
the impossible differential attack on Midori128, the designers found 6-round im-
possible differentials such that only one cell is active in the input and output [16].
Then, Zhen et al. found 6-round impossible differentials that are advantageous
for the key recovery but the number of rounds is not increased [27].

Configurations for the Tool. The block size of Midori128 is 128 bits and
the S-boxes size is 8 bits. However, since the 8-bit S-boxes are represented as
concatenation of two 4-bit S-boxes, we can regard that there are thirty-two 4-bit
S-boxes in each round. The search space for impossible differential characteristics
is large, hence we run our tool in the arbitrary S-box mode.

When the arbitrary S-box mode is chosen for Midori, it is sufficient to evaluate
truncated impossible differentials rather than impossible differential character-
istics. This is because, for any choice of the differential value of the active nibble
in the plaintext, the set of possible output differences of the active S-box in the
first round is identical. In other words, when (∆i, ∆o) is an impossible differen-
tial characteristic, for any other 1-nibble difference ∆′i in the same active nibble
position, (∆′i, ∆o) becomes impossible.

We limit the input and output differences to 1 active nibble. The number of
such input differences is 32, and we have the same number of output differences.
In the end, we run MILP for 32∗32 = 1024 pairs of input and output differences.

Table 2. 7-Round Truncated Impossible Differentials against Midori128

ID ∆P ∆C Remarks

001T (0α100, 0000, 0000, 0000) (0β100, 0000, 0000, 0000) manually verified
002T (0β100, 0000, 0000, 0000) (0α100, 0000, 0000, 0000) manually verified
003T (0000, α0000, 0000, 0000) (0000, β0000, 0000, 0000)
004T (0000, β0000, 0000, 0000) (0000, α0000, 0000, 0000)
005T (0000, 0α100, 0000, 0000) (0000, 0β100, 0000, 0000)
006T (0000, 0β100, 0000, 0000) (0000, 0α100, 0000, 0000)
007T (0000, 0000, α0000, 0000) (0000, 0000, β0000, 0000)
008T (0000, 0000, β0000, 0000) (0000, 0000, α0000, 0000)
009T (0000, 0000, 0α100, 0000) (0000, 0000, 0β100, 0000)
010T (0000, 0000, 0β100, 0000) (0000, 0000, 0α100, 0000)
011T (0000, 0000, 0000, α0000) (0000, 0000, 0000, β0000)
012T (0000, 0000, 0000, β0000) (0000, 0000, 0000, α0000)

List of 7-Round Truncated Impossible Differentials. We ran our tool
with the above configuration. The tool required about 0.03 seconds per pair and
it took about 0.5 minutes to test 1024 pairs.

As a result, our tool found 12 truncated impossible differentials for 7 rounds,
which improves the previous best result by 1 round. We list 12 truncated im-
possible differentials in Table 2. Note that αi is active in 4 bits where the active
bits go to top four bits after pi is applied, while βi is active in 4 bits where the
active bits go to bottom four bits after pi is applied. Every truncated impossible
differential consists of 152 = 225 impossible differential characteristics.

Manual Verification of ID001T and ID002T. Although one of the major
advantages of the tool is that the attacker does not have to analyze the reason
of contradiction, we would like to verify the reason. The analysis reveals a new
structural property of Midori128 exploiting the involution of SSbi, which seems
to be useful for future analysis. We first prove ID001T.

Theorem 1. The input difference (0α100, 0000, 0000, 0000) cannot propagate to
the output difference (0β100, 0000, 0000, 0000) after 7 rounds of Midori128, where
only top four bits of p1(α1) and bottom four bits of p1(β1) are active.

Proof. In Fig. 2, the input difference is propagated in forwards by 3.5 rounds,
and the output difference is propagated in backwards by 3 rounds.

Let us focus on the forward propagation. From the definition, the differential
form of α1 is (∗, ∗, 0, 0, 0, 0, ∗, ∗) thus p1(α1) = (∗, ∗, ∗, ∗, 0, 0, 0, 0), where ∗ and 0
are active and inactive, respectively. In SubCell in the first round, SSb1(α1) =
p−11 ◦ (Sb1‖Sb1) ◦ p1(α1) is computed. (Sb1‖Sb1) preserves that only top 4 bits
are active, and active bit positions go back to αi after the application of p−11 .
The position of the active byte moves from s1 to s7 by ShuffleCell, then is
diffused to s4, s5, and s6 by MixColumns. S-boxes are applied in the second round

SubCell ShuffleCell MixColumn KeyAdd

SubCell ShuffleCell MixColumn KeyAdd

SubCell ShuffleCell MixColumn KeyAdd

SubCell

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ?

?

?

?

?

?

?

?

?

?

ShuffleCell

contradiction

inactive

active

unknown

(*,*,0,0,0,0,*,*)

(0,0,*,*,*,*,0,0)

MixColumn KeyAdd

SubCell ShuffleCell MixColumn KeyAdd

SubCell ShuffleCell MixColumn KeyAdd

SubCell

?

?

?

?

? ?

??

?

?

?

?

?

?

?

??

?

?

?

?

Fig. 2. 7-Round Truncated Impossible Differential of Midori128; ID001T

again, but SSb0 and SSb2 do not preserve the form of α1 due to the different bit
permutations p0 and p2. Therefore, only s5 preserves the differential form of α1.
Similar analysis is continued during the 3.5-round forward propagation.

The differential form of β1 is (0, 0, ∗, ∗, ∗, ∗, 0, 0). With the same reason as
α1, the differential form of β1 is preserved after the computation of SSb−11 (β1),
and 1 byte preserves the difference β1 after 3 round decryption.

On one hand, from the forward 3.5-round propagation, only top half of p1(s5)
is active and bottom half is inactive. On the other hand, from the 3-round back-
ward propagation, only bottom half of p1(s5) is active and top half is inactive.
This is a contradiction, therefore ID001T is manually verified. ut

ID002T can be proved by exchanging the position of α1 and β1 of ID001T. Note
that all impossible differentials found by our tool have the similar structure.
Therefore, we expect that ID003T–ID012T can be verified similarly.

4.2 Lilliput

Lilliput is a lightweight block cipher designed by Berger et al. in 2015 [17]
in which the block size and the key size are 64 bits and 80 bits, respectively.
Lilliput adopts an extended generalized Feistel network (EGFN) [28].

Specification. A 64-bit plaintext is loaded to a 64-bit state X0, which is divided
into sixteen 4-bit nibbles, X0

15‖X0
14‖ · · · ‖X0

0 . The round function, RF , takes as

Table 3. S-box in Lilliput (Hex)

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 4 8 7 1 9 3 2 E 0 B 6 F A 5 D C

Table 4. Nibble Permutation (Decimal)

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(x) 13 9 14 8 10 11 12 15 4 5 3 1 2 6 0 7

input a previous state Xj and a 32-bit subkey SKj , SKj
7‖SK

j
6‖ · · ·SK

j
0 and

updates the state to Xj+1 with three operations F , L, and P.

Non-linear layer F : Copy the right half of the state, XOR the subkey, apply
an S-box to each nibble, finally XOR the results to the left half of the state.
Namely, Xj

8+i ← Xj
8+i ⊕ S(Xj

7−i ⊕ SK
j
i), i = 0, 1, , 7, where S(·) is a

4-bit S-box defined in Table 3.
Linear layer L: Update the left half of the state with several XORs.

Xj
15 ← Xj

15 ⊕X
j
7 ⊕X

j
6 ⊕X

j
5 ⊕X

j
4 ⊕X

j
3 ⊕X

j
2 ⊕X

j
1 ,

Xj
15−i ← Xj

15−i ⊕X
j
7 for i = 1, 2, . . . , 6.

Permutation layer P: Permute nibble positions with π defined in Table 4.

The round function is iterated 30 times in which the permutation π is omitted in
the last round. Because we are discussing distinguishers in which several rounds
will be added for the key recovery, we do not omit the last permutation. The
illustration of the round function can be seen in Fig. ??.

Previous Impossible Differential. The designers searched for truncated im-
possible differentials with U-method [5] and found two 8-round truncated impos-
sible differentials, e.g. the input difference (0, 0, 0, 0, 0, 0, 0, α, 0, 0, 0, 0, 0, 0, 0, 0)
is incompatible with the output difference (0, 0, 0, β, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
We stress that the designers searched for them independently of the S-box choice.

Configurations for the Tool. Because both of the block size and the S-box size
are small in Lilliput, we run our tool in the specific S-box mode to maximize
the number of rounds of the distinguisher. In our experiment, we limited the
input and output differences to only 1 active nibble.

Considering the Feistel network, having an active nibble in the left half of the
input and in the right half of the output can maximize the number of rounds.
The number of such input differences is 8 ∗ 15 = 120, where 8 is for the active
nibble position and 15 is for non-zero difference in the active nibble. The number
of output differences is the same. In the end, we run MILP for 120∗120 = 14400
pairs of input and output differences.

List of 9-Round Impossible Differential Characteristics. We ran our tool
with the above configuration. The tool required about 0.2 seconds per pair and
it took about 1 hour to test 14400 pairs.

Table 5. 9-Round Impossible Differential Characteristics against Lilliput

ID (∆L0,∆R0) (∆L9,∆R9) Remarks

001 - 015 (0000000α, 00000000) (00000000, 00000α00) manually verified
016 - 030 (000000α0, 00000000) (00000000, 00α00000)
031 - 045 (000000α0, 00000000) (00000000, 0000000α)
· · · · · · · · · · · ·

181 - 195 (000α0000, 00000000) (00000000, 0000000α)

196 (00000020, 00000000) (00000000, 00000200) manually verified
197 (00000030, 00000000) (00000000, 00000300) manually verified
198 (00000080, 00000000) (00000000, 00000800) manually verified
199 (00000090, 00000000) (00000000, 00000900) manually verified
200 (000000e0, 00000000) (00000000, 00000e00) manually verified
201 (000000f0, 00000000) (00000000, 00000f00) manually verified

202 (00007000, 00000000) (00000000, 00000700)
203 (0000e000, 00000000) (00000000, 00000e00)

204 - 216 (000β0000, 00000000) (00000000, 000000β0) manually verified

217 (00010000, 00000000) (00000000, 00000050)

As a result, we found 217 impossible differential characteristics for 9 rounds,
which improves the previous best result by 1 round. We list a part of 217 im-
possible characteristics in Table 5. Note that α in the impossible characteristics
with ID 001 to 195 can be any non-zero value but must be the same between
input and output. β in ID 204 to 216 can be 1,2,3,4,5,6,7,8,9,10,11,14, or 15.

Manual Verification of ID196 to ID201. Because some of detected im-
possible characteristics exploit the property of DDT, the analysis is completely
different from the previous truncated impossible differentials. Verifying ID001–
ID015 is relatively simple (but cannot be detected by the previous tools), which
actually does not use the property inside the S-box.1 Due to the page limita-
tion, we omit the proof of ID001–ID015. We expect ID016–ID195 can be proven
similarly.

ID196–ID201 essentially exploit the differential property of the S-box. Here,
we explain the details of the contradicting reasons of ID196–ID201.

Theorem 2. The input difference (000000α0, 00000000) cannot propagate to the
output difference (00000000, 00000α00) after 9 rounds of Lilliput, where α ∈
{2, 3, 8, 9, e, f}.

Proof. In Fig. 3, the input (resp. output) difference is propagated in forwards
(resp. backwards) by 4 rounds. We first focus on the forward propagation.

1 We realized this fact only after we finished manual verification. The tool outputs a
list of 217 pairs, and at that time we had no clue about the contradicting reason.

0 0 �0 00 0 0 0 0 00 00 0 0

� 0 00 00 0 � �� � 0� �� �� �

0 0 00 00 0 0 0 � 00 00 0 0

0 0 00 �0 0 0 � 0 00 �0 0 0

�� � 0� ��� � � ? ? ?? ?? ? ��

? ? ?? ?? ? ? �� � �� �� �	 0

�� 0 �� ��	 � � � 0 �0 00 0 0

0 0 00 00 0 0 0 0 00 00 � 0

� 0 �0 00 0 0 0 0 00 0� 0 0

0 0 0� 00 0 0 0 0 00 00 0 0

�: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7

� 0 00 00 � 0

�: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7

�� � ��	 �0 � �

[���
� − ��

�][���
� − ��

�] [���
� − ��

�]

�: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7

0 0 00 00 0 0

[���
� − ��

�][���
 − ��

] [���
! − ��

!]

[���
" − ��

"][���
− ��

#] [���
$ − ��

$]

�: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7

�� � �	�� 0� � �

�: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7

� 0 0	0 �0 0 0

�: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7

0 0 0� 00 0 0

[���
" − ��

"][���
− ��

#][���
� − ��

�]

�: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7

0 � 00 00 0 0

�: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7

0 0 �0 00 0 0

�: 13, 9, 14, 8, 10, 11, 12, 15, 4, 5, 3, 1, 2, 6, 0, 7

? ?? ?�� ? ??

0 0

0 0

0 0

� 0 00 00 0 � �� � 0� �� �� �

�� 0 �� ��	 � � � 0 �0 00 0 0

0 0

� ��

�� �

Fig. 3. 9-Round Impossible Differential Characteristic of Lilliput; ID196–201

- In the second round, we denote by β the output difference of the active S-box.
Note that β may or may not be equal to α.

- In the third round, we further introduce γ and δ for the output difference from
the S-boxes. In Fig. 3, we denote by αβ and αδ abbreviations of α⊕ β and
α⊕ δ respectively. Note that α⊕ β and α⊕ δ may or may not be non-zero.

- In the forth round, difference is unknown in many nibbles, denoted by ‘?’.

We do the same for the last 4 rounds and detect the contradiction in the middle.

1. We focus on X4
8⊕S(X4

7) = X5
4 in the fifth round, in which ∆X4

8 = ∆X5
4 = α,

which eventually leads to ∆X4
7 = 0 (red lines in Fig. 3).

2. We then focus on X4
11⊕S(X4

4)⊕X4
7 = X5

1 , in which ∆X4
11 = ∆X5

1 = α and
∆X4

7 = 0. Hence, ∆X4
4 = 0. Similarly, ∆X4

2 = 0 (blue in Fig. 3).

3. We focus on X3
8 ⊕ S(X3

7) = X4
4 in the fourth round, in which ∆X3

8 = β and
∆X4

4 = 0. Hence ∆S(X3
7) must be β while ∆X3

7 = α ⊕ β (green in Fig. 3).
Considering that β is originally defined as an output difference of the S-box
whose input difference is α, we have the following necessary condition for

this 9-round characteristic to be possible.

∃β, x, y :

{
S(x)⊕ S(x⊕ α) = β
S(y)⊕ S(y ⊕ α⊕ β) = β

(4)

Whether this condition is satisfied or not depends on the S-box, especially
on its DDT.
When α = 9, β can be 3, 7, 8, 9, c, e, f for the first equation in (4). Then,
(α ⊕ β, β) can be computed as (a, 3), (e, 7), (1, 8), (0, 9), (5, c), (7, e), (6, f).
The second equation in (4) constrains that one of them must be a valid
propagation. From DDT in Table ??, all of them cannot occur, which proves
that the 9-round characteristic in Fig. 3 is impossible when α = 9. Note that
the condition (4) can be satisfied when α 6= 0, 9.

4. We then further focus on X3
12 ⊕ S(X3

3) ⊕ X3
7 = X4

2 in the fourth round.
∆X3

12 = ∆X4
2 = 0 and ∆X3

7 = α ⊕ β, which derives ∆S(X3
3) = α ⊕ β.

Meanwhile, ∆X3
3 = α (yellow in Fig. 3). Thus besides (4), we obtain the

following necessary condition.

∃z : S(z)⊕ S(z ⊕ α) = α⊕ β (5)

To avoid redundancy, we omit listing all candidates, but from DDT condi-
tions (4) and (5) cannot be satisfied simultaneously when α ∈ {2, 3, e, f}.

5. To prove the case α = 8, we further proceed the analysis. Because it requires
too much details, we omit the proof in this paper.

With the above argument, Theorem 2 is proven. ut

Remarks. We would like to emphasize once again that the advantage of our tool
is that we can obtain a list of all impossible differential characteristics without
considering the contradicting reason. We also manually verified ID204 to ID216,
while we could not catch the contradicting reason for ID202, ID203, and ID217
by hand. In particular, ID217 is the only pair that the difference of active nibbles
in the input and output are different. We leave their verification open.

4.3 ARIA

ARIA is a 128-bit block cipher and provides three secret-key lengths: 128, 192,
and 256 bits [19]. ARIA is standardized by Korean Agency for Technology and
Standards (KATS) and is described by RFC5794 and RFC6209. ARIA uses
Substitution-Permutation Network (SPN) structure, and the state is represented
by 16 bytes. The round function consists of Substitution layer SL and Diffusion
layer DL. We refer to [19] for its detailed specification.

Previous Cryptanalysis. Wu et al. proposed a truncated impossible differen-
tial on 4.5-round ARIA ((DL ◦ SL)4 ◦DL) as

(0, 0, 0, a, a, 0, a, 0, a, a, 0, 0, 0, a, a, 0) 64.5R−−−→ (0, h, 0, 0, 0, 0, 0, 0, h, h, h, 0, 0, 0, h, 0),

where a and h denote any non-zero difference. Based on it, they attacked 6-round
ARIA (SL ◦ (DL ◦ SL)5) [29]. Then, Li et al. showed new truncated impossible
differentials on 4.5-round ARIA and the data-time tradeoff for the attack on 6-
round ARIA [30]. One of Li’s truncated impossible differentials improved Wu’s by
reducing the number of active output bytes to 4 from 5, implying that the number
of involved subkeys is less, and the time complexity is improved. However, the
data complexity is greater than the time complexity. The total complexity is not
very improved. Another Li’s truncated impossible differential is

(0, b, 0, a⊕ b, a⊕ b, 0, a, 0, a, a⊕ b, b, 0, 0, a, a⊕ b, b)

64.5R−−−→ (0, h, 0, 0, 0, h, 0, 0, 0, 0, 0, 0, h, 0, h, 0),

where a, b, and h denote any non-zero difference. This contributes to reducing
the data complexity because the number of independent non-zero differences
increases. Unfortunately, the number of involved subkeys increases to 14, and
the time complexity is greater than the data complexity. In the end, the total
complexity is not very improved.

Configurations for the Tool. Since the S-boxes size of ARIA is 8 bits, we
run our tool in the arbitrary S-box mode. Similar to Midori128, we only execute
truncated impossible differential search. Our goal is to improve Li’s truncated
impossible differentials. Namely, we search for 4.5-round truncated impossible
differentials, where input and output differences take 3 independent differences
and the number of involved subkey is reduced from 14. To search such truncated
impossible differentials efficiently, our tool searches for truncated impossible dif-
ferentials for 3.5 rounds (SL ◦ (DL ◦ SL)3), where every active byte can take
any difference. Then, found truncated differentials are trivially extended to 4.5
rounds by applying DL to the beginning and end. Finally, we evaluate the num-
ber of input and output differences.

4.5-Round Truncated Impossible Differentials. We ran our tool with the
above configuration. As a result, we found a truncated impossible differential as

(a, 0, 0, 0, 0, 0, 0, a, 0, a, 0, a, a, 0, a, 0)
DL−−→ (0, a, 0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

63.5R−−−→ (h, g, 0, 0, 0, 0, 0, h⊕ g, 0, h⊕ g, 0, g, 0, 0, 0, 0)

DL−−→ (h⊕ g, 0, 0, 0, h⊕ g, h, h, 0, 0, h, 0, 0, 0, g, 0, g)

where a, h, and g are non-zero differences. The number of involved subkeys is 13,
and it decreases by one byte from that of Li’s truncated impossible differentials.
It implies that we can improve the time complexity of their key recovery attack.

4.4 Minalpher

Minalpher is an authenticated encryption scheme designed by Sasaki et al. in
2015 [18]. Minalpher uses 256-bit core permutation called Minalpher-P, which

Table 6. 7.5-Round Truncated Impossible Differentials of Minalpher-P

ID ∆P ∆C Remarks

0001T A[0][0] A[0][2] manually verified
0002T A[0][0] A[0][3]
0003T A[0][0] A[0][4]
0004T A[0][0] A[0][5]

...
...

...
1152T B[3][7] B[3][7]

is based on Substitution-Permutation Network (SPN) structure using 4-bit S-
boxes. We refer to [18] for its detailed specification.

Previous Cryptanalysis. The designers found 6.5-round truncated impossi-
ble differentials by using the U-method by Kim et al. These are the longest
impossible differentials discovered by the U-method.

Configurations for the Tool. While the S-boxes size is 4 bits, the block size,
i.e., 256 bits, is very large. Therefore, we run our tool in the arbitrary S-box
mode aiming truncated impossible differentials with 1 active nibble in the input
and output differences. The number of such differences is 64 for both of input
and output. In the end, we run MILP for 64 ∗ 64 = 4096 pairs.

List of 7.5-Round Truncated Impossible Differentials. The tool required
about a few seconds per pair. As a result, our experiment found 1152 trun-
cated impossible differentials for 7.5 rounds, which improves the previous best
truncated impossible differentials by 1 round. Table 6 shows several examples.
Column ∆P shows the position of the active nibble in plaintext, and column ∆C
shows the position of the active nibble in ciphertext. Every truncated impossible
differential consists of 152 = 225 impossible differential characteristics.

4.5 MIBS

MIBS is a lightweight block cipher designed by Izadi et al. in 2009 [20]. The block
length is 64, and it provides two key lengths: 64- and 80-bit secret key. We refer
to [20] for its detailed specification.

Previous Cryptanalysis. Bay et al. found two 8-round truncated impossible
differentials [31]. Then, Wu and Wang found four additional 8-round truncated
impossible differentials [8].

Table 7. 8-Round Impossible Differential Characteristics against MIBS

ID ∆P ∆C Remarks

001T (00000000, 000000α0) (0000β000, 00000000) Bay
002T (00000000, 0000α000) (000000β0, 00000000) Wu
003T (00000000, 00α00000) (0000000β, 00000000) Bay
004T (00000000, 0000000α) (00β00000, 00000000) Wu
005T (00000000, 00α00000) (0000β000, 00000000) Wu
006T (00000000, 0000α000) (00β00000, 00000000) Wu

001-120 (00000000, 000γ0000) (00000ε00, 00000000)
121-240 (00000000, 00000ε00) (000γ0000, 00000000)

Configurations for the Tool. The block size of MIBS is 64 bits and the
S-boxes size is 4 bits. Therefore, we run our tool in the specific S-box mode
to maximize the number of rounds of the distinguisher. In our experiment, we
limited the input and output differences to only 1 active nibble.

Considering the Feistel network, the number of differences we need to test is
exactly the same as the case of Lilliput in Sect. 4.2. Thus we run MILP for
120× 120 = 14400 pairs of input and output differences.

List of 8-Round Impossible Differential Characteristics. The tool re-
quired about 7.7 seconds per pair using single core and it took about 30 hours
to test 14400 pairs.

Our tool found six 8-round truncated impossible differentials, which are the
same as results by Wu’s method. However, our method additionally found 2×120
impossible differential characteristics, which are not nibble-oriented truncated
impossible differentials. We list all impossible differentials in Table 7, where α
and β are any non-zero value. ID001–ID240 are impossible differential charac-
teristics that our tool newly found. If the differences (γ, ε) takes differences that
are shown by x in Table 8, the pairs of input and output differences is impossible
differential characteristics.

5 Differential Possibility Equivalence Technique

In Sect. 4.1, we searched for all truncated impossible differentials with one active
nibble. However, since ShuffleCell and MixColumn in Midori128 are byte-wise
operations, we should search for all impossible characteristics with one active
byte if possible. Moreover, the search in Sect 4.1 never exploited the property of
Sb1 because the tool was run in the arbitrary S-box mode. This section explains
how to run the tool in the specific S-box mode in a feasible time.

As described in Sect. 3.4, the number of all pairs with d input active words
and d′ output active words is O(nd+d′

2(d+d′)c), where n and c are the number of
S-boxes per round and the size of each S-box, respectively. If we want to evaluate

Table 8. Pairs of Impossible Differences Found by Our Tool for MIBS

ε
1 2 3 4 5 6 7 8 9 a b c d e f

1 x x x 0 x x 0 0 0 x 0 0 x 0 x

2 0 x 0 x x x 0 x x 0 0 0 x x 0
3 x 0 x x 0 0 0 x x x 0 0 0 x x

4 x x 0 x 0 0 0 0 0 x x x x x 0
5 x 0 0 0 x x 0 x x x x x 0 0 0
6 x 0 x x 0 x x 0 x 0 x 0 x 0 0

γ 7 0 0 0 0 0 x x x 0 x x 0 x x x

8 x x x 0 x 0 x x 0 0 x 0 0 x 0
9 0 x x 0 0 x x 0 x x 0 x 0 x 0
a 0 x 0 x x 0 x 0 x x x 0 0 0 x

b x 0 0 0 x 0 x 0 x 0 0 x x x x

c 0 0 x x x 0 x x 0 x 0 x x 0 0
d 0 0 x x x x 0 0 0 0 x x 0 x x

e 0 x x 0 0 0 0 x x 0 x x x 0 x

f x x 0 x 0 x x x 0 0 0 x 0 0 x

S

S

S

S

S

S

0

0

0

0

0

0

o

0

0

o

R rounds

c c

Fig. 4. Differential Possibility Equivalence Technique

all impossible differential characteristics on Midori128 with 1 byte active, our tool
has to execute 162 × 2552 ≈ 224 MILP instances. Then, it takes about 200 days
to complete all instances even if an MILP instance is solved within one second.
Therefore, we need an efficient method to evaluate all instances.

5.1 Procedure of Differential Possibility Equivalence Technique

The differential possibility equivalence technique reduces the number of MILP
instances that our tool has to solve.2 Figure 4 shows the outline of the technique.
Assuming that we search for impossible differential characteristics in which the

2 The motivation of the differential possibility equivalence technique is quite different
from truncated impossible differential. The truncated impossible search overlooks
impossible characteristics only with one possible characteristic in the truncated set.
When the number of impossible characteristics is small, truncated impossible differ-
ential search is not useful.

Table 9. 7-Round Impossible Differential Characteristics against Midori128

ID
∆P ∆C

Position Value Position Value

001 s1 0x04 s8 0x43

002 s1 0x0C s8 0x43

first words of plaintexts and ciphertexts are active, we want to evaluate (2c−1)2

pairs of input and output differences. First, we solve one MILP instance and
obtain that (∆i → ∆′i → ∆′o → ∆o) is possible differential characteristic for one
tuple of (∆i, ∆

′
i, ∆

′
o, ∆o). Next, we evaluate a set I whose elements are all ∆ such

that ∆→ ∆′i is possible. Similarly, we evaluate a set O whose elements are all ∆
such that ∆′o → ∆ is possible. Then, pairs in (I ×O) are possible characteristics
via (∆′i, ∆

′
o), we thus do not need to evaluate them using MILP. We note that

some MILP solvers have API for programming languages, e.g. Gurobi Optimizer
supports API for C-language. Thus, adding such auxiliary codes is easily done.
Since the numbers of elements in I and O are 2c/2 on average, we can efficiently
reduce the number of MILP instances that our tool has to solve.

We estimate the effectiveness of differential possibility equivalence technique.

Theorem 3. Let n and c be the number of S-boxes per round and the size of
each S-box, respectively. Our tool aims to find impossible differential with d input
active words and d′ output active words. Then, the number of trials that we have
to solve MILP instances is 2d+d′

((d+ d′) loge(2
c − 1) +O(1)) on average.

Due to the page limitation, we omit the proof of Theorem 3. Accurately, we can
more efficiently collect N input and output differences than the estimation by
Theorem 3 because every trial can always choose a pair without duplication. On
the other hand, this error is not serious because N ′ differences are evaluated in
the same time in one trial.

We searched for impossible differential characteristics with one active byte
on Midori128 by using the differential possibility equivalence technique. In our
experiment, this technique reduces the number of MILP instances that our tool
has to solve from 224 to 546865 ≈ 219. As a result, we found two new impossible
differential characteristics, which are shown in Table 9. The total time that our
tool evaluates all impossible differential characteristics with one active byte is
about 24 days in single core.

6 Applications from Design Aspect

6.1 Design Tool using Specific S-box Mode

Let us discuss using the tool for the design process of new primitives. Attack
tools can always be used to evaluate how many rounds are attacked after the
design is completed. Here we want to discuss a more interactive process. In many

SPN-based designs, the designers evaluate many candidates with MILP and pick
up the best choice. For example, the designers of Midori chose an almost-MDS
matrix for MixColumn, and tested all parameters for ShuffleCell. Similarly, the
designers of Skinny tested all light non-MDS matrices for MixColumns and the
designers of Minalpher tested all parameters of a ShiftRows-like operation.

To run our tool in the specific S-box mode, S-boxes must be fixed in advance.
This situation occurs when the choice of S-boxes has a high priority in the design.
For example, Midori[16] chose the S-box with the lowest depth, and FIDES [32]
and PICARO [33] chose the S-box that can be masked easily.

In our tool, all the components but for key schedule are simulated. Therefore,
when we assume that subkeys are XORed to all words of the state before S-boxes,
the tool can provide a certain level of proof, which is detailed below.

Observation 3 Suppose that the tool does not find any impossible differential
characteristic for r rounds after testing all paired input and output differences
in a certain subset in the specific S-box mode. Then, the number of rounds of the
longest impossible differential satisfying those input and output differences is at
most r − 1 by assuming that all subkeys are independent and chosen uniformly
at random.

Proof. Suppose that the tool can find specific differential propagations for given
input and output differences. We now assume subkeys are XORed to all words
of the state. Therefore, the output difference of any S-box are computed as

∆o = S(x⊕ sk)⊕ S(x⊕ sk ⊕∆i),

where ∆i and ∆o denote the input and output difference, respectively. The
tool does not evaluate the value of x, but we now assume that all subkeys are
independent and chosen uniformly at random. Since ∆o can take all possible
output differences in DDT, the differential propagations that the tool finds are
always valid in this assumption. ut

If we can verify that all input and output differences with one active word are
possible in the specific S-box mode, we say that the cipher is secure against im-
possible differential with one active word under the subkey uniform assumption.

Remarks about Proof in [21]. Cui et al. claimed that the tool can be used
to prove the longest impossible differentials under the condition that input and
output differences belong to the tested subset. After evaluating several ciphers,
they claimed that “we proof that the longest impossible differentials for LBlock,
TWINE and Piccolo ciphers are really 14, 14 and 7 rounds respectively.” Unfor-
tunately, Cui et al. are misinterpreting what the tool does.

In the evaluation with MILP, all valid propagations for one round are also
valid in the evaluation of multiple rounds irrespectively of the propagation in
neighboring rounds and subkey values. This is true only if all subkeys are in-
dependent and chosen uniformly at random. Therefore, even if no impossible
differential is found for r rounds by MILP, it cannot ensure the non-existence
for r rounds for real ciphers with particular key schedule.

6.2 Design Tool using Arbitrary S-box Mode

The arbitrary S-box mode is also useful for the design tool. When we run our
tool in the specific S-box mode for the design tool, S-boxes must be fixed in
advance. Meanwhile, if the choice of the linear layer has a higher priority, we
would like to recommend the arbitrary S-box mode. The arbitrary S-box mode
have two advantages: it can be executed before S-boxes are not specified and is
generally more efficient than the specific S-box mode. In addition, the arbitrary
S-box mode leads to several benefit to the designers.

Evaluating Linear Layer: The designers often test many choices of the S-
boxes and of the linear layer. Because exhaustively testing all combinations is
infeasible, the designers need to evaluate them independently. The arbitrary
S-box mode finds impossible differential characteristics that are independent
from the choice of the S-box, which makes possible to evaluate the security of
the linear layer. In addition, the arbitrary S-box mode enables the designers
to proceed the design of S-boxes and the design linear layer in parallel, which
can shorten the design period.

Distinguishing Contradicting Reasoning: When impossible differentials are
found for some rounds, the designers may prefer to patch the design or choose
other design candidates. Then it is convenient for the designer to know
whether the detected differentials can be prevented by changing S-boxes
or not. In the arbitrary S-box mode, the contradiction is clearly caused by
the linear layer.

Actually, impossible differential characteristics ID001–ID195 of Lilliput can be
found by both the specific and arbitrary S-box modes, but the others ID196–
ID217 can be found only by the specific S-box mode. Thus, we can immediately
know ID001–ID195 are impossible differential characteristics independent of the
choice of the S-box and cannot be prevented by replacing the S-box.

Similarly to Sect. 6.1, the fact that no impossible differential is found gives
a certain level of security proof as follows.

Observation 4 Suppose that the tool does not find any impossible differential
characteristic for r rounds after testing all paired input and output differences
in a certain subset in the arbitrary S-box mode. Then, the number of rounds of
the longest impossible differential satisfying those input and output differences is
at most r − 1 by assuming that all S-boxes are keyed bijective S-boxes that are
independent and chosen uniformly at random.

If we can verify that all pairs of input and output differences with one active
word are possible in the arbitrary S-box mode, we say that the cipher is secure
against impossible differential with one active word under the keyed (uniform)
bijective S-boxes assumption.

6.3 Optimal Pick Technique; Application to MIBS

When ciphers have heavy diffusion layer, MILP solver requires too much time to
verify whether or not a given pair of input and output differences is possible. For

example, suppose that we evaluate resistance of MIBS against 9-round impossible
differential. As discussed in Sect. 4.5, we need to test 14400 pairs of input and
output differences. However, the tool could not finish the evaluation of 1 pair
even after a couple of hours. Proving the security of 9-round MIBS with the
direct application of our tool is infeasible.

Optimal Pick Technique. We propose an optimal pick technique, which dra-
matically reduces the computation time to prove the resistance against impossi-
ble differentials, i.e. to prove the existence of differential characteristic. Suppose
that we are given a pair of input and output differences. The optimal pick tech-
nique well works when there are many differential characteristics satisfying a
pair of given input and output differences. The intuition of this technique is as
follows. We partially constrain the difference of the state in a middle round as
well as the input and output differences. Suppose that our aim is to prove the re-
sistance against r-rounds impossible differentials, and we expect that the proof
is possible. Let Xi−1 be a difference of the input of the i-th round. Our tool
constrains a pair of input and output differences (X0, Xr), and additional b bits
of Xdr/2e, where b is heuristically chosen. In our experiments, these additional
constraints often reduce the execution time of the MILP solver. To prove the
resistance against impossible differential, it is sufficient to find only one char-
acteristic satisfying the constraint. Therefore, if the solver takes too long for a
choice of constrained b bits, we give up searching for the b bits, and test another
b bits by expecting that the new b bits are easy to compute.

In application to 9-round MIBS, for pairs of input and output differences
(X0, X9) we used the optimal pick technique with the following strategy.

– Four nibbles in X4 are additionally constrained (b = 16).
– For all 216 choices of additional constraints, we evaluate whether or not it

is possible to satisfy (X0, X4, X9). If the execution time reaches 10 seconds,
we stop the evaluation and proceed the next additional constraints.

– Once we find an additional constraint X4 satisfying the input and output
differences (X0, X9), we return that the pair (X0, X9) is possible.

The second strategy is the essence of the optimal pick technique. The execution
time of the MILP solver becomes too long for some choice of X4, and the second
strategy allows us to escape from the unlucky choice. As a result, we successfully
proved that there is no 9-round impossible differential characteristics with one
active nibble under the subkey uniform assumption. Note that the optimal pick
technique only can be used for the proving approach, i.e. it cannot be used to
find impossible differential characteristics because we terminate the MILP search
when the execution time reaches 10 seconds.

6.4 List of Evaluated Designs

We proved the maximal number of rounds of impossible differential character-
istics for many designs. Besides the already discussed five designs, we evaluated

Table 10. Provable Security against Impossible Differentials

Target #Rounds Assumption Remarks

Midori128
8 subkey uniform 1 active byte
8 keyed bijective 4-bit S-boxes 1 active byte
7 keyed bijective 8-bit S-boxes 1 active byte

Lilliput 10 subkey uniform 1 active nibble
Minalpher 9.5 keyed bijective S-boxes 1 active nibble

ARIA 5 keyed bijective S-boxes 1 active byte
MIBS 9 subkey uniform 1 active nibble

SIMON 12 subkey uniform 1 active bit
TWINE 15 subkey uniform 1 active nibble
LBlock 15 subkey uniform 1 active nibble
Piccolo 8 subkey uniform 1 active nibble

RECTANGLE 9 subkey uniform 1 active nibble
Skinny-64 12 subkey uniform 1 active nibble
Midori64 7 subkey uniform 1 active nibble
CLEFIA 10 keyed bijective 8-bit S-boxes 1 active byte

SIMON [34], TWINE [35], LBlock [36], Piccolo [37], RECTANGLE [10], Skinny
[22], Midori64 [16], and CLEFIA [38] as shown in Table 10. We confirmed that
there are no impossible differential characteristics within the parameters of in-
put and output differences in Remark column. For example, if we regard SSbi
in Midori128 as keyed 8-bit bijective S-boxes, we proved that there are no 7-
round impossible differential characteristics with 1 active byte. However, if we
exploit the structure of SSbi and regard Sb1 as keyed 4-bit bijective S-boxes, 7-
round impossible characteristics can be found as explained in Sect. 4.1. In such
an assumption, we proved that there are no 8-round impossible differential char-
acteristics with 1 active byte. Moreover, 8 rounds are also secure in the subkey
uniform assumption.

References

1. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis
using mixed-integer linear programming. In Wu, C., Yung, M., Lin, D., eds.:
Inscrypt 2011. Volume 7537 of LNCS., Springer (2011) 57–76

2. Knudsen, L.: DEAL - a 128-bit block cipher. Technical report no. 151. Department
of Informatics, University of Bergen, Norway (1998)

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In Stern, J., ed.: EUROCRYPT ’99. Volume
1592 of LNCS., Springer (1999) 12–23

4. Biryukov, A.: Miss-in-the-middle attack. In van Tilborg, H.C.A., ed.: Encyclopedia
of Cryptography and Security. Springer (2005)

5. Kim, J., Hong, S., Sung, J., Lee, C., Lee, S.: Impossible differential cryptanalysis
for block cipher structures. In Johansson, T., Maitra, S., eds.: INDOCRYPT 2003.
Volume 2904 of LNCS., Springer (2003) 82–96

6. Luo, Y., Wu, Z., Lai, X., Gong, G.: A unified method for finding impossible dif-
ferentials of block cipher structures. Cryptology ePrint Archive, Report 2009/627
(2009)

7. Luo, Y., Lai, X., Wu, Z., Gong, G.: A unified method for finding impossible
differentials of block cipher structures. Inf. Sci. 263 (2014) 211–220

8. Wu, S., Wang, M.: Automatic search of truncated impossible differentials for word-
oriented block ciphers. In Galbraith, S.D., Nandi, M., eds.: INDOCRYPT 2012.
Volume 7668 of LNCS., Springer (2012) 283–302

9. Tezcan, C.: Improbable differential attacks on Present using undisturbed bits. J.
Computational Applied Mathematics 259 (2014) 503–511

10. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
A bit-slice lightweight block cipher suitable for multiple platforms. Cryptology
ePrint Archive, Report 2014/084 (2014) http://eprint.iacr.org/2014/084.

11. Derbez, P., Fouque, P.: Automatic search of meet-in-the-middle and impossible
differential attacks. In Robshaw, M., Katz, J., eds.: CRYPTO 2016, Part II. Volume
9815 of LNCS., Springer (2016) 157–184

12. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security eval-
uation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In Sarkar, P.,
Iwata, T., eds.: ASIACRYPT 2014 Part I. Volume 8873 of LNCS., Springer (2014)
158–178

13. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu,
K.: Towards finding the best characteristics of some bit-oriented block ciphers and
automatic enumeration of (related-key) differential and linear characteristics with
predefined properties. IACR Cryptology ePrint Archive 2014 (2014) 747

14. Sasaki, Y., Todo, Y.: New differential bounds and division property of Lilliput:
Block cipher with extended generalized Feistel network. In Avanzi, R., Heys, H.,
eds.: SAC 2016. LNCS, Springer (2016)

15. Sun, S., Hu, L., Wang, M., Wang, P., Qiao, K., Ma, X., Shi, D., Song, L., Fu, K.:
Constructing mixed-integer programming models whose feasible region is exactly
the set of all valid differential characteristics of SIMON. Cryptology ePrint Archive,
Report 2015/122 (2015) http://eprint.iacr.org/2015/122.

16. Banik, S., Bogdanov, A., Isobe, T., Shibutani, K., Hiwatari, H., Akishita, T.,
Regazzoni, F.: Midori: A block cipher for low energy. In Iwata, T., Cheon, J.H.,
eds.: ASIACRYPT 2015, Part II. Volume 9453 of LNCS., Springer (2015) 411–436

17. Berger, T.P., Francq, J., Minier, M., Thomas, G.: Extended generalized feistel
networks using matrix representation to propose a new lightweight block cipher:
Lilliput. IEEE Transactions on Computers 65 (2015) 2074–2089

18. Sasaki, Y., Todo, Y., Aoki, K., Naito, Y., Sugawara, T., Murakami, Y., Matsui,
M.: Minalpher v1.1. Submitted to CAESAR (2015)

19. Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon,
E., Lee, S., Lee, J., Chee, S., Han, D., Hong, J.: New block cipher: ARIA. In Lim,
J.I., Lee, D.H., eds.: ICISC 2003. Volume 2971 of LNCS., Springer (2003) 432–445

20. Izadi, M., Sadeghiyan, B., Sadeghian, S.S., Khanooki, H.A.: MIBS: A new
lightweight block cipher. In Garay, J.A., Miyaji, A., Otsuka, A., eds.: CANS 2009.
Volume 5888 of LNCS., Springer (2009) 334–348

21. Cui, T., Jia, K., Fu, K., Chen, S., Wang, M.: New automatic search tool for
impossible differentials and zero-correlation linear approximations. Cryptology
ePrint Archive, Report 2016/689 (2016) http://eprint.iacr.org/2016/689.

22. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y.,
Sasdrich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency
variant MANTIS. In Robshaw, M., Katz, J., eds.: CRYPTO 2016, Part II. Volume
9815 of LNCS., Springer (2016) 123–153

23. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In Paillier, P., Verbauwhede, I., eds.: CHES 2007. Volume 4727 of LNCS., Springer
(2007) 450–466

24. Inc., G.O.: Gurobi optimizer 6.5. Official webpage, http://www.gurobi.com/

(2015)
25. Guo, J., Jean, J., Nikolić, I., Qiao, K., Sasaki, Y., Sim, S.M.: Invariant subspace

attack against full Midori64. Cryptology ePrint Archive, Report 2015/1189 (2015)
http://eprint.iacr.org/2015/1189.

26. Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack –practical attack
on full SCREAM, iSCREAM, and Midori64. Cryptology ePrint Archive, Report
2016/732 (2016) http://eprint.iacr.org/2016/732.

27. Zhan, C., Xiaoyun, W.: Impossible differential cryptanalysis of Midori. Cryptology
ePrint Archive, Report 2016/535 (2016) http://eprint.iacr.org/2016/535.

28. Berger, T.P., Minier, M., Thomas, G.: Extended generalized Feistel networks using
matrix representation. In Lange, T., Lauter, K.E., Lisonek, P., eds.: SAC 2013.
Volume 8282 of LNCS., Springer (2013) 289–305

29. Wu, W., Zhang, W., Feng, D.: Impossible differential cryptanalysis of reduced-
round ARIA and Camellia. J. Comput. Sci. Technol. 22(3) (2007) 449–456

30. Ruilin Li, Bing Sun, P.Z., Li, C.: New impossible differential cryptanalysis of
ARIA. Cryptology ePrint Archive, Report 2008/227 (2008) http://eprint.iacr.
org/2008/227.

31. Bay, A., Nakahara Jr., J., Vaudenay, S.: Cryptanalysis of reduced-round MIBS
block cipher. In Heng, S., Wright, R.N., Goi, B., eds.: CANS 2010. Volume 6467
of LNCS., Springer (2010) 1–19

32. Bilgin, B., Bogdanov, A., Knezevic, M., Mendel, F., Wang, Q.: Fides: Lightweight
authenticated cipher with side-channel resistance for constrained hardware. In
Bertoni, G., Coron, J., eds.: CHES 2013. Volume 8086 of LNCS., Springer (2013)
142–158

33. Piret, G., Roche, T., Carlet, C.: PICARO - A block cipher allowing efficient higher-
order side-channel resistance. In Bao, F., Samarati, P., Zhou, J., eds.: ACNS 2012.
Volume 7341 of LNCS., Springer (2012) 311–328

34. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013) http://eprint.iacr.org/2013/404.

35. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A lightweight
block cipher for multiple platforms. In Knudsen, L.R., Wu, H., eds.: SAC 2012.
Volume 7707 of LCNS., Springer (2012) 339–354

36. Wu, W., Zhang, L.: LBlock: A lightweight block cipher. In Lopez, J., Tsudik, G.,
eds.: ACNS 2011. Volume 6715 of LNCS., Springer (2011) 327–344

37. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In Preneel, B., Takagi, T., eds.: CHES 2011.
Volume 6917 of LNCS., Springer (2011) 342–357

38. Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-bit blockci-
pher CLEFIA (extended abstract). In Biryukov, A., ed.: FSE 2007. Volume 4593
of LNCS., Springer (2007) 181–195

39. Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algo-
rithms for differential and linear trails for Speck. In Peyrin, T., ed.: FSE 2016.
Volume 9783 of LNCS., Springer (2016) 268–288

A Relationship between [21] and This Paper

Cui et al. [21] have recently posted their work to Cryptology ePrint Archive (re-
ceived by ePrint Archive at 11 July 2016) presenting that impossible differentials
can be searched with MILP. Although we have independently reached the same
idea and used it to evaluate a lot of designs, the work by Cui et al. became the
first article to report the impossible differential search tool based on MILP.

Though the basic idea of the tool is the same, two papers extend the basic
idea to quite different directions. The main focus of [21] seems to be the extension
to the ARX structure and zero-correlation cryptanalysis, which is not covered by
our work. Meanwhile, we are focusing on the impossible differential cryptanalysis
much deeper, and trying to extend the structure that can be evaluated by the
tool. Therefore, we obtained new results even for 8-bit S-boxes, in which [21] left
application to 8-bit S-box open.

Another difference is enthusiasm for the application to practical designs.
Considering the number of applications, [21] seems to focus on the theoretical
aspects, while we are trying to evaluate more and more targets and the usage of
the tool for designing new primitives is another main focus.

Advantages of [21] Over Our Work.

– By converting differential evaluation to linear evaluation, the tool is extended
to zero-correlation approximations.

– By borrowing the idea by Fu et al. about MILP on the ARX structure [39],
the tool is extended to the impossible differentials for the ARX structure.

– By applying the basic idea to PRESENT, new impossible differentials are
recovered while the number of attacked rounds is not improved.

– By applying the extended tool to ARX, new impossible differentials and
new zero-correlation approximations are discovered against HIGHT, which
improves the previous best results by 1 round.

Advantages of Our Work Over [21].

– The arbitrary S-box mode to apply the tool to 8-bit S-box.
– Focusing on the property of the tool that it can catch any contradiction,

which leads to find improvement of impossible differential using 8-bit S-box.
– More applications are examined and we improved the previous best results

in several applications.
– Analyzing the contradicting reasons for the detected pairs and revealed the

new structural properties that may be used in future analysis.
– More precise arguments for provable security.
– The differential possibility equivalence technique for the efficient search.
– The optimal pick technique for the efficient proof.

