
From Minicrypt to Obfustopia
via Private-Key Functional Encryption

Ilan Komargodski1? and Gil Segev2??

1 Weizmann Institute of Science, Rehovot 76100, Israel.
ilan.komargodski@weizmann.ac.il

2 Hebrew University of Jerusalem, Jerusalem 91904, Israel.
segev@cs.huji.ac.il

Abstract. Private-key functional encryption enables fine-grained access
to symmetrically-encrypted data. Although private-key functional en-
cryption (supporting an unbounded number of keys and ciphertexts)
seems significantly weaker than its public-key variant, its known real-
izations all rely on public-key functional encryption. At the same time,
however, up until recently it was not known to imply any public-key
primitive, demonstrating our poor understanding of this extremely-useful
primitive.
Recently, Bitansky et al. [TCC ’16B] showed that sub-exponentially-
secure private-key function encryption bridges from nearly-exponential
security in Minicrypt to slightly super-polynomial security in Cryptoma-
nia, and from sub-exponential security in Cryptomania to Obfustopia.
Specifically, given any sub-exponentially-secure private-key functional
encryption scheme and a nearly-exponentially-secure one-way function,
they constructed a public-key encryption scheme with slightly super-
polynomial security. Assuming, in addition, a sub-exponentially-secure
public-key encryption scheme, they then constructed an indistinguisha-
bility obfuscator.
We show that quasi-polynomially-secure private-key functional encryp-
tion bridges from sub-exponential security in Minicrypt all the way to
Cryptomania. First, given any quasi-polynomially-secure private-key func-
tional encryption scheme, we construct an indistinguishability obfusca-
tor for circuits with inputs of poly-logarithmic length. Then, we ob-
serve that such an obfuscator can be used to instantiate many nat-
ural applications of indistinguishability obfuscation. Specifically, rely-
ing on sub-exponentially-secure one-way functions, we show that quasi-
polynomially-secure private-key functional encryption implies not just
public-key encryption but leads all the way to public-key functional en-
cryption for circuits with inputs of poly-logarithmic length. Moreover,

? Supported by a Levzion fellowship and by a grant from the Israel Science Foundation.
?? Supported by the European Union’s 7th Framework Program (FP7) via a Marie

Curie Career Integration Grant, by the European Union’s Horizon 2020 Framework
Program (H2020) via an ERC Grant (Grant No. 714253), by the Israel Science
Foundation (Grant No. 483/13), by the Israeli Centers of Research Excellence (I-
CORE) Program (Center No. 4/11), by the US-Israel Binational Science Foundation
(Grant No. 2014632), and by a Google Faculty Research Award.

2 I. Komargodski and G. Segev

relying on sub-exponentially-secure injective one-way functions, we show
that quasi-polynomially-secure private-key functional encryption implies
a hard-on-average distribution over instances of a PPAD-complete prob-
lem.

Underlying our constructions is a new transformation from single-input
functional encryption to multi-input functional encryption in the private-
key setting. The previously known such transformation [Brakerski et
al., EUROCRYPT ’16] required a sub-exponentially-secure single-input
scheme, and obtained a scheme supporting only a slightly super-constant
number of inputs. Our transformation both relaxes the underlying as-
sumption and supports more inputs: Given any quasi-polynomially-secure
single-input scheme, we obtain a scheme supporting a poly-logarithmic
number of inputs.

1 Introduction

Functional encryption [51,16,49] allows tremendous flexibility when accessing en-
crypted data: Such encryption schemes support restricted decryption keys that
allow users to learn specific functions of the encrypted data without leaking any
additional information. We focus on the most general setting where the func-
tional encryption schemes support an unbounded number of functional keys in
the public-key setting, and an unbounded number of functional keys and cipher-
texts in the private-key setting. In the public-key setting, it has been shown
that functional encryption is essentially equivalent to indistinguishability ob-
fuscation [33,6,7,12,54], and thus it currently seems somewhat challenging to
base its security on standard cryptographic assumptions (especially given the
various attacks on obfuscation schemes and their underlying building blocks
[21,29,26,28,40,48,25,27,47] – see [5, Appendix A] for a summary of these at-
tacks).

Luckily, when examining the various applications of functional encryption
(see, for example, the survey by Boneh et al. [17]), it turns out that private-
key functional encryption suffices in many interesting scenarios.3 However, al-
though private-key functional encryption may seem significantly weaker than its
public-key variant, constructions of private-key functional encryption schemes
are currently known based only on public-key functional encryption.4

Minicrypt, Cryptomania, or Obfustopia? For obtaining a better under-
standing of private-key functional encryption, we must be able to position it

3 As a concrete (yet quite general) example, consider a user who stores her data on a
remote server: The user uses the master secret key both for encrypting her data, and
for generating functional keys that will enable the server to offer her various useful
services.

4 This is not true in various restricted cases, for example, when the functional en-
cryption scheme has to support an a-priori bounded number of functional keys or
ciphertexts [39]. However, as mentioned, we focus on schemes that support an un-
bounded number of functional keys and ciphertexts.

From Minicrypt to Obfustopia via Private-Key FE 3

correctly within the hierarchy of cryptographic primitives. Up until recently,
private-key functional encryption was not known to imply any cryptographic
primitives other than those that are essentially equivalent to one-way functions
(i.e., Minicrypt primitives [42]). Moreover, Asharov and Segev [8] proved that
as long as a private-key functional encryption scheme is invoked in a black-
box manner, it cannot be used as a building block to construct any public-key
primitive (i.e., Cryptomania primitives [42]).5 This initial evidence hinted that
private-key functional encryption may belong to Minicrypt, and thus may be
constructed based on extremely well-studied cryptographic assumptions.

Recently, Bitansky et al. [10] showed that private-key functional encryption
is more powerful than suggested by the above initial evidence. They proved
that any sub-exponentially-secure private-key functional encryption scheme and
any (nearly) exponentially-secure one-way function can be used to construct
a public-key encryption scheme.6 Although their underlying building blocks
are at least sub-exponentially secure, the resulting public-key scheme is only
slightly super-polynomially secure. In addition, Bitansky et al. proved that any
sub-exponentially-secure private-key functional encryption scheme and any sub-
exponentially-secure public-key encryption scheme can be used to construct
a full-fledged indistinguishability obfuscator. Overall, their work shows that
sub-exponentially-secure private-key functional encryption bridges from nearly-
exponential security in Minicrypt to slightly super-polynomial security in Cryp-
tomania, and from sub-exponential security in Cryptomania to Obfustopia (see
Figure 1).

1.1 Our Contributions

We show that quasi-polynomially-secure private-key functional encryption bridg-
es from sub-exponential security in Minicrypt all the way to Cryptomania. First,
given any quasi-polynomially-secure private-key functional encryption scheme,
we construct a (quasi-polynomially-secure) indistinguishability obfuscator for
circuits with inputs of poly-logarithmic length and sub-polynomial size. We prove
the following theorem:

Theorem 1.1 (Informal). Assuming a quasi-polynomially-secure private-key
functional encryption scheme for polynomial-size circuits, there exists an indis-
tinguishability obfuscator for the class of circuits of size 2(log λ)

ε

with inputs of
length (log λ)1+δ bits, for some positive constants ε and δ.

Underlying our obfuscator is a new transformation from single-input func-
tional encryption to multi-input functional encryption in the private-key setting.

5 This holds even if the construction is allowed to generate functional keys (in a non-
black-box manner) for any circuit that invokes one-way functions in a black-box
manner.

6 Bitansky et al. overcome the black-box barrier introduced by Asharov and Segev [8]
by relying on the non-black-box construction of a private-key multi-input functional
encryption scheme of Brakerski et al. [22].

4 I. Komargodski and G. Segev

The previously known such transformation of Brakerski et al. [22] required a sub-
exponentially-secure single-input scheme, and obtained a multi-input scheme
supporting only a slightly super-constant number of inputs. Our transformation
both relaxes the underlying assumption and supports more inputs: Given any
quasi-polynomially-secure single-input scheme, we obtain a multi-input scheme
supporting a poly-logarithmic number of inputs.

We demonstrate the wide applicability of our obfuscator by observing that
it can be used to instantiate many natural applications of (full-fledged) indistin-
guishability obfuscation for polynomial-size circuits. We exemplify this observa-
tion by constructing a public-key functional encryption scheme (based on [54]),
and a hard-on-average distribution of instances of a PPAD-complete problem
(based on [11]).

Theorem 1.2 (Informal). Assuming a quasi-polynomially-secure private-key
functional encryption scheme for polynomial-size circuits, and a sub-exponentially-
secure one-way function, there exists a public-key functional encryption scheme
for the class of circuits of size 2(log λ)

ε

with inputs of length (log λ)1+δ bits, for
some positive constants ε and δ.

Theorem 1.3 (Informal). Assuming a quasi-polynomially-secure private-key
functional encryption scheme for polynomial-size circuits, and a sub-exponentially-
secure injective one-way function, there exists a hard-on-average distribution
over instances of a PPAD-complete problem.

Compared to the work of Bitansky at el. [10], Theorem 1.2 shows that private-
key functional encryption implies not just public-key encryption but leads all the
way to public-key functional encryption. Furthermore, in terms of underlying as-
sumptions, whereas Bitansky et al. assume a sub-exponentially-secure private-
key functional encryption scheme and a (nearly) exponentially-secure one-way
function, we only assume a quasi-polynomially-secure private-key functional en-
cryption scheme and a sub-exponentially-secure one-way function.

In addition, recall that average-case PPAD hardness was previously shown
based on compact public-key functional encryption (or indistinguishability ob-
fuscation) for polynomial-size circuits and one-way permutations [35]. We show
average-case PPAD hardness based on quasi-polynomially-secure private-key
functional encryption and sub-exponentially-secure injective one-way function.
In fact, as shown by Hubáček and Yogev [41], our result (as well as [11,35]) im-
plies average-case hardness for CLS, a proper subclass of PPAD and PLS [32].
See Figure 1 for an illustration of our results.

1.2 Overview of Our Constructions

In this section we provide a high-level overview of our constructions. First, we re-
call the functionality and security requirements of multi-input functional encryp-
tion (MIFE) in the private-key setting, and explain the main ideas underlying
our new construction of a multi-input scheme. Then, we describe the obfuscator

From Minicrypt to Obfustopia via Private-Key FE 5

Minicrypt
with nearly-

exponential security

Cryptomania
with slightly

super-polynomial
security

Cryptomania
with sub-

exponential
security

Obfustopia
with sub-

exponential
security

Minicrypt
with sub-

exponential security

Obfustopia
with quasi-
polynomial

security

Our work (assuming quasi-polynomially-secure private-key FE)

[BNPW16] (assuming sub-exponentially-secure private-key FE)

𝟐𝟐−𝝀𝝀𝝐𝝐-Secure
Private-Key FE

+
𝟐𝟐 ⁄−𝝀𝝀 𝐥𝐥𝐥𝐥𝐥𝐥 𝐥𝐥𝐥𝐥𝐥𝐥 𝝀𝝀-Secure OWF

Public-Key
Encryption

𝟐𝟐− 𝐥𝐥𝐥𝐥𝐥𝐥 𝝀𝝀 𝑶𝑶 𝟏𝟏 -Secure
Private-Key FE

Indistinguishability Obfuscation
For circuits of size 2(log 𝜆𝜆)𝜖𝜖

with inputs of length log 𝜆𝜆 1+𝛿𝛿 bits

Public-Key FE
For circuits of size 2(log 𝜆𝜆)𝜖𝜖

with inputs of length log 𝜆𝜆 1+𝛿𝛿 bits

[BNPW16]

Thm. 1.1

Average-Case
PPAD

Hardness

Thm. 1.3

𝟐𝟐−𝝀𝝀𝝐𝝐-Secure
OWF

Thm. 1.2

Fig. 1: An illustration of our results (dashed arrows correspond to trivial implications).

we obtain from our multi-input scheme, and briefly discuss its applications to
public-key functional encryption and to average-case PPAD hardness.

Multi-input functional encryption. In a private-key t-input functional en-
cryption scheme [37], the master secret key msk of the scheme is used for encrypt-
ing any message xi to the ith coordinate, and for generating functional keys for
t-input functions. A functional key skf corresponding to a function f enables to
compute f(x1, . . . , xt) given Enc(x1, 1), . . . ,Enc(xt, t). Building upon the previ-
ous notions of security for private-key multi-input functional encryption schemes
[37,13], we consider a strengthened notion of security that combines both mes-
sage privacy and function privacy (as in [2,23] for single-input schemes and as
in [6,22] for multi-input schemes), to which we refer as full security. Specifically,
we consider adversaries that are given access to “left-or-right” key-generation
and encryption oracles.7 These oracles operate in one out of two modes corre-
sponding to a randomly-chosen bit b. The key-generation oracle receives as input
pairs of the form (f0, f1) and outputs a functional key for the function fb. The
encryption oracle receives as input triples of the form (x0, x1, i), and outputs an

7 In this work we focus on selectively-secure schemes, where an adversary first submits
all of its encryption queries, and can then adaptively interact with the key-generation
oracle (see Definition 2.7). This notion of security suffices for the applications we
consider in this paper.

6 I. Komargodski and G. Segev

encryption of the message xb with respect to coordinate i. We require that no
efficient adversary can guess the bit b with probability noticeably higher than
1/2, as long as for each such t+ 1 queries (f0, f1), (x01, x

1
1), . . . , (x0t , x

1
t) it holds

that f0(x01, . . . , x
0
t) = f1(x11, . . . , x

1
t).

The BKS approach. Given any private-key single-input functional encryption
scheme for all polynomial-size circuits, Brakerski et al. [22] constructed a t(λ)-
input scheme for all circuits of size s(λ) = 2(log λ)

ε

, where t(λ) = δ · log log λ for
some fixed positive constants ε and δ, and λ ∈ N is the security parameter.

Their transformation is based on extending the number of inputs the scheme
supports one by one. That is, for any t ≥ 1, given a t-input scheme they con-
struct a (t+ 1)-input scheme. Relying on the function privacy of the underlying
scheme, Brakerski et al. observed that ciphertexts for one of the coordinates can
be treated as a functional key for a function that has the value of the input hard-
wired. In terms of functionality, this idea enabled them to support t+ 1 inputs
using a scheme that supports t inputs. The transformation is implemented such
that every step of it incurs a polynomial blowup in the size of the ciphertexts
and functional keys.8 Thus, applying this transformation t times, the size of a
functional key for a function of size s is roughly (s ·λ)O(1)t . Therefore, Brakerski
et al. could only apply their transformation t(λ) = δ · log log λ times, and this
required assuming that their underlying single-input scheme is sub-exponentially
secure, and that s(λ) = 2(log λ)

ε

.

Our construction. We present a new transformation that constructs a 2t-
inputs scheme directly from any t-input scheme. Our transformation shares the
same polynomial efficiency loss as in [22], so applying the transformation t times

makes a functional key be of size (s ·λ)O(1)t . But now, since each transformation
doubles the number of inputs, applying the transformation t times gets us all
the way to a scheme that supports 2t = (log λ)δ inputs, as required. We further
observe, by a careful security analysis, that for the resulting scheme to be secure
it suffices that the initial scheme is only quasi-polynomially secure (and the
resulting scheme can be made quasi-polynomially secure as well).

Doubling the number of inputs via dynamic key encapsulation. As
opposed to the approach of [22] (and the similar idea of [6]), it is much less clear
how to combine the ciphertexts and functional keys of a t-input scheme to satisfy
the required functionality (and security) of a 2t-input scheme.

Our high-level idea is as follows. Given a 2t-input function f , we will generate
a functional key for a function f∗ that gets t inputs each of which is composed
of two inputs: f∗(x1 ‖ x1+t, . . . , xt ‖ x2t) = f(x1, . . . , x2t). We will encrypt each
input such that it is possible to compute an encryption of each pair (x`, x`+t),
and evaluate the function in two steps. First, we concatenate each such pair to

8 A similar strategy was also employed by Ananth and Jain [6], that showed how to use
any t-input private-key scheme to get a private-key (t + 1)-input scheme under the
additional assumption that a public-key functional encryption scheme exists. Their
construction, however, did not incur the polynomial blowup and could be applied
all the way to get a scheme that supports a polynomial number of inputs.

From Minicrypt to Obfustopia via Private-Key FE 7

get an encryption of x` ‖ x`+t. Then, given such t ciphertexts, we will apply
a functional key that corresponds to f∗. By the correctness of the underlying
primitives, the output must be correct. There are three main issues that we have
to overcome: (1) We need to be able to generate the encryption of x` ‖ x`+t, (2)
we need to make sure all of these ciphertexts are with respect to the same master
secret key and that the functional key for f∗ is also generated with respect to
the same key, and (3) we need to prove the security of the resulting scheme. We
now describe our solution.

The master secret key for our scheme is a master secret key for a t-input
scheme msk and a PRF key K. We split the 2t input coordinates into two parts:
(1) the first t coordinates 1, . . . , t which we call the “master coordinates” and
(2) the last t coordinates 1 + t, . . . , 2t which we call the “slave coordinates”. Our
main idea is to let each combination of the master coordinates implicitly define a
master secret “encapsulation” key mskx1...,xt for a t-input scheme. Details follow.

To encrypt a message x` with respect to a master coordinate 1 ≤ ` ≤ t, we
encrypt x` with respect to coordinate ` under the key msk. To encrypt a message
x`+t with respect to a slave coordinate 1 ≤ ` ≤ t, we generate a functional key
for a t-input function AGGx`+t,K under the key msk. To generate a functional
key for a 2t-input function f , we generate a functional key for a t-input function
Genf,K under msk. Both AGGx`+t,K and Genf,K first compute a pseudorandom
master secret key mskx1...xt using randomness generated via the PRF key K
on input x1 . . . xt. Then, AGGx`+t,K computes an encryption of (x` ‖ x`+t) to
coordinate ` under this master secret key, and Genf,K computes a functional key
for f∗ (described above) under this master secret key (see Figure 2).

Genf,K(x1, x2, . . . , xt) :

1. mskx1...xt = Setup(PRF(K,x1 . . . xt)).

2. Output KG(mskx1...xt , f
∗).

AGGx`+t,K(x1, x2, . . . , xt) :

1. mskx1...xt = Setup(PRF(K,x1 . . . xt)).

2. Output Enc(mskx1...xt , (x` ‖ x`+t), `).

Figure 2: The t-input functions Genf,K and AGGx`+t,K .

It is straightforward to verify that the above scheme indeed provides the re-
quired functionality of a 2t-input scheme. Indeed, given t ciphertexts correspond-
ing to the master coordinates ctx1 , . . . , ctxt , t ciphertexts corresponding to the
slave coordinates ctx1+t

, . . . , ctx2t
, and a functional key skf for a 2t-input func-

tion f , we first combine ctx1
, . . . , ctxt with each ctx`+t to get ctx`‖x`+t , which is an

encryption of x` ‖x`+t under mskx1...xt . Then, we combine ctx1
, . . . , ctxt with skf

to get a functional key skf∗ for f∗ under the same mskx1...xt . Finally, we combine
ctx1‖x1+t

, . . . , ctxt‖x2t
with skf∗ to get f∗(x1 ‖x1+t, . . . , xt ‖x2t) = f(x1, . . . , x2t),

as required.
The security proof is done by a sequence of hybrid experiments, where we

“attack” each possible sequence of master coordinates separately, namely, we
handle each mskx1...xt separately so that it will not be explicitly needed. A typ-

8 I. Komargodski and G. Segev

ical approach for such a security proof is to embed all possible encryptions and
key-generation queries under mskx1...xt in the ciphertexts that are generated un-
der msk. Handling the key-generation queries using mskx1...xt is rather standard:
whenever a key-generation query is requested we compute the corresponding
functional key under mskx1...xt and embed it into the functional key. Handling
encryption queries under mskx1...xt is significantly more challenging since for
every x1 . . . xt sequence, there are many possible ciphertexts x`+t of slave coor-
dinates that will be paired with it to get the encryption of x` ‖ x`+t. It might
seem as if there is not enough space to embed all these possible ciphertexts,
but we observe that we can embed each ciphertext ctx`‖x`+t in the ciphertext
corresponding to x`+t (for each such x`+t). This way, mskx1...xt is not explic-
itly needed in the scheme and we can use the security of the underlying t-input
scheme. In total, the number of hybrids is roughly T t, where T is an upper bound
on the running time of the adversary. Thus, since t is roughly logarithmic in the
security parameter, we have to start with a quasi-polynomially-secure scheme.

From MIFE to obfuscation. Goldwasser et al. [37] observed that multi-input
functional encryption is tightly related to indistinguishability obfuscation [9,33].
Specifically, a multi-input scheme that supports a polynomial number of inputs
(i.e., t(λ) = poly(λ)) readily implies an indistinguishability obfuscator (and vice-
versa). We use a more fine-grained relationship (as observed by [10]) that is
useful when t(λ) is small compared to λ: A multi-input scheme that supports
all circuits of size s(λ) and t(λ) inputs implies an indistinguishability obfuscator
for all circuits of size s(λ) that have at most t(λ) · log λ input bits.

This transformation works as follows. An obfuscation of a function f of
circuit-size at most s(λ) that has at most t(λ) · log λ bits as input, is com-
posed of t(λ) · λ ciphertexts and one functional key. We think of f as a function
f∗ that gets t(λ) inputs each of which is of length log λ bits. The obfuscation
now consists of a functional key for the circuit f∗, denoted by skf = KG(f∗),
and a ciphertext ctx,i = Enc(x, i) for every (x, i) ∈ {0, 1}log λ × [t(λ)]. To eval-
uate C at a point x = (x1 . . . xt(λ)) ∈ ({0, 1}log λ)t(λ) one has to compute and
output Dec(skf , ctx1,1, . . . , ctxt(λ),t(λ)) = f(x). Correctness and security of the
obfuscator follow directly from the correctness and security of the multi-input
scheme.

Given the relationship described above and given our multi-input scheme
that supports circuits of size at most s(λ) = 2(log λ)

ε

that have t(λ) = (log λ)δ

inputs for some fixed positive constants ε and δ, we obtain Theorem 1.1.

Applications of our obfuscator. One of the main conceptual contributions of
this work is the observation that an indistinguishability obfuscator as described
above (that supports circuits with a poly-logarithmic number of input bits) is
in fact sufficient for many of the applications of indistinguishability obfuscation
for all polynomial-size circuits. We exemplify this observation by showing how
to adapt the construction of Waters [54] of a public-key functional encryption
scheme and the construction of Bitansky et al. [11] of a hard-on-average distri-
bution for PPAD, to our obfuscator. Such an adaptation is quite delicate and
involves a careful choice of the additional primitives that are involved in the

From Minicrypt to Obfustopia via Private-Key FE 9

construction. In a very high level, since the obfuscator supports only a poly-
logarithmic number of inputs, a primitive that has to be secure when applied on
(part of) the input (say a one-way function), must be sub-exponentially secure.
We believe that this observation may find additional applications beyond the
scope of our work.

Using the multi-input scheme of [22]. Using the multi-input scheme of
[22], one can get that sub-exponentially-secure private-key functional encryp-
tion implies indistinguishability obfuscation for inputs of length slightly super-
logarithmic. However, using such an obfuscator as a building block seems to
inherently require to additionally assume nearly-exponentially-secure primitives
and the resulting primitives are (at most) slightly super-polynomially-secure.

Our approach, on the other hand, requires quasi-polynomially-secure private-
key functional encryption. In addition, our additional primitives are only sub-
exponentially-secure and the resulting primitives are quasi-polynomially secure.

1.3 Additional Related Work

Constructions of FE schemes. Private-key single-input functional encryp-
tion schemes that are sufficient for our applications are known to exist based
on a variety of assumptions, including indistinguishability obfuscation [33,54],
differing-input obfuscation [19,3], and multilinear maps [34]. Restricted func-
tional encryption schemes that support either a bounded number of functional
keys or a bounded number of ciphertexts can be based on the Learning with Er-
rors (LWE) assumption (where the length of ciphertexts grows with the number
of functional-key queries and with a bound on the depth of allowed functions)
[38], and even based on pseudorandom generators computable by small-depth
circuits (where the length of ciphertexts grows with the number of functional-key
queries and with an upper bound on the circuit size of the functions) [39].

In the work of Bitansky et al. [10, Proposition 1.2 & Footnote 1] it has been
shown that, assuming weak PRFs in NC1, any public-key encryption scheme can
be used to transform a private-key functional encryption scheme into a public-key
functional encryption scheme (which can be used to get PPAD-hardness [35]).
This gives a better reduction than ours in terms of security loss, but requires a
public-key primitive to begin with.

Constructions of MIFE schemes. There are several constructions of private-
key multi-input functional encryption schemes. Mostly related to our work is
the construction of Brakerski et al. [22] which we significantly improve (see Sec-
tion 1.2 for more details). Other constructions [37,6,13] are incomparable as they
either rely on stronger assumptions or could be proven secure only in an idealized
generic model. Goldwasser et al. [37] constructed a multi-input scheme that sup-
ports a polynomial number of inputs assuming indistinguishability obfuscation
for all polynomial-size circuits. Ananth and Jain [6] constructed a multi-input
functional encryption scheme that supports a polynomial number of inputs as-
suming any sub-exponentially-secure (single-input) public-key functional encryp-
tion scheme. Boneh et al. [13] constructed a multi-input scheme that supports a

10 I. Komargodski and G. Segev

polynomial number of inputs based on multilinear maps, and was proven secure
in the idealized generic multilinear map model.

Proof techniques. Parts of our proof rely on two useful techniques from the
functional encryption literature: key encapsulation (also known as “hybrid en-
cryption”) and function privacy.

Key encapsulation is an extremely useful approach in the design of encryption
schemes, both for improved efficiency and for improved security. Specifically, key
encapsulation typically means that instead of encrypting a message m under
a fixed key sk, one can instead sample a random key k, encrypt m under k
and then encrypt k under sk. The usefulness of this technique in the context of
functional encryption was demonstrated by [4,22]. Our constructions incorporate
key encapsulation techniques, and exhibit additional strengths of this technique
in the context of functional encryption schemes. Specifically, as discussed in
Section 1.2, we use key encapsulation techniques for our dynamic key-generation
technique, a crucial ingredient in our constructions and proofs of security.

The security guarantees of functional encryption typically focus on message
privacy that ensures that a ciphertext does not reveal any unnecessary infor-
mation on the plaintext. In various cases, however, it is also useful to consider
function privacy [53,14,15,2,23], asking that a functional key skf does not reveal
any unnecessary information on the function f . Brakerski and Segev [23] (and
the follow-up of Ananth and Jain [6]) showed that any private-key (multi-input)
functional encryption scheme can be generically transformed into one that sat-
isfies both message privacy and function privacy. Function privacy was found
useful as a building block in the construction of several functional encryption
schemes [4,46,22]. In particular, functional encryption allows to successfully ap-
ply proof techniques “borrowed” from the indistinguishability obfuscation liter-
ature (including, for example, a variant of the punctured programming approach
of Sahai and Waters [52]).

1.4 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we provide an
overview of the notation, definitions, and tools underlying our constructions. In
Section 3 we present our construction of a private-key multi-input functional
encryption scheme based on any single-input scheme. In Section 4 we present
our construction of an indistinguishability obfuscator for circuits with inputs of
poly-logarithmic length, and its applications to public-key functional encryption
and average-case PPAD hardness.

2 Preliminaries

In this section we present the notation and basic definitions that are used in
this work. For a distribution X we denote by x ← X the process of sampling
a value x from the distribution X. Similarly, for a set X we denote by x ← X
the process of sampling a value x from the uniform distribution over X . For a

From Minicrypt to Obfustopia via Private-Key FE 11

randomized function f and an input x ∈ X , we denote by y ← f(x) the process
of sampling a value y from the distribution f(x). For an integer n ∈ N we denote
by [n] the set {1, . . . , n}.

Throughout the paper, we denote by λ the security parameter. A function
neg : N → R+ is negligible if for every constant c > 0 there exists an integer
Nc such that neg(λ) < λ−c for all λ > Nc. Two sequences of random variables
X = {Xλ}λ∈N and Y = {Yλ}λ∈N are computationally indistinguishable if for
any probabilistic polynomial-time algorithm A there exists a negligible func-
tion neg(·) such that

∣∣Pr[A(1λ, Xλ) = 1]− Pr[A(1λ, Yλ) = 1]
∣∣ ≤ neg(λ) for all

sufficiently large λ ∈ N.

2.1 One-Way Functions and Pseudorandom Generators

We rely on the standard (parameterized) notions of one-way functions and pseu-
dorandom generators.

Definition 2.1 (One-way function). An efficiently computable function f :
{0, 1}∗ → {0, 1}∗ is (t, µ)-one-way if for every probabilistic algorithm A that runs
in time t = t(λ) it holds that

AdvOWF
f,A (λ)

def
= Pr

x←{0,1}λ
[A(1λ, f(x)) ∈ f−1(f(x))] ≤ µ(λ),

for all sufficiently large λ ∈ N, where the probability is taken over the choice of
x ∈ {0, 1}λ and over the internal randomness of A.

Whenever t = t(λ) is a super-polynomial function and µ = µ(λ) is a negligible
function, we will often omit t and µ and simply call the function one-way. In
case t(λ) = 1/µ(λ) = 2λ

ε

, for some constant 0 < ε < 1, we will say that f is
sub-exponentially one-way.

Definition 2.2 (Pseudorandom generator). Let `(·) be a function. An effi-
ciently computable function PRG : {0, 1}`(λ) → {0, 1}2`(λ) is a (t, µ)-secure pseu-
dorandom generator if for every probabilistic algorithm A that runs in time
t = t(λ) it holds that

AdvPRGf,A =

∣∣∣∣ Pr
x←{0,1}`(λ)

[A(1λ,PRG(x)) = 1]− Pr
r←{0,1}2`(λ)

[A(1λ, r) = 1]

∣∣∣∣ ≤ µ(λ)

for all sufficiently large λ ∈ N.

Whenever t = t(λ) is a super-polynomial function and µ = µ(λ) is a negligible
function, we will often omit t and µ and simply call the function a pseudorandom
generator. In case t(λ) = 1/µ(λ) = 2λ

ε

, for some constant 0 < ε < 1, we will say
that PRG is sub-exponentially secure.

12 I. Komargodski and G. Segev

2.2 Pseudorandom Functions

Let {Kλ,Xλ,Yλ}λ∈N be a sequence of sets and let PRF = (PRF.Gen,PRF.Eval)
be a function family with the following syntax:

– PRF.Gen is a probabilistic polynomial-time algorithm that takes as input the
unary representation of the security parameter λ, and outputs a key K ∈ Kλ.

– PRF.Eval is a deterministic polynomial-time algorithm that takes as input a
key K ∈ Kλ and a value x ∈ Xλ, and outputs a value y ∈ Yλ.

The sets Kλ, Xλ, and Yλ are referred to as the key space, domain, and range
of the function family, respectively. For easy of notation we may denote by
PRF.EvalK(·) or PRFK(·) the function PRF.Eval(K, ·) for K ∈ Kλ. The following
is the standard definition of a pseudorandom function family.

Definition 2.3 (Pseudorandomness). A function family PRF = (PRF.Gen,
PRF.Eval) is (t, µ)-secure pseudorandom if for every probabilistic algorithm A
that runs in time t(λ), it holds that

AdvPRF,A(λ)
def
=∣∣PrK←PRF.Gen(1λ)

[
APRF.EvalK(·)(1λ) = 1

]
− Prf←Fλ

[
Af(·)(1λ) = 1

]∣∣ ≤ µ(λ),

for all sufficiently large λ ∈ N, where Fλ is the set of all functions that map Xλ
into Yλ.

In addition to the standard notion of a pseudorandom function family, we rely
on the seemingly stronger (yet existentially equivalent) notion of a puncturable
pseudorandom function family [43,18,52,20]. In terms of syntax, this notion asks
for an additional probabilistic polynomial-time algorithm, PRF.Punc, that takes
as input a key K ∈ Kλ and a set S ⊆ Xλ and outputs a “punctured” key KS .
The properties required by such a puncturing algorithm are captured by the
following definition.

Definition 2.4 (Puncturable PRF). A (t, µ)-secure pseudorandom function
family PRF = (PRF.Gen,PRF.Eval) is puncturable if there exists a probabilis-
tic polynomial-time algorithm PRF.Punc such that the following properties are
satisfied:

1. Functionality: For all sufficiently large λ ∈ N, for every set S ⊆ Xλ, and
for every x ∈ Xλ \ S it holds that

Pr
K←PRF.Gen(1λ);

KS←PRF.Punc(K,S)

[PRF.EvalK(x) = PRF.EvalKS (x)] = 1.

2. Pseudorandomness at punctured points: Let A = (A1,A2) be any prob-
abilistic algorithm that runs in time at most t(λ) such that A1(1λ) outputs a
set S ⊆ Xλ, a value x ∈ S, and state information state. Then, for any such
A it holds that

AdvPRF,A(λ)
def
=

|Pr [A2(KS ,PRF.EvalK(x), state) = 1]− Pr [A2(KS , y, state) = 1]| ≤ µ(λ)

From Minicrypt to Obfustopia via Private-Key FE 13

for all sufficiently large λ ∈ N, where (S, x, state)← A1(1λ), K ← PRF.Gen(1λ),
KS = PRF.Punc(K,S), and y ← Yλ.

For our constructions we rely on pseudorandom functions that need to be
punctured only at one point (i.e., in both parts of Definition 2.4 it holds that
S = {x} for some x ∈ Xλ). As observed by [43,18,52,20] the GGM construction
[36] of PRFs from any one-way function can be easily altered to yield such a
puncturable pseudorandom function family.

2.3 Private-Key Multi-Input Functional Encryption

In this section we define the functionality and security of private-key t-input
functional encryption. For i ∈ [t] let Xi = {(Xi)λ}λ∈N be an ensemble of finite
sets, and let F = {Fλ}λ∈N be an ensemble of finite t-ary function families. For
each λ ∈ N, each function f ∈ Fλ takes as input t strings, x1 ∈ (X1)λ, . . . , xt ∈
(Xt)λ, and outputs a value f(x1, . . . , xt) ∈ Zλ.

A private-key t-input functional encryption scheme Π for F consists of four
probabilistic polynomial time algorithm Setup, Enc, KG and Dec, described as
follows. The setup algorithm Setup(1λ) takes as input the security parameter λ,
and outputs a master secret key msk. The encryption algorithm Enc(msk,m, `)
takes as input a master secret key msk, a message m, and an index ` ∈ [t],
where m ∈ (X`)λ, and outputs a ciphertext ct`. The key-generation algorithm
KG(msk, f) takes as input a master secret key msk and a function f ∈ Fλ, and
outputs a functional key skf . The (deterministic) decryption algorithm Dec takes
as input a functional key skf and t ciphertexts, ct1, . . . , ctt, and outputs a string
z ∈ Zλ ∪ {⊥}.

Definition 2.5 (Correctness). A private-key t-input functional encryption
scheme Π = (Setup,Enc,KG,Dec) for F is correct if there exists a negligible
function neg(·) such that for every λ ∈ N, for every f ∈ Fλ, and for every
(x1, . . . , xt) ∈ (X1)λ × · · · × (Xt)λ, it holds that

Pr
[
Dec(skf ,Enc(msk, x1, 1), . . . ,Enc(msk, xt, t)) = f(x1, . . . , xt)

]
≥ 1− neg(λ),

where msk← Setup(1λ), skf ← KG(msk, f), and the probability is taken over the
internal randomness of Setup,Enc and KG.

In terms of security, we rely on the private-key variant of the standard
indistinguishability-based notion that considers both message privacy and func-
tion privacy [2,23,22]. Intuitively, we say that a t-input scheme is secure if for any
two t-tuples of messages (x01, . . . , x

0
t) and (x11, . . . , x

1
t) that are encrypted with

respect to indices ` = 1 through ` = t, and for every pair of functions (f0, f1), the
triplets (skf0 ,Enc(msk, x01, 1), . . . ,Enc(msk, x0t , t)) and (skf1 ,Enc(msk, x11, 1), . . . ,
Enc(msk, x1t , t)) are computationally indistinguishable as long as f0(x01, . . . , x

0
t) =

f1(x11, . . . , x
1
t) (note that this captures both message privacy and function pri-

vacy). The formal notions of security build upon this intuition and capture the
fact that an adversary may in fact hold many functional keys and ciphertexts,

14 I. Komargodski and G. Segev

and may combine them in an arbitrary manner. We formalize our notions of se-
curity using left-or-right key-generation and encryption oracles. Specifically, for
each b ∈ {0, 1} and ` ∈ {1, . . . , t} we let the left-or-right key-generation and en-

cryption oracles be KGb(msk, f0, f1)
def
= KG(msk, fb) and Encb(msk, (m0,m1), `)

def
=

Enc(msk,mb, `). Before formalizing our notions of security we define the notion
of a valid t-input adversary. Then, we define selective security.

Definition 2.6 (Valid adversary). A probabilistic polynomial-time algorithm
A is called valid if for all private-key t-input functional encryption schemes
Π = (Setup,KG,Enc,Dec) over a message space X1 × · · · × Xt = {(X1)λ}λ∈N ×
· · ·×{(Xt)λ}λ∈N and a function space F = {Fλ}λ∈N, for all λ ∈ N and b ∈ {0, 1},
and for all (f0, f1) ∈ Fλ and ((x0i , x

1
i), i) ∈ Xi × Xi × [t] with which A queries

the left-or-right key-generation and encryption oracles, respectively, it holds that
f0(x01, . . . , x

0
t) = f1(x11, . . . , x

1
t).

Definition 2.7 (Selective security). Let t = t(λ), T = T (λ), Qkey = Qkey(λ),
Qenc = Qenc(λ) and µ = µ(λ) be functions of the security parameter λ ∈ N.
A private-key t-input functional encryption scheme Π = (Setup,KG,Enc,Dec)
over a message space X1 × · · · × Xt = {(X1)λ}λ∈N × · · · × {(Xt)λ}λ∈N and a
function space F = {Fλ}λ∈N is (T,Qkey, Qenc, µ)-selectively-secure if for any
valid adversary A that on input 1λ runs in time T (λ) and issues at most Qkey(λ)
key-generation queries and at most Qenc(λ) encryption queries for each index
i ∈ [t], it holds that

AdvselFEt

Π,F,A
def
=

∣∣∣∣Pr
[
ExpselFEt

Π,F,A(λ) = 1
]
− 1

2

∣∣∣∣ ≤ µ(λ),

for all sufficiently large λ ∈ N, where the random variable ExpselFEt

Π,F,A(λ) is defined
via the following experiment:

1. (~x1, . . . , ~xt, state) ← A1

(
1λ
)
, where ~xi = ((x0i,1, x

1
i,1), . . . , (x0i,T , x

1
i,T)) for

i ∈ [t].

2. msk← Setup(1λ), b← {0, 1}.
3. cti,j ← Enc(msk, xbi,j , 1) for i ∈ [t] and j ∈ [T].

4. b′ ← AKGb(msk,·,·)
2

(
1λ, {cti,j}i∈[t],j∈[T], state

)
.

5. If b′ = b then output 1, and otherwise output 0.

Known constructions for t = 1. Private-key single-input functional encryp-
tion schemes that satisfy the above notion of full security and support circuits
of any a-priori bounded polynomial size are known to exist based on a variety
of assumptions.

Ananth et al. [4] gave a generic transformation from selective security to
full security. Moreover, Brakerski and Segev [23] showed how to transform any
message-private functional encryption scheme into a functional encryption scheme
which is fully secure, and the resulting scheme inherits the security guaran-
tees of the original one. Therefore, based on [4,23], given any selectively-secure

From Minicrypt to Obfustopia via Private-Key FE 15

message-private functional encryption scheme we can generically obtain a fully
secure scheme. This implies that schemes that are fully secure for any number of
encryption and key-generation queries can be based on indistinguishability ob-
fuscation [33,54], differing-input obfuscation [19,3], and multilinear maps [34]. In
addition, schemes that are fully secure for a bounded number of key-generation
queries Qkey can be based on the Learning with Errors (LWE) assumption (where
the length of ciphertexts grows with Qkey and with a bound on the depth of al-
lowed functions) [38], and even based on pseudorandom generators computable
by small-depth circuits (where the length of ciphertexts grows with Qkey and
with an upper bound on the circuit size of the functions) [39].

Known constructions for t > 1. Private-key multi-input functional encryp-
tion schemes are much less understood than single-input ones. Goldwasser et
al. [37] gave the first construction of a selectively-secure multi-input functional
encryption scheme for a polynomial number of inputs relying on indistinguisha-
bility obfuscation and one-way functions [9,33,44]. Following the work of Gold-
wasser et al., a fully-secure private-key multi-input functional encryption scheme
for a polynomial number of inputs based was constructed based on multilinear
maps [13]. Later, Ananth, Jain, and Sahai, and Bitasnky and Vaikuntanathan
[6,7,12] showed a selectively-secure multi-input functional encryption scheme for
a polynomial number of inputs based on any sub-exponentially secure single-
input public-key functional encryption scheme. Brakerski et al. [22] showed that
a fully-secure single-input private-key scheme implies a fully-secure multi-input
scheme for any constant number of inputs. Furthermore, Brakerski et al. ob-
served that their construction can be used to get a fully-secure t-input scheme
for t = O(log log λ) inputs, where λ is the security parameter, if the underlying
single-input scheme is sub-exponentially secure.

2.4 Public-key Functional Encryption

In this section we define the functionality and security of public-key (single-
input) functional encryption. Let X = {Xλ}λ∈N be an ensemble of finite sets,
and let F = {Fλ}λ∈N be an ensemble of finite function families. For each λ ∈ N,
each function f ∈ Fλ takes as input a string, x ∈ Xλ, and outputs a value
f(x) ∈ Zλ.

A public-key functional encryption scheme Π for F consists of four proba-
bilistic polynomial time algorithm Setup, Enc, KG and Dec, described as follows.
The setup algorithm Setup(1λ) takes as input the security parameter λ, and
outputs a master secret key msk and a master public key mpk. The encryption
algorithm Enc(mpk,m) takes as input a master public key mpk and a message
m ∈ Xλ, and outputs a ciphertext ct. The key-generation algorithm KG(msk, f)
takes as input a master secret key msk and a function f ∈ Fλ, and outputs a
functional key skf . The (deterministic) decryption algorithm Dec takes as in-
put a functional key skf and t ciphertexts, ct1, . . . , ctt, and outputs a string
z ∈ Zλ ∪ {⊥}.

16 I. Komargodski and G. Segev

Definition 2.8 (Correctness). A public-key functional encryption scheme Π =
(Setup,Enc,KG,Dec) for F is correct if there exists a negligible function neg(·)
such that for every λ ∈ N, for every f ∈ Fλ, and for every x ∈ Xλ, it holds that

Pr
[
Dec(skf ,Enc(mpk, x)) = f(x)

]
≥ 1− neg(λ),

where (msk,mpk) ← Setup(1λ), skf ← KG(msk, f), and the probability is taken
over the internal randomness of Setup,Enc and KG.

In terms of security, we rely on the public-key variant of the existing indisting-
uishability-based notions for message privacy.9 Intuitively, we say that a scheme
is secure if the encryption of any pair of messages Enc(mpk,m0) and Enc(mpk,m1)
cannot be distinguished as long as for any function f for which a functional key
is queries, it holds that f(m0) = f(m1). The formal notions of security build
upon this intuition and capture the fact that an adversary may in fact hold many
functional keys and ciphertexts, and may combine them in an arbitrary manner.
We formalize our notions of security using left-or-right key-generation (similarly
to the private-key setting). Specifically, for each b ∈ {0, 1} we let the left-or-

right key-generation and encryption oracles be KGb(msk, f0, f1)
def
= KG(msk, fb)

and Encb(msk, (m0,m1))
def
= Enc(msk,mb), respectively. Before formalizing our

notions of security we define the notion of a valid adversary. Then, we define
selective security. 10.

Definition 2.9 (Valid adversary). A probabilistic polynomial-time algorithm
A is called valid if for all public-key functional encryption schemes Π = (Setup,
KG,Enc,Dec) over a message space X = {Xλ}λ∈N and a function space F =
{Fλ}λ∈N, for all λ ∈ N and b ∈ {0, 1}, and for all f ∈ Fλ and ((x0, x1) ∈ (X)2

with which A queries the left-or-right encryption oracle, it holds that f(x0) =
f(x1).

Definition 2.10 (Selective security). Let t = t(λ), T = T (λ), Qkey = Qkey(λ)
and µ = µ(λ) be functions of the security parameter λ ∈ N. A public-key
functional encryption scheme Π = (Setup,KG,Enc,Dec) over a message space
X = {Xλ}λ∈N and a function space F = {Fλ}λ∈N is (T,Qkey, µ)-selectively se-
cure if for any valid adversary A that on input 1λ runs in time T (λ) and issues
at most Qkey(λ) key-generation queries, it holds that

Advsel-pkFEΠ,F,A
def
=

∣∣∣∣Pr
[
Expsel-pkFEΠ,F,A (λ) = 1

]
− 1

2

∣∣∣∣ ≤ µ(λ),

for all sufficiently large λ ∈ N, where the random variable Expsel-pkFEΠ,F,A (λ) is defined
via the following experiment:

9 We note that the notion of function privacy is very different from the one in the
private-key setting, and in particular, natural definitions already imply obfuscation.

10 We focus on selective securiy and do not define full security since there is a generic
transfomation [4]

From Minicrypt to Obfustopia via Private-Key FE 17

1.
(
x0, x1, state

)
← A1

(
1λ
)
.

2. (msk,mpk)← Setup(1λ), b← {0, 1}.
3. b′ ← AKGb(msk,·,·)

2

(
1λ,Enc(mpk, xb), state

)
.

4. If b′ = b then output 1, and otherwise output 0.

2.5 Indistinguishability Obfuscation

We consider the standard notion of indistinguishability obfuscation [9,33]. We
say that two circuits, C0 and C1 are functionally equivalent, and denote it by
C0 ≡ C1, if for every x it holds that C0(x) = C1(x).

Definition 2.11 (Indistinguishability obfuscation). Let C = {Cn}n∈N be
a class of polynomial-size circuits operating on inputs of length n. An efficient
algorithm iO is called a (t, µ)-indistinguishability obfuscator for the class C if it
takes as input a security parameter λ and a circuit in C and outputs a new circuit
so that following properties are satisfied:

1. Functionality: For any input length n ∈ N, any λ ∈ N, and any C ∈ Cn it
holds that

Pr
[
C ≡ iO(1λ, C)

]
= 1,

where the probability is taken over the internal randomness of iO.

2. Indistinguishability: For any probabilistic adversary A = (A1,A2) that
runs in time t = t(λ), it holds that

AdviOiO,C,A
def
=

∣∣∣∣Pr
[
ExpiOiO,C,A(λ) = 1

]
− 1

2

∣∣∣∣ ≤ µ(λ),

for all sufficiently large λ ∈ N, where the random variable ExpiOiO,C,A(λ) is
defined via the following experiment:
(a) (C0, C1, state)← A1(1λ) such that C0, C1 ∈ C and C0 ≡ C1.

(b) Ĉ ← iO(Cb), b← {0, 1}.
(c) b′ ← A2

(
1λ, Ĉ, state

)
.

(d) If b′ = b then output 1, and otherwise output 0.

3 Private-Key MIFE for a Poly-Logarithmic
Number of Inputs

In this section we present our construction of a private-key multi-input func-
tional encryption scheme. The main technical tool underlying our approach is a
transformation from a t-input scheme to a 2t-input scheme which is described in
Section 3.1. Then, in Sections 3.2 and 3.3 we show that by iteratively applying
our transformation O(log log λ) times, and by carefully controlling the security
loss and the efficiency loss by adjusting the security parameter appropriately, we
obtain a t-input scheme, where t = (log λ)δ for some constant 0 < δ < 1 (recall
that λ ∈ N denotes the security parameter).

18 I. Komargodski and G. Segev

3.1 From t Inputs to 2t Inputs

Let F = {Fλ}λ∈N be a family of 2t-input functionalities, where for every λ ∈ N
the set Fλ consists of functions of the form f : (X1)λ × · · · × (X2t)λ → Zλ. Our
construction relies on the following building blocks:

1. A private-key t-input functional encryption scheme FEt = (FEt.S,FEt.KG,
FEt.E,FEt.D).

2. A puncturable pseudorandom function family PRF = (PRF.Gen,PRF.Eval).

Our scheme FE2t = (FE2t.S,FE2t.KG,FE2t.E,FE2t.D) is defined as follows.

– The setup algorithm. On input the security parameter 1λ the setup al-
gorithm FE2t.S samples a master secret key for a t-input scheme mskin ←
FEt.S(1λ), and a PRF key Kmsk ← PRF.Gen(1λ), and outputs msk = (mskin,
Kmsk).

– The key-generation algorithm. On input the master secret key msk and
a function f ∈ Fλ, the key-generation algorithm FE2t.KG samples a PRF key
Kkey ← PRF.Gen(1λ) and outputs skf ← FEt.KG(mskin,Genf,⊥,Kmsk,Kkey,⊥),
where Genf,⊥,Kmsk,Kkey,⊥ is the t-input function that is defined in Figure 3.

Genf0,f1,Kmsk,Kkey,w

((x0
1, x

1
1, τ1, c1, thr1, . . . , thrt), (x

0
2, x

1
2, τ2, c2), . . . , (x

0
t , x

1
t , τt, ct)) :

1. For i = 1, . . . , t do:
(a) If ci < thri, then set f = f1 and exit loop.

(b) If ci > thri, then set f = f0 and exit loop.

(c) If ci = thri and i < t, continue to next iteration (with i = i+ 1).

(d) If ci = thri and i = t, then output w and HALT.

2. Compute r1 = PRF.Eval(Kmsk, τ1 . . . τt).

3. Compute r2 = PRF.Eval(Kkey, τ1 . . . τt).

4. Compute mskτ1,...,τt = FEt.S(1λ, r1).

5. Output FEt.KG(mskτ1,...,τt , Cf ; r2).

Cf((x1, xt+1), . . . , (xt, x2t)) :

1. Output f(x1, . . . , x2t).

Figure 3: The t-input functions Genf0,f1,Kmsk,Kkey,w and Cf .

– The encryption algorithm. On input the master secret key msk, a mes-
sage x and an index ` ∈ [2t], the encryption algorithm FE2t.E distinguished
between the following three cases:
• If ` = 1, it samples a random string τ ∈ {0, 1}λ, and then outputs ct`

defined as follows:

ct` ← FEt.E(mskin, (x,⊥, τ, 1, 1, . . . , 1, 0︸ ︷︷ ︸
t slots

), `).

From Minicrypt to Obfustopia via Private-Key FE 19

• If 1 < ` ≤ t, it samples a random string τ ∈ {0, 1}λ, and then outputs
ct` defined as follows:

ct` ← FEt.E(mskin, (x,⊥, τ, 1), `).

• If t < ` ≤ 2t, it samples a PRF key Kenc ← PRF.Gen(1λ) and outputs
sk` defined as follows:

sk` ← FEt.KG(mskin,AGGx,⊥,`,Kmsk,Kenc,⊥),

where AGGx,⊥,`,Kmsk,Kenc,⊥ is the t-input function that is defined in Figure
4.

AGGx0
`+t

,x1
`+t

,`+t,Kmsk,Kenc,v

((x0
1, x

1
1, τ1, c1, thr1, . . . , thrt), (x

0
2, x

1
2, τ2, c2), . . . , (x

0
t , x

1
t , τt, ct)) :

1. For i = 1, . . . , t do:
(a) If ci < thri, then set xi = x1i for all i ∈ [t] and exit loop.

(b) If ci > thri, then set xi = x0i for all i ∈ [t] and exit loop.

(c) If ci = thri and i < t, continue to next iteration (with i = i+ 1).

(d) If ci = thri and i = t, output v and HALT.

2. Compute r1 = PRF.Eval(Kmsk, τ1 . . . τt).

3. Compute r2 = PRF.Eval(Kenc, τ1 . . . τt).

4. Compute mskτ1,...,τt = FEt.S(1λ, r1)

5. Output FEt.E(mskτ1,...,τt , (x`, x`+t), `; r2).

Figure 4: The t-input function AGGx0
`+t

,x1
`+t

,`+t,Kmsk,Kenc,v.

– The decryption algorithm. On input a functional key skf and ciphertexts
ct1, . . . , ctt, skt+1, . . . , sk2t, the decryption algorithm FEt.D computes

∀i ∈ {t+ 1, . . . , 2t} : ct′i = FEt.D(ski, ct1, . . . , ctt)

sk′ = FEt.D(skf , ct1, . . . , ctt),

and outputs FEt.D(sk′, ct′t+1, . . . , ct
′
2t).

Correctness. For any λ ∈ N, f ∈ Fλ and (x1, . . . , x2t) ∈ (X1)λ × · · · × (X2t)λ,
let skf denote a functional key for f and let ct1, . . . , ctt, skt+1, . . . , sk2t denote
encryptions of x1, . . . , x2t. Then, for every i ∈ {1, . . . , t}, it holds that

ct′i+t = FEt.D(ski+t, ct1, . . . , ctt)

= AGGxi+t,⊥,i+t,Kmsk,Kenc
i+t,⊥((x1,⊥, τ1, 1, 1, . . . , 1, 0), (x2,⊥, τ2, 1), . . . ,

(xt,⊥, τt, 1))

= FEt.E(mskτ1,...,τt , (xi, xi+t), i;PRF.Eval(K
enc
i+t, τ1 . . . τt))

20 I. Komargodski and G. Segev

and

sk′ = FEt.D(skf , ct1, . . . , ctt)

= Genf,⊥,Kmsk,Kkey
f ,⊥((x1,⊥, τ1, 1, 1, . . . , 1, 0), (x2,⊥, τ2, 1), . . . , (xt,⊥, τt, 1))

= FEt.KG(mskτ1,...,τt , Cf ;PRF.Eval(Kkey
f , τ1 . . . τt))

where mskτ1,...,τt = FEt.S(1λ,PRF.Eval(Kmsk, τ1 . . . τt)). Therefore,

FEt.D(sk′, ct′t+1, . . . , ct
′
2t) = Cf ((x1, xt+1), . . . , (xt, x2t)) = f(x1, . . . , x2t).

Security. The following theorem captures the security our transformation. The
proof can be found in the full version [45].

Theorem 3.1. Let t = t(λ), T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ) and
µ = µ(λ) be functions of the security parameter λ ∈ N, and assume that FEt is
a (T,Qkey, Qenc, µ)-selectively-secure t-input functional encryption scheme and
that PRF is a (T, µ)-secure puncturable pseudorandom function family. Then,
FE2t is (T ′, Q′key, Q

′
enc, µ

′)-selectively-secure, where

– T ′(λ) = T (λ)−Qkey(λ) · poly(λ), for some fixed polynomial poly(·).

– Q′key(λ) = Qkey(λ)− t(λ) ·Qenc(λ).

– Q′enc(λ) = Qenc(λ).

– µ′(λ) = 8t(λ) · (Qenc(λ))t(λ)+1 ·Qkey(λ) · µ(λ).

3.2 Efficiency Analysis

In this section we analyze the overhead incurred by our transformation. Specifi-
cally, for a message space X1× · · · ×X2t and a function space F that consists of
2t-input functions, we instantiate our scheme (by applying our transformation
log t times) and analyze the size of a master secret key, the size of a functional-
key, the size of a ciphertext and the time it takes to evaluate a functional-key
with 2t ciphertexts.

Let λ ∈ N be a security parameter with which we instantiate the 2t-input
scheme, let us assume that F consists of functions of size at most s = s(λ) and
that each Xi consists of messages of size at most m = m(λ). Assuming that
log t ≤ poly(λ) (to simplify notation), we show that there exists a fixed constant
c ∈ N such that:

– the setup procedure takes time λc ,

– the key-generation procedure takes time (s · λ)t
log c

,

– the encryption procedure takes time (m · λ)t
log c

, and
– the decryption procedure takes time tlog t · λc.

In Section 3.3 we will choose s,m, t and λ to satisfy Lemma 3.2.
For a circuit A that receives inputs of lengths x1 . . . , xm, we denote by

Time(A, x1, . . . , xm) the size of the circuit when applied to inputs of length

From Minicrypt to Obfustopia via Private-Key FE 21∑m
i=1 xi. For a function family F , we denote by Size(F) the maximal size of the

circuit that implements a function from F .
We analyze the overhead incurred by our transformation

The setup procedure. The setup procedure of FE2t is composed of sampling
a key for a scheme FEt and generating a PRF key. Iterating this, we see that a
master secret key in our final scheme consists of a single master secret key for a
single-input scheme and log t additional PRF keys. Namely,

Time(FE2t.S, 1
λ) = Time(FEt.S, 1

λ) + p1(λ),

where p1 is a fixed polynomial that depends on the key-generation time of the
PRF, and thus

Time(FE2t.S, λ) = Time(FE1.S, λ) + log t · p1(λ).

The key-generation procedure. The key-generation procedure of FE2t de-
pends on the complexity of the key-generation procedure of the FEt scheme. Let
F2t be the function family that is supported by the scheme FE2t.

Time(FE2t.KG, λ,Size(FE2t.S, λ),Size(F2t)) =

Time(FEt.KG, λ, 2Size(F2t),Time(FEt.S, λ),Time(FEt.KG,Size(F2t)), p2(λ)))

+ p3(λ),

where p2 subsumes the size of the embedded PRF keys and the complexity of
the simple operations that are done in Gen, and p3 subsumes the running time
of the generation of the PRF key Kkey.

The dominant part in the above equation is that the time it takes to generate
a key with respect to FE2t for a function whose size is Size(F2t) depends on the
circuit size of key-generation in the scheme FEt for a function whose size is
Time(FEt.KG,Size(F2t)) (namely, it is a function that outputs a functional key
for a function whose size is Size(F2t)). Thus, applying this equation recursively,
we get that for large enough c ∈ N (that depends on the exponents of p2 and
p3), it holds that

Time(FE2t.KG, λ,Time(FE2t.S, λ),Size(F2t)) ≤

(Size(F2t) · λ)c
log t

= (Size(F2t) · λ)t
log c

.

The encryption procedure. The encryption procedure of FE2t depends on
the complexity of encryption and key-generation of the FEt scheme. Let m be
the length of a message to encrypt. For ` ≤ t, the complexity is at most

Time(FE2t.E, λ,Size(FE2t.S, λ),m) ≤ Time(FEt.E, λ, 2m, (t+ 2)λ).

For t+ 1 ≤ ` ≤ 2t, the complexity of encryption is

Time(FE2t.E, λ,Size(FE2t.S, λ),m) ≤
Time(FEt.KG, λ,Time(FEt.S, λ),Time(FEt.E, 2m), p4(λ)),

22 I. Komargodski and G. Segev

where p4 subsumes the running time of the key-generation procedure of the PRF
and the various other simple operations made by AGG.

The dominant part is that an encryption of a message with respect to the
scheme FE2t requires generating a key with respect to the scheme FEt for a
function whose size is Time(FEt.E, 2m). Thus, similarly to the analysis of the
key-generation procedure, we get that for some fixed c ∈ N (that depends on
the exponents of p4 and the time it takes to encrypt a message with respect to
FE1), we get that

Time(FE2t.E, λ,Size(FE2t.S, λ),m) ≤ (m · λ)t
log c

.

The decryption procedure. Decryption in the scheme FE2t requires t + 2
decryption operations with respect to the scheme FEt. Let ct(t) and sk(t) be the
length of a ciphertext and a key in the scheme FEt, respectively. We get that

Time(FE2t.D, sk(t), 2t · ct(t)) =

(t+ 2) · Time(FEt.D, sk(t), t · ct(t)) ≤ (t+ 2)log t · p5(λ),

where p5 is a polynomial that subsumes the complexity of decryption in FE1.

3.3 Iteratively Applying Our Transformation

In this section we show that by iteratively applying our transformationO(log log λ)
times we obtain a t-input scheme, where t = (log λ)δ for some constant 0 < δ < 1.
We prove the following two theorems:

Lemma 3.2. Let T = T (λ), Qkey = Qkey(λ), Qenc = Qenc(λ) and µ = µ(λ)
be functions of the security parameter λ ∈ N and let ε ∈ (0, 1). Assume any
(T,Qkey, Qenc, µ)-selectively-secure single-input private-key functional encryption
scheme with the following properties:

1. it supports circuits and messages of size poly(2(log λ)
2ε

) and

2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)
2ε

),

then for some constant δ ∈ (0, 1), there exists a
(
T ′, Q′key, Q

′
enc, µ

′
)

-selectively-

secure (log λ)δ-input private-key functional encryption scheme with the following
properties:

1. it supports circuits and messages of size poly(2(log λ)
ε

),
2. T ′(λ) ≥ T (λ)− (log log λ) · p(λ),
3. Q′key(λ) ≥ Qkey(λ)− (2 log λ) ·Qenc(λ),
4. Q′enc(λ) = Qenc(λ), and

5. µ′(λ) ≤ 2(3 log log λ)2 · (Qenc(λ))2(log λ)
δ+2 · (Qkey(λ))log log λ · µ(λ).

Proof. Let FE1 be a (T,Qkey, Qenc, µ)-selectively-secure single-input scheme with
the properties from the statement.

From Minicrypt to Obfustopia via Private-Key FE 23

Let us analyze the complexity of the t-input scheme where t(λ) = (log λ)δ,
where δ > 0 is some fixed constant that we fix later. In terms of complexity,
using the properties of the single-input scheme and our efficiency analysis from
Section 3.2, we have that setup takes a polynomial time in λ, key-generation for

a function of size s takes time at most (s · λ)
tlog c

and encryption of a message

of length m takes time (m · λ)
tlog c

for some large enough constant c > 1 (recall
that c is an upper bound on the exponents of the running time of key generation
and encryption procedures of the underlying single-input scheme). Plugging in
δ = 2ε/(3 log c), t = (log λ)δ and s,m ≤ 2c

′·(log λ)ε for any c′ ∈ N, we get that key-

generation and encryption take time at most 2c
′·(log λ)2ε/3·(log λ)ε = 2c

′·(log λ)5ε/3 .
Notice that for large enough λ, decryption of such a key-message pair takes time

at most poly(2(log λ)
5ε/3

) · (t+ 2)log t ≤ 2(log λ)
2ε

.

In terms of security, by Theorem 3.1, we have that if FEt is (T (t), Q
(t)
key,

Q
(t)
enc, µ(t))-selectively-secure and PRF is a (T (t), µ(t))-secure puncturable pseudo-

random function family, then FE2t is (T (2t), Q
(2t)
key , Q

(2t)
enc , µ(2t))-selectively-secure,

where

1. T (2t)(λ) = T (t)(λ)− p(λ),

2. Q
(2t)
key (λ) = Q

(t)
key(λ)− t ·Q(t)

enc,

3. Q
(2t)
enc (λ) = Q

(t)
enc(λ), and

4. µ(2t)(λ) = 2(3 log log λ)2 · (Qenc(λ))2(log λ)
δ+2 · (Qkey(λ))log log λ · µ(λ).

Iterating these recursive equations, using the fact thatQ
(2t)
key ≤ Q

(t)
key, and plugging

in our initial scheme parameters, we get that

Q′enc(λ) = Q(1)
enc(λ) = Qenc(λ)

Q′key(λ) = Q
(t)
key(λ)− t(λ) ·Qenc(λ)

≥ Qkey(λ)− 2t(λ) ·Qenc(λ)

≥ Qkey(λ)− (2 log(λ)) ·Qenc(λ)

T ′(λ) ≥ T (λ)− log t(λ) · p(λ)

≥ T (λ)− (log log λ) · p(λ)

µ′(λ) ≤ (8t(λ))log t(λ) · (Qenc(λ))2t(λ)+2 · (Qkey(λ))log t(λ) · µ(λ)

≤ 2(3 log t(λ))2 · (Qenc(λ))2t(λ)+2 · (Qkey(λ))log t(λ) · µ(λ)

≤ 2(3 log log λ)2 · (Qenc(λ))2(log λ)
δ+2 · (Qkey(λ))log log λ · µ(λ)

24 I. Komargodski and G. Segev

Claim 3.3 Let λ ∈ N be a security parameter and fix any constant ε ∈ (0, 1). As-

suming any (22·(log λ)
1/ε

, 22·(log λ)
1/ε

, 2(log λ)
1/ε

, 2−(log λ)
1.5/ε

)-selectively-secure single-
input private-key functional encryption scheme supporting polynomial-size cir-
cuits, there exists a (22·(log λ)

2

, 22·(log λ)
2

, 2(log λ)
2

, 2−(log λ)
3

)-selectively-secure single-
input private-key functional encryption scheme with the following properties

1. it supports circuits and messages of size poly(2(log λ)
2ε

) and

2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)
2ε

).

Proof. We instantiate the given scheme with security parameter λ̃ = 2(log λ)
2ε

.

The resulting scheme is
(

22·(log λ)
2

, 22·(log λ)
2

, 2(log λ)
2

, 2−(log λ)
3
)

-selectively-secure

and for a circuit (resp., message) of size λ̃, the size of a functional key (resp.,
ciphertext) is bounded by poly(λ̃).

Combining Theorem 3.3 and Lemma 3.2 we get the following theorem.

Theorem 3.4. Let λ ∈ N be a security parameter and fix any constant ε ∈
(0, 1). Assuming any (22·(log λ)

1/ε

, 21·(log λ)
2/ε

, 2(log λ)
1/ε

, 2−(log λ)
1.5/ε

)-selectively-
secure single-input private-key functional encryption scheme supporting polynomial-
size circuits, then for some δ ∈ (0, 1), there exists a (2(log λ)

2

, 2(log λ)
2

, 2(log λ)
2

,

2−(log λ)
2

)-selectively-secure (log λ)δ-input private-key functional encryption scheme
supporting circuits of size 2(log λ)

ε

.

Proof. Assuming any
(

22·(log λ)
1/ε

, 22·(log λ)
1/ε

, 2(log λ)
1/ε

, 2−(log λ)
1.5/ε

)
-selectively-

secure single-input private-key functional encryption scheme supporting polynomial-

size circuits. By Theorem 3.3, it implies a
(

22·(log λ)
2

, 22·(log λ)
2

, 2(log λ)
2

, 2−(log λ)
3
)

-

selectively-secure single-input private-key functional encryption scheme with the
following properties:

1. it supports circuits and messages of size poly(2(log λ)
2ε

) and

2. the size of a ciphertext and a functional key is bounded by poly(2(log λ)
2ε

).

Using Lemma 3.2, we get that for some constant δ ∈ (0, 1), there exists

a
(
T ′, Q′key, Q

′
enc, µ

′
)

-selectively-secure (log λ)δ-input private-key functional en-

cryption scheme with the following properties:

1. it supports circuits and messages of size at most poly(2(log λ)
ε/2

),

2. T ′(λ) ≥ 22·(log λ)
2 − (log log λ) · p(λ) ≥ 2(log λ)

2

,

3. Q′key(λ) ≥ 22·(log λ)
2 − (2 log λ) · 2(log λ)2 ≥ 2(log λ)

2

,

4. Q′enc(λ) = 2(log λ)
2

, and

5. µ′(λ) ≤ 2(3 log log λ)2 ·(2(log λ)2)2(log λ)
δ+2·(2(log λ)2)log log λ·2−(log λ)3 ≤ 2−(log λ)

2

.

From Minicrypt to Obfustopia via Private-Key FE 25

4 Applications of Our Construction

In this section we present our construction of an indistinguishability obfuscator
for circuits with inputs of poly-logarithmic length, and its applications to public-
key functional encryption and average-case PPAD hardness.

4.1 Obfuscation for Circuits with Poly-logarithmic Input
Length

We show that any selectively-secure t-input private-key functional encryption
scheme that supports circuits of size s can be used to construct an indistin-
guishability obfuscator that supports circuits of size s that have at most t · log λ
inputs, where λ ∈ N is the security parameter. This is similar to the proof
of Goldwasser et al. [37] that showed that private-key multi-input functional
encryption for a polynomial number of inputs implies indistinguishability obfus-
cation (and a follow-up refinement of Bitansky et al. [10]).

We consider the following restricted class of circuits:

Definition 4.1. Let λ ∈ N and let s(·) and t′(·) be functions. Let Cs,t
′

λ denoet
the class of all circuits of size at most s(λ) that get as input t′(λ) bits.

Lemma 4.2. Let t = t(λ), s = s(λ), T = T (λ), Qkey = Qkey(λ), Qenc =
Qenc(λ) and µ = µ(λ) be functions of the security parameter λ ∈ N, and assume
a (T,Qkey, Qenc, µ)-selectively-secure t-input private-key functional encryption
scheme for functions of size at most s, where Qkey(λ) ≥ 1 and Qenc(λ) ≥ λ. Then,
there exists a (T (λ)−λ·t(λ)·p(λ), µ(λ))-secure indistinguishability obfuscator for

the circuit class Cs,t
′

λ , where p(·) is some fixed polynomial and t′(λ) = t(λ) · log λ.

Proof. Let FEt be a t-input scheme as in the statement of the lemma. We
construct an obfuscator for circuits of size at most s(λ) that receive t(λ) · log λ

bits as input. On input a circuit C ∈ Cs,t
′

λ , the obfuscator works as follows:

1. Sample a master secret key msk← FEt.S(1λ).
2. Compute cti,j = FEt.E(msk, i, j) for every i ∈ {0, 1}log λ and j ∈ [t(λ)].
3. Compute skC = FEt.KG(msk, C)

4. Output Ĉ = {skC} ∪ {cti,j}i∈{0,1}log λ,j∈[t(λ)].

Evaluation of an obfuscated circuit Ĉ on an input x ∈ ({0, 1}log λ)t, where
we view x as x = x1 . . . xt and xi ∈ {0, 1}log λ, is done by outputting the re-
sult of a single execution of the decryption procedure of the t-input scheme
FEt.D(skC , ctx1,1, . . . , ctxt,t). Notice that the description size of the obfuscated
circuit is upper bounded by some fixed polynomial in λ.

For security, notice that a single functional key is generated and it is for a
circuit of size at most s(λ). Moreover, the number of ciphertexts is bounded by λ
ciphertexts per coordinate. Thus, following [37], one can show that an adversary
that can break the security of the above obfuscator can be used to break the
security of the FEt scheme with the same success probability (it can even break

26 I. Komargodski and G. Segev

FEt that satisfies a weaker security notion in which the functional keys are also
fixed ahead of time, before seeing any ciphertext).

Applying Lemma 4.2 with the t-input scheme from Theorem 3.4 we obtain
the following corollary.

Corollary 4.3. Let λ ∈ N be a security parameter and fix any constant ε ∈
(0, 1). Assume a (22(log λ)

1/ε

, 22(log λ)
1/ε

, 2(log λ)
1/ε

, 2−(log λ)
1.5/ε

)-selectively-secure
single-input private-key functional encryption scheme for all functions of polyno-
mial size. Then, for some constant δ ∈ (0, 1), there exists a (2(log λ)

2

, 2−(log λ)
2

)-

secure indistinguishability obfuscator for the circuit class C2
O((log λ)ε),(log λ)1+δ

λ .

4.2 Public-Key Functional Encryption

In this section we present a construction of a public-key functional encryption
scheme based on our multi-input private-key scheme.

Theorem 4.4. Let λ ∈ N be a security parameter and fix any ε ∈ (0, 1). There

exists a constant δ > 0 for which the following holds. Assume a (22(log λ)
1/ε

,

22(log λ)
1/ε

, 2(log λ)
1/ε

, 2−(log λ)
1.5/ε

)-selectively-secure single-input private-key func-

tional encryption scheme for all functions of polynomial size, and that (22λ
ε′

,

2−2λ
ε′

)-secure one-way functions exist for ε′ > 1/(1 + δ). Then, for some con-

stant ζ > 1, there exists a (2(log λ)
ζ

, 2(log λ)
ζ

, 2−(log λ)
ζ

)-selectively-secure public-

key encryption scheme for the circuit class C2
O((log λ)ε),(log λ)1+δ

λ .

Our construction is essentially the construction of Waters [54], who showed
how to construct a public-key functional encryption scheme for the set of all
polynomial-size circuits assuming indistinguishability obfuscation for all polynom-
ial-size circuits. We make a more careful analysis of his scheme and show that for
a specific range of parameters, it suffices to use the obfuscator we have obtained
in Corollary 4.3. The proof of Theorem 4.4 can be found in the full version [45].

4.3 Average-Case PPAD Hardness

We present a construction of a hard-on-average distribution of Sink-of-Verifiable-
Line (SVL) instances assuming any quasi-polynomially-secure private-key (single-
input) functional encryption scheme and sub-exponentially-secure one-way func-
tion. Following the work of Abbot et al. [1] and Bitansky et al. [11], this shows
that the complexity class PPAD [50,30,31,24] contains complete problems that
are hard on average (we refer the reader to [11] for more details). In what follows
we first recall the SVL problem, and then state our hardness result. The proof
can be found in the full version [45].

Definition 4.5 (Sink-of-Verifiable-Line). An SVL instance (S,V, xs, T) con-
sists of a source xs ∈ {0, 1}λ, a target index T ∈ [2λ], and a pair of circuits
S : {0, 1}λ → {0, 1}λ and V : {0, 1}λ × [T] → {0, 1}, such that for (x, i) ∈

From Minicrypt to Obfustopia via Private-Key FE 27

{0, 1}λ × [T], it holds that V(x, i) = 1 if and only if x = xi = Si−1(xs), where
x1 = xs. A string w ∈ {0, 1}λ is a valid witness if and only if V(w, T) = 1.

Theorem 4.6. Let λ ∈ N be a security parameter and fix any constant ε ∈
(0, 1). Assume a (22(log λ)

1/ε

, 22(log λ)
1/ε

, 2(log λ)
1/ε

, 2−(log λ)
1.5/ε

)-selectively-secure
single-input private-key functional encryption scheme for all functions of poly-

nomial size, and that (2λ
2ε′

, 2−λ
2ε′

)-secure injective one-way functions exist for
some large enough constant ε′ ∈ (0, 1). Then, there exists a distribution with
an associated efficient sampling procedure that generates instances of sink-of-
verifiable-line which are hard to solve for any polynomial-time algorithm.

Acknowledgments

We thank Zvika Brakerski and the anonymous referees for many valuable com-
ments. The first author thanks his advisor Moni Naor for his support and guid-
ance.

References

1. Abbot, T., Kane, D., Valiant, P.: On algorithms for Nash equilibria (2004), http:
//web.mit.edu/tabbott/Public/final.pdf.

2. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prab-
hakaran, M., Sahai, A.: Function private functional encryption and property
preserving encryption: New definitions and positive results. Cryptology ePrint
Archive, Report 2013/744 (2013)

3. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. Cryptology ePrint Archive, Report 2013/689 (2013)

4. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-
tive security in functional encryption. In: Advances in Cryptology – CRYPTO ’15.
pp. 657–677 (2015)

5. Ananth, P., Jain, A., Naor, M., Sahai, A., Yogev, E.: Universal constructions and
robust combiners for indistinguishability obfuscation and witness encryption. In:
Advances in Cryptology – CRYPTO ’16. pp. 491–520 (2016)

6. Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional en-
cryption. In: Advances in Cryptology – CRYPTO ’15. pp. 308–326 (2015)

7. Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: Indistinguisha-
bility obfuscation from non-compact functional encryption. Cryptology ePrint
Archive, Report 2015/730 (2015)

8. Asharov, G., Segev, G.: Limits on the power of indistinguishability obfuscation
and functional encryption. In: Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science. pp. 191–209 (2015)

9. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. Journal of the ACM
59(2), 6 (2012)

10. Bitansky, N., Nishimaki, R., Passelègue, A., Wichs, D.: From cryptomania to ob-
fustopia through secret-key functional encryption. In: Theory of Cryptography -
14th International Conference, TCC 2016-B. pp. 391–418 (2016)

http://web.mit.edu/tabbott/Public/final.pdf.
http://web.mit.edu/tabbott/Public/final.pdf.

28 I. Komargodski and G. Segev

11. Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a
Nash equilibrium. In: Proceedings of the 56th Annual IEEE Symposium on Foun-
dations of Computer Science. pp. 1480–1498 (2015)

12. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional
encryption. In: Proceedings of the 56th Annual IEEE Symposium on Foundations
of Computer Science. pp. 171–190 (2015)

13. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: Multi-input functional encryption with-
out obfuscation. In: Advances in Cryptology – EUROCRYPT ’15. pp. 563–594
(2015)

14. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: Hiding the function in functional encryption. In: Advances in Cryptology –
CRYPTO ’13. pp. 461–478 (2013)

15. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: Advances in Cryptology – ASIACRYPT ’13.
pp. 255–275 (2013)

16. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Proceedings of the 8th Theory of Cryptography Conference. pp. 253–273 (2011)

17. Boneh, D., Sahai, A., Waters, B.: Functional encryption: A new vision for public-
key cryptography. Communiations of the ACM 55(11), 56–64 (2012)

18. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Advances in Cryptology - ASIACRYPT ’13. pp. 280–300 (2013)

19. Boyle, E., Chung, K., Pass, R.: On extractability obfuscation. In: Proceedings of
the 11th Theory of Cryptography Conference. pp. 52–73 (2014)

20. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Proceedings of the 17th International Conference on Practice and Theory
in Public-Key Cryptography. pp. 501–519 (2014)

21. Brakerski, Z., Gentry, C., Halevi, S., Lepoint, T., Sahai, A., Tibouchi, M.: Crypt-
analysis of the quadratic zero-testing of GGH. Cryptology ePrint Archive, Report
2015/845 (2015)

22. Brakerski, Z., Komargodski, I., Segev, G.: Multi-input functional encryption in the
private-key setting: Stronger security from weaker assumptions. In: Advances in
Cryptology – EUROCRYPT ’16. pp. 852–880 (2016)

23. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-
key setting. In: Proceedings of the 12th Theory of Cryptography Conference. pp.
306–324 (2015)

24. Chen, X., Deng, X., Teng, S.: Settling the complexity of computing two-player Nash
equilibria. J. ACM 56(3) (2009), http://doi.acm.org/10.1145/1516512.1516516

25. Cheon, J.H., Fouque, P.A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the
new CLT multilinear map over the integers. Cryptology ePrint Archive, Report
2016/135 (2016)

26. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Advances in Cryptology – EUROCRYPT ’15. pp. 3–12
(2015)

27. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanal-
ysis of the GGH multilinear map without an encoding of zero. Cryptology ePrint
Archive, Report 2016/139 (2016)

28. Cheon, J.H., Lee, C., Ryu, H.: Cryptanalysis of the new CLT multilinear maps.
Cryptology ePrint Archive, Report 2015/934 (2015)

http://doi.acm.org/10.1145/1516512.1516516

From Minicrypt to Obfustopia via Private-Key FE 29

29. Coron, J., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In: Advances in Cryptology – CRYPTO ’15. pp. 247–266
(2015)

30. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. Communications of the ACM 52(2), 89–97 (2009)

31. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing
a Nash equilibrium. SIAM Journal on Computing 39(1), 195–259 (2009)

32. Daskalakis, C., Papadimitriou, C.H.: Continuous local search. In: Proceedings of
the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms. pp. 790–804
(2011)

33. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of the 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence. pp. 40–49 (2013)

34. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without ob-
fuscation. In: Proceedings of the 13th Theory of Cryptography Conference. pp.
480–511 (2016)

35. Garg, S., Pandey, O., Srinivasan, A.: Revisiting the cryptographic hardness of
finding a Nash equilibrium. In: Advances in Cryptology – CRYPTO ’16. pp. 579–
604 (2016)

36. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions.
Journal of the ACM 33(4), 792–807 (1986)

37. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A.,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: Advances in Cryptology
– EUROCRYPT ’14. pp. 578–602 (2014)

38. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of the 45th
Annual ACM Symposium on Theory of Computing. pp. 555–564 (2013)

39. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Advances in Cryptology – CRYPTO
’12. pp. 162–179 (2012)

40. Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive, Report
2015/301 (2015)

41. Hubácek, P., Yogev, E.: Hardness of continuous local search: Query complexity
and cryptographic lower bounds. In: Proceedings of the 28th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA. pp. 1352–1371 (2017)

42. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of
the 10th Annual Structure in Complexity Theory Conference. pp. 134–147 (1995)

43. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseu-
dorandom functions and applications. In: Proceedings of the 20th Annual ACM
Conference on Computer and Communications Security. pp. 669–684 (2013)

44. Komargodski, I., Moran, T., Naor, M., Pass, R., Rosen, A., Yogev, E.: One-way
functions and (im)perfect obfuscation. In: Proceedings of the 55th Annual IEEE
Symposium on Foundations of Computer Science. pp. 374–383 (2014)

45. Komargodski, I., Segev, G.: From Minicrypt to Obfustopia via private-key func-
tional encryption. Cryptology ePrint Archive, Report 2017/080

46. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized func-
tionalities in the private-key setting from minimal assumptions. In: Proceedings of
the 12th Theory of Cryptography Conference. pp. 352–377 (2015)

30 I. Komargodski and G. Segev

47. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps:
Cryptanalysis of indistinguishability obfuscation over GGH13. Cryptology ePrint
Archive, Report 2016/147 (2016)

48. Minaud, B., Fouque, P.A.: Cryptanalysis of the new multilinear map over the
integers. Cryptology ePrint Archive, Report 2015/941 (2015)

49. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

50. Papadimitriou, C.H.: On the complexity of the parity argument and other ineffi-
cient proofs of existence. J. Comput. Syst. Sci. 48(3), 498–532 (1994)

51. Sahai, A., Waters, B.: Slides on functional encryption. Available at http://www.

cs.utexas.edu/~bwaters/presentations/files/functional.ppt (2008)
52. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-

tion, and more. In: Proceedings of the 46th Annual ACM Symposium on Theory
of Computing. pp. 475–484 (2014)

53. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Pro-
ceedings of the 6th Theory of Cryptography Conference. pp. 457–473 (2009)

54. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Advances in Cryptology – CRYPTO ’15. pp. 678–697 (2015)

http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt
http://www.cs.utexas.edu/~bwaters/presentations/files/functional.ppt

	From Minicrypt to Obfustopia via Private-Key Functional Encryption

