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Abstract. We present a multi-input functional encryption scheme
(MIFE) for the inner product functionality based on the k-Lin assump-
tion in prime-order bilinear groups. Our construction works for any
polynomial number of encryption slots and achieves adaptive security
against unbounded collusion, while relying on standard polynomial
hardness assumptions. Prior to this work, we did not even have a
candidate for 3-slot MIFE for inner products in the generic bilinear
group model. Our work is also the first MIFE scheme for a non-trivial
functionality based on standard cryptographic assumptions, as well as
the first to achieve polynomial security loss for a super-constant number
of slots under falsifiable assumptions. Prior works required stronger
non-standard assumptions such as indistinguishability obfuscation or
multi-linear maps.

1 Introduction

In a functional encryption (FE) scheme [25, 11], an authority can gener-
ate restricted decryption keys that allow users to learn specific functions
of the encrypted messages and nothing else. That is, each FE decryp-
tion key skf is associated with a function f and decrypting a ciphertext
Enc(x) with skf results in f(x). Multi-input functional encryption (MIFE)
introduced by Goldwasser et al. [19] is a generalization of functional en-
cryption to the setting of multi-input functions. A MIFE scheme has
several encryption slots and each decryption key skf for a multi-input
function f decrypts jointly ciphertexts Enc(x1), . . ., Enc(xn) for all slots
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to obtain f(x1, . . . , xn) without revealing anything more about the en-
crypted messages. The MIFE functionality provides the capability to en-
crypt independently messages for different slots. This facilitates scenarios
where information, which will be processed jointly during decryption,
becomes available at different points of time or is provided by different
parties. MIFE has many applications related to computation and data-
mining over encrypted data coming from multiple sources, which include
examples such as executing search queries over encrypted data, processing
encrypted streaming data, non-interactive differentially private data re-
leases, multi-client delegation of computation, order-revealing encryption
[19, 10] . The security requirement for FE and MIFE is that the decryption
keys are resilient to collusion attacks, namely any group of users holding
different decryption keys learns nothing about the underlying messages
beyond what each of them could individually learn.

We now have several constructions of MIFE schemes, which can be
broadly classified as follows: (i) feasibility results for general circuits
[19, 6, 5, 12], and (ii) constructions for specific functionalities, notably
comparison, which corresponds to order-revealing encryption [10].
Unfortunately, all of these constructions rely on indistinguishability ob-
fuscation, single-input FE for circuits, or multi-linear maps [16, 15], which
we do not know how to instantiate under standard and well-understood
cryptographic assumptions.3

1.1 Our Contributions

In this work, we present a multi-input functional encryption scheme
(MIFE) for the inner product functionality based on the k-Lin assump-
tion in prime-order bilinear groups. This is the first MIFE scheme for a
non-trivial functionality based on standard cryptographic assumptions
with polynomial security loss, and for any polynomial number of slots
and secure against unbounded collusions.

Concretely, the functionality we consider is that of “bounded-norm”
multi-input inner product: each function is specified by a collection of n
vectors y1, . . . ,yn, takes as input n vectors x1, . . . ,xn, and outputs

fy1,...,yn(x1, . . . ,xn) =

n∑
i=1

〈xi,yi〉.

3 In this paper, we refer only to unbounded collusions (i.e. the adversary can request
for any number of secret keys). See [24, 21, 20, 12] for results on bounded collusions.
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We require that the x1, . . . ,xn,y1, . . . ,yn have bounded norm, and inner
product is computed over the integers. The functionality is a natural
generalization of single-input inner product functionality introduced by
Abdalla et. al [1], and studied in [1, 7, 13, 4, 2], and captures several
useful computations arising in the context of data-mining. A summary
of our results and prior works on single-input inner product is shown in
Fig. 1.

Prior approaches. Prior constructions of MIFE schemes in [10] requires
(at least) nm-linear maps for n slots with m-bit inputs as they encode
each input bit for each slot into a fresh level of a multi-linear map. In
addition, there is typically a security loss that is exponential in n due to
the combinatorial explosion arising from combining different ciphertexts
across the slots. In the case of inner product, one can hope to reduce the
multi-linearity to n by exploiting linearity as in the single-input FE; in-
deed, this was achieved in two independent works [23, 22]4 showing how
to realize a two-slot MIFE for inner product over bilinear groups. We
stress that our result is substantially stronger: we show how to realize
n-slot MIFE for inner product for any polynomial n over bilinear groups
under standard assumptions, while in addition avoiding the exponential
security loss. In particular, we deviate from the prior approaches of en-
coding each slot into a fresh level of a multi-linear map. We stress that
prior to this work, we do not even have a candidate for 3-slot MIFE for
inner product in the generic bilinear group model.

A public-key scheme. Our first observation is that we can build a
public-key MIFE for inner product by running n independent copies of a
single-input FE for inner product. Combined with existing instantiations
of the latter in [1], this immediately yields a public-key MIFE for inner
product under the standard DDH in cyclic groups.

In a bit more detail, we recall the DDH-based public-key single-input FE
scheme from [1]:5

mpk := [w], ctx = ([s], [x + ws]), sky := 〈w,y〉

Decryption computes [〈x,y〉] = [x + ws]>y · [s]−〈w,y〉 and then recovers
〈x,y〉 by computing the discrete log.

4 This work is independent of both works.
5 Here, we use the implicit representation notation for group elements, using [s] to

denote gs and [w] to denote gw, etc.

3



Our public-key MIFE scheme is as follows:

mpk := ([w1], . . . , [wn]),

ctxi := ([si], [xi + wisi]),

sky1,...,yn := (〈w1,y1〉, . . . , 〈wn,yn〉)

We note that the encryption of xi uses fresh randomness si; to decrypt,
we need to know each 〈wi,yi〉, and not just 〈w1,y1〉 + · · · + 〈wn,yn〉.
In particular, an adversary can easily recover each [〈xi,yi〉], whereas the
ideal functionality should only leak the sum

∑n
i=1〈xi,yi〉. In the public-

key setting, it is easy to see that 〈xi,yi〉 is in fact inherent leakage from the
ideal functionality. Concretely, an adversary can always pad an encryption
of xi in the i’th slot with encryptions of 0’s in the remaining n− 1 slots
and then decrypt.

Our main scheme. The bulk of this work lies in constructing a multi-
input FE for inner product in the private-key setting, where we can no
longer afford to leak 〈xi,yi〉. We modify the previous scheme by intro-
ducing additional rerandomization into each slot with the use of bilinear
groups as follows:

msk := ([w1]1, [v1]1, [z1]1, . . . , [wn]1, [vn]1, [zn]1),

ctxi := ([si]1, [xi + wisi]1, [zi + visi]1),

sky1,...,yn := ([〈w1,y1〉+ v1r]2, . . . , [〈wn,yn〉+ vnr]2,

[r]2, [(z1 + · · ·+ zn)r]T )

The ciphertext ctxi can be viewed as encrypting xi‖zi using the single-
input FE, where z1, . . . , zn are part of msk. In addition, we provide a
single-input FE key for yi‖r in the secret key, where a fresh r is sampled
for each key. Decryption proceeds as follows: first compute

[〈xi,yi〉+ zir]T = e([xi + wisi]
>
1, [yi]2)

· e([zi + visi]
>
1, [r]2) · e([si], [〈wi,yi〉+ vir]2)

−1

and then

[

n∑
i=1

〈xi,yi〉]T = [(z1 + · · ·+ zn)r]−1T ·
n∏
i=1

[〈xi,yi〉+ zir]T .
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The intuition underlying security is that by the DDH assumption [zir]T
is pseudorandom and helps mask the leakage about 〈xi,yi〉 in [〈xi,yi〉+
zir]T ; in particular,

[〈x1,y1〉+ z1r]T , . . . , [〈xn,yn〉+ znr]T , [(z1 + · · ·+ zn)r]T

constitutes a computational secret-sharing of [〈x1,y1〉+ · · ·+ 〈xn,yn〉]T ,
even upon reusing z1, . . . , zn as long as we pick a fresh r. In addition,
sharing the same exponent r across n elements in the secret key helps
prevent mix-and-match attacks across secret keys.

Our main technical result is that a variant of the private-key MIFE scheme
we just described selective indistinguishability-based security under the k-
Lin assumption in bilinear groups; a straight-forward extension of an im-
possibility in [11, 3] rules out simulation-based security. Our final scheme
as described in Fig. 6 remains quite simple and achieves good concrete
efficiency. We focus on selective security in this overview, and explain at
the end the additional ideas needed to achieve adaptive security.

Overview of security proof. There are two main challenges in the
security proof: (i) avoiding leakage beyond the ideal functionality, (ii)
avoiding super-polynomial hardness assumptions. Our proof proceeds in
two steps: first, we establish security with a single challenge ciphertext
per slot, and from which we bootstrap to achieve security with multiple
challenge ciphertexts per slot. We will address the first challenge in the
first step and the second challenge in the second. For notation simplicity,
we focus on the setting with n = 2 slots and a single key query y1‖y2.

Step 1. To prove indistinguishability-based security, we want to switch
encryptions x0

1,x
0
2 to encryptions of x1

1,x
1
2. Here, the leakage from the

ideal functionality imposes the restriction that

〈x0
1,y1〉+ 〈x0

2,y2〉 = 〈x1
1,y1〉+ 〈x1

2,y2〉

and this is the only restriction we can work with. The natural proof
strategy is to introduce an intermediate hybrid that generates encryptions
of x1

1,x
0
2. However, to move from encryptions x0

1,x
0
2 to this hybrid, we

would require that 〈x0
1‖x0

2,y1‖y2〉 = 〈x1
1‖x0

2,y1‖y2〉, which implies the
extraneous restriction 〈x0

1,y1〉 = 〈x1
1,y1〉. (Indeed, the single-input inner

product scheme in [7] imposes extraneous restrictions to overcome similar
difficulties in the function-hiding setting.)

To overcome this challenge, we rely on a single-input FE that achieves
simulation-based security, which allows us to avoid the intermediate hy-
brid. See Theorem 1 and Remark 4 for further details.
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Step 2. Next, we consider the more general setting with Q1 challenge
ciphertexts in the first slot and Q2 in the second, but still a single key
query. We achieve security loss O(Q1 +Q2) for two slots, and more gen-
erally, O(Q1 + · · · + Qn) —as opposed to Q1Q2 · · ·Qn corresponding to
all possible combinations of the challenge ciphertexts— for n slots.

Our first observation is that we can bound the leakage from the ideal
functionality by O(Q1 +Q2) relations (the trivial bound being Q1 ·Q2).

Denote the j’th ciphertext query in the i’th slot by xj,bi , where b is the

challenge bit. By decrypting the encryptions of x2,b
1 ,x1,b

2 and x1,b
1 ,x1,b

2

and substracting the two, the adversary learns 〈x2,b
1 − x1,b

1 ,y1〉 and more

generally, 〈xj,bi −x1,b
i ,yi〉. Indeed, these are essentially the only constraints

we need to work with, namely:

〈x1,0
1 ,y1〉+ 〈x1,0

2 ,y2〉 = 〈x1,1
1 ,y1〉+ 〈x1,1

2 ,y2〉
〈xj,0i − x1,0

i ,yi〉 = 〈xj,1i − x1,1
i ,yi〉, j = 2, . . . , Qi, i = 1, 2

Next, we need to translate the bound on the constraints to a O(Q1 +Q2)
bound on the security loss in the security reduction. We will switch from
encryptions of xj,0i to those of xj,1i as follows: we write xj,0i = x1,0

i +(xj,0i −
x1,0
i ).

We can switch the first terms in the sums from x1,0
i to x1,1

i using security

for a single challenge ciphertext, and then switch xj,0i −x1,0
i to xj,1i −x1,1

i

by relying on security of the underlying single-input FE and the fact that
〈xj,0i −x1,0

i ,yi〉 = 〈xj,1i −x1,1
i ,yi〉. Here, we will require that the underlying

single-input FE satisfies a malleability property, namely given ∆, we can
maul an encryption of x into that of x+∆. Note that this does not violate
security because given 〈x,y〉,y, ∆, we can efficiently compute 〈x +∆,y〉.
See Theorem 2 for further details.

Extension to adaptive security. The previous argument for selective
security requires to embed the challenge into the setup parameters. To
circumvent this issue, we use a two-step strategy for the adaptive secu-
rity proof of MIFE. The first step uses an adaptive argument (this is
essentially the argument used for the selective case, but applied to pa-
rameters that are picked at setup time), while the second step uses a
selective argument, with perfect security. Thus, we can use complexity

6 The security notion achieved in [22] is actually a weaker variant of many-AD-IND in
which the adversary is only allowed to perform a single key query at the beginning
of the security game.
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Reference # inputs setting security assumption pairing

ABDP15 [1] 1 public-key many-SEL-IND DDH no

ALS15 [4],
ABDP16 [2]

1 public-key many-AD-IND DDH, k-Lin no

BSW11 [11] 1 any many-SEL-SIM impossible

[28] 1 public-key one-SEL-SIM k-Lin no

LL16 [23] 2 private-key many-SEL-IND
SXDH +
T3DH

yes

KLMMRW16 [22] 2 private-key
single-key
many-AD-IND6

function-private
FE

yes

easy multi public-key many-AD-IND k-Lin no
this work multi private-key many-AD-IND k-Lin yes

Fig. 1: Summary of constructions from cyclic or bilinear groups. We have
8 security notions xx-yy-zzz where xx ∈ {one, many} refers to the num-
ber of challenge ciphertexts; yy ∈ {SEL, AD} refers to encryption queries
are selectively or adaptively chosen; zzz ∈ {IND, SIM} refers to indistin-
guishability vs simulation-based security.

leveraging without incurring an exponential security loss, since the expo-
nential term is multiplied by a zero term. The idea of using complexity
leveraging to deduce adaptive security from selective security when the
security is perfect, already appears in [27, Remark 1].

Theoretical perspective. The focus of this work is on obtaining con-
structions for a specific class of functions with good concrete efficiency.
Nonetheless, we believe that our results do shed some new insights into
general feasibility results for MIFE:

– First, our results are indicative of further qualitative differences be-
tween MIFE in the public-key and the private-key settings. Indeed,
we already know that the security guarantees are quite different due
to additional inherent leakages in the public-key setting. In the case of
order-revealing encryption [10], the differences are sufficient to enable
positive results in the private-key setting, while completely ruling out
any construction in the public-key setting. Our results hint at a differ-
ent distinction, where the private-key setting seems to require qual-
itative stronger assumptions than in the public-key setting, namely
the use of pairings.

– Next, our results provide the first evidence supporting the intuition
that MIFE requires qualitatively stronger assumptions than FE, but
not too much stronger. Concretely, for the inner product FE, we have
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existing positive results under the DDH assumption in pairing-free
groups. Prior to this work, it was not clear if we could extend the pos-
itive results to MIFE for n-ary inner product under the same assump-
tions, or if n-ary inner product would already require the same com-
plex assumptions as MIFE for circuits. Our results suggest a rather
different picture, namely that going from single-input to multi-input
should require no more than an extra level of multi-linearity, even
for restricted functionalities. The situation is somewhat different for
general circuits, where we now know that going from single-input to
multi-input incurs no more than a quantitative loss in the underlying
assumptions [5, 12].

– Finally, we presented the first MIFE for a non-trivial functionality
that polynomial security loss for a super-constant number of slots
under falsifiable assumptions. Recall that indistinguishability obfus-
cation and generic multi-linear maps are not falsifiable, whereas the
constructions based on single-input FE in [5, 8, 12] incur a secu-
rity loss which is exponential in the number of slots. Indeed, there
is a reason why prior works relied on non-falsifiable assumptions or
super-polynomial security loss. Suppose an adversary makes Q0 key
queries, and Q1, . . . , Qn ciphertext queries for the n slots. By combin-
ing the ciphertexts and keys in different ways, the adversary can learn
Q0Q1 · · ·Qn different decryptions. When n is super-constant, the win-
ning condition in the security game may not be efficiently checkable in
polynomial-time, hence the need for either a non-falsifiable assump-
tion or a super-polynomial security loss. To overcome this difficulty,
we show that for inner product, we can exploit linearity to succinctly
characterize the Q0Q1 · · ·Qn constraints by roughly Q0 · (Q1 + · · ·Qn)
constraints.

1.2 Discussion

Beyond inner product? Our constructions and techniques may seem
a-priori largely tailored to the inner product functionality and properties
of bilinear groups. We clarify here that our high-level approach (which
builds upon [27, 9]) may be applicable beyond inner product, namely:

i. start with a multi-input FE that is only secure for a single ciphertext
per slot and one secret key, building upon a single-input FE whose
security is simulation-based for a single ciphertext (in our case, this
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corresponds to introducing the additional z1, . . . , zn to hide the inter-
mediate computation 〈xi,yi〉);

ii. achieve security for a single ciphertext per slot and multiple secret
keys, by injecting additional randomness to the secret keys to pre-
vent mix-and-match attacks (for this, we replaced z1, . . . , zn with
z1r, . . . , znr, r in the exponent);

iii. “bootstrap” to multiple ciphertexts per slot, where we also showed
how to avoid incurring an exponential security loss.

In particular, using simulation-based security for i. helped us avoid addi-
tional leakage beyond what is allowed by the ideal functionality.

Additional related work. Goldwasser et al. [19] showed that both two-
input public-key MIFE as well as n-input private-key MIFE for circuits
already implies indistinguishability obfuscation for circuits.

There have also been several works that proposed constructions for
private-key multi-input functional encryption. The work of Boneh et
al. [10] constructs a single-key MIFE in the private key setting, which is
based on multilinear maps and is proven secure in the idealized generic
multilinear map model. Two other papers explore the question how
to construct multi-input functional encryption starting from the single
input variant. In their work [5] Ananth and Jain demonstrate how to
obtain selectively secure MIFE in the private key setting starting from
any general-purpose public key functional encryption. In an independent
work, Brakerski et al. [12] reduce the construction of private key MIFE
to general-purpose private key (single input) functional encryption. The
resulting scheme achieves selective security when the starting private key
FE is selectively secure. Additionally in the case when the MIFE takes
any constant number of inputs, adaptive security for the private key FE
suffices to obtain adaptive security for the MIFE construction as well.
The constructions in that work provide also function hiding properties
for the MIFE encryption scheme.

While this line of work reduces MIFE to single-input FE for general-
purpose constructions, the only known instantiations of construction for
public and private key functional encryption with unbounded number
of keys require either indistinguishability obfuscation [16] or multilinear
maps with non-standard assumptions [17]. We stress that the transforma-
tions from single-input to MIFE in [5, 12] are not applicable in the case
of inner product since these transformations require that the single-input

9



FE for complex functionalities related to computing a PRF, which is not
captured by the simple inner functionality.

Open problems. One natural open problem is to eliminate the use of
pairings in MIFE for inner product; we think such a result would be quite
surprising though. Another open problem is to achieve function privacy,
as considered in the setting of single-input inner product functional en-
cryption in [7, 13]. Note that these latter results require pairings. Our first
guess is that it would be possible to achieve private-key, function-hiding
MIFE for inner product under the k-Lin assumption in bilinear groups.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at
random from a finite set S. By PPT, we denote a probabilistic polynomial-
time algorithm. Throughout, we use 1λ as the security parameter. We use
lower case boldface to denote (column) vectors and upper case boldface
to denote matrices.

Cryptographic assumptions We follow the notation and algebraic
framework for Diffie-Hellman-like assumptions in [14]. We fix a pairing
group PG := (G1,G2,GT ) with e : G1×G2 → GT of prime order q, where
q is a prime of Θ(λ) bits. We use the implicit representation notation for
group elements: for fixed generators g1 and g2 of G1 and G2, respectively,
and for a matrix M over Zq, we define [M]1 := gM1 and [M]2 := gM2 ,
where exponentiation is carried out component-wise.

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH)
Assumption [14].

Definition 1 (Matrix Distribution). Let k, ` ∈ N, with ` > k. We
call D`,k a matrix distribution if it outputs matrices in Z`×kq of full rank
k in polynomial time. We write Dk := Dk+1,k.

Without loss of generality, we assume the first k rows of A ←R D`,k
form an invertible matrix. The D`,k-Matrix Diffie-Hellman problem is to
distinguish the two distributions ([A], [Aw]) and ([A], [u]) where A ←R

D`,k, w←R Zkq and u←R Z`q.

Definition 2 (Dk-Matrix Diffie-Hellman Assumption Dk-
MDDH). Let Dk be a matrix distribution. We say that the Dk-Matrix
Diffie-Hellman (Dk-MDDH) Assumption holds relative to PG in Gs for
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s ∈ {1, 2}, if for all PPT adversaries A, there exists a negligible function
Adv such that:

AdvDk-mddhGs,A (λ) := |Pr[A(PG, [A]s, [Aw]s) = 1]− Pr[A(PG, [A]s, [u]s) = 1]|
= negl(λ),

where the probability is taken over A←R Dk,w←R Zkq ,u←R Zk+1
q .

For each k ≥ 1, [14] specifies distributions Lk, SCk, Ck (and others)

over Z(k+1)×k
q such that the corresponding Dk-MDDH assumptions are

generically secure in bilinear groups and form a hierarchy of increasingly
weaker assumptions. Lk-MDDH is the well known k-Linear Assumption
k-Lin with 1-Lin = DDH. In this work we are mostly interested in the
uniform matrix distribution U`,k.

Definition 3 (Uniform distribution). Let `, k ∈ N, with ` > k. We
denote by U`,k the uniform distribution over all full-rank ` × k matrices
over Zq. Let Uk := Uk+1,k.

Let Q ≥ 1. For W ←R Zk×Qq ,U ←R Z(k+1)×Q
q , we consider the Q-fold

U`,k-MDDH Assumption which consists in distinguishing the distribu-
tions ([A], [AW]) from ([A], [U]). That is, a challenge for the Q-fold
U`,k-MDDH Assumption consists of Q independent challenges of the U`,k-
MDDH Assumption (with the same A but different randomness w). We
recall in Lemma 1 the random self reducibility of the Q-fold U`,k-MDDH
assumption, namely, the fact that it reduces to the 1-fold Uk assumption.

Lemma 1 (Uk-MDDH ⇒ Q-fold U`,k-MDDH [14, 18]). Let `, k ∈
N∗, with ` > k, and s ∈ {1, 2}. For any PPT adversary A, there exists a
PPT adversary B such that

Adv
Q-U`,k-mddh
Gs,A (λ) ≤ AdvUk-mddhGs,B (λ) +

1

q − 1
,

where Adv
Q-U`,k-mddh
Gs,A (λ) :=

|Pr[A(PG, [A]s, [AW]s) = 1]−Pr[A(PG, [A], [U]) = 1]| and the probabil-

ity is taken over A←R U`,k,W←R Zk×Qq ,U←R Z(k+1)×Q
q .

Among all possible matrix distributions Dk, the uniform matrix distri-
bution Uk is the hardest possible instance, so in particular k-Lin ⇒ Uk-
MDDH, as stated in Lemma 2.
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Lemma 2 (Dk-MDDH ⇒ Uk-MDDH, [14]). Let Dk be a matrix dis-
tribution. For any PPT adversary A, there exists a PPT adversary B
such that AdvUk-mddhGs,B (λ) ≤ AdvDk-mddhGs,A (λ).

3 Definitions for Multi-Input Functional Encryption

We recall the definitions for multi-input functional encryption from [19].
We focus here on the private-key setting, which allows us to simplify the
definitions.

Definition 4 (Multi-input Function Encryption). Let {Fn}n∈N be
an ensemble where each Fn is a family of n-ary functions. A function f ∈
Fn is defined as follows f : X1 × . . .×Xn → Y. A multi-input functional
encryption scheme MIFE for F consists of the following algorithms:

– Setup(1λ,Fn): on input the security parameter λ and a description of
Fn ∈ F , outputs a master public key mpk7 and a master secret key
msk. All of the remaining algorithms get mpk as part of its input.

– Enc(msk, i, xi): on input the master secret key msk, i ∈ [n], and a mes-
sage xi ∈ Xi, outputs a ciphertext ct. We assume that each ciphertext
has an associated index i, which denotes what slot this ciphertext can
be used for. If n = 1, we omit the input i.

– KeyGen(msk, f): on input the master secret key msk and a function
f ∈ Fn, outputs a decryption key skf .

– Dec(skf , f, ct1, . . . , ctn): on input a decryption key skf for function f
and n ciphertexts, outputs a string y ∈ Y.

The scheme MIFE is correct if for all f ∈ F and all xi ∈ Xi for 1 ≤ i ≤
n, we have

Pr

 (mpk,msk)← Setup(1λ, n);

skf ← KeyGen(msk, f);

Dec(skf , f,Enc(msk, 1, x1), . . . ,Enc(msk, n, xn)) = f(x1, . . . , xn)


= 1,

where the probability is taken over the coins of Setup, KeyGen and Enc.
7 We note that in the private key setting of MIFE, we can make mpk part of msk,

but we allow for a separate master public key for better clarity in our proofs. In
constructions where we do not need mpk we omit it.
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3.1 Security notions

Following [3], we may consider 8 security notions xx-yy-zzz where xx ∈
{one, many} refers to the number of challenge ciphertexts; yy ∈ {SEL,
AD} refers to encryption queries are selectively or adaptively chosen; zzz
∈ {IND, SIM} refers to indistinguishability vs simulation-based security.
We have the following trivial relations: many⇒ one, AD⇒ SEL, and the
following standard relations: SIM ⇒ IND, and one-yy-IND ⇒ many-yy-
IND, the latter in the public-key setting. Here, we focus on {one,many}-
SEL-IND and one-SEL-SIM, which are the notions most relevant to our
positive results.

Definition 5 (xx-SEL-IND-secure MIFE). For every multi-input
functional encryption MIFE := (Setup,Enc,KeyGen,Dec) for F , every
security parameter λ, every stateful adversary A, and every xx ∈
{one,many}, the advantage of A is defined as

AdvMIFE,SEL−IND(λ,A) =
∣∣∣Pr

[
SEL− INDMIFE0 (1λ,A) = 1

]
− Pr

[
SEL− INDMIFE(1λ,A) = 1

] ∣∣∣
where the experiments are defined as follows:

Experiment xx-SEL-INDMIFEβ (1λ,A): Experiment xx-SEL-INDMIFE(1λ,A):

β ←R {0, 1}
{xbi}i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn) {xbi}i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn) (mpk,msk)← Setup(1λ,Fn)

ctji ← Enc(msk, i, xj,βi ) ∀i ∈ [n], j ∈ [Qi] ctji ← Enc(msk, i, xj,βi ) ∀i ∈ [n], j ∈ [Qi]

β′ ← AKeyGen(msk,·) (mpk, (ctji )i∈[n],j∈[Qi]

)
β′ ← AKeyGen(msk,·) (mpk, (ctji )i∈[n],j∈[Qi]

)
Output: β′ Output: 1 if β′ = β, 0 otherwise.

where A only makes queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . , xj1,0n ) = f(xj1,11 , . . . , xj1,1n )

for all j1, . . . , j1 ∈ [Q1]×· · ·× [Qn]. For xx = one, we require additionally
that the adversary A only sends one challenge per slot, i.e. for all i ∈ [n],
Qi = 1.

The private key multi-input functional encryptionMIFE is xx-SEL-IND-
secure if for every PPT adversary A, there exists a negligible function negl
such that for all λ ∈ N: AdvMIFE,xx-SEL-IND

A (λ) = negl(λ).

13



Remark 1 (winning condition). Note that the winning condition is in gen-
eral not efficiently checkable because of the combinatorial explosion in the
restriction on the queries.

Next, we present the simulation-based security definition for MIFE, in
the setting with a single challenge ciphertext per slot.

Definition 6 (one-SEL-SIM-secure FE). A single-input functional
encryption FE for function F is one-SEL-SIM-secure if there exists a

PPT simulator8 (S̃etup, Ẽncrypt, K̃eyGen) such that for every PPT adver-
sary A and every λ ∈ N, the following two distributions are computation-
ally indistinguishable:

Experiment REALFE(1λ,A): Experiment IDEALFE(1λ,A):

x← A(1λ,F) x← A(1λ,F)

(mpk,msk)← Setup(1λ,F) (m̃pk, m̃sk)← S̃etup(1λ,F)

ct← Enc(msk, x) ct← Ẽncrypt(m̃sk)

α← AKeyGen(msk,·)(mpk, ct) α← AO(·)(m̃pk, ct)
Output: α Output: α

The oracle O(·) in the above ideal experiment has access to an oracle that
provides the value 〈x,y〉, for each y ∈ Zmp queried to O(·). Then, O(·)
returns K̃eyGen(m̃sk,y, 〈x,y〉).

Namely, for every stateful adversary A,we define

AdvFE,one-SEL-SIM (λ,A) =∣∣∣∣Pr
[
REALFE(1λ,A) = 1

]
− Pr

[
˜IDEAL

FE
(1λ,A) = 1

]∣∣∣∣ ,
and we require that for every PPT A, there exists a negligible function
negl such that for all λ ∈ N, AdvFE,one-SEL-SIM (λ,A) = negl(λ).

Zero vs multiple queries in private-key setting. It is convenient in
our proof of security to assume that Q1, . . . , Qn ≥ 1, that is, there is at
least one ciphertext for each encryption slot, which is where the technical
bulk of the work lies as we would need to reason about leakage from the

8 That is, S̃etup, Ẽncrypt, K̃eyGen correspond respectively to the simulated
Setup,Enc,KeyGen.
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Setup′(1λ,Fn):

msk← Setup(1λ,Fn)
K← Gen(1λ)

k1, . . . , kn−1 ←R {0, 1}λ, kn =
(⊕

i∈[n−1] ki
)
⊕ K

return msk′ ←
(
msk,K, {ki}i∈[n]

)
Enc′(msk, i,xi):

parse msk′ =
(
msk,K, {ki}i∈[n]

)
ct← Enc(msk, i,xi)
ct′ ← EncSE(K, ct)
return (ki, ct

′)

KeyGen′(msk, f):

return KeyGen(msk, f)

Dec′(skf , f, ct
′
1, . . . , ct

′
n):

parse
{
ct′i = (ki, cti)

}
i∈[n]

K←
⊕

i∈[n] ki{
cti ← DecSE(K, ct′i)

}
i∈[n]

return Dec(skf , f, ct1, . . . , ctn).

Fig. 2: Compiler from private-key MIFE with xx-yy-zzz security when
|Qi| > 0 for all i to private-key MIFE with xx-yy-zzz security

ideal functionality. In the setting where some Qi = 0, the ideal function-
ality leaks nothing, and here, we can easily achieve semantic security for
all of the messages being encrypted in the private key MIFE setting, via
the following simple generic transformation.

Lemma 3. Let (Setup,Enc,KeyGen,Dec) be a private key MIFE con-
struction for n-input functions in the class Fn, which satisfies any
xx-yy-zzz MIFE security definition when the adversary receives at least
one ciphertext for each encryption slot. Let (GenSE,EncSE,DecSE)
be symmetric key encryption. The private key MIFE scheme
(Setup′,Enc′,KeyGen′,Dec′) described in Fig. 2 satisfies xx-yy-zzz
security without any restrictions on the ciphertext challenge sets.

Proof (sketch). We consider two cases:
– Case 1: there exists some i ∈ [n] for which Qi = 0. Here, ki and thus K

is perfectly hidden from the adversary. Then, security follows readily
from semantic security of (GenSE,EncSE,DecSE).

– Case 2: for all i, Qi ≥ 1. Here, security follows immediately from that
of (Setup,Enc,KeyGen,Dec).
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ut

3.2 Inner product functionality

Multi-input Inner product. We construct a multi-input functional encryp-
tion that supports the class of multi-input bounded-norm inner product
functions, which is defined as Fm,Bn = {fy1,...,yn : (Zm)n → Z} where

fy1,...,yn(x1, . . . ,xn) =
n∑
i=1

〈xi,yi〉.

We require that the norm of the inner product of any two vector com-
ponents from function and input 〈x,y〉 is bounded by B. This bound
will determine the parameters of the bilinear map groups that we will be
using in our constructions; in particular, we will choose a target group
that has order q � n · B. To simplify naming conventions, we will omit
“bounded-norm” for the rest of the paper, but we will always refer to a
multi-input inner-product functionality with this property.

Remark on leakage. Let (xj,0i ,xj,1i )i∈[n],j∈[Qi] be the ciphertext queries,
and y1‖ · · · ‖yn be a secret key query. For all slots i ∈ [n], all j ∈ [Qi],

and all bits b ∈ {0, 1}, the adversary can learn 〈xj,bi − xj,bi ,yi〉 via the
ideal functionality. In the IND security game, this means the adversary
is restricted to queries satisfying 〈xj,0i −x1,0

i ,yi〉 = 〈xj,1i −x1,1
i ,yi〉. In the

hybrid, we want to avoid additional constraints such as

〈xj,0i − x1,0
i ,yi〉 = 〈xj,0i − x1,1

i ,yi〉 = 〈xj,1i − x1,0
i ,yi〉 = 〈xj,1i − x1,1

i ,yi〉

4 Private-Key MIFE for Inner Product

In this section, we present a private-key MIFE for inner product that
achieves many-SEL-IND security. We use a pairing group (G1,G2,GT )
with e : G1×G2 → GT of prime order q, where q is a prime of Θ(λ) bits.
Our construction relies on the k-Lin Assumption in G1 and in G2 and is
shown in Fig. 6.

We present our construction in two steps: first, in Section 4.1, we show
how to construct a selectively-secure MIFE scheme starting from a single-
input one-SEL-SIM scheme that satisfies some additional structural prop-
erties. Then, we show how to instantiate the underlying single-input
scheme (cf. Fig. 7) and we present a self-contained description of the
scheme in Fig. 6. We refer the reader to Section 1.1 for an overview of
the construction.
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Setup′(1λ,Fm,Bn ):

(mpki,mski)← Setup(1λ,Fm+k,B
1 ), i = 1, . . . , n

zi ←R Zkq , i = 1, . . . , n

(mpk,msk) :=
({

mpki
}
i∈[n],

{
mski, zi

}
i∈[n]

)
return (mpk,msk)

Enc′(msk, i,xi):

return Enc(mski,xi‖zi)

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
di ← KeyGen(mski,yi‖r), i = 1, . . . , n
z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn :=

({
[di]2

}
i∈[n], [r]2, [z]T

)
return sky1‖···‖yn

Dec′((
{

[di]2
}
i∈[n], [r]2, [z]T ),y1‖ · · · ‖yn, ct1, . . . , ctn):

[ai]T ← Dec([di]2, [yi‖ri]2, cti), i = 1, . . . , n
return the discrete log of

(∏n
i=1[ai]T

)
/[z]T

Fig. 3: Multi-input functional encryption scheme
(Setup′,Enc′,KeyGen′,Dec′) for the class Fm,Bn . (Setup,Enc,KeyGen,
Dec) refers to the single-input functional encryption scheme for the class

Fm+k,B
1 .

4.1 Selectively-secure, multi-input scheme from single-input
scheme

Main construction. We build a private key multi-input FE
(Setup′,Enc′,KeyGen′,Dec′) for the class Fm,Bn , starting from a pri-
vate key one-SEL-SIM secure, single-input FE (Setup,Enc,KeyGen,Dec)

for the class Fm+k,B
1 . We present our construction in Fig. 3.

Correctness. Correctness follows readily from the correctness of the un-
derlying scheme and the equation:

〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉 = (

n∑
i=1

〈xi‖zi,yi‖r〉)− 〈z1 + · · ·+ zn, r〉

Finally, we use the fact that 〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉 mod q =
〈x1‖ · · · ‖xn,y1‖ · · · ‖yn〉, since for all slots i ∈ [n], we have 〈xi,yi〉 ≤ B,
and q > Bn.
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Additional requirements. The construction and the analysis requires
that (Setup,Enc,KeyGen,Dec) satisfies the following structural properties:

– The scheme can be instantiated over G1, where the ciphertext is a
vector [c]1 over G1 and the secret key is a vector di over Zq.

– Enc is linearly homomorphic and public-key. More specifically, we only
require that, given mpk,Enc(msk,x),x′, we can generate a fresh ran-
dom encryption of x + x′, i.e. Enc(msk,x + x′).

– For correctness, Dec should be linear in its inputs (d,y) and c, so that
Dec([d]2, [y]2, [c]1) = [Dec(d,y, c)]T ∈ GT can be computed using a
pairing.

– For an efficient MIFE decryption, Dec must work without any re-
striction on the norm of the output as long as the output is in the
exponent.

– Let (S̃etup, Ẽnc, K̃eyGen) be the stateful simulator for the one-SEL-
SIM security of the single-input inner-product FE scheme. We require

that K̃eyGen(m̃sk, ·, ·) is linear in its inputs (y, a), so that we can

compute K̃eyGen(m̃sk, [y]2, [a]2) = [K̃eyGen(m̃sk,y, a)]2. This property
is used in the proof of Lemma 5.

Remark 2 (notation). We use subscripts and superscripts for indexing
over multiple copies, and never for indexing over positions or exponenti-
ation. Concretely, the j’th ciphertext query in slot i is xji .

Security. Theorem 1 and Theorem 2 below, together with the fact that
one-SEL-SIM security implies one-SEL-IND security, which itself implies
many-SEL-IND security for a public-key FE, such as (Setup,Enc,KeyGen)
used in the construction presented in Fig. 3, implies the many-SEL-IND
security of the MIFE (Setup′,Enc′,KeyGen′).

Theorem 1 (one-SEL-IND security of MIFE). Suppose the
single-input FE (Setup,Enc,KeyGen,Dec) is one-SEL-SIM secure, and
that the Dk-MDDH assumption holds in G2. Then, the multi-input FE
(Setup′,Enc′,KeyGen′,Dec′) is one-SEL-IND-secure.

That is, we show that our multi-input FE is selectively secure when there
is only a single challenge ciphertext.
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Game0(1λ,A):

β ←R {0, 1}, zi ←R Zkq
{xbi}i∈[n],b∈{0,1} ← A(1λ,Fn)

(mpki,mski)← Setup(1λ,Fn)

mpk := {mpki}i∈[n], msk := {mski, zi}i∈[n]
cti := Enc(mski,x

β
i ‖zi)

β′ ← AKeyGen′(msk,·) (mpk, (cti)i∈[n]
)

Output: 1 if β′ = β, 0 otherwise.

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
di ← KeyGen (mski,yi‖r)

z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn :=

({
[di]2

}
i∈[n], [r]2, [z]T

)
Return sky1‖···‖yn

Game1(1λ,A):

β ←R {0, 1}, zi ←R Zkq
{xbi}i∈[n],b∈{0,1} ← A(1λ,Fn)(
m̃pki, m̃ski

)
← S̃etup(1λ,Fm+k,B

1 )

mpk := {m̃pki}i∈[n]; msk := {m̃ski, zi}i∈[n]
cti := Ẽnc(m̃ski)

β′ ← AKeyGen′(msk,·) (mpk, (cti)i∈[n]
)

Output: 1 if β′ = β, 0 otherwise.

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq

di ← K̃eyGen
(
m̃ski,yi‖r, 〈xβi ‖zi,yi‖r〉

)
z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn :=

({
[di]2

}
i∈[n], [r]2, [z]T

)
Return sky1‖···‖yn

Game2(1λ,A):

β ←R {0, 1}
{xbi}i∈[n],b∈{0,1} ← A(1λ,Fn)(
m̃pki, m̃ski

)
← S̃etup(1λ,Fm+k,B

1 )

mpk := {m̃pki}i∈[n]; msk := {m̃ski}i∈[n]
cti := Ẽnc(m̃ski)

β′ ← AKeyGen′(msk,·) (mpk, (cti)i∈[n]
)

Output: 1 if β′ = β, 0 otherwise.

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq ; z̃1, . . . , z̃n ←R Zq
di ← K̃eyGen

(
m̃ski,yi‖r, 〈xβi ,yi〉+ z̃i

)
z := z̃1 + · · ·+ z̃n

sky1‖···‖yn :=
({

[di]2
}
i∈[n], [r]2, [z]T

)
Return sky1‖···‖yn

Game3(1λ,A):

β ←R {0, 1}
{xbi}i∈[n],b∈{0,1} ← A(1λ,Fn)(
m̃pki, m̃ski

)
← S̃etup(1λ,Fm+k,B

1 )

mpk := {m̃pki}i∈[n]; msk := {m̃ski}i∈[n]
cti := Ẽnc(m̃ski)

β′ ← AKeyGen′(msk,·) (mpk, (cti)i∈[n]
)

Output: 1 if β′ = β, 0 otherwise.

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq ; z̃1, . . . , z̃n ←R Zq
di ← K̃eyGen

(
m̃ski,yi‖r, z̃i

)
z := z̃1 + · · ·+ z̃n −

∑
i〈x

β
i ,yi〉

sky1‖···‖yn :=
({

[di]2
}
i∈[n], [r]2, [z]T

)
Return sky1‖···‖yn

Fig. 4: Gamei for i ∈ {0, . . . , 3} for the proof of Theorem 1.

Proof (of Theorem 1). We proceed via a series of Gamei for i ∈ {0, . . . , 3},
described in Fig. 4. Let A be a PPT adversary, and λ ∈ N be the security
parameter.
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Game0: is the experiment one-SEL-INDMIFE (see Definition 5).

Game1: we replace (Setup,KeyGen,Enc) by the efficient simulator

(S̃etup, K̃eyGen, Ẽnc), using the one-SEL-SIM security of FE , via a
hybrid argument across all slots i ∈ [n] (cf Lemma 4).

Lemma 4 (Game0 to Game1). There exists a PPT adversary B1 such
that

Adv0(A)− Adv1(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B1).

Game0.`(1
λ,A):

{xbi}i∈[n],b∈{0,1} ← A(1λ,Fm+k,B
1 )

β ←R {0, 1}(
m̃pki, m̃ski

)
← S̃etup(1λ,Fm+k,B

1 ), i = 1, . . . , `

(mpki,mski)← Setup(1λ,Fm+k,B
1 ), i = `+ 1, . . . , n

zi ←R Zkq , i = 1, . . . , n

mpk := {m̃pki}i=1,...,` ∪ {mpki}i=`+1,...,n

msk := {m̃ski, zi}i=1,...,` ∪ {mski, zi}i=`+1,...,n

cti := Ẽnc(m̃ski), for all i = 1, . . . , `
cti := Enc(mski,x

β
i ‖zi), for all i = `+ 1, . . . , n

β′ ← AKeyGen′(msk,·)(mpk, {cti}i∈[n]
)

Output :1 if β′ = β, 0 otherwise.

KeyGen′(msk,y1‖ · · · ‖yn):

r←R Zkq
di ← K̃eyGen

(
m̃ski,yi‖r, 〈xβi ‖zi,yi‖r〉

)
, for all i = 1, . . . , `

di ← KeyGen (mski,yi‖r) , for all i = `+ 1, . . . , n
z := 〈z1 + · · ·+ zn, r〉
sky1‖···‖yn :=

({
[di]2

}
i∈[n], [r]2, [z]T

)
return sky1‖···‖yn

Fig. 5: Description of (Setup′,Enc′,KeyGen′) defining game 0.` for the
proof of Lemma 4.

Proof. In Game1, we replace (Setup,Enc,KeyGen) by (S̃etup, Ẽnc, K̃eyGen),
which is a PPT simulator whose existence is ensured by the one-SEL-SIM
security of (Setup,KeyGen,Enc) (see Definition 6). A complete description
of Games0 and Game1 is given in Fig. 4.
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We use a hybrid argument, which involves hybrid Game0.` for
` ∈ {0, . . . , n}, defined in Fig. 5, and we use Adv0,`(λ,A) to de-
note Pr[Game0.`(λ,A) = 1], where the probability is taken over the
random coins of A and Game0.`. Notice that Game0 and Game1 are
identical to Game0.0 and Game0.n, respectively. For any ` ∈ [n], we build
a PPT adversary B0.` such that

Adv0.`−1(A)− Adv0.`(A) ≤ AdvFE,one-SEL-SIM (1λ,B0.`).

-Simulation of mpk: First, B0.` receives the challenge {xbi}i∈[n],b∈{0,1}
from A. Then, it picks β ←R {0, 1}, zi ←R Zkq for all i ∈ [n],

and sends xβ` ‖z` to the experiment it is interacting with, which

is either REALFE or ˜IDEAL
FE

. Then, B0.` receives mpk′`, and a
ciphertext ct, which are either of the form mpk′` := mpk`, where

(msk`,mpk`) ← Setup(1λ,Fm+k,B
1 ), and ct := Enc(msk`,x

β
` ‖z`)

if B3.` is interacting with the experiment REALFE ; or of the

form mpk′` := m̃pk`, where (m̃sk`, m̃pk`) ← S̃etup(1λ,Fm+k,B
1 ),

ct := Ẽnc(m̃sk`) if B3.` is interacting with the experiment ˜IDEAL
FE

.

It samples (m̃pki, m̃ski) ← S̃etup(1λ,Fm+k,B
1 ) for i = 1, . . . , ` − 1,

(mpki,mski) ← Setup(1λ,Fm+k,B
1 ) for i = ` + 1, . . . , n, and returns

mpk := (m̃pk1, . . . , m̃pk`−1,mpk′`,mpk`+1, . . . ,mpkn) to A.

-Simulation of cti: B0.` computes cti := Enc(mski,x
β
i ‖zi) for all i < `

(note that B0.` can do so since it knows mski, xβi , and zi), and computes

cti := Ẽnc(m̃ski) for all i > ` (again, B0.` can do so since it knows m̃ski).
Finally, B0.` sets ct` := ct and returns {cti}i∈[n] to A.

-Simulation of KeyGen′(msk, ·): For each query y1‖ . . . ‖yn
that A makes to KeyGen′(msk, ·), B0.` picks r ←R Zkq , and com-

putes di ← K̃eyGen(m̃ski,yi‖r, 〈xβi ‖zi,yi‖r〉) for i = 1, . . . , ` − 1,
di ← KeyGen(mski,yi‖r) for i = ` + 1, . . . , n. Then it computes d`
by querying the oracle it has access to, which is KeyGen(msk, ·) in
the experiment REALFE , or O(·) in the experiment IDEALFE , on
input y`‖r. Then, it computes z := 〈z1 + · · · + zn, r〉 and it returns
sky1‖···‖yn :=

(
{[di]2}i∈[n], [r]2, [z]T

)
.
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Finally, B0.` outputs 1 ifA outputs 1, 0 otherwise. It is clear that when B0.`
interacts with the experiment REALFE , it simulates the Game 0, whereas
it simulates the Game 1 when it interacts with IDEALFE . Therefore,

AdvFE,one-SEL-SIM (λ, 1λ,B0.`)

=
∣∣∣Pr
[
REALFE(1λ,B0.`) = 1

]
− Pr

[
IDEALFE(1λ,B0.`) = 1

]∣∣∣
= |Adv0.`−1(A)− Adv0.`(A)|

Summing up for all ` ∈ [n], we obtain the lemma. ut

Game2: we replace the values 〈zi, r〉 used by KeyGen′(msk, ·) to z̃i ←R

Zq, for all slots i ∈ [n], using the Dk-MDDH assumption in G2 (cf
Lemma 5).

Lemma 5 (Game1 to Game2). There exists a PPT adversary B2 such
that:

Adv1(A)− Adv2(A) ≤ AdvUk-mddhG2,B2 (λ) +
1

q − 1
.

Proof. Here, we switch {[r]2, [〈zi, r〉]2}i∈[n] used by KeyGen(msk, ·) to

{[r]2, [z̃i]2}i∈[n], where for all i ∈ [n], zi ←R Zkq , z̃1, . . . , z̃n ←R Zp and

r ←R Zkq . This is justified by the fact that [r>‖〈z1, r〉‖ · · · ‖〈zn, r〉]2 ∈
G1×(k+n)

2 is identically distributed to [r>U>]2 where U ←R Uk+n,k
(wlog. we assume that the upper k rows of U are full rank), which is

indistinguishable from a uniformly random vector over G1×(k+n)
2 , that is,

of the form: [r‖z̃1‖ · · · ‖z̃n]2, according to the Uk+n,k-MDDH assumption.
To do the switch simultaneously for all calls to KeyGen, that is, to switch
{[rj ]2, [〈zi, rj〉]2}i∈[n],j∈[Q0] to {[rj ]2, [z̃ji ]2}i∈[n],j∈[Q0], where Q0 denotes

the number of calls to KeyGen(msk, ·), and for all i ∈ [n], zi ←R Zkq ,
z̃j1, . . . , z̃

j
n ←R Zp and for all j ∈ [Q0], rj ←R Zkq , we use the Q0-fold

Uk+n,k-MDDH assumption. Namely, we build a PPT adversary B′2 such

that Adv1(A) − Adv2(A) ≤ Adv
n-fold UQ0,k

-mddh
G2,B′2

(λ). This, together with

Lemma 1 (Uk-MDDH ⇒ n-fold UQ0,k-MDDH), implies the lemma.

-Simulation of mpk: Upon receiving an Q0-fold Uk+n,k-MDDH chal-
lenge (

PG, [U]2 ∈ G(k+n)×k
2 ,

[
h1‖ · · · ‖hQ0

]
2
∈ G(k+n)×Q0

2

)
,
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and the challenge {xbi}i∈[n],b∈{0,1} from A, B′1 picks β ←R {0, 1}, sam-

ples (m̃pki, m̃ski) ← S̃etup(1λ,Fm+k,B
1 ) for i ∈ [n], and returns mpk :=

(m̃pk1, . . . , m̃pkn) to A.

-Simulation of cti: B′2 computes cti := Ẽnc(m̃ski) for all i ∈ [n], which

it can do since it knows m̃ski, and returns {cti}i∈[n] to A.

-Simulation of KeyGen′(msk, ·): On the j’th query y1‖ · · · ‖yn of
A to KeyGen′, B′2 sets [rj ]2 := [hj ]2, where hj ∈ Zkq denotes the

k-upper components of hj ∈ Zk+nq , and for each i ∈ [n], computes

[di]2 := [K̃eyGen(m̃ski,yi‖rj , 〈xβi ,yi〉 + hjk+i)]2, where hjk+i denotes

the k + i’th coordinate of the vector hj ∈ Zk+np . Here we rely on the

fact that K̃eyGen(m̃sk, ·, ·) is linear in its inputs (y, a), so that we can

compute K̃eyGen(m̃sk, [y]2, [a]2) = [K̃eyGen(m̃sk,y, a)]2. Note that when[
h1‖ · · · ‖hQ0

]
2

is a real MDDH challenge, B′2 simulate Game1, whereas

it simulates Game2 when
[
h1‖ · · · ‖hQ0

]
2

is uniformly random over

G(k+n)×Q0

1 . ut

Game3: here the values di for i ∈ [n], and z, computed by

KeyGen′(msk, ·), are of the form: di ← K̃eyGen
(
m̃ski,yi‖r, z̃i

)
,

and z := z̃1 + · · ·+ z̃n −
∑

i〈x
β
i ,yi〉 . In Lemma 6, we prove that Game3

and Game2 are perfectly indistinguishable, using a statistical argument
that crucially relies on the fact that Game3 and Game2 are selective.
In Lemma 7, we prove that no adversary can win Game3, using the
restriction on the queries to KeyGen′(msk, ·) and the challenge {xbi}i∈[n]
imposed by the ideal functionality.

Lemma 6 (Game2 to Game3). Adv2(A) = Adv3(A).

Proof. Here, we use the fact that for all y1‖ · · · ‖yn ∈ (Zmq )n, for all {xbi ∈
Zmq }i∈[n],b∈{0,1}, all β ∈ {0, 1}, the following are identically distributed:

{z̃i}i∈[n] and {z̃i − 〈xβi ,yi〉 }i∈[n], where z̃i ←R Zq for all i ∈ [n].

For each query y1‖ · · · ‖yn, KeyGen′(msk,y1‖ · · · ‖yn) picks values z̃i ←R

Zq for i ∈ [n] that are independent of y1‖ · · · ‖yn and the challenge {xbi ∈
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Zmq }i∈[n],b∈{0,1} (note that here we crucially rely on the fact the Game2
and Game3 are selective), therefore, using the previous fact, we can switch

z̃i to z̃i − 〈xβi ,yi〉 without changing the distribution of the game. This

way, KeyGen′(msk,y1‖ · · · ‖yn) computes di ← K̃eyGen(m̃ski,yi‖r, z̃i) for

all i ∈ [n], and z := z̃1 + . . .+ z̃n −
∑n

i=1〈x
β
i ,yi〉, as in Game3.

ut

Lemma 7 (Game3). Adv3(A) = 0.

Proof. We use the fact that for all i ∈ [n], the query (i,x0
i ,x

1
i ) to Enc′

(recall that there can be at most one query per slot i ∈ [n]), and for
all queries y1‖ · · · ‖yn to KeyGen′, by definition of the security game, we
have:

n∑
i=1

〈x0
i ,yi〉 =

n∑
i=1

〈x1
i ,yi〉.

Therefore, for each call to KeyGen(msk, ·), the value z, which is of the form

z :=
∑

i z̃i−
∑

i〈x
β
i ,yi〉, is independent of β. Since the challenge ciphertext

and the public key are also independent of β, we have Adv3(A) = 0. ut

Summing up, we proved that for all security parameter λ ∈ N and all
PPT adversaries A, the following holds.

– In Lemma 4, we show that there exists a PPT adversary B1 such that
Adv0(A)− Adv1(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B1).

– In Lemma 5, we show that there exists a PPT adversary B2 such that
Adv1(A)− Adv2(A) ≤ AdvUk-mddhG2,B2 (λ) + 1

q−1 .

– In Lemma 6, we show that Adv2(A) = Adv3(A).

– In Lemma 7, we show that Adv3(A) = 0.

Putting everything together, we obtain:

Adv0(A) ≤ n · AdvFE,one-SEL-SIM (1λ,B0) + AdvUk-mddhG2,B2 (λ) +
1

q − 1
.

By Definition 6, Adv0(A) = AdvMIFE,one-SEL-IND(1λ,A). Therefore, by
the one-SEL-SIM security of (Setup,Enc,KeyGen) and the Dk-MDDH as-
sumption in G2, Adv

MIFE,one-SEL-IND(1λ,A) is a negligible function of
λ. ut
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Remark 3 (decryption capabilities). As a sanity check, we note that the
simulated secret keys will correctly decrypt a simulated ciphertext. How-
ever, unlike schemes proven secure via the standard dual system encryp-
tion methodology [26], a simulated secret key will incorrectly decrypt a
normal ciphertext. This is not a problem because we are in the private-key
setting, so a distinguisher will not be able to generate normal ciphertexts
by itself.

Remark 4 (why a naive argument is inadequate). We cannot afford to
do a naive hybrid argument across the n slots for the challenge cipher-
text as it would introduce extraneous restrictions on the adversary’s
queries. Concretely, suppose we want to use a hybrid argument to switch
from encryptions of x0

1,x
0
2 in game 0 to those of x1

1,x
1
2 in game 2 with

an intermediate hybrid that uses encryptions of x1
1,x

0
2 in Game1. To

move from game 0 to game 1, the adversary’s query y1‖y2 must satisfy
〈x0

1‖x0
2,y1‖y2〉 = 〈x1

1‖x0
2,y1‖y2〉, which implies the extraneous restriction

〈x0
1,y1〉 = 〈x1

2,y1〉.

As described in the proof above, we overcome the limitation by using
simulation-based security. Note that what essentially happens in the first
slot in our proof is as follows (for k = 1, that is, DDH): we switch from
Enc(msk1,x

0
1‖z1) to Enc(msk1,x

1
1‖z1) while giving out a secret key which

contains KeyGen(msk1,y1‖r1), [r1]2. Observe that

〈x0
1‖z1,y1‖r1〉 = 〈x0

1,y1〉+ z1r
1, 〈x1

1‖z1,y1‖r1〉 = 〈x1
1,y1〉+ z1r

1

may not be equal, since we want to avoid the extraneous restriction
〈x0

1,y1〉 = 〈x1
2,y1〉. This means that one-SEL-IND security does not pro-

vide any guarantee that the ciphertexts are indistinguishable. However,
one-SEL-SIM security does provide such a guarantee, because

([〈x0
1,y1〉+ z1r

1]2, [r
1]2) ≈c ([〈x1

1,y1〉+ z1r
1]2, [r

1]2)

via the DDH assumption in G2. Since the outcomes of the decryption are
computationally indistinguishable, the output of the simulated ciphertext
would also be computationally indistinguishable.

Theorem 2 (many-SEL-IND security of MIFE). Suppose the
single-input FE (Setup,Enc,KeyGen,Dec) is many-SEL-IND-secure and
the multi-input FE (Setup′,Enc′,KeyGen′,Dec′) is one-SEL-IND-secure.
Then, the multi-input FE (Setup′,Enc′,KeyGen′,Dec′) is many-SEL-
IND-secure.
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That is, we show that our multi-input FE is selectively secure in the
setting with multiple challenge ciphertexts (and since our multi-input
FE is a private key scheme, one-SEL-IND security does not immediately
imply many-SEL-IND security).

Proof overview.

– We first switch encryptions of x1,0
1 , . . . ,x1,0

n to those of x1,1
1 , . . . ,x1,1

n in
a “single shot”, and for the remaining ciphertexts, we switch from an
encryption of xj,0i = (xj,0i − x1,0

i ) + x1,0
i to that of (xj,0i − x1,0

i ) + x1,1
i .

This basically follows from the setting where there is only a single
ciphertext in each slot.

– Then, we apply a hybrid argument across the slots to switch from
encryptions of (x2,0

i − x1,0
i ) + x1,1

i , . . . , (xQi,0i − x1,0
i ) + x1,1

i to those of

(x2,1
i − x1,1

i ) + x1,1
i , . . . , (xQi,1i − x1,1

i ) + x1,1
i .

As described earlier, to carry out the latter hybrid argument, the queries
must satisfy the constraint

〈(xj,0i − x1,0
i ) + x1,1

i ,yi〉 = 〈(xj,1i − x1,1
i ) + x1,1

i ,yi〉
⇐⇒ 〈xj,0i − x1,0

i ,yi〉 = 〈xj,1i − x1,1
i ,yi〉

where the latter is already imposed by the ideal functionality.

We defer to the full version of this paper for the complete proof.

5 Achieving Adaptive Security

In this section, we show that the multi-input FE in Fig. 7 is many-AD-IND
secure. Roughly speaking, xx-AD-IND security, where xx ∈ {many, one},
is defined as xx-SEL-IND security (see Definition 5), except that the ad-
versary does not have to commit to its challenge beforehand, and queries
secret keys adaptively. See the full version of this paper for the formal
definition of xx-AD-IND security.

Theorem 3. Suppose the Dk-MDDH assumption holds in G1 and G2.
Then, the multi-input FE in Fig. 6 is many-AD-IND-secure.
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Proof overview. The security proof proceeds in three steps:

– First, we show that the MIFE in Fig. 6 is one-AD-IND secure, that is,
it is adaptively secure when there is only a single challenge ciphertext.
To achieve adaptive security, we borrow the techniques used in the se-
lective security proof, using complexity leveraging to obtain adaptive
security. Note that in our case, we can afford the exponential security
loss from complexity leveraging, since this is used in the proof in com-
bination with perfect indistinguishability, therefore, the exponential
term is multiplied by a zero term.

– Then, we show that the generic construction of MIFE in Fig. 3 is
many-AD-IND secure, if the underlying single-input FE is many-AD-
IND secure, and the MIFE is one-AD-IND secure.

– Finally, we show that the single-input scheme in Fig. 7 is many-AD-
IND.

Putting everything together, we obtain many-AD-IND security of the
MIFE in Fig. 6. We defer to the full version of this paper for a complete
proof, and for the definition of one-AD-IND and many-AD-IND security.

Setup(G,Fm,Bn ):

For i ∈ [n], Ai ←R Dk,Wi ←R Zm×(k+1)
q ,Vi ←R Zk×(k+1)

q , zi ←R Zkq
mpk :=

{
[Ai]1, [WiAi]1

}
i∈[n],msk :=

{
Wi,Vi, zi

}
i∈[n]

return (mpk,msk)

Enc(msk, i,xi ∈ Zmq ):

return ([ci]1, [c
′
i]1, [c

′′
i ]1) := ([Aisi]1, [xi + WiAisi]1, [zi + ViAisi]1)

KeyGen(msk,y1‖ · · · ‖yn ∈ (Zmq )n):

For i ∈ [n]: di := W>
i yi + V>

i r, r←R Zkq , z := 〈z1 + · · ·+ zn, r〉
return

({
[di]2

}
i∈[n], [r]2, [z]T

)
Dec

(({
[di]2

}
i∈[n], [r]2, [z]T

)
,y1‖ · · · ‖yn,

{
[ci]1, [c

′
i]1, [c

′′
i ]1
}
i∈[n]

)
:

out :=
(∑

i e([c
′
i]1, [yi]2) · e([c′′i ]1, [r]2)/e([ci]1, [di]2)

)
/[z]T

return discrete log of out

Fig. 6: Our private-key MIFE scheme for the class Fm,Bn (self-contained
description). The scheme is many-AD-IND-secure under the Dk-MDDH
assumption in G1 and G2. We use e([X]1, [Y]2) to denote [X>Y]T .
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A One-SEL-SIM, Many-AD-IND Secure Scheme for
Single-Input Inner Products

In Fig. 7, we describe the scheme for Single-Input Inner Products from
[28], which is essentially the same as those in [4, 2], extended explicitly to
the Dk-MDDH assumption. In the full version of this paper, we recall the
proof of one-SEL-SIM-security from [28] and we prove its many-AD-IND
security. Moreover, note that the scheme is public key, linearly homomor-
phic, and satisfies additional requirements for the construction in Fig. 3.

Setup(G,Fm,B1 ):

A←R Dk, W←R Zm×(k+1)
q

mpk := ([A], [WA]),msk := (W,A);
return (mpk,msk)

KeyGen(msk,y ∈ Zmq ):

return sky := W>y ∈ Zk+1
q

Enc(msk,x ∈ Zmq ):

r←R Zkp;
return ([c], [c′]) := ([Ar], [x + WAr])

Dec(sky,y, ([c], [c′])):

return discrete log of [c′
>
y − c>sky]

Fig. 7: A one-SEL-SIM scheme for single-input inner product Fm,B1 [28].

Theorem 4 (one-SEL-SIM, many-AD-IND security of FE). If the
Dk-MDDH assumption holds in G, then the single-input FE in Fig. 7 is
one-SEL-SIM secure (see Definition 6), and many-AD-IND secure.

We defer to the full version of this paper for the complete proof. We
provide the description of the simulator for the proof of one-SEL-SIM
security from [28], in Fig. 8.
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S̃etup(G):

A←R Z(k+1)×k
q ,W̃←R Zm×(k+1)

q , c←R Zk+1
q \ Span(A);

compute a⊥ ∈ Zk+1
q \ {0} s.t. A>a⊥ = 0

m̃pk := ([A], [W̃A]), m̃sk := (a⊥,W̃, c);

return (m̃pk, m̃sk)

K̃eyGen(m̃sk,y ∈ Zmq , a ∈ Zq):

return sky := W̃>y − a
〈c,a⊥〉a

⊥ ∈ Zk+1
q

Ẽnc(m̃sk):

return ([c], [W̃c])

Fig. 8: Simulator (S̃etup, K̃eyGen, Ẽnc) from [28] for the one-SEL-SIM se-
curity of the single-input scheme for inner product Fm,B1 in Fig. 7.
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