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Abstract. In this work, we propose a variant of functional encryp-
tion called projective arithmetic functional encryption (PAFE). Roughly
speaking, our notion is like functional encryption for arithmetic circuits,
but where secret keys only yield partially decrypted values. These par-
tially decrypted values can be linearly combined with known coefficients
and the result can be tested to see if it is a small value.
We give a degree-preserving construction of PAFE from multilinear maps.
That is, we show how to achieve PAFE for arithmetic circuits of degree
d using only degree-d multilinear maps. Our construction is based on
an assumption over such multilinear maps, that we justify in a generic
model. We then turn to applying our notion of PAFE to one of the most
pressing open problems in the foundations of cryptography: building se-
cure indistinguishability obfuscation (iO) from simpler building blocks.

iO from degree-5 multilinear maps. Recently, the works of Lin [Eu-
rocrypt 2016] and Lin-Vaikuntanathan [FOCS 2016] showed how to build
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iO from constant-degree multilinear maps. However, no explicit constant
was given in these works, and an analysis of these published works shows
that the degree requirement would be in excess of 30. The ultimate
“dream” goal of this line of work would be to reduce the degree require-
ment all the way to 2, allowing for the use of well-studied bilinear maps,
or barring that, to a low constant that may be supportable by alterna-
tive secure low-degree multilinear map candidates. We make substantial
progress toward this goal by showing how to leverage PAFE for degree-5
arithmetic circuits to achieve iO, thus yielding the first iO construction
from degree-5 multilinear maps.

1 Introduction

Functional encryption (FE), introduced by Sahai and Waters [SW05, SW08],
allows for the creation of secret keys skf corresponding to functions f , such that
when such a secret key skf is applied to an encryption of x, decryption yields f(x)
but, intuitively speaking, nothing more is revealed about x. In this work, we will
focus on the secret-key variant of FE where knowledge of the master secret key is
needed to perform encryption. Functional encryption has proven to be remark-
ably versatile: it captures as special cases efficient applications like attribute-
based encryption for formulas [GPSW06, BSW07] and predicate encryption for
inner products [KSW08] from bilinear maps. At the same time, the general notion
of functional encryption implies remarkably powerful primitives, including most
notably indistinguishability obfuscation (iO) [AJ15, BV15, AJS15, BNPW16].

In this work, we continue the study of functional encryption notions, con-
structions, and implications. As a byproduct of our study, we tackle the one of
the most pressing open problems in theoretical cryptography: building secure iO
from simpler building blocks. In particular, we give the first construction of iO
using only degree-5 multilinear maps.

FE in the arithmetic context. For a number of cryptographic objects that
deal with general computations, arithmetic circuits have been considered in ad-
dition to boolean circuits. The primary motivation for this arises when we wish
to apply these objects to cryptographic computations, since many cryptographic
computations can be better expressed as arithmetic circuits rather than boolean
circuits. For example, zero-knowledge proofs [GMR89] for arithmetic circuits
(e.g. [GS08] in the bilinear setting) have been influential because they allow
for the construction of zero-knowledge protocols whose structure and complex-
ity more closely match the structure and complexity of algebraic cryptographic
algorithms.

In a similar spirit, we study general FE in the context where secret keys
should correspond to arithmetic circuits. Notably however, our motivation will
not (primarily) be efficiency, but rather achieving new feasibility results, as we
will elaborate below.

Previous work has studied FE for arithmetic circuits in two special cases:
The work of Boneh et al. [BNS13, BGG+14] studied attribute-based encryp-



tion for arithmetic circuits from the LWE assumption. (Our work will diverge
technically from this.) Another line of work started with the work of Katz,
Sahai, and Waters [KSW08], studying FE where secret keys corresponded to
arithmetic inner product computations, using bilinear groups as the underly-
ing cryptographic tool. There has been several followup papers on FE for inner
products [ABCP15, AAB+15, BJK15, ABCP16, DDM16, LV16] with various
security notions and correctness properties. An issue that will be important
to us, and that arises already in the context of inner products, concerns the
correctness property of the FE scheme. Ideally, a secret key for an arithmetic
circuit C, when applied to an encryption of x, should allow the decryptor to
learn C(x). However, FE constructions typically store values “in the exponent,”
and thus the difficulty of discrete logarithms in bilinear groups implies that
if C(x) is superpolynomial, it will be difficult to recover. This issue has been
dealt with in the past either by requiring that decryption only reveals whether
C(x) = 0, as in [KSW08], or by requiring that decryption only reveals C(x) if
C(x) is polynomially bounded, such as in the works of Abdalla et al. and oth-
ers [ABCP15, BJK15, ABCP16, DDM16]. We will diverge from past work when
dealing with this issue, in order to provide greater flexibility, and in so doing,
we introduce our notion of projective3 arithmetic FE.

1.1 Our Contributions

Projective Arithmetic FE (PAFE). In projective arithmetic FE, like in FE,
encrypting a value x yields a ciphertext c. Also like in (arithmetic) FE, in PAFE
each secret key skC is associated with an arithmetic circuit4 C. However, un-
like in FE, in PAFE when the secret key skC is applied to the ciphertext c, it
does not directly yield the decrypted value C(x), but rather this yields a partial
decryption pC . We call this process projective decryption. We envision a party
holding a collection of secret keys {skC}C would apply projective decryption
using these secret keys to the ciphertext c to obtain a collection of partial de-
cryptions {pC}C . Finally, this party can choose any collection of small coefficients
{αC}C arbitrarily, and then call a different efficient recovery algorithm which
is given all the partial decryptions {pC}C and coefficients {αC}C . The recovery

3 We call our notion projective FE because, roughly speaking, a user holding a col-
lection of keys {skC}C for several arithmetic circuits C can only learn information
about various linear projections

∑
C αCC(x) for known small coefficients {αC}C .

We discuss this in more detail below. Our name is also loosely inspired by the notion
of projective hash functions, introduced by Cramer and Shoup [CS02], where keys
(called projective keys) only allow one to evaluate the hash function on inputs x
in some NP language, but not on all strings. In our setting, as well, our keys are
similarly only “partially functional” in that they only allow the user to learn infor-
mation about various linear projections, and they do not in general reveal the full
information that should be learned by obtaining all C(x) values. However, to the
best of our knowledge, only this loose relationship exists between projective hash
functions and our notion of projective FE.

4 We only are interested in arithmetic circuits of fan-in 2.



algorithm then outputs a bit that indicates whether
∑
C αCC(x) = 0 or not.

(More generally, we can allow the user to recover the value of
∑
C αCC(x) as

long as it is bounded by a polynomial.)
Thus, projective arithmetic FE can be seen as relaxing the correctness guar-

antee that would be provided by the standard notion of FE when applied to
arithmetic circuits over fields of superpolynomial size (which is not known to be
achievable). Of course, if decryption actually allowed a user to learn {C(x)}C for
several arithmetic circuits C, then the user would be able to compute

∑
C αCC(x)

for any set of small coefficients {αC}C of her choice. Note that our notion is
more permissive than only revealing whether C(x) = 0, as in the original work
for FE for inner products [KSW08], or only revealing C(x) if it is polynomially
bounded, such as in other works on FE for inner products [ABCP15, BJK15,
ABCP16, DDM16]. With regard to security, our notion will, intuitively speak-
ing, only require indistinguishability of encryptions of x from encryptions of y,
if C(x) = C(y) for all secret keys skC obtained by the adversary. However, for
our application of PAFE to iO, we require a stronger notion of security that we
call semi-functional security. We give an intuitive explanation of this notion in
the technical overview.

Degree-preserving construction of PAFE from multilinear maps. The
first main technical contribution of our work is a construction of (secret-key)
PAFE for degree-d arithmetic circuits, from degree-d asymmetric multilinear
maps5. Furthermore, it suffices that the groups over which the multilinear maps
are defined are prime order. Our construction is based on an explicit pair of
assumptions over such multilinear maps, that we can justify in the standard
generic multilinear model.

Theorem 1 (Informal). There exists secret-key PAFE for degree-d arithmetic
circuits from degree-d prime order asymmetric multilinear maps under Assump-
tions #1 and #2 (see Section 4.1).

Our assumptions do not require any low-level encodings of 0 to be given to
the adversary, and we thus believe them to be instantiable using existing can-
didate multilinear maps. Indeed, because of some pseudorandomness properties
of our construction and generic proof of security, we believe that our assump-
tions can be proven secure in the Weak MMap model considered in the works
of Miles et al. and Garg et al. [MSZ16, GMM+16], which would give further
evidence of its instantiability. Because we want to posit instantiable assump-
tions, we do not formulate a succinct version of our assumption together with
a reduction of security as was done in the works of Gentry et al. or Lin and
Vaikuntanathan [GLSW15, LV16], because unfortunately no existing candidate
multilinear map construction is known to securely support such reductions, and
indeed the assumptions of [GLSW15, LV16] are broken when instantiated with
existing candidates. We stress that, like in the recent work of [Lin16, LV16],

5 Roughly speaking, asymmetric multilinear maps disallows pairing of elements from
the same group structure.



if the degree d is constant, then our pair of assumptions would only involve a
constant-degree multilinear map.

Our construction can be seen as a generalizing FE for inner products (degree
2 functions) from bilinear maps, to higher degrees in a degree preserving man-
ner. Thus, our construction can be applied to cryptographic computations that
are naturally represented as arithmetic functions of low degree, but not as in-
ner products. In more detail, we introduce the notion of slotted encodings that
has the same flavor of multilinear maps defined over composite order groups.
We then show how to emulate slotted encodings using prime-order multilinear
maps. However, this emulation strategy only works in the case of constant de-
gree. We hope that this technique will be useful to transform constructions based
on constant degree composite order multilinear maps (for example [Lin16]) to
constructions based on constant degree prime order multilinear maps.

iO from degree-5 multilinear maps. Our motivation for building PAFE for
arithmetic circuits in a degree-preserving manner is to achieve new feasibility
results for iO from low-degree multilinear maps. The concept of iO was first
defined by Barak et al. [BGI+01]. Informally speaking, iO converts a program
(represented by a boolean circuit) into a “pseudo-canonical form.” That is, for
any two equivalent programs P0, P1 of the same size, we require that iO(P0) is
computationally indistinguishable from iO(P1). The first candidate construction
of iO was given by Garg et al. [GGH+13b], and especially since the introduction
of punctured programming techniques of Sahai and Waters [SW14], iO has found
numerous applications, with numerous papers published since 2013 that use iO
to accomplish cryptographic tasks that were not known to be feasible before (see,
e.g., [GGH+13b, SW14, GGHR14, HSW14, GGG+14, BPR15, BP15, CHN+16,
BGJ+16]). However, it is still not known how to build iO from standard crypto-
graphic assumptions. Given the enormous applicability of iO to a wide variety
of cryptographic problems, one of the most pressing open problems in the foun-
dations of cryptography is to find ways to construct iO from simpler building
blocks. Indeed, while there have been dozens of papers published showing how
to use iO to accomplish amazing things, only a handful of papers have explored
simpler building blocks that suffice for constructing iO.

One line of work toward this objective is by Lin [Lin16] and Lin and Vaikun-
tanathan [LV16], who showed how to build iO from constant-degree multilinear
maps. Unfortunately, no explicit constant was given in these works, and an
analysis of these published works shows that the degree requirement would be
in excess of 100. The ultimate “dream” goal of this line of work would be to re-
duce the degree requirement all the way to 2, allowing for the use of well-studied
bilinear maps, or barring that, to a low constant that may be supportable by
alternative secure low-degree multilinear map candidates.

We make substantial progress toward this goal by showing how to achieve iO
starting from PAFE. Specifically, we first construct ε-sublinear secret key func-



tional encryption for NC1 circuits, with constant ε < 1, starting from PAFE6 for
degree-d arithmetic circuits and a specific type of degree d-randomizing polyno-
mials [IK00, AIK06]7. We require that the randomizing polynomials satisfy some
additional properties such as the encoding polynomials should be homogenous,
the randomness complexity8 is ε-sub-linear in the circuit size and the decoding
algorithm should be executed as a sequence of linear functions. We call a scheme
that satisfies these additional properties as homogenous randomizing polynomi-
als with ε-sub-linear randomness complexity. As we will see later, we can achieve
ε-sub-linear randomness complexity property for free by employing an appropri-
ate pseudorandom generator of 1

ε′ -stretch, where constant ε′ > 1 is related to ε.
Hence, we only care about constructing homogenous randomizing polynomials
(without sublinear property) and we provide an information theoretic construc-
tion achieving the same.

Once we construct ε-sublinear secret key functional encryption, we can then
invoke the result of [BNPW16] and additionally assume learning with errors to
obtain iO. For this transformation, we are required to assume that the underlying
FE scheme and learning with errors is sub-exponentially secure. Thus,

Theorem 2 (Informal). We construct an indistinguishability obfuscation scheme
for P/poly assuming the following: for some constant d,

1. Sub-exponentially secure PAFE scheme for degree d arithmetic circuits with
multiplicative overhead in encryption complexity. From Theorem 1, this can
be based on sub-exponentially secure Assumptions #1 and #2 (Section 4.1).

2. Sub-exponentially secure degree d homogenous randomizing polynomials with
ε-sub-linear randomness complexity. This can be based on sub-exponentially
secure pseudorandom generators of stretch 1

ε′ , where constant ε′ > 1 is re-
lated to ε.

3. Sub-exponentially secure learning with errors.

Instantiation: We show how to leverage PAFE for degree-5 arithmetic circuits
to achieve iO, thus yielding the first iO construction from degree-5 multilinear
maps. The crucial step in this transformation is to first construct homogenous
randomizing polynomials with sub-linear randomness complexity of degree 15.
We first identify that the work of [AIK06] satisfies the required properties of
a degree-3 homogenous randomizing polynomials scheme. To achieve sublinear
randomness complexity, we assume an explicit degree-2 pseudo-random genera-
tor (PRGs) achieving super-linear stretch in the boolean setting, and a related
explicit degree-3 PRG achieving super-quadratic stretch in the arithmetic set-
ting. In particular we use a boolean PRG of stretch 1.49 and an algebraic PRG
of stretch 2.49 [OW14] (see also [AL16]). We then observe that for a special

6 We additionally require that PAFE has encryption complexity to be multiplicative
overhead in the message size. Our construction of PAFE satisfies this property.

7 The degree of a randomizing polynomial is defined to be the maximum degree of the
polynomials computing the encoding function.

8 Randomness complexity in this context refers to the size of the random string used
in the encoding algorithm.



class of circuits C, the degree of the above polynomials can be reduced to 5 if
we additionally allow for pre-processing of randomness. Also, we show how to
remove the algebraic PRG part in the construction of randomizing polynomials
for C.

As alluded to above, the fact that our PAFE can directly deal with an arith-
metic PRG in a degree-preserving manner is critical to allowing us to achieve iO
with just degree-5 mutlilinear maps.

Theorem 3 (Informal). We construct an indistinguishability obfuscation scheme
for P/poly assuming the following: for some constant d,

1. Sub-exponentially secure PAFE scheme for degree 5 arithmetic circuits with
multiplicative overhead in encryption complexity. From Theorem 1, this can
be based on sub-exponentially secure Assumptions #1 and #2 (Section 4.1).

2. Sub-exponentially secure degree 5 homogenous randomizing polynomials for C
with ε-sub-linear randomness complexity. This can be based on sub-exponentially
secure boolean PRG of stretch 1.01.

3. Sub-exponentially secure learning with errors.

Concurrent Work(s). In a concurrent work, Lin obtains a new IO construction
with a security reduction to 1) L-linear maps with the subexponential symmetric
external Diffie-Hellman (SXDH) assumption, 2) subexponentially secure locality-
L PRG, and 3) subexponential LWE. When using a locality 5 PRG, 5-linear maps
with the SXDH assumption suffice. The L-linear maps consist of L source groups
G1, · · · , GL, whose elements ga11 , · · · , gaLL can be ”paired” together to yield an
element in a target group ga1···aLT . The SXDH assumption on such multilinear
maps is a natural generalization of the SXDH assumption on bilinear maps: It
postulates that the DDH assumption holds in every source group Gd, that is,
elements gad , g

b
d, g

ab
d are indistinguishable from gad , g

b
d, g

r
d, for random a, b and r.

To obtain IO, she first constructs collusion-resistant FE schemes for com-
puting degree-L polynomials from L-linear maps, and then bootstraps such FE
schemes to IO for P, assuming subexponentially secure locality-L PRG and LWE.

A corollary of our degree-preserving PAFE construction is a construction of
FE for degree-2 polynomials from bilinear maps. Concurrently, two works [BCF16,
Gay16] achieved the same result based on concrete assumptions on bilinear maps.
We now give a technical overview of our approach.

1.2 Technical Overview

We give an informal description of the algorithms of projective arithmetic func-
tional encryption (PAFE). We focus on secret-key setting in this work.

– Setup: It outputs secret key MSK.
– Key Generation: On input an arithmetic circuit C and master secret key,

it produces a functional key skC .
– Encryption: On input message x, it outputs a ciphertext CT.



– Projective Decryption: On input a functional key skC and ciphertext CT,
it produces a partial decrypted value ι.

– Recover: On input many partial decrypted values {ιi} and a linear function
(specified as co-efficients), it outputs the result of applying the linear function
on the values contained in {ιi}.

We first show how to achieve iO starting from secret-key PAFE. Later, we show
how to obtain PAFE for degree D polynomials starting from degree D multilin-
ear maps.

iO from Secret-Key PAFE: We start with the goal of constructing a sub-
linear secret-key FE scheme for NC1 (from which we can obtain iO [BNPW16])
starting from PAFE for constant degree arithmetic circuits. Our goal is to min-
imize the degree of arithmetic circuits that suffices us to achieve sub-linear FE.

We start with the standard tool of randomizing polynomials to implement
NC1 using a constant degree arithmetic circuit. We use randomizing polynomi-
als with a special decoder: the decoder is a sequence of linear functions chosen
adaptively 9. At a high level the construction proceeds as follows: let the ran-
domizing polynomial of circuit C, input x and randomness r be of the form
p1(x; r), . . . , pN (x; r). The sub-linear FE functional key corresponding to a cir-
cuit C are a collection of PAFE keys for p1, . . . , pN . The encryption of x w.r.t
sublinear FE scheme is a PAFE encryption of (x, r). To obtain C(x), first ex-
ecute the projective decryption algorithm on key of pi and ciphertext of (x, r)
to obtain partial decrypted values corresponding to pi(x, r). Now, execute the
recover algorithm on input a linear function and the above partial decrypted
values, where the linear function is chosen by the decoder of the randomizing
polynomials scheme. Depending on the output of the recover algorithm, the de-
coder picks a new linear function. This process is repeated until we finally recover
the output of the circuit C.

Before we justify why this scheme is secure, we remark as to why this scheme
satisfies the sub-linear efficiency property. In order to achieve sub-linear effi-
ciency, we require that |r| = |C|1−ε for some ε > 0. Thus, we require random-
izing polynomials with sub-linear randomness complexity. We remark later how
to achieve this.

The next goal is to argue security: prior works either employ function privacy
properties [BS15] or Trojan techniques [CIJ+13, ABSV15] to make the above
approach work. However, going through these routes is going to increase the
degree of arithmetic circuits required to achieve sub-linear FE. Instead, we start
with a PAFE scheme with a stronger security guarantee called semi-functional
security. This notion is inspired by the dual system methodology introduced by
Waters [Wat09] in different context and later employed by several other works
(see for example, [LOS+10, GGHZ14]). Associated with this notion, there are
two types of objects:

9 That is, choice of every linear function could depend on the output of the previously
chosen linear functions on the encoding of computation.



– Semi-Functional Keys: A semi-functional key is associated with an arith-
metic circuit C and a hardwired value v.

– Semi-Functional Ciphertexts: A semi-functional ciphertext is generated just
using the master secret key.

We define how honestly generated keys, honestly generated ciphertexts and semi-
functional keys, semi-functional ciphertexts are required to behave with each
other in Table 1. Honestly generated key or ciphertext refers to generation of
key or ciphertext according to the description of the scheme.

Honestly
Generated
Keys

Semi-
Functional
Keys

Honestly
Generated
Ciphertexts

Honest de-
cryption

Honest de-
cryption

Semi-
Functional
Ciphertexts

Not Defined Output Hard-
wired Value

Table 1: We consider four possibilities of decryption: (a) honestly generated keys cor-
rectly decrypts honestly generated ciphertexts (from correctness property), (b) semi-
functional keys also correctly decrypts honestly generated ciphertexts, (c) there is no
correctness guarantee on the decryption of honestly generated keys on semi-functional
ciphertexts, (d) Finally, the decryption of semi-functional keys on semi-functional ci-
phertexts yields the hardwired value associated with the key.

A PAFE scheme is said to satisfy semi-functional security if both the following
definitions are satisfied:

– Indistinguishability of Semi-functional keys: It should be hard to distinguish
an honestly generated functional key of C from a semi-functional key of C
associated with any hardwired value v.

– Indistinguishability of Semi-functional Ciphertexts: It should be hard to dis-
tinguish an honestly generated ciphertext of x from a semi-functional cipher-
text if every functional key of C issued is a semi-functional key associated
with hardwired value C(x).

Once we have a secret key PAFE scheme that satisfies semi-functional security
then we can prove the security as follows: we consider a simple case when the
adversary only submits one message query (x0, x1).

– We first turn the functional key associated with an arithmetic circuit C into
a semi-functional key with the hardwired value C(x0).

– Once all the functional keys are semi-functional, we can now switch the
ciphertext of x0 to semi-functional ciphertext.



– Since C(x0) = C(x1), we can switch back the semi-functional keys to be
honestly generated functional keys.

– Finally, we switch back the ciphertext from semi-functional to honestly gen-
erated ciphertext of x1.

If the adversary requests multiple message queries, then the above process is to
be repeated one message query at a time.

Choice of Randomizing Polynomials with Sub-linear Randomness: The
next question is what randomizing polynomials do we choose to instantiate the
above approach. As we will see later, if we choose randomizing polynomials
with sub-linear randomness complexity of degree D then it suffices build PAFE
from degree D multilinear maps. Also, we will require the polynomials to be
homogenous.

Hence, our goal is to choose a homogenous randomizing polynomials with
minimal degree and also satisfying (i) linear decodability and (ii) sub-linear
randomness complexity properties. We achieve this in the following steps:

1. First, build randomizing polynomials with minimal degree. We start with [AIK06]
for NC1, where the polynomials are of degree 3. In spirit, this is essentially
information theoretic Yao with the wire keys being elements over Fp and
every wire key is associated with a random mask (which is represented as a
bit) that helps in figuring out which of the four entries to be decoded for the
next gate.

2. The above scheme already satisfies linear decodability property. This is be-
cause the decryption of every garbled gate is a linear operation. The linear
function chosen to decrypt one garbled gate now depends on the linear func-
tions chosen to decrypt its children gates.

3. Next, we tackle sub-linear randomness complexity: we generate the wire keys
and the random masks as the output of a PRG. The total length of all the
wire keys is roughly square the size of the NC1 circuit. This is because,
the size of the wire keys at the bottom most (input) layer are proportional
to the size of the circuit. We use an algebraic PRG of stretch (2 + ε) to
generate the wire keys and we use a boolean PRG to generate the random
masks. The degree of the algebraic PRG over Fp is 3 while the degree of the
boolean PRG represented over Fp is 5. When the above PRGs are plugged
into the randomizing polynomials construction from the above step, we get
the degree of the polynomials to be 15.

4. Finally, we show how to make the above randomizing polynomials homoge-
nous. This is done using a standard homogenization argument: add dummy
variables to the polynomials such that the degree of all the terms in the
polynomials are the same. While evaluating these polynomials, set all these
dummy variables to 1. This retains the functionality and at the same time
ensures homogeneity.

We can now use the above randomizing polynomials scheme to instantiate the
above approach. After partial decryption, we get partial decrypted values as-
sociated with {pi(x; r)}. Now, since the decoding is composed of many linear



functions, we can execute the Recover algorithm (multiple times) to recover the
output.

Reducing the Degree: We can apply some preprocessing to reduce the degree of
the above polynomials further. We remark how to reduce the degree to 5. Later,
in the technical sections, we explore alternate ways of reducing the degree, as
well.

Suppose we intend to construct sublinear FE for a specific class of circuits
C. In this case, we are required to construct randomizing polynomials only for
C ∈ NC1.

We define C as follows: every circuit C ∈ C of output length N is of the
form C = (C1, . . . , CN), where (i) Ci outputs the ith output bit of C, (ii) |Ci| =
poly(λ) for a fixed polynomial poly, (iii) Depth of Ci is c · log(λ), where c is a
constant independent of |C| and, (iv) Ci for every i ∈ [N] has the same topology
– what is different, however, are the constants associated with the wires. We
show later that it suffices to build sublinear FE for C to obtain iO. We now focus
on obtain randomizing polynomials for C.

We start with the randomizing polynomials scheme that we described above.
Recall that it involved generating a garbled table for every gate in the circuit
C. Moreover, the randomness to generate this garbled table is derived from
an algebraic and a boolean PRG. We make the following useful changes: let
C = (C1, . . . , CN) such that Ci outputs the ith output bit of C. Let wi1, . . . , w

i
nw

be the set of wires in Ci and Gi1, . . . , G
i
ng be the set of gates in Ci.

– We invoke nw number of instantiations of boolean PRGs bPRGw1 , . . . , bPRG
w
nw

and bPRGr1, . . . , bPRG
r
nw. All these PRGs have the same structure (i.e., same

predicates is used) and have degree 5 over arbitrary field (with slightly su-
perlinear stretch 1+ε). Pseudorandom generator bPRGwj is used to generate

wire keys for wires w1
j , . . . , w

N
j . Recall that earlier we were using an alge-

braic PRG of quadratic stretch. This is because the size of wire keys was
proportional to exponential in depth, which could potentially be linear in
the size of the circuit. However, since we are considering the specific circuit
class C, the depth of every circuit is c log(λ). And thus the size of the wire
keys is independent of the security parameter. This is turn allows us to use
just a PRG of superlinear stretch 1+ε. Finally, bPRGrj is used to generate

random masks for the wires w1
j , . . . , w

N
j .

– We now consider the [AIK06] randomizing polynomials associated with cir-
cuit C. As before, we substitute the variables associated with wire keys and
random masks with the polynomials associated with the appropriate PRGs.
The formal variables in the PRG polynomials are associated with the seed.

– The result of the above process is the encoding of C consisting of polynomials
p1, . . . , pN with variables associated with the seeds of PRGs. Note that the
degree of these polynomials is still 15.



– We then observe that there are polynomials q1, . . . , qT in seed variables such
that p1, . . . , pN can be rewritten in terms of q1, . . . , qT and moreover, the
degree of pi in the new variables {qi} is 5. The advantage of doing this is
that the polynomials {qi} can be evaluated during the encryption phase10.
The only thing we need to be wary of is the fact that T could be as big
as |C|. If this is the case then the encryption complexity would be at least
linear in |C|, which violate the sublinearity of the FE scheme. We show how
to carefully pick q1, . . . , qT such that T is sub-linear in |C| and the above
properties hold. We refer the reader to the technical sections for more details.

The only missing piece here is to show that sublinear FE for this special class of
circuits C with sub-exponential security loss implies iO. To show this, it suffices
to show that sublinear FE for C implies sublinear FE for all circuits. Consider the
transformation from FE for NC1 to FE for all circuits by [ABSV15] – the same
transformation also works for single-key sublinear secret key FE. We consider a
variant of their transformation. In this transformation, a sublinear FE key for
circuit C ′ is generated by constructing a circuit C that has hardwired into it
C ′ and value v. Circuit C takes as input x, PRF key K and mode b. If b = 0
it outputs a Yao’s garbled circuit of (C, x) computed w.r.t randomness derived
from K. If b = 1 it outputs the value v. We can re-write C as being composed
of sub-circuits C1, . . . , CN such that each of Ci is in NC1, |Ci| = poly(λ) and
depth of Ci is c · log(λ) for a fixed polynomial poly and fixed constant c. Intu-
itively, Ci, has hardwired into it gate Gi of C ′ and ith block of v. It computes a
garbled table corresponding to Gi if b = 0, otherwise it outputs the ith block of v.

Constructing PAFE: We now focus on building PAFE from multilinear maps.
The first attempt to encrypt the input x = (x1, . . . , x`inp) would be to just en-
code every xi separately. Now, during evaluation of circuits C1, . . . , CN on these
encodings will yield a top level encoding of Ci(x). This homomorphic evalua-
tion would correspond to projective decryption operation. The recover algorithm
would just compute a linear function on all the top level encodings of Ci(x) and
using zero test parameters, recover the answer if the output of the linear function
is 0.

However, we cannot allow the adversary to evaluate recover outputs for cir-
cuits Ci of his choice. We should ensure that he recovers outputs only for circuits
corresponding to which he has been issued functional keys. The main challenge
in designing a functional key for C is to guarantee authenticity – how do we
ensure that if the adversary, given a functional key corresponding to C, can only
evaluate C on these inputs? To ensure this, we introduce a parallel branch of
computation: we instead encode (xi, αi) where {αi} are random elements deter-
mined during the setup. Then as part of the functional key associated with C,
we give out an encoding of C({αi}) at the top level that will allow us to cancel
the αi part after computing C on encodings of {(xi, αi)} and in the end, just
get an encoding of C(x). However, to implement this, we need to make sure that

10 This idea is similar in spirit to the recent work of Bitansky et al. [BLP16], who
introduced degree reduction techniques in a different context.



the computation of C on {xi} and {αi} are done separately even though xi and
αi are encoded together.

The work of [Zim15, AB15] used the above idea in the context of designing
iO. As we will discuss below, we extend their techniques in several ways, to
deal with the problem of mixing ciphertext components and achieving the semi-
functional security properties we need from our PAFE scheme. However, before
we discuss these difficulties, we note that the work of [Zim15, AB15] implement
parallel branches by using composite order multilinear maps. Composite order
multilinear maps allow for jointly encoding for a vector of elements such that
addition and multiplication operations can be homomorphically performed on
every component of the vector separately.

However, one of the primary motivations for this line of work on building
constructions for iO from low-degree multilinear maps is to enable the use of
future candidate low-degree multilinear maps, where achieving composite order
may not be possible. Indeed, current instantiations of composite order multlinear
maps [CLT13] have poorly understood security properties, and have been subject
to efficient cryptanalytic attacks in some settings (see, e.g., [CHL+15, CGH+15]).
Thus, instead of relying on composite order multilinear maps, we do the follow-
ing: we introduce a primitive called a slotted encoding scheme, that allows for
the same functionality as offered by composite order multilinear maps. This
then helps us in implementing the idea of [Zim15, AB15] using a slotted encod-
ing scheme. We later show how to realize a constant degree slotted encoding
scheme using prime order multilinear maps. We define slotted encodings next.

Slotted Encoding: A slotted encoding scheme, parameterized by L (number of
slots), has the following algorithms: (i) Setup: this generates the secret param-
eters, (ii) Encode: it takes as input (a1, . . . , aL) and outputs an encoding of it,
(iii) Arithmetic operations: it takes two encodings of (a1, . . . , aL) and (b1, . . . , bL)
and performs arithmetic operations on every component separately. For instance,
addition of encoding of (a1, . . . , aL) and (b1, . . . , bL) would lead to encoding of
(a1 + b1, . . . , aL + bL), (iv) Zero Testing: It outputs success if the encoding of
(a1, . . . , aL) is such that ai = 0 for every i.

In this work, we will be interested in asymmetric slotted encodings, where
the slotted encodings is associated with a tree T such that every encoding is
associated with a node in T and two encodings can be paired only if their as-
sociated nodes are siblings. The degree of slotted encodings is defined to be the
maximum degree of polynomials the scheme lets us evaluate.

Constant Degree Slotted Encoding From Prime Order MMaps: We
start with the simple case when degree of slotted encodings is 2 (the bilinear
case). The idea of dual vector spaces were introduced by [OT08] and further
developed as relevant to us by [OT09, BJK15] to address this problem for bi-
linear maps. In this framework, there is an algorithm that generates 2n vectors
(µ1, . . . , µn), (ν1, . . . , νn) of dimension n such that: (i) inner product, 〈µi, νi〉 = 1
and, (ii) inner product, 〈µi, νj〉 = 0 when i 6= j. Using this, we can encode



(a1, . . . , an) associated with some node u in the tree as follows: encode every ele-
ment of the vector a1µ1+· · ·+anµn. The encoding of (b1, . . . , bn) associated with
a node v, which is a sibling of u, will be encodings of the vector b1ν1 + · · ·+bnνn.
Now, computing inner product of both these encodings will lead to an encoding
of a1 · b1 + · · ·+ an · bn.

This idea doesn’t suffice for degree 3. So our idea is to work modularly, and
consider multiple layers of vectors. The encoding of (a1, . . . , an) under node u
will be encodings of the vector (a1µ1 ⊗ µ′1 + · · · + anµn ⊗ µ′n)11, where {µ′i} is
a basis of a vector space associated with the parent of node u. Now, when this
is combined with encoding of b1ν1 + · · ·+ bnνn, computed under node v, we get
encoding of (a1b1µ

′
1 + · · · anbnµ′n). Using this we can then continue for one more

level.

To generalize this for higher degrees we require tensoring of multiple vectors
(potentially as many as the depth of the tree). This means that the size of the
encodings at the lower levels is exponential in the depth and thus, we can only
handle constant depth trees. Implementing our tensoring idea for multiple levels
is fairly technical, and we refer the reader to the relevant technical section for
more details.

PAFE from Slotted Encodings: Using slotted encodings, we make a next
attempt in constructing PAFE:

– To encrypt x = (x1, . . . , x`inp), we compute a slotted encoding of (xi, αi),
where αi are sampled uniformly at random during the setup phase.

– A functional key of C consists of a slotted encoding of (0, C({αi})) at the
top level.

The partial decryption first homomorphically evaluates C on slotted encodings
of (xi, αi) to get a slotted encoding of (C({xi}), C({αi})). The second slot can
be ‘canceled’ using top level encoding of (0, C({αi})) to get an encoding of
(C({xi}), 0). The hope is that if the evaluator uses a different circuit C ′ then
the second slot will not get canceled and hence, he would be unable to get a zero
encoding.

However, choosing a different C ′ is not the only thing an adversary can do.
He could also mix encodings from different ciphertexts and try to compute C on
it – the above approach does not prevent such attacks. In order to handle this,
we need to ensure that the evaluation of ciphertexts can never be mixed. In order
to solve this problem, we use a mask γ that be independently sampled for every
ciphertext. Every encoding will now be associated with this mask. Implementing
this idea will crucially make use of the fact that the polynomial computed by
the arithmetic circuit is a homogenous polynomial.

Yet another problem arises is in the security proof: for example, to design
semi-functional keys, we need to hardwire a value in the functional key. In order
to enable this, we introduce a third slot. With this new modification, we put

11 Here, µi ⊗ µj denotes the tensoring of µi and µj .



forward a template of our construction. Our actual construction involves more
details which we skip to keep this section informal.

– To encrypt x = (x1, . . . , x`inp), we compute a slotted encoding of (xi, αi, 0),
where αi are sampled uniformly at random during the setup phase. Addi-
tionally, you give out encoding of (0, S, 0) at one level lower than the top
level, where S is also picked at random in the setup phase.

– A functional key of C consists of a slotted encoding of (0, C({αi}) · S−1, 0)
at the top level.

The decryption proceeds as before, except that the encodings of (0, C({αi}) ·
S−1, 0) and (0, S, 0) are paired together before we proceed.

Note that in both the ciphertext and the functional key, the third slot is not
used at all. The third slot helps in the security proof. To see how we describe
the semi-functional parameters at a high level as follows:

- Semi-functional Ciphertexts: To encrypt x = (x1, . . . , x`inp), we compute a
slotted encoding of (0, αi, 0), where αi is computed as before. Additionally,
you give out encoding of (0, S, 1) at one level lower than the top level, where
S is also picked at random in the setup phase. Note that the third slot now
contains 1 which signals that it is activated.

- Semi-functional Keys: A functional key of C consists of a slotted encoding of
(0, C({αi}), v) at the one level lower than top level, where v is the hardwired
value associated with the semi-functional key.

During the decryption of semi-functional key with honestly generated ciphertext,
the third slot will not be used since it will be deactivated in the ciphertext. So the
decryption proceeds normally. However, during the decryption of semi-functional
key with semi-functional ciphertexts, the third slot is used since the third slot
is activated in the ciphertext. We argue the security of our construction in the
ideal multilinear map model.

Comparison With [LV16]. We now compare our work with the recent exciting
work of [LV16], in order to illustrate some differences that allow us to achieve
lower degree. The work of [LV16] first defines FE for NC0 with a non-trivial
efficiency property and give a new bootstrapping theorem12 to achieve compact
FE. They then show how to achieve FE for NC0 from constant degree multilinear
maps13. Interestingly, they use arithmetic randomizing polynomials within their
construction of FE for NC0 – this will be important as we note below.

12 Their bootstrapping theorem also works if we start with FE for constant degree
polynomials over F2.

13 Note that, in particular, the security of their scheme reduces to a succinct assumption
called the multilinear joint SXDH assumption. As we noted earlier, unfortunately this
assumption is not known to be instantiable with existing multilinear map candidates.
However, one can posit a different assumption that directly assumes their FE for
NC0 scheme to be secure, and we do not know of any attacks on that (non-succinct)
assumption.



In contrast, we do not build FE for NC0, but rather show how to proceed
directly from projective arithmetic FE for degree-5 arithmetic circuits to iO
(without additional use of multilinear maps). Furthermore, our construction of
PAFE is degree preserving, so to achieve PAFE for degree-5 arithmetic circuits,
we only need degree-5 multilinear maps. In contrast, in [LV16], to build FE for
NC0, their work has to “pay” in degree not only based on the depth of the NC0

circuit that underlies each secret key, but also for the arithmetic randomizing
polynomial that they apply to the NC0 circuit. This adds a significant overhead
in the constant degree their multilinear map must support. Our approach is sim-
pler, as our randomizing polynomials are only used in the path from PAFE to
iO, which does not use multilinear maps in any additional way. There are, of
course, many other technical differences between our work and [LV16], as well.
Another conceptual idea that we introduce, and that is different from [LV16],
is the notion of slotted encodings, an abstraction of composite order multilin-
ear maps, and our method for emulating slotted encodings using prime order
multilinear maps without increasing the degree.

Organization. We define the notion of projective arithmetic functional encryp-
tion and present a degree-preserving construction of PAFE from slotted encod-
ings. In the full version, we show how to combine PAFE and (a stronger notion
of) randomizing polynomials to obtain secret key functional encryption that can
then bootstrapped to obtain iO.

2 Projective Arithmetic Functional Encryption

Throughout this paper we will use standard cryptographic notation and con-
cepts; for details, refer to the full version. In this section, we introduce the no-
tion of projective arithmetic functional encryption scheme. There are two main
differences from a (standard) functional encryption scheme:

– Functional keys are associated with arithmetic circuits.
– The projective decryption algorithm only outputs partial decrypted values.

There is a recover algorithm that computes on the partial decrypted values
and produces an output.

2.1 Definition

We can consider either a public key projective arithmetic FE scheme or a secret
key projective arithmetic secret key FE scheme. In this work, we define and
construct a secret key projective arithmetic FE scheme.

A secret-key projective arithmetic functional encryption (FE) scheme PAFE
over field Fp is associated with a message space X = {Xλ}λ∈N and a arithmetic
circuit class C = {Cλ}λ∈N over Fp. Here, X comprises of strings with every
symbol in the string belongs to Fp.

PAFE comprises of a tuple (Setup,KeyGen,Enc,ProjectDec) of PPT algo-
rithms with the following properties:



– Setup(1λ): The setup algorithm takes as input the unary representation of
the security parameter, and outputs a secret key MSK.

– KeyGen(MSK, C): The key-generation algorithm takes as input the secret key
MSK and a arithmetic circuit C ∈ Cλ, over Fp, and outputs a functional key
skC .

– Enc(MSK, x): The encryption algorithm takes as input the secret key MSK
and a message x ∈ Xλ, and outputs a ciphertext CT.

– ProjectDec(skC ,CT): The projective decryption algorithm takes as input a
functional key skC and a ciphertext CT, and outputs a partial decrypted
value ι.

– Recover(c1, ι1, . . . , c`f , ι`f ): The recover algorithm takes as input co-efficients
c1, . . . , c`f ∈ Fp, partial decrypted values ι1, . . . , ι`f and outputs out.

We first define the correctness property and later, define the security property.

B-Correctness. The correctness is parameterized by a set B ⊆ Fp. We emphasize
that B is a set of polynomial size, i.e., |B| = poly(λ). Consider an honestly gener-
ated ciphertext CT of input x. Consider honestly generated keys skC1

, . . . , skC`f
.

Denote the corresponding decrypted values to be ι1, . . . , ι`f . If it holds that∑`f
i=1 ci · Ci(x) = out∗ ∈ B then we require that Recover(c1, ι1, . . . , c`f , ι`f ),

where ci ∈ Fp, always outputs out∗.

Remark 1. Our construction only supports the case when B = {0} when imple-
mented by multilinear maps that only allows for zero testing at the final level.
However, if encodings of 1 are given out at the top level, then B can be defined
to be the set {0, . . . ,poly(λ)}, where poly is a fixed polynomial.

Remark 2 ((B,B′)-Correctness). We can also consider a property that we call
(B,B′)-correctness. It is the same as B-correctness except that the co-efficients
ci input to the above evaluation algorithm has to be in the set B′ ⊆ Fp.

Remark 3 (Alternate Notation of Evaluation). Instead of feeding coefficients to
the evaluation algorithm, we can directly feed in the description of the linear
function. That is, if out∗ ← Recover(f, (ι1, . . . , ι``f )) with f being a linear function
then we require that f(C1(x), . . . , C``f ) = out∗, where ιi is obtained by decrypting
a functional key of Ci with x.

2.2 Semi-Functional Security

We introduce a notion of semi-functional security associated with projective
arithmetic FE. We refer the reader to the technical overview for an informal
intuition behind the notion of semi-functional security.

We define the following two auxiliary algorithms.



Semi-Functional Key Generation, sfKG(MSK, C, θ): On input master secret
key MSK, arithmetic circuit C, value θ, it outputs a semi-functional key skC .

Semi-Functional Encryption, sfEnc(MSK, 1`inp): On input master secret key
MSK and `inp, it outputs a semi-functional ciphertext CT.

We now introduce two security properties. We start with the first property,
namely indistinguishability of semi-functional keys.

This property states that it should be hard for an efficient adversary to dis-
tinguish a semi-functional key associated with circuit C and value v from an
honestly generated key associated with C. Additionally, the adversary can re-
quest for other semi-functional keys or honestly generated keys. The ciphertexts
will be honestly generated.

Definition 1 (Indistinguishability of Semi-Functional Keys). Consider
a projective arithmetic functional encryption scheme PAFE = (Setup,KeyGen,
Enc,ProjectDec,Recover). We say that PAFE satisfies indistinguishability of
semi-functional keys with respect to sfKG if for any PPT adversary A there
exists a negligible function negl(·) such that

AdvtgePAFEA (λ) =
∣∣∣Pr[ExptPAFEA (λ, 0) = 1]− Pr[ExptPAFEA (λ, 1) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the ex-
periment ExptPAFEA (1λ, b), modeled as a game between the adversary A and a
challenger, is defined as follows:

1. Setup phase: The challenger samples MSK← Setup(1λ).

2. Message queries: On input 1λ the adversary submits (x1, . . . , x`x) for some
polynomial `x = `x(λ).

3. Function queries: The adversary also submits arithmetic circuit queries to
the challenger. There are three tuples the adversary submits:

– This comprises of circuits and values associated with every circuit; (C0
1 , θ1, . . . , C

0
`f
, θ`f ).

Here, θj ∈ Fp.

– This comprises of just circuits; (C1
1 , . . . , C

1
`′f

).

– This corresponds to a challenge circuit pair query (C∗, θ∗)

4. Challenger’s response: The challenger replies with (CT1, . . . ,CT`x), where
CTi ← Enc(MSK, xi) for every i ∈ [`x]. It also sends the following functional
keys: for every j ∈ [`f ],

– skC0
j
← sfKG(MSK, C0

j , θj).

– skC1
j
← KeyGen(MSK, C1

j ).

– If b = 0, generate skC∗ ← sfKG(MSK, C∗, θ∗). Otherwise generate skC∗ ←
KeyGen(MSK, C∗).

5. Output phase: The adversary outputs a bit b′ which is defined as the output
of the experiment.



The second property is indistinguishability of semi-functional ciphertexts. This
property states that it should be hard for an efficient adversary to distinguish
honestly generated ciphertext of x from a semi-functional ciphertext. In this
experiment, it is required that the adversary only gets semi-functional keys as-
sociated with circuits Ci and value vi such that vi = Ci(x).

Definition 2 (Indistinguishability of Semi-Functional Ciphertexts). Con-
sider a projective arithmetic functional encryption scheme PAFE = (Setup,KeyGen,
Enc,ProjectDec,Recover). We say that PAFE satisfies indistinguishability of
semi-functional ciphertexts with respect to sfEnc if for any PPT adversary
A there exists a negligible function negl(·) such that

AdvtgePAFEA (λ) =
∣∣∣Pr[ExptPAFEA (λ, 0) = 1]− Pr[ExptPAFEA (λ, 1) = 1]

∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where for each b ∈ {0, 1} and λ ∈ N the ex-
periment ExptPAFEA (1λ, b), modeled as a game between the adversary A and a
challenger, is defined as follows:

1. Setup phase: The challenger samples MSK← Setup(1λ).
2. Message queries: On input 1λ the adversary submits (x1, . . . , x`x) for some

polynomial `x = `x(λ) and it also sends the challenge query x∗ .
3. Function queries: The adversary also submits arithmetic circuit queries to

the challenger. The query is of the form (C1, θ1, . . . , C`f , θ`f ). It should hold
that θj = Cj(x

∗) for every j ∈ [`f ]. If it does not hold, the experiment is
aborted.

4. Challenger’s response: The challenger replies with (CT1, . . . ,CT`x), where
CTi ← Enc(MSK, xi) for every i ∈ [`x]. It sends CT∗ ← Enc(MSK, x∗)
only if b = 0, otherwise it sends CT∗ ← sfEnc

(
MSK, 1|x

∗|). Finally, it
sends the following functional keys: for every j ∈ [`f ], compute skCj

←
sfKG(MSK, Cj , θj).

5. Output phase: The adversary outputs a bit b′ which is defined as the output
of the experiment.

Remark 4. One can also define a stronger property where instead of submit-
ting one challenge message x∗, the challenger submits a challenge message pair
(x∗0, x

∗
1) and the requirement that for every circuit Cj query, Cj(x

∗
0) = Cj(x

∗
1).

The reduction, in response, encrypts x∗b where b is the challenge bit. It can be
seen that this stronger security property is implied by the above property.

We now define semi-functional security property.

Definition 3. We say that a projective arithmetic FE scheme, over Fp, is said
to be semi-functionally secure if it satisfies both (i) indistinguishability of
semi-functional keys property and, (ii) indistinguishability of semi-functional ci-
phertexts property.

2.3 Other Notions

We also consider the following two notions of projective arithmetic FE.



Constant Degree Projective Arithmetic FE. In this work, we are interested in
projective arithmetic FE for circuits that compute constant degree arithmetic
circuits. In particular, we consider constant degree arithmetic circuits over arbi-
trary field Fp.

Multiplicative Overhead in Encryption Complexity. We say that a projective
arithmetic FE scheme, over field Fp, satisfies multiplicative overhead in encryp-
tion complexity property if the complexity of encrypting x is |x| ·poly(λ, log(p)).
That is,

Definition 4 (Multiplicative Overhead in Encryption Complexity). Con-
sider a projective arithmetic FE scheme PAFE = (Setup,KeyGen,Enc,ProjectDec),
over field Fp. We say that PAFE satisfies multiplicative overhead in encryption
complexity if |Enc(MSK, x)| = |x| · poly(λ, log(p)), where MSK is the secret key
generated during setup.

Circuits versus Polynomials. Often in this manuscript, we interchangeably use
arithmetic circuits over Fp with polynomials computed over Fp. If there is a poly-
nomial p over Fp having poly(λ) number of terms then there is a poly′(λ)-sized
arithmetic circuit over Fp, where poly and poly′ are polynomials. However, the
reverse in general need not be true: if there is a poly′(λ)-sized arithmetic circuit
over Fp then the associated polynomial could have exponentially many terms.
For example: (x1 +x2) · · · (x2n−1 +x2n) has a succinct circuit representation but
when expanded as a polynomial has exponential number of terms.

In this work, we are only interested in arithmetic circuits which can be ex-
pressed as polynomials efficiently. In particular, we consider arithmetic circuits
of constant fan-in and constant depth.

3 Slotted Encodings

We define the notion of slotted encodings: this concept can be thought of as
abstraction of composite order multilinear maps. It allows for jointly encoding
a vector of elements. Given the encodings of two vectors, using the addition
and multiplication operations it is possible to either homomorphically add the
vectors component-wise or multiply them component-wise.

To define this primitive, we first define the notion of structured asymmetric
multilinear maps in Section 3.1. We show in Section 3.2 how to instantiate this
form of structured asymmetric multilinear maps using current known instantia-
tions of multilinear maps. Once we have armed ourselves with the definition of
structured multilinear maps, we define the notion of slotted encodings (a special
type of structured multilinear maps) in Section 3.3. In the full version, we show
how to realize slotted encodings using structured asymmetric multilinear maps
for the constant degree14 case.

14 As we see later, this corresponds to the scenario where the structured multilinear
maps is associated with constant number of bilinear maps.



3.1 Structured (Asymmetric) Multilinear Maps

We define the notion of structured asymmetric multilinear maps. It is associ-
ated with a binary tree T . Every node is associated with a group structure and
additionally, every non leaf node is associated with a noisy bilinear map. Every
element in this group structure has multiple noisy representations as in the case
of recent multilinear map candidates [GGH13a, CLT13, GGH15].

Suppose nodes u and v are children of node w in tree T . And let the respective
associated groups be Gu,Gv and Gw respectively. Let euv be the bilinear map
associated with node w. Then euv : Gu ×Gv → Gw.

Before we define structured multilinear maps we first put forward some no-
tation about trees and also define some structural properties that will be useful
later.

Notation About Trees: Consider a tree T = (V,E), where V denotes the set
of vertices and E denotes the set of edges. We are only interested in binary trees
(every node has only two children) in this work.

1. We define the function lc : [V ] → {0, 1} such that lc(u) = 0 if u is the left
child of its parent, else lc(u) = 1 if u is the right child of its parent.

2. We define par : [V ]→ [V ] such that par(u) = v if v is the parent of u.
3. rt(T ) = w if the root of T is w.

Definition of Structured Multilinear Maps. A structured multilinear maps is de-
fined by the tuple SMMap = (T = (V,E), {Gu}u∈V ) and associated with ring
R, where:

– T = (V,E) is a tree.
– Gu is a group structure associated with node u ∈ V . The order of the group

is N .

The encoding of elements and operations performed on them are specified by
the following algorithms:

– Secret Key Generation, Gen(1λ): It outputs secret key sk and zero test
parameters ztpp.

– Encoding, Encode(sk, a, u ∈ V ): In addition to secret key sk, it takes as
input a ∈ R and a node u ∈ V . It outputs an encoding [a]u.

– Add, [a]u + [b]u = [a+ b]u. Note that only elements corresponding to the
same node in the tree can be added.

– Multiply, [a]u ◦ [b]v = [a · b]w. Here, w is the parent of u and v, i.e., w =
par(u) and w = par(v).

– Zero Test, ZeroTest(ztpp, [a]r): On input zero test parameters ztpp and an
encoding [a]r at level r, where r = rt(T ), output 0 if and only if a = 0.

We define degree of structured multilinear maps.



Definition 5 (Degree of SMMAP). Consider a structured multilinear maps
scheme given by SMMap = (T = (V,E), {Gu}u∈V ). The degree of SMMap is
defined recursively as follows.
We assign degree to every node in the tree as follows:

– Degree of every leaf node u is 1.
– Consider a non leaf node w. Let u and v be its children. The degree of w is

the sum of degree of u and degree of v.

The degree of SMMap is defined to be the degree of the root node.

Remark 5. If we restrict ourselves to only binary trees (which is the case in our
work) and if d is the depth of the binary tree T then the degree of SMMap,
associated with (T, {Gu}u∈V ) is 2d.

Useful Notation: We employ the following notation that will be helpful later.
Suppose [v1]i , . . . , [vm]i be a vector of encodings and let v = (v1, . . . , vm) ∈ ZmN .
Then, [v]

m
i denotes ([v1]i , . . . , [vm]i). If the dimension of the vector is clear, we

just drop m from the subscript and write [v]i.

3.2 Instantiations of Structured Multilinear Maps

We can instantiate structured multilinear maps using the ‘asymmetric’ version
of existing multilinear map candidates [GGH13a, CLT13]. For example, in asym-
metric GGH, every encoding is associated with set S. Two encodings associated
with the same set can be added. If there are two encodings associated with sets
S1 and S2 respectively, then they can be paired if and only if S1 ∩ S2 = ∅. The
encoding at the final level is associated with the universe set, that is the union
of all the sets.

To construct a structure multilinear map associated with (T = (V,E), φ),
we can start with a universal set U = {1, . . . , |V ′|}, where V ′ ⊆ V is the set
of leaves in T . That is, there are as many elements as the number of leaves in
V . We then design a bijection ψ : U → [V ′]. An encoding is encoded at a leaf
node u under the set Su = {ψ−1(u)}. For a non leaf node w, the encoding is
performed under the set Sw = Su ∪ Sv, where u and v are the children of w.

3.3 Definition

A L-slotted encoding SEnc is a type of structured multilinear maps SMMap =
(T = (V,E), {Gu}u∈V ) associated with ring R and is additionally parameterized
by L. It consists of the following algorithms:

– Secret Key Generation, Gen(1λ): It outputs secret key sk and zero test
parameters ztpp.

– Encoding, Encode(sk, a1, . . . , aL, u ∈ V ): In addition to secret key sk, it
takes as input a1, . . . , aL ∈ R and a node u ∈ V . If u is not the root node,
it outputs an encoding [a1| · · · |aL]u. If u is indeed the root node, it outputs

an encoding
[∑L

i=1 ai

]
u
.



– Add, [a1| · · · |aL]u + [b1| · · · |bL]u = [a1 + b1| · · · |aL + bL]u. Note that only
elements corresponding to the same node in the tree can be added. Further,
the elements in the vector are added component-wise.

– Multiply: Suppose w = par(u) and w = par(v).

[a1| · · · |aL]u ◦ [b1| · · · |bL]v =


[a1b1| · · · |aLbL]w if rt(T ) 6= w[
L∑
i=1

aibi

]
w

otherwise

The elements in the vectors are multiplied component-wise.
– Zero Test, ZeroTest(ztpp, [a]r): On input zero test parameters ztpp and an

encoding [a]r at level r, where r = rt(T ), output 0 if and only if a = 0.

Remark 6. The degree of slotted encodings can be defined along the same lines
as the degree of structured multilinear maps.

3.4 Evaluation of Polynomials on Slotted Encodings

We consider the homomorphic evaluation of (T, φ)-respecting polynomials on
slotted encodings. We first define evaluation of (T, φ)-respecting monomials on

slotted encodings and then using this notion define evaluation of (T,
−→
φ )-respecting

polynomials on slotted encodings.

HomEval (t,SMMap, {E1,u}u∈V , . . . , {En,u}u∈V ): The input to this algorithm is
(T, φ)-respecting monomial t ∈ Fp[y1, . . . , yn], slotted encoding scheme SMMap =
(T = (V,E), {Gu}u∈V ) and slotted encodings Ei,u, for every i ∈ [n] and every
u ∈ V , encoded under Gu.

The evaluation proceeds recursively as follows: for every non leaf node u ∈ V ,

set Ẽu = Eφ(u),u. Consider the case when u is a non-leaf node and let v and w

be the children of u. Compute encoding associated with node u as Ẽu = Ẽv ◦ Ẽw.

Let rt be the root of T . Output the encoding Ẽrt associated with rt.

HomEval (p,SMMap, {E1,u}u∈V , . . . , {En,u}u∈V ): The input to this algorithm is

(T,
−→
φ )-respecting polynomial p ∈ Fp[y1, . . . , yn], slotted encoding scheme SMMap =

(T = (V,E), {Gu}u∈V ) and slotted encodings Ei,u, for every i ∈ [n] and every
u ∈ V , encoded under Gu.

Let p =
∑n
i=1 citi, for ci ∈ Fp and ti is a (T, φi)-respecting monomial

for every i ∈ [n]. The evaluation proceeds as follows: for every i ∈ [n], exe-

cute Ẽrt

(i)
← HomEval(ti,SMMap, {E1,u}u∈V , . . . , {En,u}u∈V ). Compute Ert =

n∑
i=1

ciẼrt

(i)
. Output the encoding Ert.

Remark 7. Based on the current implementation of multilinear maps, given an
encoding of an element a ∈ Fp, we don’t know how to securely obtain encoding of



c·a for some scalar c ∈ Fp of our choice. But instead, we can still obtain encoding
of c · a, when c is small (for instance, polynomial in security parameter). This
can achieved by adding encoding of a, c number of times.

4 Projective Arithmetic FE from Slotted Encodings

We show how to construct projective arithmetic FE starting from the notion of
slotted encodings defined in Section 3.3.

Consider a L-slotted encoding scheme SEnc, defined with respect to struc-
tured multilinear maps SMMap = (T = (V,E), {Gu}u∈V ) and is parameterized
by L. We construct a multi-key secret key projective arithmetic functional en-
cryption scheme PAFE for a function class C = {Cλ}λ∈N as follows. Here, Cλ
consists of functions with input length λ and output length poly(λ).

Setup(1λ): On input security parameter λ,

– It executes the secret key generation algorithm of the slotted encoding scheme
to obtain sk← Gen(1λ).

– Sample values αi,u ∈ Fp for every i ∈ [`inp], u ∈ V at random. We define `inp
later. Denote −→α = (αi,u)i∈[`inp],u∈V .

– Sample a random value S ∈ Fp.

It outputs MSK = (sk,−→α , S).

KeyGen(MSK, p): It takes as input master secret key MSK and a T -respecting
polynomial p ∈ Fp[y1, . . . , y`inp ] associated with an arithmetic circuit C, where
T is the same tree associated with the structured multilinear maps. Since p is
T -respecting, we have the following: There exists φ = (φ1, . . . , φK) with φi :
[V ]→ [`inp] such that:

– p =
∑K
j=1 citi, where ci ∈ Fp.

– ti is a (T, φi)-respecting monomial in `inp variables.

Let δi be obtained by first assigning αφi(u),u to every leaf node u and then
evaluating T 15. That is, δi is the value obtained at the root of T . Assign ∆ =∑K
i=1 ci · δi.
Let rt be the root of T and let u be its left child and v be its right child.

Compute EC = Encode (sk, (0, ∆ · S, p(0; 0)), u) for every i ∈ [n]. Output skC =
(C,EC).

Enc(MSK, x): It takes as input master secret key MSK and input x ∈ {0, 1}`x .
Let inp = x and `inp = |x|.

It also samples an element γ ∈ Fp at random. For every i ∈ [`inp], u ∈ V and
u is a leaf node, encode the tuple (inpi, γ ·αi,u, 0) with inpi denoting the ith bit of

inp, as follows: Einp
i,u = Encode (MSK, (inpi, γ · αi,u, 0), u). Also encode γD under

15 Note that every non leaf node is treated as a multiplication gate.



group Gv, where v is the right child of rt: Eγ = Encode(MSK, (0, γD ·S−1, 0), v).
Recall that D is the degree of homogeneity of RP.

Output the ciphertext CT =
(
(Ei,u)i∈[inp],u∈V ,Eγ

)
.

ProjectDec(skC ,CT): It takes as input functional key skC and ciphertext CT. It
parses skC as (C,EC) and CT as

(
(Ei,u)i∈[inp],u∈V ,Eγ

)
. It executes the following:

– Compute out1 = HomEval(p,SMMap, (Ei,u)i∈[inp],u∈V ).
– Compute out2 = EC ◦ Eγ .

Output the partial decrypted value ι = out1 − out2.

Recover(c1, ι1, . . . , c`f , ι`f ): On input co-efficients ci ∈ Fp, partial decrypted val-
ues ιi, it first computes:

temp = c1ι1 + · · ·+ c`f ι`f

The addition carried out above corresponds to the addition associated with the
slotted encodings scheme. Now, perform ZeroTest(ztpp, temp) and output the
result. Note that the output is either in {0, . . . , B} or its ⊥.

(B,B′)-Correctness. From the correctness of HomEval and slotted encodings, it
follows that out1 is an encoding of (p(x), γD · p({αi,u}), 0). Further, out2 is an
encoding of (0, γD · p({αi,u}), 0). Thus, the partial decrypted value out1 − out2
is an encoding of (p(x), 0, 0).

With this observation, we remark that for many polynomials p1, . . . , pN , the
decryption of functional key of pi on encryption of x yields as partial decrypted
values, encodings of (pi(x), 0, 0). Thus, sum of all encodings of (ci · pi(x), 0, 0),
where ci ∈ B′ and B′ = {0, . . . ,poly(λ)}, yields a successful zero test query if

and only if
∑N
i=1 cipi(x) = 0.

We remark that if ztpp just contains parameters to test whether a top level
encoding is zero or not, then the above construction only supports B = {0}. If
it additionally contains encoding of 1, then we can set B = poly(λ).

Encryption Complexity: Multiplicative Overhead. We calculate the encryption
complexity as follows.

|Enc(MSK, x)| = |x| · (Number of groups in SMMap) · poly(λ)

Thus, the above scheme satisfies the multiplicative overhead property.

4.1 Proof of Security

Semi-Functional Algorithms: We describe the semi-functional encryption
and the key generation algorithms. We start with the semi-functional key gen-
eration algorithm.



sfKG(MSK, p, θ): Parse MSK as (sk,−→α , S). In addition, it takes as input a (T, φ)-
respecting polynomial p and value θ to be hardwired in the third slot. Let p =∑K
j=1 cjtj , where tj is a (T, φj)-respecting monomial in `inp variables. Let δj be

obtained by first assigning αφj(u),u to every leaf node u and then evaluating T .

That is, δj is the value obtained at the root of T . Assign ∆ =
∑K
j=1 ci,j · δj .

Let rt be the root of T and let u be its left child and v be its right child.
Compute Ep = Encode (sk, (0, ∆ · S, p(0; 0)− θ), u) for every i ∈ [n]. Output
skC = (p,Ep).

We now describe the semi-functional encryption algorithm.

sfEnc(MSK, 1`inp): Parse MSK as (sk,−→α ). It samples an element γ ∈ Fp at ran-
dom.

For every i ∈ [`inp], u ∈ V and u is a leaf node, encode the tuple (0, γ ·αi,u, 0)

as follows: Einp
i,u = Encode (MSK, (0, γ · αi,u, 0), u). Also encode γD under group

Gv, where v is the right child of rt: Eγ = Encode(MSK, (0, γD, 1), v). Recall that
D is the degree of homogeneity of RP.

Output the ciphertext CT =
(
(Ei,u)i∈[inp],u∈V ,Eγ

)
.

We now prove the indistinguishability of semi-functional ciphertexts and indis-
tinguishability of functional keys properties. Before that we state the assump-
tions on the slotted encodings upon which we prove the security of our scheme.

Assumptions We define the following two assumptions.

Assumption #1: For all (i) inputs x = (x1, . . . , xµ) ∈ {0, 1}µ·`x , (ii) polynomials
p ∈ Fp[y1, . . . , yn],q = (q1, . . . , qN ) ∈ Fp[y1, . . . , yn]N be (T, φ)-respecting poly-

nomials, (iii) subset I ⊆ [n] and finally, (iv) values θ ∈ Fp, Θ = (θi)i∈I ∈ F|I|p

and for every sufficiently large λ ∈ N, the following holds:

{ KeyGen(MSK, p), aux[x,q, I, Θ] } ∼=c { sfKG(MSK, p, θ), aux[x,q, I, Θ]}

– MSK← Setup(1λ)
– aux[x,q, I, Θ] = (CT1, . . . ,CTµ, sk1, . . . , skN ) consists of two components:

1. For every i ∈ [n], compute CTi ← Enc(MSK, xi).
2. For every i ∈ [N ] and i ∈ I, compute ski ← sfKG(MSK, qi, θi). Else if

i /∈ I, compute ski ← KeyGen(MSK, qi).

Assumption #2: For all (i) inputs x∗ ∈ {0, 1}`x ,x = (x1, . . . , xµ) ∈ {0, 1}µ·`x ,
(ii) polynomials q = (q1, . . . , qN ) ∈ Fp[y1, . . . , yn]N be (T, φ)-respecting poly-
nomials and finally, (iii) values Θ = (θi)i∈[N ] and for every sufficiently large
λ ∈ N, the following holds:{

sfEnc(MSK, 1`inp), aux[x,q, Θ]
} ∼=c { Enc(MSK, x∗), aux[x,q, Θ]}



– MSK← Setup(1λ)
– aux[x,q, Θ] = (CT1, . . . ,CTµ, sk1, . . . , skN ) is computed in the following

way:
1. For every i ∈ [n], compute CTi ← Enc(MSK, xi).
2. For every i ∈ [N ] θi = qi(x

∗).
3. For every i ∈ [N ], compute ski ← sfKG(MSK, qi, θi).

The following two theorems directly follow from the above two assumptions.

Theorem 4. The scheme PAFE satisfies indistinguishability of semi-functional
keys under Assumption #1.

Theorem 5. The scheme PAFE satisfies indistinguishability of semi-functional
ciphertexts under Assumption #2.

From the above two theorems, we have the following theorem.

Theorem 6. The PAFE satisfies semi-functional security under Assumptions
#1 and #2.
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