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Abstract. We revisit the security of cryptographic primitives in the
random-oracle model against attackers having a bounded amount of aux-
iliary information about the random oracle. This situation arises most
naturally when an attacker carries out offline preprocessing to generate
state (namely, auxiliary information) that is later used as part of an
on-line attack, with perhaps the best-known example being the use of
rainbow tables for function inversion. The resulting model is also criti-
cal to obtain accurate bounds against non-uniform attackers when the
random oracle is instantiated by a concrete hash function.

Unruh (Crypto 2007) introduced a generic technique (called pre-
sampling) for analyzing security in this model: a random oracle for which
S bits of arbitrary auxiliary information can be replaced by a random
oracle whose value is fixed in some way on P points; the two are distin-
guishable with probability at most O(

√
ST/P ) by attackers making at

most T oracle queries. Unruh conjectured that the distinguishing advan-
tage could be made negligible for a sufficiently large polynomial P . We
show that Unruh’s conjecture is false by proving that the distinguishing
probability is at least Ω(ST/P ).

Faced with this negative general result, we establish new security
bounds, — which are nearly optimal and beat pre-sampling bounds, —
for specific applications of random oracles, including one-way functions,
pseudorandom functions/generators, and message authentication codes.
We also explore the effectiveness of salting as a mechanism to defend
against offline preprocessing, and give quantitative bounds demonstrat-
ing that salting provably helps in the context of one-wayness, collision-
resistance, pseudorandom generators/functions, and message authenti-
cation codes. In each case, using (at most) n bits of salt, where n is the
length of the secret key, we get the same security O(T/2n) in the random
oracle model with auxiliary input as we get without auxiliary input.

At the heart of our results is the compression technique of Gennaro
and Trevisan, and its extensions by De, Trevisan and Tulsiani.
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1 Introduction

The random-oracle model [4] often provides a simple and elegant way of ana-
lyzing the concrete security of cryptographic schemes based on hash functions.
To take a canonical example, consider (näıve) password hashing where a pass-
word pw is stored as H(pw), for H a cryptographic hash function, and we are
interested in the difficulty of recovering pw from H(pw) (i.e., we are interested
in understanding the one-wayness of H). It seems difficult to formalize a con-
crete assumption about H that would imply the difficulty of recovering pw for
all high-entropy distributions on pw; it would be harder still to come up with a
natural assumption implying that for all distributions on pw with min-entropy k,
recovering pw requires O(2k) work. If we model H as a random oracle, however,
then both these statements can be proven easily—and this matches the best
known attacks for many cryptographic hash functions.

Importantly, the above discussion assumes that no preprocessing is done.
That is, we imagine an attacker who does no work prior to being given H(pw) or,
more formally, we imagine that the attacker is fixed before the random oracle H
is chosen. In that case, the only way an attacker can learn information about H is
by making explicit queries to an oracle for H, and the above-mentioned bounds
hold. In practice, however, H is typically a standardized hash function that is
known in advance, and offline preprocessing attacks—during which the attacker
can query and store arbitrary information about H—can be a significant threat.

Concretely, let H : [N ]→ [N ] and assume that pw is uniform in [N ]. The ob-
vious attack to recover pw from H(pw) is an exhaustive-search attack which uses
time T = N in the online phase (equating time with the number of queries to H)
to recover pw. But an attacker could also generate the entire function table for
H during an offline preprocessing phase; then, given H(pw) in the on-line phase,
the attacker can recover pw in O(1) time using a table lookup. The data struc-
ture generated during the offline phase requires S = O(N) space (ignoring logN
factors), but Hellman [12] showed a more clever construction of a data structure
which, in particular, gives an attack using S = T = O(N2/3) (see [13, Sec-
tion 5.4.3] for a self-contained description). Rainbow tables implementing this
approach along with later improvements (most notably by Oechslin [15]), are
widely used in practice, and must be taken into account in any practical analy-
sis of password security. Further work has explored improving these result and
proving rigorous versions of them, as well as showing bounds on how well such
attacks can perform [19, 9, 15, 10, 2, 7].

The above discussion in the context of function inversion gives a practical
example of where auxiliary information about a random oracle (in this case, in
the form of rainbow tables generated using the random oracle) can quantitatively
change the security of a given application that uses the random oracle. For a more
dramatic (but less practical) example, consider the case of collision finding. Given
a random function H : [N ]→ [N ], one can show that O(

√
N) queries are needed

in order to find a collision in H (i.e., distinct points x, x′ with H(x) = H(x′)).
But clearly we can find a collision in H during an offline pre-processing phase
and store that collision using O(1) space, after which it is trivial to output that
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collision in an online phase in O(1) time. The conclusion is that in settings where
offline preprocessing is a possibility, security proofs in the random-oracle model
must be interpreted carefully. (We refer the reader to [17, 5], as well as many of
the references below, for further discussion.)

From a different viewpoint, another motivation for studying auxiliary infor-
mation comes from the desire for obtaining accurate security bounds against
non-uniform attackers when instantiating random oracle by a concrete hash
function. Indeed, non-uniform attackers are allowed to have some arbitrary ‘ad-
vice’ before attacking the system. Translated to the random oracle model, this
would require the attacker to be able to compute some arbitrary function of
the entire random oracle, which cannot be done using only bounded number
T of oracle queries. This mismatch already led to considerable confusion among
both theoreticians and practitioners. We refer to [16, 6] for some in-depth discus-
sion, here only mentioning two most well-known examples. (1) In the standard
(non-uniform) model, no single function can be collision-resistant, while a sin-
gle random oracle is trivially collision-resistant (without preprocessing); this is
why in the standard model one considers a family of CRHFs, whose public key
(which we call salt) is chosen after the attacker gets his non-uniform advice.
To the best of our knowledge, prior to our work no meaningful CRHF bound
was given for salted random oracle if (salt-independent) preprocessing was al-
lowed. (2) In the standard (non-uniform) model, it is well known [1, 8, 6] that
no pseudorandom generator (PRG) H(x) can have security better than 2−n/2

even against linear-time attackers, where n is the seed-length of x. In contrast,
an expanding random oracle can be trivially shown to be (T/2n)-secure PRG in
the traditional random oracle model, easily surpassing the 2−n/2 barrier in the
standard model (even for huge T up to 2n/2, let alone polynomial T ).

Random Oracle with Auxiliary Input. While somewhat different, the two
motivating applications above effectively reduce to the following identical ex-
tension of the traditional random oracle model (ROM). A (computationally un-
bounded) attacker A can compute arbitrary S bits of information z = z(O)
about the random oracle O before attacking the system, and then use additional
T oracle queries to O during the attack. Following Unruh [17], we call this the
Random Oracle Model with Auxiliary Input (ROM-AI), and this is the model
we thoroughly study in this work. As we mentioned, while the traditional ROM
only uses one parameter T , the ROM-AI is parameterized by two parameters,
S and T which roughly correspond to space (during off-line pre-processing) and
time (during on-line attack). For the application to non-uniform security, one
can also use the ROM-AI to get good estimates for non-uniform security against
(non-uniform) circuits of size C by setting S = T = C.1

1 Since circuit of size C can encode up to S = Ω(C) bits of information about a given
hash function H, as well as evaluate it close to T = Ω(C) times, assuming H is
efficient.
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1.1 Handling Random Oracles with Auxiliary Input

Broadly speaking, there are three ways one can address the issue of preprocess-
ing/auxiliary input in the random-oracle model: (1) by using a generic approach
to analyze existing or proposed schemes, (2) by using an application-specific ap-
proach to analyze an existing or proposed scheme, or (3) by modifying existing
schemes in an attempt to defeat preprocessing/non-uniform attacks. We discuss
limited prior work on these three approaches below, before stating our results.

A generic approach. Unruh [17] was the first to propose a generic approach
for dealing with auxiliary input in the random-oracle model. We give an informal
overview of his results (a formal statement is given in Section 2). Say we wish
to bound the success probability ε (in some experiment) of an online attacker
making T random-oracle queries, and relying on S bits of (arbitrary) auxiliary
information about the random oracle. Unruh showed that it suffices to analyze
the success probability ε′(P ) of the attack in the presence of a “pre-sampled”
random oracle that is chosen uniformly subject to its values being fixed in some
adversarial way on P adversarial points (where P is a parameter), and no other
auxiliary information is given; ε is then bounded by ε′(P ) + O(

√
ST/P ), while

P is then chosen optimally as to balance out the resulting two terms (see an
example below).

This is an impressive result, but it falls short of what one might hope for. In
particular, P must be super-polynomial in order to make the “security loss”
O(
√
ST/P ) negligible, but in many applications if P is too large then the

bound ε′(P ) one can prove on an attacker’s success probability in the pres-
ence of a “pre-sampled” random oracle with P fixed points becomes too high.
Unruh conjectured that his bound was not tight, and that it might be possible
to bound the “security loss” by a negligible quantity for P a sufficiently large
polynomial.

An application-specific approach. Given that the generic approach might
lead to very sub-optimal bounds, one might hope to develop a much tighter
application-specific approach to get concrete bounds. To the best of our knowl-
edge, no such work was done for the random oracle model with preprocessing.
Indirectly, however, De et al. [7] adapted the beautiful compression “compres-
sion paradigm” introduced by Gennaro and Trevisan [11, 10] to show nearly tight
security bounds for inverting inverting one-way permutations as well as specific
PRGs (based on one-way permutations and hardcore bits). This was done not
for the sake of analyzing security of these constructions,2 but rather to show
limitations of generic inversion/distinguishing attacks all one-way functions or
PRGs. Still, this elegant theoretical approach suggests that application-specific
techniques, such as the compression paradigm, might be useful in the analysis
of schemes based on real-world hash functions, such as SHA.

“Salting.” Even with optimal application-specific techniques, we have already
discussed how preprocessing attacks can be effective for tasks like function in-

2 For which we currently have no real-world candidates, since we do not have any
candidates for efficient uninvertible “random permutations”.
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version and collision finding, as well as non-trivial distinguishing attacks against
pseudorandom generators/functions.

A natural defense against preprocessing attacks, which has been explicitly
suggested [14] and is widely used to defeat such attacks in the context of password
hashing, is to use salting. Roughly, this involves choosing a random but public
value a and including it in the input to the hash function. Thus, in the context
of password hashing we would choose a uniform salt a and store (a,H(a, pw));
in the context of collision-resistant hashing we would choose and publish a and
then look at the hardness of finding collisions in the function H(a, ·); and in the
context of pseudorandom generators we would choose a and then look at the
pseudorandomness of H(a, x) (for uniform x) given a.

De et al. [7] briefly study the effect of salting for inverting one-way permu-
tations as well as specific PRGs (based on one-way permutations and hardcore
bits), but beyond that we are aware of no analysis of the effectiveness of salting
for defeating preprocessing in any other contexts, including the use of hash func-
tions which are not permutations.3 We highlight that although it may appear
“obvious” that salting defeats, say, rainbow tables, it is not at all clear what is
the quantitative security benefit of salting, and it is not clear whether rainbow
tables can be adapted to give a (possibly different) online/offline tradeoff when
salting is used.

1.2 Our Results

We address all three approaches outlined in the previous section. First, we in-
vestigate the generic approach to proving security in the random-oracle model
with auxiliary input, and specifically explore the extent to which Unruh’s pre-
sampling technique can be improved. Here, our result is largely negative: disprov-
ing Unruh’s conjecture, we show that there is an attack for which the “security
loss” stemming from Unruh’s approach is at least Ω(ST/P ). Although there
remains a gap between our lower bound and Unruh’s upper bound that will
be interested to close, as we discuss next the upshot is that Unruh’s technique
is not sufficient (in general) for proving strong concrete-security bounds in the
random-oracle model when preprocessing is a possibility.

Consider, e.g., the case of function inversion. One can show that the prob-
ability of inverting a random oracle H : [N ] → [N ] for which P points have
been “pre-sampled” is O(P/N + T/N). Combined with the security loss of
O(
√
ST/2P ) resulting from Unruh’s technique and plugging in the optimal value

of P , we obtain a security bound of O((ST/N)1/3 +T/N) for algorithms making
T oracle queries and using S bits of auxiliary input about H. And our negative
result shows that the best bound one could hope to achieve by using Unruh’s
approach is O((ST/N)1/2 + T/N). Both bounds fall short of the best known

attacks, which succeed with probability Ω
(

min
{
T
N , (

S2T
N2 )1/3

}
+ T

N

)
. Similar

gaps exist for other cryptographic primitives.

3 Bellare et al. [3] study security of salting for the purposes of multi-instance security,
but they do not address the issue of preprocessing.
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Faced with this, we turn to studying a more direct approach for proving
tighter bounds for specific important applications of hash functions, such as their
use as one-way functions, pseudorandom generators/functions (PRGs/PRFs) or
message authentication codes (MACs).4 Here we show much tighter, and in
many cases optimal bounds for all of these primitives, which always beat the
provable version of Unruh’s pre-sampling (see Table 1 with value K = 1). Not
surprisingly, our bounds are not as good as what is possible to show without pre-
processing, since those bounds are no longer true once pre-processing is allowed.
In particular, setting S = T = C we now get meaningful non-uniform security
bounds against circuits of size C for all of the above primitives, which often
match the existing limitations known for non-uniform attacks. (For example,
when C = S = T is polynomial in n, we get that the optimal non-uniform
PRG/PRF security is lower bounded by 2−n/2, matching existing attacks.)

Given these inherent limitation as compared to the traditional ROM without
preprocessing, we formally examine the effects of “salting” as a way of mitigating
or even defeating the effects of pre-processing/non-uniformity. As before, we look
at the natural, “salted” constructions of one-way functions, PRGs, PRFs and
MACs, but now can also examine collision-resistant hash functions (CRHFs),
which can be potentially secure against pre-processing, once the salt is long-
enough. In all these case we analyze the security of these constructions in the
presence of auxiliary information about the random oracle. In fact, the “un-
salted” results for one-way functions, PRGs, PRFs and MACs mentioned above
are simply special cases of salted result with the cardinality K of the salting
space is K = 1.

Our results are summarized in Table 1, where they are compared to the best
known attacks using preprocessing. Our bounds for inverting one-way functions
and distinguishing PRGs matches the bounds De et al. [7] for inverting one-
way permutations and distinguishing PRGs based on one-way permutations and
hardcore bits, but apply to real-world candidates for these primitives based on
existing hash functions. In the case of CRHFs, our bound is tight and matches
the best known attack of storing explicit collisions for roughly S distinct salts.
In the remaining cases, although our bounds are not tight (but close), it is
interesting to note that, assuming N ≥ T ≥ S, our results show that setting
the length of the salt equal to the length of the secret (i.e., setting K = N)
yields the same security bound O(T/N) that is achieved for constructions in
the standard random-oracle model without preprocessing. Summarizing a bit
informally: using an n-bit salt and an n-bit secret gives n-bit security even in
the presence of preprocessing. Namely, salts provably defeats pre-processing in
these settings.

All our new bounds are proven using the “compression paradigm” intro-
duced by Gennaro and Trevisan [11, 10]. The main idea is to argue that if some
attacker succeeds with “high” probability, then that attacker can be used to
reversibly encode (i.e., compress) a random oracle beyond what is possible from

4 As we mentioned, collision-resistance is impossible without salting, which we discuss
shortly.
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Security bounds (here) Best known attacks

OWFs ST
KN

+ T
N

min
{

ST
KN

, ( S2T
K2N2 )1/3

}
+ T

N

CRHFs S
K

+ T2

M
S
K

+ T2

M

PRGs ( ST
KN

)1/2 + T
N

( S
KN

)1/2 + T
N

PRFs ( ST
KN

)1/2 + T
N

( S
KN

)1/2 + T
N

MACs ST
KN

+ T
N

+ T
M

min
{

ST
KN

, ( S2T
K2N2 )1/3

}
+ T

N
+ 1

M

Table 1. Security bounds and best known attacks using space S and time T for
“salted” constructions of primitives based on a random oracle. The first three (unkeyed)
primitives are constructed from a random oracle O : [K]× [N ]→ [M ], where [K] is the
domain of the salt and [N ] is the domain of the secret; the final two (keyed) primitives
are constructed from a random oracle O : [K]×[N ]×[L]→ [M ], where [L] is the domain
of the input. For simplicity, logarithmic factors and constant terms are omitted.

an information-theoretic point of view. Since we are considering attackers who
perform preprocessing, our encoding must include the S-bit auxiliary informa-
tion produced by the attacker. Thus, the main technical challenge we face is to
ensure that our encoding compresses by (significantly) more than S bits.

Outlook. In this work we thoroughly revisited the ROM with auxiliary input,
as we believe it has not gotten enough attention from the cryptographic commu-
nity, despite being simultaneously important for the variety of reasons detailed
above, and also much more interesting than the traditional ROM from a techni-
cal point in view. Indeed, even the most trivial one-line proof in the traditional
ROM is either completely false once preprocessing is allowed (e.g., CRHFs), or
becomes an interesting technical challenge (OWFs, PRGs, MACs) that requires
new techniques, and usually teaches us something new about the primitive in
question in relation to pre-processing.

Of course, given an abundance of works using random oracle, we hope our
work will generate a lot of follow-up research analyzing the effects of pre-processing
and non-uniformity for many other important uses of hash functions, as well as
other idealized primitives (e.g., ideal ciphers).

2 Limits On the Power of Preprocessing

For two distributions D1, D2 over universe Ω, we use ∆(D1, D2) to denote their
statistical distance 1

2 ·
∑
y∈Ω |Pr[D1 = y]− Pr[D2 = y]|.

In this section, we revisit the result of Unruh [17] that allows one to replace
arbitrary (bounded-length) auxiliary information about a random oracle O with
a (bounded-size) set fixing the value of the random oracle on some fraction of
points. For a set of tuples Z = {(x1, y1), . . .}, we let O′[Z] denote a random
oracle chosen uniformly subject to the constraints O′(xi) = yi.

Theorem 1 ([17]). Let P, S, T ≥ 1 be integers, and let A0 be an oracle al-
gorithm that outputs state of length at most S bits. Then there is an oracle
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algorithm Pre outputting a set containing at most P tuples such that for any
oracle algorithm A1 that makes at most T oracle queries,

∆(AO1 (AO0 ), A
O′[PreO]
1 (AO0 )) ≤

√
ST

2P
.

This theorem enables proving various results in the random-oracle model
even in the presence of auxiliary input by first replacing the auxiliary input
with a fixed set of input/output pairs and then using standard lazy-sampling
techniques for the value of the random oracle at other points. However, applying
this theorem incurs a cost of

√
ST/2P , and so super-polynomial P is required in

order to obtain negligible advantage overall. It is open whether one can improve
the bound in Theorem 1; Unruh conjectures [17, Conjecture 14] that for all
polynomials S, T there is a polynomial P such that the statistical difference
above is negligible. We disprove this conjecture by showing that the bound in
the theorem cannot be improved (in general) below O(ST/P ). That is,

Theorem 2. Consider random oracles O : [N ] → {0, 1}, and let S, T, P ≥ 1
be integers with 4P 2/ST + ST ≤ N . Then there is an oracle algorithm A0 that
outputs S-bit state and an oracle algorithm A1 that makes T oracle queries such
that for any oracle algorithm Pre outputting a set containing at most P tuples,

∆(AO1 (AO0 ), A
O′[PreO]
1 (AO0 )) ≥ ST

24P
.

Proof. Pick S disjoint sets X1, . . . , XS ⊂ [N ], where each set is of size t =
T · (4(P/ST )2 + 1). Partition each set Xi into t/T = 4(P/ST )2 + 1 disjoint
blocks Xi,1, . . . , Xi,t/T , each of size T . Algorithm AO1 outputs an S-bit state
where the ith bit is equal to maj(⊕x∈Xi,1O(x), . . . ,⊕x∈Xi,t/T

O(x)) where maj

is the majority function. Algorithm AO1 (b1, . . . , bS) chooses a uniform block Xi,j

and outputs 1 iff ⊕x∈Xi,jO(x) = bi.
We have

Pr[AO1 (AO0 ) = 1]

= Pr
O,i,j

[
maj(⊕x∈Xi,1O(x), . . . ,⊕x∈Xi,t/T

O(x)) = ⊕x∈Xi,jO(x)
]

= Pr
z1,...,zt/T←{0,1},j←[t/T ]

[maj(z1, . . . , zt/T ) = zj ]

= E
j

Pr

∑
i 6=j

zi =
t/T − 1

2

+
1

2
· Pr

∑
i 6=j

zi 6=
t/T − 1

2


=

1

2
+

1

2
· Pr

[∑
i>1

zi =
t/T − 1

2

]

=
1

2
+

(
t/T − 1
t/T−1

2

)
· 2−t/T

≥ 1

2
+

1

3
√
t/T − 1

=
1

2
+
ST

6P
,
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where the inequality uses
√

2πn (n/e)n ≤ n! ≤ e
√
n (n/e)n so that(

n

n/2

)
≥

√
2πn (n/e)n

(e
√
n/2 (n/2e)n/2)2

=
2
√

2π

e2
√
n
· 2n ≥ 2

3
· 2n√

n
.

On the other hand, for any algorithm Pre we have

Pr[A
O′[PreO]
1 (AO0 ) = 1]

= Pr
i,j,O,O′

[maj(⊕x∈Xi,1
O(x), . . . ,⊕x∈Xi,t/T

O(x)) = ⊕x∈Xi,j
O′(x)]

≤ P/T

St/T
+

1

2
·
(

1− P/T

St/T

)
=

1

2
+

P

2St
≤ 1

2
+
ST

8P
.

The first inequality above holds since, for any fixed i, j,O,

Pr
O′

[
maj(⊕x∈Xi,1O(x), . . . ,⊕x∈Xi,t/T

O(x)) = ⊕x∈Xi,jO′(x)
]

= 1/2

unless the value of O′ is fixed by PreO at every point in Xi,j . But PreO can
ensure that the value of O′ is fixed in that way for at most P/T out of the St/T
blocks defined by i, j. This concludes the proof.

3 Function Inversion

For natural number n, we define [n] = {1, . . . , n}. In this section, we prove
bounds on the hardness of inverting “salted” random oracles in the presence of
preprocessing. That is, consider choosing a random function O : [K]×[N ]→ [M ]
and then allowing an attacker A0 (with oracle access to O) to perform arbitrary
preprocessing to generate an S-bit state st. We then look at the hardness of
invertingO(a, x), given st and a, for algorithms A1 making up to T oracle queries,
where a ∈ [K] and x ∈ [N ] are uniform. We consider two notions of inversion:
computing x itself, or the weaker goal of finding any x′ such that O(a, x′) =
O(a, x). Assuming N = M for simplicity in the present discussion, we show
that in either case the probability of successful inversion is O( STKN + T logN

N ). We
remark that the best bound one could hope to prove via a generic approach (i.e.,
using Theorem 1 with best-possible bound O(ST/P )) is5 O(

√
ST/KN +T/N).

By way of comparison, rainbow tables [12, 9, 15, 2, 7] address the case K = 0
(i.e., no salt), and give success probability O(min{ST/N, (S2T/N2)1/3}+T/N).
One natural way to adapt rainbow tables to handle salt is to compute K indepen-
dent rainbow tables, each using space S/K, for the K reduced functions O(a, ·).
5 Any such bound would take the form O(ST/P + P/KN + T/N), where the first

term is from application of the theorem, the second is the probability that the input
to A1 is from the set of fixed points, and the third is the success probability of a
trivial brute-force search. Setting P =

√
ST/KN optimizes this bound.
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Using this approach gives success probabilityO(min{ST/KN, (S2T/K2N2)1/3}+
T/N). This shows that our bound is tight when ST 2 < KN .

We begin with some preliminary lemmas that we will rely on in this and the
following sections.

Lemma 1. Say there exist encoding and decoding procedures (Enc,Dec) such
that for all m ∈M we have Dec(Enc(m)) = m. Then Em[ |Enc(m)| ] ≥ log |M |.

Proof. For m ∈ M , let sm = |Enc(m)|. Define C =
∑
m 2−sm , and for m ∈ M

let qm = 2−sm/C. Then Em[ |Enc(m)| ] = −Em[log qm] − logC. By Jensen’s in-
equality, Em[log qm] ≤ logEm[qm] = − log |M |, and by Kraft’s inequality C ≤ 1.
The lemma follows.

Following De et al. [7], we also consider randomized encodings (Enc,Dec) for
a set M . We say that an encoding has recovery probability δ if for all m ∈M ,

Pr
r

[Dec(Enc(m, r), r) = m] ≥ δ.

(Note that Dec is given the randomness used by Enc.) The encoding length of
(Enc,Dec) is defined to be maxm,r{ |Enc(m, r)|}.
Lemma 2 ([7]). Suppose there exist randomized encoding and decoding proce-
dures (Enc,Dec) for a set M with recovery probability δ. Then the encoding length
of (Enc,Dec) is at least log |M | − log 1/δ.

Proof. By a standard averaging argument, there exists an r and a set M ′ ⊆M
with |M ′| ≥ δ · |M | such that Dec(Enc(m, r), r) = m for all m ∈ M ′. Let
Enc′,Dec′ be the deterministic algorithms obtained by fixing the randomness
to r. By Lemma 1, Em′ [ |Enc′(m′)| ] ≥ |M ′| ≥ |M | − log 1/δ, and hence there
exists an m′ with |Enc′(m′)| ≥ |M | − log 1/δ.

We now state and prove the main results of this section. Let Func(A,B)
denote the set of all functions from A to B.

Theorem 3. Consider random oracles O ∈ Func ([K]× [N ], [M ]). For any or-
acle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes at most
T oracle queries,

Pr
O,a,x

[AO1 (AO0 , a,O(a, x)) = x] = O

(
ST

KN
+
T logN

N

)
.

Theorem 4. Consider random oracles O ∈ Func ([K]× [N ], [M ]). For any or-
acle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes at most
T oracle queries,

Pr
O,a,x

[AO1 (AO0 , a,O(a, x)) = x′ : O(a, x) = O(a, x′)] = ε ,

if ε = Ω(logMN/N), then

ε = O

(
ST

K · α
+
T logN

α

)
where α = min{N/ logM,M}
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To prove Theorem 3, we first prove the following lemma:

Lemma 3. Consider random oracles O ∈ Func ([K]× [N ], [M ]). Assume there
exist oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T oracle queries, and such that

Pr
O,a,x

[AO1 (AO0 , a,O(a, x)) = x] = ε.

Then there exists a randomized encoding for a set F ⊆ Func ([K]× [N ], [M ]) of
size at least ε

2 ·M
KN , with recovery probability at least 0.9 and encoding length

(in bits) at most

KN logM + S +K logN − εKN

100T
log

(
εN

100eT

)
.

Proof. By an averaging argument, there is a set F ⊆ Func ([K]× [N ], [M ]) of
size at least ε/2 · |Func ([K]× [N ], [M ]) | = ε

2 ·M
KN such that for all O ∈ F

Pr
a,x

[AO1 (AO0 , a,O(a, x)) = x] ≥ ε/2.

Fix arbitrary O ∈ F . We encode O as follows. Let stO be the output of AO0
and, for a ∈ [K], let Ua ⊆ [N ] be the points x on which AO1 (stO, a,O(a, x)) = x.
The high-level idea is that rather than encode the mapping {(x,O(a, x))}x∈Ua

explicitly, we will encode the set of points {O(a, x)}x∈Ua and then use A1 to
recover the mapping. If we attempt this in the straightforward way, however,
then it may happen that A1 queries its oracle on a point for which the mapping
is not yet known. To get around this issue, we instead use this approach for a
random subset of Ua so that this only happens with small probability.

Specifically, the encoder uses randomness r to pick a set R ⊆ [K]×[N ], where
each (a, x) ∈ [K] × [N ] is included in R with probability 1/10T . For a ∈ [K],
let Ga ⊆ R be the set of (a, x) ∈ R such that AO1 (stO, a,O(a, x)) = x and
moreover A1 does not query O on any (a′, x′) ∈ R (except possibly (a, x) itself).
Let G =

⋃
aGa. Define Va = {O(a, x)}x∈Ga

, and note that |Va| = |Ga|.
As in De et al. [7], with probability at least 0.9 the size of G is at least

εKN/100T . To see this, note that by a Chernoff bound, R has at least εKN/40T
points with probability at least 0.95. The expected number of points (a, x) ∈ R
for which AO1 (stO, a,O(a, x)) = x but A1 queries O on some point (a′, x′) ∈ R
(besides (a, x) itself) is at most εKN

2 · 1
10T ·

(
1− (1− 1/10T )T

)
≤ εKN

2000T . By
Markov’s inequality, with probability at least 0.95 the number of such points is
at most εKN

100T . So with probability at least 0.9, we have |G| ≥ 3εKN
200T ≥

εKN
100T .

Assuming |G| ≥ εKN/100T , we encode O as follows:

1. Include stO and, for each a ∈ [K], include |Va| and a description of Va. This
uses a total of S +K logN +

∑
a∈[K] log

(
M
|Ga|
)

bits.

2. For each a and y ∈ Va (in lexicographic order), run AO1 (stO, a, y) and include
in the encoding the answers to all the oracle queries made by A1 that have
not been included in the encoding so far, except for any queries in R. (By
definition of Ga, there will be at most one such query and, if so, it will be
the query (a, x) such that O(a, x) = y.)
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3. For each (a, x) ∈ ([K] × [N ]) \G (in lexicographic order) for which O(a, x)
has not been included in the encoding so far, add O(a, x) to the encoding.

Steps 2 and 3 explicitly include in the encoding the value of O(a, x) for each
(a, x) ∈ ([K] × [N ]) \ G. Thus, the total number of bits added to the encoding
by those steps is (KN −

∑
a |Ga|) logM .

To decode, the decoder first uses r to recover the set R defined above. Then
it does the following:

1. Recover stO, {|Va|}a∈K , and {Va}a∈K .
2. For each a and y ∈ Va (in lexicographic order), run A1(stO, a, y) while an-

swering the oracle queries of A1 using the values stored in the encoding. The
only exception is if A1 ever makes a query (a, x) ∈ R, in which case y itself
is returned as the answer. The output x of A1 will be such that O(a, x) = y.

3. For each (a, x) ∈ [K]× [N ] (in lexicographic order) for which O(a, x) is not
yet defined, recover the value of O(a, x) from the remainder of the encoding.

Assuming |G| ≥ εKN/100T , the encoding is not empty and the decoding
procedure recovers O. The encoding length is

S +K logN +
∑
a∈[K]

log

(
M

|Ga|

)
+

(
KN −

∑
a∈K
|Ga|

)
logM.

Because
(
M
|Ga|
)
≤
(
eM
|Ga|

)|Ga|
, the encoding length is bounded by

S +K logN +KN logM −
∑
a

|Ga| log

(
|Ga|
e

)
≤ S +K logN +KN logM − |G| log

(
|G|
eK

)
≤ S +K logN +KN logM − εKN

100T
log

(
εN

100eT

)
,

where the second line uses concavity of the function f(y) = −y log (y/e), and
the last line is because |G| ≥ εKN

100T .

Lemma 3 gives an encoding for a set of size ε
2 ·M

KN with recovery probabil-

ity 0.9, and encoding length at most NK logM +S+K logN − εKN
100T log

(
εN

100eT

)
bits. But Lemma 2 shows that any such encoding must have encoding length at
least NK logM − log 2

ε − log 10
9 bits. We thus conclude that

S +K logN + log
20

9ε
≥ εKN

100T
log

(
εN

100eT

)
.

This implies Theorem 3 since either ε < 200eT
N , or else it must be the case that

ε ≤ ( 100T
KN ) · (S +K logN + logN).
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We now prove Theorem 4. For fixed O and a ∈ [K], let YO,a ⊆ [M ] be the
set of points A1 successfully inverts, i.e.,

YO,a = {y : AO1 (AO0 , a, y) = x′ : O(a, x′) = y}.

Let XO,a ⊆ [N ] be the pre-images of the points in YO,a. That is,

XO,a = {x : O(a, x) ∈ YO,a}.

We show a deterministic encoding for Func([K]× [N ], [M ]). Given a function O,
we encode it by including for each a ∈ [K] the following information:

1. The set XO,a (along with its size), using logN +
(

N
|XO,a|

)
bits.

2. The set YO,a (along with its size), using logM +
(

M
|YO,a|

)
bits.

3. For each x ∈ XO,a, the value O(a, x) ∈ YO,a encoded using log |YO,a| bits.
4. For each x 6∈ XO,a, the value O(a, x) encoded using logM bits.

Decoding is done in the obvious way. The encoding length of O (in bits) is

K logN +K logM

+
∑
a∈[K]

log

(
N

|XO,a|

)
+ log

(
M

|YO,a|

)
+ |XO,a| · log |YO,a|+ (N − |XO,a|) · logM.

Using the inequality log
(
A
B

)
≤ B · log eA

B and the log-sum6 inequality, the en-
coding length of O (in bits) is at most

K logN +K logM +

 ∑
a∈[K]

|XO,a|

 · log
eN
∑
a∈[K] |YO,a|

M
∑
a∈[K] |XO,a|

+

 ∑
a∈[K]

|YO,a|

 · log
eKM∑

a∈[K] |YO,a|
+KN logM. (1)

Let ε′
def
= PrO,a,x[AO1 (AO0 , a,O(a, x)) = x], and note that EO[

∑
a |XO,a|] = εNK

and EO[
∑
a |YO,a|] = ε′NK. By averaging over O and log-sum inequality, the

average encoding length of O is upper bounded by replacing
∑
a∈K XO,a by

EO[
∑
a∈K |XO,a|] and

∑
a∈K YO,a by EO[

∑
a∈K |YO,a|] in (1), namely

K logN +K logM + (εNK) · log
eNε′NK

MεNK
+ (ε′NK) · log

eKM

ε′NK
+KN logM.

Using the fact that (by Lemma 1) the encoding length must be at leastKN logM
bits and rearranging the inequality, we obtain

logN + logM

N
+ ε′ · log

eM

ε′N
≥ ε · log

Mε

eNε′
.

6 The log-sum inequality states that for nonnegative t1, . . . , tn and w1, . . . , wn, it holds
that

∑n
i=1 ti log(wi/ti) ≤

(∑n
i=1 ti

)
· log(

∑n
i=1 wi/

∑n
i=1 ti). It also implies the av-

erage of t1 log(w1/t1), . . . , tn log(wn/tn) is less that t log(w/t) where t is the average
of t1, . . . , tn and w is the average of w1, . . . , wn.
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If ε = Ω((logMN)/N), then there exists a sufficiently large constant C such
that εN ≥ (logMN)/C. If Mε/(eNε′) ≤ 2C+1, then ε = O(ε′N/M). Otherwise,
(Mε)/(eNε′) ≥ 2C+1, then

ε′ log
eM

ε′N
≥ ε(C + 1)− (logMN)/N ≥ ε,

which implies ε = O(ε′ logM) (here we assume ε′N ≥ 1). Overall we get ε =
O(ε′max(logM,N/M)). By the bound on ε′ from Theorem 3, we obtain the
desired bound on ε.

4 Collision-Resistant Hash Functions

In this section, we prove the following theorem.

Theorem 5. Consider random oracles O ∈ Func ([K]× [N ], [M ]). For any or-
acle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes at most
T oracle queries,

Pr
O,a

[(x, x′) := AO1 (AO0 , a) : x 6= x′ ∧O(a, x) = O(a, x′)] = O

(
S + logK

K
+
T 2

M

)
.

The bound in the above theorem matches (up to the K−1 logK term) the
parameters achieved by the following: A0 outputs collisions in O(ai, ·) for each
of a1, . . . , aS ∈ [K]. Then A1 outputs the appropriate collision if a = ai, and
otherwise performs a birthday attack in an attempt to find a collision.

To prove Theorem 5, we first prove the following lemma:

Lemma 4. Consider random oracles O ∈ Func ([K]× [N ], [M ]). Assume there
exist oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T oracle queries, and such that

Pr
O,a

[(x, x′) := AO1 (AO0 , a) : x 6= x′ ∧ O(a, x) = O(a, x′)] = ε.

Then there exists a deterministic encoding for the set Func ([K]× [N ], [M ]) with
expected encoding length (in bits) at most

S +KN logM + logK − εK

2
log

(
εM

8eT 2

)
.

Proof. Fix O : [K]×[N ]→ [M ], and let stO = AO0 . Let GO be the set of a ∈ [K]
such that AO1 (stO, a) outputs a collision in O(a, ·). We assume, without loss of
generality, that if AO1 (stO, a) outputs x, x′, then it must have queried O(a, x)
and O(a, x′) at some point in its execution. The basic observation is that we
can use this to compress O(a, ·) for a ∈ GO. Specifically, rather than store both
O(a, x) and O(a, x′) (using 2 logM bits), where x, x′ is the collision in O(a, ·)
output by A1, we instead store the value O(a, x) = O(a, x′) once, along with the
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indices i, j of the oracle queries O(a, x) and O(a, x′) made by A1 (using a total
of logM + 2 log T bits). This is a net savings if 2 log T < logM . Details follow.

A simple case. To illustrate the main idea, we first consider a simple case
where AO1 (stO, a) never makes oracle queries O(a′, x) with a′ 6= a. Under this
assumption, we encode O as follows:

1. Encode stO, |GO|, and GO. This requires S + logK + log
(
K
|GO|

)
bits.

2. For each a ∈ GO (in lexicographic order), run AO1 (stO, a) and let the second
components of the oracle queries of A1 be x1, . . . , xT . (We assume without
loss of generality these are all distinct.) If x, x′ are the output of A1, let i < j
be such that {x, x′} = {xi, xj}. Encode i and j, along with the answers to
each of A1’s oracle queries (in order) except for the jth. Furthermore, encode
O(a, x) for all x ∈ [N ] \ {x1, . . . , xT } (in lexicographic order). This requires
(N − 1) · logM + 2 log T bits for each a ∈ GO.

3. For each a 6∈ GO and x ∈ [N ] (in lexicographic order), store O(a, x). This
uses N logM bits for each a 6∈ GO.

Decoding is done in the obvious way.
The encoding length of O (in bits) is

S + logK + log

(
K

|GO|

)
+KN logM − |GO| · (logM − 2 log T ).

Using the inequality
(
K
|Gf |
)
≤ ( eK

|Gf | )
|Gf |, the expected encoding length (in bits)

is thus

S + logK + EO
[
|GO| · log

eK

|GO|

]
+KN logM − EO[|GO|] · (logM − 2 log T )

≤ S + logK + EO[|GO|] · log
eK

EO[|GO|]
+KN logM − EO[|GO|] · (logM − 2 log T )

= S + logK +KN logM − εK log

(
εM

eT 2

)
,

where the inequality uses concavity of the function y · log 1/y, and the third line
uses EO[|GO|] = εK.

The general case. In the general case, we need to take into account the fact
that A1 may make arbitrary queries to O. This affects the previous approach
because A1(stO, a) may query O(a′, x) for a value x that is output as part of a
collision by A1(stO, a

′).
To deal with this, consider running AO1 (stO, a) for all a ∈ GO. There are at

most T · |GO| distinct oracle queries made overall. Although several of them may
share the same prefix a ∈ [K], there are at most |GO|/2 values of a that are used
as a prefix in more than 2T queries. In other words, there is a set G′O ⊆ GO of
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size at least |GO|/2 such that each a ∈ G′O is used in at most 2T queries when
running AO1 (stO, a) for all a ∈ G′O.

To encode O we now proceed in a manner similar to before, but using G′O
in place of GO. Moreover, we run AO1 (stO, a) for all a ∈ G′O (in lexicographic
order) and consider all the distinct oracle queries made. For each a ∈ G′O, let
ia < ja ≤ 2T be such that the iath and jath oracle queries that use prefix a are
distinct but yield the same output. (There must exist such indices by assumption
on A1.) We encode (ia, ja) for all a ∈ G′O, along with the answers to all the
(distinct) oracle queries made with the exception of the jath oracle query made
using prefix a for all a ∈ G′O. The remainder of O(·, ·) is then encoded in the
trivial way as before. Decoding is done in the natural way.

Arguing as before, but with εK replaced by εK/2 and T replaced by 2T , we
see that the expected encoding length (in bits) is now at most

S + logK +KN logM − εK

2
log

(
εM

8eT 2

)
,

as claimed.

Lemma 4 gives an encoding for Func ([K]× [N ], [M ]) with expected length
at most

S + logK +KN logM − εK

2
log

(
εM

8eT 2

)
bits. But Lemma 1 shows that any such encoding must have expected length at
least NK logM bits. We thus conclude that

S + logK ≥ εK

2
log

(
εM

8eT 2

)
.

This implies Theorem 5 since either ε ≤ 16eT 2

M or else ε ≤ 2S+2 logK
K .

5 Pseudorandom Generators and Functions

In this section, we prove the following theorems.

Theorem 6. Consider random oracles O ∈ Func ([K]× [N ], [M ]) where it holds
that M > N . For any oracle algorithms (A0, A1) such that A0 outputs S-bit state
and A1 makes at most T oracle queries,∣∣∣∣ Pr

O,a,x
[AO1 (AO0 , a,O(a, x)) = 1]− Pr

O,a,y
[AO1 (AO0 , a, y) = 1]

∣∣∣∣
= O

(
logM ·

(√
ST

KN
+
T logN

N

))
.
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Theorem 7. Consider random oracles O ∈ Func ([K]× [N ]× [L], {0, 1}). For
any oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T oracle queries to O and at most q queries to its other oracle,∣∣∣∣ Pr

O,a,k
[A
O,O(a,k,·)
1 (AO0 , a) = 1]− Pr

O,a,f
[AO,f1 (AO0 , a) = 1]

∣∣∣∣
= O

(
q ·

(√
ST

KN
+
T logN

N

))
,

where f is uniform in Func ([L], {0, 1}).

Note that in both cases, an exhaustive-search attack (with S = 0) achieves
distinguishing advantage Θ(T/N). With regard to pseudorandom generators
(Theorem 6), De et al. [7] show an attack with T = 0 that achieves distinguishing

advantage Ω(
√

S
KN ). Their attack can be extended to the case of pseudorandom

functions (assuming q > logKN) to obtain distinguishing advantage Ω(
√

S
KN )

in that case as well.
In proving the above, we rely on the following [7, Lemma 8.4]:

Lemma 5. Fix a parameter ε, and oracle algorithms (A0, A1) such that A0 out-
puts S-bit state and A1 makes at most T queries to O but may not query its
input. Let F ⊆ Func ([K]× [N ], {0, 1}) be such that if O ∈ F then

Pr
a,x

[AO1 (AO0 , a, x) = O(a, x)] ≥ 1

2
+ ε.

Then there is a randomized encoding for F with recovery probability Ω(ε/T ) and

encoding length (in bits) at most KN + S −Ω
(
ε2NK
T

)
+O(1).

We now prove Theorem 6.

Proof. Let

ε =

∣∣∣∣ Pr
O,a,x

[AO1 (AO0 , a,O(a, x)) = 1]− Pr
O,a,y

[AO1 (AO0 , a, y) = 1]

∣∣∣∣ .
We assume for simplicity that M is a power of 2. By Yao’s equivalence of distin-
guishability and predictability [18], there exist i ∈ [logM ] and oracle algorithms
(B0, B1) such that B0 outputs at most S+1 bits and B1 makes at most T oracle
queries, and such that

Pr
O,a,x

[BO1 (BO0 , a,O1(a, x), . . . ,Oi−1(a, x)) = Oi(a, x)] ≥ 1/2 + ε/ logM,

where Oi(a, x) denotes the ith bit of O(a, x). If B1 queries (a, x) with probability
at least ε/2 logM , we can turn B1 into an algorithm that inverts O(a, x) with
at least that probability; Theorem 3 then implies

ε = O

(
logM ·

(
ST

KN
+
T logN

N

))
. (2)

Otherwise, we may construct algorithms (C0, C1) such that
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– C1 makes at most T oracle queries, and never queries its own input;
– C0 runs B0 and also outputs as part of its state the truth table of a function

mapping [K]× [N ] to outputs of length at most (logM − 1) bits;

and such that

Pr
Oi,a,x

[COi
1 (COi

0 , a, x) = Oi(a, x)] ≥ 1/2 + ε/2 logM.

This means that for at least an (ε/4 logM)-fraction of Func ([K]× [N ], {0, 1}) it
holds that

Pr
a,x

[COi
1 (COi

0 , a, x) = Oi(a, x)] ≥ 1/2 + ε/4 logM.

Lemma 5 thus implies that we can encode that set of functions using at most

KN +KN · (logM − 1) +S −Ω
(

(ε/ logM)2KN
T

)
+O(1) bits. By Lemma 2, this

means we must have

Ω

(
(ε/ logM)2KN

T

)
− log

( ε
T

)
− log

(
ε

4 logM

)
≤ S +O(1),

which in turn implies ε = O
(

logM ·
√

ST
KN

)
. This, combined with (2), implies

the theorem.

As intuition for the proof of Theorem 7, note that we may view a pseudoran-
dom function as a pseudorandom generator mapping a key to the truth table for
a function, with the main difference being that the distinguisher is not given the
entire truth table as input but instead may only access parts of the truth table
via queries it makes. We may thus apply the same idea as in the proof of Theo-
rem 6, with the output length (i.e., logM) replaced by the number of queries the
distinguisher makes. However in this case, Lemma 5 cannot be directly applied
and a slightly more involved compression argument is required.

With this in mind, we turn to the proof of Theorem 7:

Proof. Let

ε =

∣∣∣∣ Pr
O,a,k

[A
O,O(a,k,·)
1 (AO0 , a) = 1]− Pr

O,a,f
[AO,f1 (AO0 , a) = 1]

∣∣∣∣ .
By Yao’s equivalence of distinguishability and predictability [18], there exist

i ∈ [q] and oracle algorithms (B0, B1) such that B0 outputs at most S + 1 bits
and B1 makes at most T oracle queries to O and i ≤ q distinct queries to the
second oracle, such that

Pr
O,a,k

[B
O,O(a,k,·)
1 (BO0 , a) outputs (x, b), s.t. O(a, k, x) = b] ≥ 1

2
+ ε/q,

where it is required that B1 not query x to its second oracle. If B1 queries O
on any query with prefix (a, k), with probability at least ε/2q, we can turn B1

into an algorithm that inverts random oracle O′ from [K]× [N ] to {0, 1}L with
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that probability where the output of O′(a, k) is the truth table of O(a, k, ·).
Theorem 3 then implies

ε = O

(
q ·
(
ST

KN
+
T logN

N

))
. (3)

Otherwise, we may construct algorithms C1 which behaves as B1 except when
B1 queries O on any query with prefix (a, k), C1 outputs a random guess. C1

satisfies that

Pr
O,a,k

[C
O,O(a,k,·)
1 (BO0 , a) outputs (x, b) s.t. O(a, k, x) = b] ≥ 1/2 + ε/2q.

This means that for at least an (ε/4q)-fraction of Func
(
[K]× [N ], {0, 1}[L]

)
, it

holds that

Pr
O,a,k

[C
O,O(a,k,·)
1 (BO0 , a) outputs (x, b) s.t. O(a, k, x) = b] ≥ 1/2 + ε/4q.

We can encode the set of functions using randomized encoding. Specifically, the
encoder uses randomness r to pick a set R ⊆ [K] × [N ], where each (a, k) ∈
[K] × [N ] is included in R with probability 1/10T . For a ∈ [K], let G ⊆ R be

the set of (a, k) ∈ R such that C
O,O(a,k,·)
1 (BO0 , a) does not query O on any point

with prefix (a′, k′) ∈ G. Let G0 be the subset of G such that the output of C1 is
correct and G1 = G \G0.

As in De et al. [7], with probability at least ε/160qT , |G0| − |G1| ≥ εKN
80qT

and |G| = Ω(KNT ) hold. To see this, note by a Chernoff bound, G has Ω(KNT )

points with probabiliyt at least 1−e− 2KN
T . The expected difference between |G0|

and |G1| is at least εKN
40qT . By averaging argument, with probability at least ε

80qT

their difference is at least εKN
80qT . So with probability at ε

80qT − e
− 2KN

T ≥ ε
160qT ,

both events happen. Conditioned on that, we encode O as follows (otherwise we
output empty string):

1. Include BO0 . This uses at most S + 1 bits.
2. For each (a, k) ∈ ([K]× [N ]) \ R (in lexicographic order), include the truth

table of O(a, k, ·). Then for each (a, k) ∈ R \ G (in lexicographic order),
include the truth table of O(a, k, ·). This uses a total of (KN − |G|) ·L bits.

3. Include a description of G0. This uses log
( |G|
|G0|
)

bits.

4. For each (a, k) ∈ G (in lexicographic order), include in the encoding the
answers to all the oracle queries made by C1 to the second oracle O(a, k, ·),
and for every x such that (a, k, x) is not queried by C1 to O(a, k, ·) and x
is not the output of C1, add O(a, k, x) to the encoding. This uses a total of
|G| (L− 1) bits.

To decode, the decoder first uses r to recover the set R defined above. Then it
does the following:

1. Recover BO0 .
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2. For each (a, k) ∈ ([K]× [N ])\R, recover the truth table of O(a, k, ·). Identify
set G by running C1 with BO0 on (a, k) ∈ R because if C1 on (a, k) only makes
query outside R, then (a, k) ∈ G. Go over (a, k) ∈ R \ G, and recover the
truth table of O(a, k, ·).

3. Recover G0.
4. For each (a, k) ∈ G, run C1(BO0 , a) while answering the oracle queries to the

first oracle using recovered values and to the second oracle using the values
stored in the encoding. Suppose C1 outputs x, b, if (a, k) ∈ G0, recover
O(a, k, x) = b otherwise O(a, k, x) = 1 − b. After that for which O(a, k, x)
is not yet defined, recover the value of O(a, k, x) from the remainder of the
encoding.

Because we condition on |G| ≤ KN/T and |G0| − |G1| ≥ εKN/80qT which

implies log
( |G|
|G0|
)
≤ |G|H(1/2 + εKN/80T |G|) ≤ |G| −Ω((ε/q)2KN/T ), where

H is the binary entropy function. The maximal length is at most

KNL+ S + 1 + log

(
|G|
|G0|

)
− |G| ≤ KNL+ S +O(1)−Ω((ε/q)2KN/T ).

By Lemma 2, we have

S ≥ Ω((ε/q)2KN/T )− logΩ(
ε

160qT
)− log(

ε

4q
).

which implies ε ≤ O(q ·
√

ST
KN ). Overall we obtain ε ≤ O(q · (

√
ST
KN + T

N · logN)).

6 Message Authentication Codes (MACs)

In this section, we prove the following theorem.

Theorem 8. Consider random oracles O ∈ Func ([K]× [N ]× [L], [M ]). For
any oracle algorithms (A0, A1) such that A0 outputs S-bit state and A1 makes
at most T queries to O,

Pr
O,a,k

[
(m, t) := A

O,O(a,k,·)
1 (AO0 , a) : O(a, k,m) = t

]
= O

(
ST

KN
+
T

M
+
T logN

N

)
,

where it is required that A1 not query m to its second oracle.

Note that any generic inversion attack can be used to attack the above con-
struction of a MAC by fixing some m ∈ [L] and then inverting the function
O(a, ·,m) given a; in this sense, it is perhaps not surprising that the bound

above contains terms O
(
ST
KN + T logN

N

)
as in Theorem 3. There is, of course,

also a trivial guessing attack that achieves advantage 1/M .
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Proof. If A1 queries O on any query with prefix (a, k), with probability at
least ε/2, we can turn A1 into an algorithm that inverts random oracle O′ from
[K] × [N ] to [ML] with that probability where the output of O′(a, k) is the
truth table of O(a, k, ·). Then by Theorem 3, we obtain ε ≤ O( STKN + T logN

N ).
Otherwise, we may construct algorithms B1 which behaves as A1 except when
B1 queries O on any query with prefix (a, k), B1 outputs a random guess. B1

satisfies that

Pr
O,a,k

[B
O,O(a,k,·)
1 (AO0 , a) outputs (m, t) s.t. O(a, k,m) = t] ≥ ε/2.

where it is required that B1 not query m to its second oracle.
FixO : [K]×[N ]×[L]→ [M ]. Let UO be the set of (a, k) such thatB1 succeeds

on (a, k). Let GO be the subset of UO such that for every (a, k) ∈ GO, B
O,O(a,k,·)
1

does not query its first oracle with any query with prefix (a′, k′) ∈ GO. Because
B1 makes at most T queries, there exists GO with size at least |UO| /(T + 1).

We can encode O as follows.

1. Include AO0 , |GO| and a description of GO. This uses a total of S+logKN+
log
(
NK
|GO|

)
bits.

2. For each (a, k) ∈ ([K]× [N ])\GO (in lexicographic order), include the truth
table of O(a, k, ·). This uses a total of (KN − |GO|) · L logM bits.

3. For each (a, k) ∈ GO (in lexicographic order), include in the encoding the
answers to all the oracle queries made by B1 to the second oracle O(a, k, ·),
and then for every m such that (a, k,m) is not queried by C1 to O(a, k, ·)
and m is not the output of C1, add O(a, k,m) to the encoding. This uses a
total of |G| (L− 1) logM bits.

Decoding is done in the obvious way. The encoding length is at most

KNL logM + S + logKN + log

(
KN

|GO|

)
− |GO| logM

By log
(
KN
|GO|

)
≤ |GO| log eKN

|GO| and log-sum inequality, the average length over all

possible O is at most

KNL logM + S + logKN + E[|GO|] log
eKN

M · Ef [|GO|]
.

But Lemma 1 shows that any such encoding must have expected length at least
KNL logM bits. We thus conclude that

S + logKN ≥ E[|GO|] log
M E[|GO|]
eKN

≥ εNK

2(T + 1)
log

Mε

2e(T + 1)
.

where the second inequality is due to the monotonicity of y log y for y ≥ 1 and

E[|GO|] ≥ E[ |UO|
T+1 ] ≥ εNK

2(T+1) . This implies Theorem 8 since either ε ≤ 4e(T+1)
M or

else ε ≤ 2(S+logKN)(T+1)
NK = O( STNK + T logN

N ).
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