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Abstract. In 2016, Albrecht, Bai and Ducas and independently Cheon,
Jeong and Lee presented very similar attacks to break the NTRU cryp-
tosystem with larger modulus than in the NTRUEncrypt standard. They
allow to recover the secret key given the public key of Fully Homomor-
phic Encryption schemes based on NTRU ideas. Hopefully, these attacks
do not endanger the security of the NTRUEncrypt, but shed new light
on the hardness of the NTRU problem. The idea consists in decreasing
the dimension of the NTRU lattice using the multiplication matrix by
the norm (resp. trace) of the public key in some subfield instead of the
public key itself. Since the dimension of the subfield is smaller, so is the
dimension of the lattice and better lattice reduction algorithms perform.
In this paper, we first propose a new variant of the subfield attacks that
outperforms both of these attacks in practice. It allows to break sev-
eral concrete instances of YASHE, a NTRU-based FHE scheme, but it
is not as efficient as the hybrid method on smaller concrete parameters
of NTRUEncrypt. Instead of using the norm and trace, the multiplica-
tion by the public key in a subring allows to break smaller parame-
ters and we show that in Q(ζ2n), the time complexity is polynomial for
q = 2Ω(

√
n log log n). Then, we revisit the lattice reduction part of the

hybrid attack of Howgrave-Graham and analyze the success probability
of this attack using a new technical tool proposed by Pataki and Tural.
We show that, under some heuristics, this attack is more efficient than
the subfield attack and works in any ring for large q, such as the NTRU
Prime ring. We insist that the improvement on the analysis applies even
for relatively small modulus ; although if the secret is sparse, it may
not be the fastest attack. We also derive a tight estimation of security
for (Ring-)LWE and NTRU assumptions and perform many practical
experiments.

1 Introduction

NTRU has been introduced by Hoffstein, Pipher and Silverman since 1996 in [26]
and has since resisted many attacks [13,22,21,27]. NTRU is one of the most at-
tractive lattice-based cryptosystems since it is very efficient, and many Ring-
LWE cryptosystems have a NTRU variant. Ducas, Lyubashevsky and Prest pro-
pose an Identity Based Encryption scheme based on NTRU [20] (albeit with a



much larger standard deviation), López-Alt, Tromer and Vaikuntanathan de-
scribe a Fully Homomorphic Encryption scheme [32], which is improved in a
scheme called YASHE [6,31], and Ducas et al. propose a very fast signature
scheme called BLISS [19].

Currently, the most efficient and heuristic attack on NTRU has been given
by Kirchner and Fouque in [29] which has subexponential-time complexity in
2(n/2+o(n))/ log log q, but the o(n) is too large to lead to attack for given param-
eters. To date, the most efficient attack on practical NTRU parameters is the
so-called hybrid attack described by Howgrave-Graham in [27].

The key recovery problem of NTRU is the following problem: given a public
key h = f/g in some polynomial ring Rq = Zq[X]/(Xn − 1) for n prime, q a
small integer and the euclidean norms of f ,g are small, recover f and g or a small
multiple of them. In NTRUEncrypt, f and g are two sparse polynomials of degrees
strictly smaller than n and coefficients {−1, 0, 1}. It is easy to see that the public
key cannot be uniformly distributed in the whole ring, since the entropy is too
small. In [43], Stehlé and Steinfeld, show that if f and g are generated using a
Gaussian distribution of standard deviation σ ≈ q1/2, then the distribution of
the public key is statistically indistinguishable from the uniform distribution.

State-of-the-art lattice algorithm on NTRU. In [13], Coppersmith and
Shamir show that the (2n)-dimensional lattice Lcs generated by the columns of
the matrix (

qIn MRq
h

0 In

)
,

where MRq
h denotes the multiplication by the public key h in the ring Rq, con-

tains the vector (f , ḡ). It is easy to show that for ḡ = g(1/X) in Rq, we have
h · ḡ = f . By reducing this lattice, it is possible to find (f , ḡ) which is short if
(f ,g) is. Finally, Coppersmith and Shamir show that for cryptographic purposes,
it is sufficient to recover a small solution, maybe not the smallest one to decrypt.

In 2001, May showed in [33] how to exploit that the shifts of the target vector,
i.e. xi · f in Rq are also contained in the Lcs lattice. Consequently, we only have
to recover one of the n shifts of the target vector and the smallest vector is not
unique. The idea of May consists in constructing a lattice that contains as a
short vector only one of the shift and such that the gap between the first and
second minima of the lattice will be higher. This gap is an important parameter
when running lattice reduction algorithm. If we take into account that the vector
of the secret key contains {0,±1}-coefficients, there is a unique long run of 0-
coefficients. For one of the n shifts, we can assume that this run is for instance
in the first r coefficients and if we multiply the (n+ 1)th to (n+ r)th columns of
Lcs matrix by a suitable large constant, only this shift will be a solution for the
new lattice. He also introduces the projection technique to reduce the dimension
of Lcs from 2n to (1 + α)n for 0 < α ≤ 1 by removing the last columns of the
matrix MOK

h or of the last rows of the original matrix. The main idea is that it
suffices that among the n equations corresponding to h · ḡ = f , some of them will
not be fulfilled. Experimentally, since there is no other small vector except the n
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shifts, then there will be no other vector with small entries in these coefficients
and we will recover the target.

In [27], Howgrave-Graham makes various experiments on NTRU lattice and
proposes a mix between lattice reduction and a combinatorial technique, known
as Odlyzko’s meet-in-the-middle attack on NTRU. The first phase of the algo-
rithm starts by reducing the original matrix corresponding to Lcs and we can
see that lattice algorithms first reduce the column vectors in the middle of the
matrix. This process that treats the columns in a symmetric manner between
[n− r, n+ r] is also used in [21] in the symplectic reduction. Consequently, it is
more efficient to begin by reducing a small dimensional matrix in the center of the
original Coppersmith-Shamir matrix and then another combinatorial technique
can take into account the small coefficients in the short vector by guessing some
part of the secret key. In the following, we will speak of the middle technique.

More recently, in [12,1], Cheon, Jeong and Lee at ANTS 2016 and Albrecht,
Bai and Ducas at CRYPTO 2016, described a new attack on NTRU-like cryp-
tosystems. An attack based on similar ideas was proposed by Jonsson, Nguyen
and Stern in [23, Section 6]. It uses the fact that for cyclotomic number fields,
there exist subfields that allow to reduce the dimension of the lattice. The sub-
field attack recovers the norm of the secret key in these subfields, which are
smaller than in the classical NTRU lattice. In the maximal real subfield K+

of a power of two cyclotomic field K for instance, the norm can be written as
NK/K+(f) = f f̄ which is small if f is small and NK/K+(f) is of dimension half.
The lattice Lnorm is generated by the columns of the matrix of dimension n:(

qIn/2 MOK+

hh̄
0 In/2

)
.

The vector (NK/K+(f),NK/K+(g)) is small in Lnorm. By the Gaussian heuristic,
the expected length of the shortest vector in the lattice Lnorm is

√
qn/(2πe), and

the norm of f depends on the density of non-zero coefficients is of size around n.
For standard NTRU parameters and when n is greater than q, lattice reduction
algorithms will not recover the secret key. However, if q is large as in the case
of FHE cryptosystems to allow a large number of multiplication steps before
boostraping, then this attack can be interesting. We have not been able to apply
it for other cryptosystems, for instance on IBE and signature schemes [20].

The drawback of this technique is that q has to be very large compared to n.
We estimate asymptotically q = 2Ω(

√
n log logn) for a polynomial time complexity.

Our Results. In this paper, we revisit the lattice attacks on NTRU by consider-
ing the subfield idea, the projection of May and the middle lattice of Howgrave-
Graham in the context of large modulus.

1. We first propose a new subfield attack and give, contrary to [1,12], a precise
analysis by considering the projection technique for power of two cyclotomic
fields. We show that using the multiplication matrix by the public key in
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a subring (which has the same size as the subfield), leads to more efficient
attacks. In particular, we were able to attack concrete parameters proposed
in YASHE based on overstretched NTRU [6,7,30,15,16,14], [10,31], meaning
that we can recover a decryption key for smaller modulus q, compared to
the previous approaches [1,12]. The previous attacks use the norm over the
subfield in [1] or the trace in [12]. It would also be possible for instance to
use all the coefficients of the characteristic polynomial. Our attack using the
subring is better than the two previous ones since in the same configuration,
we can choose exactly the size of the subfield as the number of coordinates
(remove some rows or project the lattice) in Section 3.

2. Secondly, we analysis lattice reduction algorithm on the full Lcs lattice using
a nice lemma due to Petaki and Tural [39] on the volume of sublattices with
high rank (Section 4). We show that reducing this lattice allows us to achieve
similar performances as in the projection and subfield attacks. We do not
rely in our analysis on the Hermite factor (or approximate factor). This is
the first time that the high number of small lattice vectors (shifts) are used
to improve the analysis of the attack against NTRU. May used it to run
lattice reduction on smaller dimensional lattices. The high dimensional low
volume sublattice (formed by the shift vectors) makes the approximate-SVP
problem for NTRU lattices substantially easier to solve by lattice reduction
than generic lattices of the same dimension when the modulus is sufficiently
large. This result is true in any ring and can be applied for instance on
NTRUPrime with large q. In practice, we run experiment using the middle
technique in order to use small dimension lattices.

3. We make experiments (Section 5) to understand the behaviour of lattice
reduction algorithm and derive precise predictions when this attack will work
(Section 6). We show that also experimentally the subfield attack is not more
efficient than the middle technique on the original matrix. Consequently, we
mount this attack to break FHE with NTRU and overstretched NTRU Prime
scheme. Experimental computations show that if we are able to reduce this
matrix, we recover a basis consisting of n small vectors, which are rotated
version of the secret key. Finally, we provide a tight asymptotical security
estimate of NTRU and LWE schemes in order to give exact predictions for
these attacks by considering the Dual-BKZ [37].

We want to stress that the subfield attack we propose is not needed to break
the schemes. We first discovered our subfield attack and the experiments shown
in Figure 1 have been obtained using it. The experiments on NTRUPrime with
overstretched parameters (Figure 2) have been achieved by reducing the middle
lattice in the standard lattice. We experimentally recovered the same results for
Figure 1 using the middle lattice later and we conclude that the subfield attack
is not needed to improve results on NTRU, but it could be useful to attack
multilinear maps [12,1].
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2 Preliminaries

Algebraic number field. An algebraic number field (or simply number field)
K is a finite (algebraic) field extension of the field of rational numbers Q. An
algebraic number ζ ∈ C is a root of a polynomial f(x) ∈ Q[x] and is called
an algebraic integer if f(x) is a monic (leading coefficient is 1), polynomial in
Z[x]. The minimal polynomial of ζ is a monic polynomial f(x) ∈ Q[x] of least
positive degree such that f(ζ) = 0 and the minimal polynomial of an algebraic
integer is in Z[x]. The set of all algebraic integers form a ring: the sum and
product of two algebraic integers is an algebraic integer. The ring of integers
of a number field K = Q[ζ], obtained by adjoining ζ to Q, is the ring OK =
{x ∈ K : x is an algebraic integer}. Let f(x) be the minimal polynomial of ζ of
degree n, then as f(ζ) = 0, there is an isomorphism between Q[x] mod f(x) and
K, defined by x 7→ ζ and K can be seen as an n-dimensional vector space over
Q with power basis {1, ζ, . . . , ζn−1}. The conjugates of ζ are defined as all the
roots of its minimal polynomial.

A number field K = Q[ζ] of degree n has exactly n field homomorphisms
σi : K ↪→ C that fix every element of Q and they map ζ to each of its conjugates.
An embedding whose image lies in R (real root of f(x)) is called a real embedding;
otherwise it is called a complex embedding. Since complex root of f(x) come in
pairs, so do complex embeddings. The number of real ones is denoted s1 and the
number of pairs of complex ones s2, so we get n = s1 + 2s2. By convention, we
let {σj}j∈[s1] be the real embedding and order the complex embeddings so that
σs1+s2+j = σs1+j for j ∈ [s2]. The canonical embedding σ : K → Rs1 × C2s2 is
defined by

σ(x) = (σ1(x), . . . , σn(x)).
The canonical embedding σ is a field homomorphism fromK to Rs1×C2s2 , where
multiplication and addition in Rs1 ×C2s2 are component-wise. The discriminant
∆K of K is the determinant of the matrix (σi(αj))i,j , where (αj) is a set of n
elements of K.

For elements H ⊆ Rs1 × C2s2 ⊂ Cn where

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j ,∀j ∈ [s2]},

we can identify elements of K to their canonical embeddings in H and speak of
the geometric canonical norms on K as ‖x‖ as ‖σ(x)‖2 = (

∑
i∈[n] |σi(x)|2)1/2.

The field norm of an element a ∈ K is defined as NK/Q(a) =
∏
i∈[n] σi(a).

Note that the norm of an algebraic integer is in Z as the constant coefficient of
the minimal polynomial. Let L a subfield of K, the relative norm of NK/L(a) =∏
σi∈Gal(K/L) σi(a), where Gal(K/L) contains the elements that fix L. The trace

of a ∈ K is defined TrK/Q(a) =
∑
i∈[n] σi(a) and is the trace of the endomor-

phism y 7→ ay and of its matrix representation.
Let K a number field of dimension n, which has a subfield L of dimension

m | n. For simplicity, we assume that K is a Galois extension of Q, with Galois
group G ; and G′ is the subgroup of G fixing L. It is a standard fact that
|G′| = n/m.
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Notice that elements of the Galois group permute or conjugate the coordi-
nates in Rr × Cs, and therefore the norm is invariant by elements of G:

∀σ ∈ G, ‖σ(x)‖ = ‖x‖.

We call NK/L : K → L the relative norm, with NK/L(a) the determinant of
the L-linear endomorphism x 7→ ax. It is known that we have:

NK/L(a) =
∏
σ∈H

σ(a).

We can bound the norm using the inegality of arithmetic and geometric means:

|NK/Q(a)| ≤
(
‖a‖√
n

)n
.

The operator norm for the euclidean norm is denoted ‖ · ‖op and is defined as
‖a‖op = supx∈K∗ ‖ax‖/‖x‖. Remark that it is simply the maximum of the norm
of the coordinates in Rr×Cs. Also, it is sub-multiplicative and ‖x‖ ≤

√
n‖x‖op.

Let O be an order of K, that is O ⊂ K and O is a commutative group which
is isomorphic as an abelian group to Zn. We define OL as O∩L, and is an order
of L. We denote by Vol(L) the volume of the lattice L, which is the square root
of the determinant of the Gram matrix corresponding to any basis of L. We
define ∆ to be the square of the volume of O, and likewise for ∆L with respect
to OL.

We define
ML

a : L −→ Ox 7−→ ax

for any lattice L ⊂ O and a ∈ O; and we also denote ML
a the corresponding

matrix for some basis of L.

Cyclotomic field. In the case of cyclotomic field defined by Φf(x) =
∏
k∈Z∗

f
(x−

ζkf ), where ζf = e2iπ/f ∈ C, a primitive f-root of unity. Thus, Φf(x) has degree
n = ϕ(f), is monic and irreducible over Q and its the minimal polynomial of
the algebraic integer ζf. The fth cyclotomic field is Q[ζf] and its ring of integers
is Z[ζf], also called the cyclotomic ring. In this case, there are 2s2 = n = ϕ(f)
complex canonical embeddings (no real ones), defined by σi(ζf) = ζif for i ∈ Z∗f .
For an element x = ζj ∈ K in the power basis of K, all the embeddings of x have
magnitude 1, and hence ‖x‖can2 =

√
n and ‖x‖can∞ = 1 as well as the coefficient

embedding. The discriminant of the fth cyclotomic field of degree n = ϕ(f) is
∆K ≤ nn.

In the cyclotomic case, we can define the maximal real subfield K+ = Q[ζf +
ζ−1
f ], which only contains real numbers. It has index 2 in K and its degree is
n/2. The rings of integers OK+ of K+ is simply Z[ζf +ζ−1

f ]. The embeddings σ1,
σ−1 both fix every elements in K+ and the relative norm NK/K+(a) = σ1(a) ·
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σ−1(a) = a·ā. If we represent a as a polynomial a(x) =
∑n−1
i=0 aixi ∈ Q[x]/Φf(x),

then ā(x) = a(1/x) = a0 −
∑n−1
i=1 aixi.

Ideals in the Ring of Integers. The ring of integers OK of a number field K
of degree n is a free Z-module of rank n, i.e. the set of all Z-linear combinations
of some integral basis {b1, . . . ,bn} ⊂ OK . It is also a Q-basis for K. In the case
of cyclotomic field, the power basis {1, ζf, . . . , ζn−1

f } is an integral basis of the
cyclotomic ring Z[ζf] which is isomorphic to Zn with n = ϕ(f).

It is well known that

Vol(Z[ζf])2 = fφ(f)∏
p|f p

φ(f)/(p−1) .

In particular, if f is a power of two, Vol(Z[ζf]) = (f/2)f/4. In this case, we also
have that (ζif )

f/2−1
i=0 is an orthogonal basis for the norm ‖ · ‖.

Lattices. Let B = {b1, . . . ,bn} be a basis of a lattice L. Given B, the LLL
algorithm outputs a vector v ∈ L satisfying ‖v‖2 ≤ 2n/2·det(L)1/n in polynomial
time in the size of its input.

Theorem 1. (Minkowski) For any lattice L of dimension n, there exists x ∈
L \ {0} with ‖x‖ ≤

√
nVol(L)1/n.

We give a theorem for estimating the running time of lattice based algorithms:

Theorem 2. Given a lattice L of dimension n, we can find a non-zero vector
in L of norm less than βn/βVol(L)1/n in deterministic time smaller than 2O(β)

times the size of the description of L, for any β < n/2. With b∗i the Gram-
Schmidt norms of the output basis, we have b∗i /b∗j ≤ βO((j−i)/β+log β). Further-
more, the maximum of the Gram-Schmidt norms of the output basis is at most
the maximum of the Gram-Schmidt norms of the input basis.

Proof. Combine the semi-block Korkin-Zolotarev reduction [41] and the efficient
deterministic shortest vector algorithm [36] with block size Θ(β) for the first
point. Schnorr’s algorithm combines the use of LLL reduction on a (possibly)
linearly dependent basis, which is known to not increase the maximum of the
Gram-Schmidt norms, and the insertion of a vector in position i whose projected
norm is less than b∗i . Also, the b∗i decrease by a factor of at most βO(log β) in a
block, and the first Gram-Schmidt norms of blocks decrease by a factor of at
most βO(β).

Lattice Analysis. We also use the GSA assumption [42], which states that the
Gram-Schmidt norms output by a lattice reduction follow a geometric sequence.
If we draw the the curve with the log of the Gram-Schmidt norms, we see a line
with slope log β/β is the case of BKW (it is not accurate for the last ones than
follows a parabola instead). Usually, we use the fact that the minimum of the
Gram-Schmidt norms has to be smaller than the norm of the smallest vector in
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order to find it and so, the slope has to be close to horizontal, which implies that
β is large.

In our analysis, we will a result of Pataki and Tural [39] in order to take into
account that in NTRU lattice, all the shifts form a sublattice with small volume.
They proved that the volume of the sublattice generated by r vectors is larger
than the product of the r smallest Gram-Schmidt norms.

Lemma 1 ([39]). Let L ⊆ Rn be a full-rank lattice and r ≥ 1. Then for any
basis (b1, . . . ,bn) of L, and any r-dimensional sublattice L′ of L, we have

det(L′) ≥ min
1≤t1<···<tr≤n

∏
1≤i≤r

b∗ti .

Distribution on Ideal Lattices. The discrete Gaussian distribution over a
lattice L is noted DL,s, where the probability of sampling x ∈ L is proportional
to exp(−π‖x‖2/s2). The continuous Gaussian distribution over K is noted Ds,
and its density in x is proportional to exp(−π‖x‖2/s2). We define

ρs(E) =
∑
x∈E

exp(−π‖x‖2/s2).

We will denote by E[X] the expectation of a random variable X.

We now recall two results from [35] and Banaszczyk’s lemma [4] about dis-
crete gaussian sampling over a lattice.

Lemma 2. Given a lattice L ⊂ Rn, for any s and c ∈ Rn, we have

ρs(L+ c) ≤ ρs(L).

Lemma 3. For a lattice L, any t ≥ 1, the probability that x sampled according
to DΛ,s verifies ‖x‖ > st

√
n
2π is at most

exp
(
− n(t− 1)2/2

)
.

We now prove a standard bound on ideal lattices, which indicates that they
do not have very short vectors :

Lemma 4. Let M ⊂ (K ⊗ R)d be an O module of rank 1. Then, for any 0 6=
v ∈M , we have Vol(M) ≤

√
∆‖v/

√
n‖n.

Proof. Since we can build a K-linear isometry from R ⊗M to K ⊗ R, we can
assume d = 1. Then,

Vol(M) ≤ Vol(vO) = NK/Q(v)
√
∆ ≤ ‖v/

√
n‖n
√
∆.
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3 Projection of a Subring Attack

In this section, we propose a new subfield attack, that we call subring, since
we use the multiplication by the original public key h, which is an element of
the n-dimensional ring Rq, in a subring for instance the maximal real ring of
integers Z[X + 1/X] of dimension n/2, or in a smaller subring. First, we first
show that small vectors in this lattice are linked to the norms and in the case of
the maximal real ring, the short vector is (f ḡ,gḡ). For some parameters, we also
show that the norm is not the smallest element: this explains some experiments
in [1]. Then, we show that in the case of power of two cyclotomic fields, if we
project the matrix represented the subring lattice on the last d rows and columns,
we can precisely analyze the running time of the algorithm. Moreover, removing
some rows allows to reach optimal parameters for our subring attack, which is
not possible in other subfield attacks.

3.1 Description of the basic subring attack

We show that in our subring attack, the lattice vector we are looking for is short.
We first make sure that O is stable by all elements of H. This can be done by
computing the Hermite normal form of the concatenation of the basis of σ(O)
for all σ ∈ H. We may then call O the order generated by this matrix.

The attack consists in finding short vectors of the lattice generated by

A =
(
qIn MOL

h
0 Im

)
by using lattice reduction. We recall that h is the public key, so that a basis of

this lattice can be built. We want to show that
(

fNK/L(g)/g
NK/L(g)

)
is a short vector

of this lattice.
The quadratic form we reduce is actually the one induced by ‖ · ‖, i.e.

‖(x,y)‖2 = ‖x‖2 + ‖y‖2, on this lattice.

Lemma 5. For any g ∈ O, we have

NK/L(g) ∈ gO ∩OL.

Proof. We have
NK/L(g) = g

∏
σ∈H−{1}

σ(g)

so that NK/L(g) ∈ gO. By definition of NK/L, we have NK/L(g) ∈ L. Therefore,
NK/L(g) ∈ gO ∩OL.

Using Banaszczyk’s lemma, we will now show that integers sampled from a
discrete Gaussian distribution behaves in a way similar to a continuous Gaussian
distribution.
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Lemma 6. Let x be sampled according to DO,s. Then, the probability that

‖x‖op ≥ s
√

2 ln(2n/ε)/π

is at most ε.

Proof. Let u be a unit vector, i.e. ‖u‖ = 1. Then,

ρs(O)E[exp(2πt〈x,u〉/s2)] =
∑
x∈O

exp(−π(〈x,x〉 − 2〈x, tu〉)/s2)

= exp(πt2/s2)
∑
x∈O

exp(−π‖x− tu‖2/s2)

= exp(πt2/s2)ρs(O − tu).

We deduce with the previous lemma

E[exp(2πt〈x,u〉/s2)] ≤ exp(πt2/s2).

Using Markov’s inequality and the union bound with −u, we have that the
probability of |〈x,u〉| ≥ t is at most 2 exp(−πt2/s2).

We now use t = s
√

ln(2n/ε)/π, so that the probability of any real or imagi-
nary part of a coordinate of x in RrCs is larger than

s
√

ln(2n/ε)/π

is at most ε.

Theorem 3. Let f be sampled according to DO,σ, g according to DO,s and set
h = f/g. Assume h is well defined, except with probability at most ε/3. Then,
there exists x 6= 0 where x is an integer vector, such that

‖Ax‖ ≤
√
n(1 + σ2/s2)

(
s
√

2 ln(6n/ε)/π
)n/m

except with probability at most ε.

Proof. With probability at least 1− ε, we have

‖f‖op ≤ σ
√

2 ln(6n/ε)/π

and
‖g‖op ≤ s

√
2 ln(6n/ε)/π.

In this case, we consider y such that hNK/L(g)+qy = fNK/L(g)/g and consider

x =
(

y
NK/L(g)

)
.
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Using the multiplicativity of operator norms, we have

‖NK/L(g)‖op ≤
(
s
√

2 ln(6n/ε)/π
)|H|

and

‖fNK/L(g)/g‖op ≤ σ/s
(
s
√

2 ln(6n/ε)/π
)|H|

.

Finally,

‖Ax‖2 = ‖fNK/L(g)/g‖2 + ‖NK/L(g)‖2 ≤ n
(
‖fNK/L(g)/g‖2op + ‖NK/L(g)‖2op

)
.

We now try to get rid of the factor Θ(ln(6n/ε))n/2m which is significant when
s is small and n/m is large. To do so, we heuristically assume that DO,σ has
properties similar to a continuous Gaussian here.

Theorem 4. Let f be sampled according to Ds and E ⊂ G. Then, except with
probability at most ε and under heuristics, we have :∣∣∣∣∣∣∣∣ ∏

σ∈E
σ(f)

∣∣∣∣∣∣∣∣
op

≤ Θ(s)|E| exp
(
Θ(
√
|E| log(n/ε)

)

under the condition |E| = Ω
(

log(n/ε) log2(log(n/ε))
)
.

Proof. Let X be a random variable over R+, with a probability density func-
tion proportional to exp(−πx2/s2); and Y =

√
X2

0 +X2
1 where X0 and X1 are

independent copies of X.
We have E[log(X)] = log(s) + Θ(1) and Var[log(X)] = Θ(1) and log(X) <

log(s)+Θ(log(log(n/ε))) except with probability ε/(2n2), due to standard bounds
on Gaussian tails. Also, the same is true for Y .

We can now use the one-sided version of Bernstein’s inequality [8, Theorem
3] : for Z the average of |E| independent copies of log(X) or log(Y ), we have :

Pr[Z > t+ log(s)] ≤ ε/(2n) + exp
(
− |E|t2

2(Θ(1) +Θ(log(log(n/ε)))t/3)

)
.

We then choose some t = Θ
(√

log(n/ε)/|E|
)
, so that with our lower bound on

|E|, this probability is at most ε/n.
The result follows from the union bound over the coordinates in the canonical

embedding of
∏
σ∈E σ(f).

For some parameters, the norm may not be the shortest element, as demon-
strated by the following theorem.

11



Theorem 5. There exists an element v ∈ gO ∩OL with

0 < ‖v‖ ≤
√
m∆1/(2n)σn/m

with probability 1− 2−Ω(n).

Proof. We use Banaszczyk’s lemma with t = 2, so that ‖g‖ ≤ σ
√

2n/π ex-
cept with probability exp(−n/2). Then, the determinant of v ∈ gO ∩ OL is
smaller than the determinant of NK/L(g)OL, which is NK/Q(g)

√
∆L. But we

have NK/Q(g) ≤
(‖g‖√

n

)n and ∆L ≤ ∆m/n so we conclude with Minkowski’s
theorem.

This implies that for most parameters, the norm of the shortest non-zero
vector is around O(σ)n/m. Since this is smaller than the previous value as soon
as n/m is a bit large, it explains why [1] found vectors shorter than the solution.

3.2 Asymptotic analysis for power of two cyclotomic fields

We set here K = Q[X]/(Xn + 1) ' Q[ζ2n] for n a power of two, and O =
Z[X]/(Xn + 1) ' Z[ζ2n] which is popular in cryptosystems. For some r | n (any
such r works), we select L = Q[Xr] so that OL = Z[Xr] and |H| = r, so that
m, the dimension of L is n/r. Since the Xi forms an orthogonal basis, we have
that the coordinates of f and g are independent discrete Gaussians of parameter
s/
√
n. Also, we can directly reduce the lattice generated by A with the canonical

quadratic form.
We restrict our study to power of two cyclotomic fields because O has a

known orthogonal basis, so that we can derive a closed-form expression of the
results. In more complicated cases, it is clear that we can deduce the result using
a polynomial time algorithm.

For the rest of this section, we assume that when the previous algorithm is
used on our orthogonal projection of AZn+m, and finds a vector shorter than√
kVol(L)1/k (which is about the size of the shortest vector of a random lattice

if the lattice dimension is k), then it must be a short multiple of the key. This
assumption is backed by all experiments in the literature, including ours, and
can be justified by the fact that decisional problems over lattices are usually as
hard as their search counterpart (see [34] for example).

We also assume the size of the input is in nO(1), which is the usual case.

Theorem 6. Let nB2 = ‖fNK/L(g)/g‖2 + ‖NK/L(g)‖2. Assume log(qB)
log(q/B) ≤ r.

Then, for
β

log β = 2m log q
log(q/B)2

we can find a non-zero element Ax such that ‖Ax‖2 = O(nB2) in time 2O(β+logn).

12



Proof. We extract the last d ≈ m log(q2)
log(q/B) ≤ n+m rows and columns of

A =
(
qI MOL

h
0 I

)
and call the generated lattice L. Note that it is the lattice generated by A
projected orthogonally to the first columns, so that it contains a non-zero vector
y such that ‖y‖2 ≤ nB2. Then, we can compute the needed β by

1
d

log
(√

nVol(L)1/d
√
nB

)
=d−m

d2 log(q)− 1
d

log(B)

≈ log(q/B)
m log(q2)

(
log(qB) log(q/B) log(q)

log(q/B) log(q2) − log(B)
)

= log(q/B)
m log(q2)

(
log(qB)

2 − log(B)
)

=log2(q/B)
2m log(q) .

The previous theorem indicates we can recover a short vector z 6= 0 in L with
‖z‖ ≤ nB2 in time 2Θ(β+logn), and our assumption implies it is in fact a short
vector in AZn+m.

Notice that for B ≤ q, a necessary condition for the problem to be solvable,
we have d ≥ 2m. It implies that the optimal dimension d cannot be reached by
previous algorithms.

Theorem 7. Let f and g be sampled according to DO,σ, and h = f/g mod q
which is well defined with probability at least 1 − ε. Assume σ = nΩ(1) and
σ < q1/4. Then, we can recover a non-zero multiple of (f ,g) of norm at most√
q in time

exp
(
O

(
max

(
logn, n log σ

log2 q
log
(
n log σ
log2 q

))))
with a probability of failure of at most ε+ 2−n.

This is polynomial time for

log σ = O

(
log2 q logn
n log logn

)
.

Proof. We choose m = Θ(max(1, n logσ
log q )) ≤ n so that we can set B = √q, except

with probability ε. The corresponding β is given by

β

log β = 2m log q
log(q/B)2 = Θ(m/ log(q)) = Θ

(
n log σ
log2 q

)
.

13



If we use log σ = Θ(logn) as in many applications, we are in polynomial time
when

q = 2Ω(
√
n log logn).

If σ = Θ(
√
n), the best generic algorithm runs in time 2Θ(n/ log log q), which is

slower for any q ≥ nΘ(
√

log logn).

3.3 Comparison with other subfield attacks

We consider the lattice generated by
(
qIn MOL

h
0 In/r

)
while Albrecht et al. for in-

stance consider
(
qIn/r MOL

NK/L(h)
0 In/r

)
, where MOL

h represents the multiplication by

the element h in the subring OL of K. Our lattice is of dimension n+n/r, which
is larger than Albrecht et al. attack, but smaller than the 2n original lattice.
Since the running time of lattice reduction algorithms depends on the dimension
of the matrix, we may think that our variant is less efficient than the subfield
attack. First of all, in order to improve the running time, we will show that we
can work in a projected lattice and not on the full (n + n/r, n + n/r)-matrix
by considering the matrix forms using the last d rows and columns. The idea of
working in this lattice is that the second important parameter is the approxima-
tion factor. This parameter depends on the size of the Gram-Schmidt coefficients.
If we use the logarithm of their size, these coefficients draw a decreasing line of
slope correlated with the approximation factor, so that the smaller the approxi-
mation factor be, the more horizontal the line will be. However, if we have only
a (2n/r)-dimensional matrix, as in the subfield attack, the determinant is too
small to produce large Gram-Schmidt norms. This problem is bypassed with our
approach since we can choose the number of coordinates and the size of the
subfield. Using this attack, we were able to break in practice proposed parame-
ters by YASHE and in other papers, which were not the case in Albrecht et al..
We also show a tight estimation of the parameters broken by lattice reduction,
and in particular that working in the original field works well. Experiments were
conducted in an extensive way, and over much larger parameters.

4 Analysis of lattice reduction on NTRU lattices

We now show how to predict when this attack will work, and compare our the-
oretical analysis with experiments. While Albrecht et al. compare the subfield
attack to the attack on the full dimension lattice, we will show that, the clas-
sical attack, used in Howgrave-Graham work on the hybrid attack, performs
a lattice reduction on the matrix centered in the original Coppersmith-Shamir
lattice. This gives a better result and we show that considering subfield is not
helpful. Consequently, this attack can also be mounted on NTRU prime with
overstretched parameters and works well.

14



4.1 Analysis of the simple method

Here, we consider the lattice reduction algorithm described in Theorem 2 applied
to the full Coppersmith-Shamir matrix. We show that using Pataki-Tural lemma
and the above heuristics, we can actually achieve the same efficiency regardless
of the presence of a subfield, as long as we know an orthogonal basis of O.

The analysis hinges on the fact that the difficulty for lattice reduction to
find a vector in a sublattice of low volume depends on the rank of the sublattice.
Previous analysis relied on its special case where the rank is one, so that the
volume is the length of the generator. In this case, we can prove using the GSA
and the determinant of the lattice, that β/ log β = O

(
n/ log(q/σ2)

)
. In the

following, using the Pataki-Tural lemma, we show that we can achieve the same
efficiency as in the case of subfield, directly on the Coppersmith-Shamir lattice,
i.e. β/ log β = O

(
n log(σ)/ log2(q)

)
.

The following theorem, identical to [1, Theorem 2], indicates that short vec-
tors are multiples of the secret key.

Theorem 8. Let f ,g ∈ O with g invertible modulo q and f coprime to g. Then,
any vector shorter than nq

‖(f ,g)‖ in(
qIn MO

f/g
0 In

)
O2 is in

(
f
g

)
O.

Proof. By coprimality, there exists F,G such that fG− gF = q. Then,(
f F
g G

)

generates the same lattice. We let Λ =
(

f
g

)
O ⊂ (R⊗K)2 and Λ∗ the projection

of
(

F
G

)
O orthogonally to Λ. We have Vol(Λ)Vol(Λ∗) = qn∆. Finally, let 0 6=

x ∈ Λ∗. Using twice section 4, we have

‖x/
√
n‖n ≥ qn∆√

∆Vol(Λ∗)
=
( q
√
n

‖(f ,g)‖
)n
.

In the following, we show that the Pataki-Tural lemma allows us to have a
lattice reduction algorithm with β around Θ̃(n log σ/ log2 q), which is close to
theorem 7 in the case of subfield.

Theorem 9. Let f ,g sampled according DO,s such that g is invertible with prob-
ability 1−ε, and an orthogonal basis of O is known. Reducing the lattice generated
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by
(
qIn MO

h
0 In

)
using the algorithm of section 2, assuming the minimum of the

Gram-Schmidt norms does not decrease, with

β = Θ
(
n log σ
log2 q

log
(
n log σ
log2 q

))
,

we recover at least n/2 vectors of a basis of fO and gO, if ∆1/2nσ = qO(1) and

log q = Ω
(

log2
(
n log σ
log q

))
,

with probability 1− ε− 2−Ω(n).

Proof. Before calling the lattice reduction algorithm, the Gram-Schmidt norms
are q∆1/2n for the first n vectors, and ∆1/2n for the next n vectors. The lattice

contains
(

f
g

)
O so that the lattice spanned has a volume of σn

√
∆ except with

probability 2−Ω(n), thanks to section 3.
We consider now the 2n-dimensional basis outputted by the reduction algo-

rithm (section 2), and call b∗i ‘small’ when it is amongst the n smallest Gram-
Schmidt norms, and ‘large’ otherwise. Let ` = O

(
n logσ
log q

)
≤ n.

We consider two cases, depending whether there is a small b∗i that has a large
value or not. We show that either case is is impossible, which will complete the
argument by contradiction. Assume first that there is an i ≤ n, such that

b∗i ≥
√
nq

σ
≥ q1/4∆1/2n.

Suppose then again by contradiction, that there is a b∗j ≥ q1/4∆1/2n which
is small (Case 1). Consequently by Theorem 2,

b∗k ≥ q1/4∆1/2nβ−O(`/β+log β) ≥ q1/4∆1/2nβ−O(`/β)

for all the ` first k ≥ i such that b∗k is small (we use here the assumption that the
minimum of the Gram-Schmidt norms does not decrease). Hence, the product of
the n smallest b∗i is at least ∆1/2q`/4β−O(`2/β) by lower bounding the last (n−`)
ones by ∆1/2n. We deduce that for small enough constants, this is impossible
using the Pataki-Tural lemma: otherwise we get a contradiction with the fact
that this product should be smaller than the smallest volume of a sublattice of
dimension n,

√
∆σn.

Suppose now every small b∗j satisfies b∗j < q(1/4)∆1/(2n) (Case 2). Let j ≥ i
be the smallest such that b∗j is small. Then, we have

b∗k ≤ q1/4∆1/2nβO(`/β+log β)

for all the last ` indices k ≤ j such that b∗k is large. Thus, the product of the
large Gram-Schmidt norms is at most ∆1/2qn−`/4βO(`2/β), as all b∗k’s remain
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≤ q∆1/(2n), by Theorem 2. Since the determinant is preserved during the run-
ning of the algorithm, the product of the small Gram-Schmidt norms is at least
∆1/2q`/4β−O(`2/β), which is impossible by using again the Pataki-Tural lemma.

To sum up, we have proved that for all the n first b∗i , we have b∗i <
√
nq/σ

and so, bi < nq/σ and using lemma 8, we can show that all the first n/2 vectors

are in
(

f
g

)
O.

4.2 Generalization and the middle technique

As we can see from the formula, considering a subfield is not helpful since the
quantity n log σ is essentially constant; unless we have reasons to believe there
are huge factors of gO which are in the subfield. Even worse, it actually decreases
the efficiency when σ ≥ √q because the value of ` is forced to a suboptimal. We
also observe that the significant reduction in the dimension due to the use of
subfields, allowing to break instances of high dimension is also present here :
indeed, we can project orthogonally to the first 2n− ` vectors the next ` vectors
so that we reduce a lattice of dimension ` instead of 2n.

Also, when we choose to work with O = Z[X]/(Xn − X − 1) as in NTRU
Prime [5], where we can use (Xi)n−1

i=0 as an orthogonal basis due to the choice
of the error distribution made by the authors (the coordinates are almost inde-
pendent and uniform over {−1, 0, 1}), the same result applies.

We stress that while our theorem does not prove much - assuming the max-
imum of the Gram-Schmidt norms decreases is wrong, except for LLL - experi-
ments indicate that either the middle part of the lattice behaves as a ‘random’

lattice as it is evaluated in [25], or the first n vectors are a basis of
(

f
g

)
O.

Furthermore, the phase transition between the two possible outputs is almost
given by the impossibility of the first case. As lattice reduction algorithms are
well understood (see [24,11]), it is thus easy to compute the actual β.

5 Implementation

Heuristically, we have that for reduced random lattices, the sequence b∗i is (mostly)
decreasing and therefore the relevant quantity is

∏n−1
i=n−r b

∗
i . It means that when

the b∗i s decrease geometrically and det(L′)1/r is about the length of the shortest
vector, we need b∗bn−r/2c to be larger than the shortest vector instead of the
b∗n−1 given by a standard analysis. We now remark that for r = 1, this is pes-
simistic. Indeed, for a “random” short vector, we expect the projection to reduce
its length by a '

√
n factor. In our case, we can expect the projection to reduce

the length by a '
√
n/(n− r) factor.

For our predictions, we assumed that the determinant of the quadratic form

x 7→ fNK/L(g)/gxfNK/L(g)/gx + NK/L(g)xNK/L(g)x,
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which corresponds to the det(UtGU) above, is about the square of the norm over
Z of g. This quantity can be evaluated in quasi-linear time when we work within
a cyclotomic field with smooth conductor by repeatedly computing the norm
over a subfield, instead of the generic quadratic algorithm, or its variants such
as in [2, section 5.2]. We observe a very good agreement between the experiments
and the prediction, while considering only the fact that the lattice has a short
vector would lead a much higher bound. Also, while NK/L(g) has a predicted
size of nr/2 exp(

√
r log(n/r)) with σ =

√
n, we expect LLL to find a multiple

of size nr/2 exp(n/r) (possibly smaller) but none of these quantities are actually
relevant for determining whether or not LLL will recover a short element.

Finally, we may have (NK/L(g))/((g)∩OL) which is non-trivial. However, if
it is an ideal of norm κ, we have that κ2 divides the norm over Z of g, which is
exceedingly unlikely for even small values of κr/n.

Our predictions indicate all proposed parameters of [6, Table 1] are broken by
LLL. We broke the first three using fplll and about three weeks of computation.
The last three where broken in a few days over a 16-core processor (Intel Xeon
E5-2650).

The parameters proposed for schemes using similar overstretched NTRU as-
sumption, such as in homomorphic encryption [7,30,15,16], [14,10,31,18] or in
private information retrieval [17], are also broken in practical time using LLL.
For example, we recovered a decryption key of the FHE described in [15] in
only 10 hours. For comparison, they evaluated AES in 29 h: that means that
we can more efficiently than the FHE evalution, recover the secret, perform the
AES evaluation, and then re-encrypt the result! A decryption key was recovered
for [18] in 4 h. Other instanciations such as [9,28] are harder, but within range
of practical cryptanalysis, using BKZ with moderate block-size [11].

6 Explicit complexity

We now turn towards the problem of deriving the first order of the asymptotical
complexity of heuristic algorithms. Before the dual BKZ algorithm [38], simple
derivations (as in [29, Appendix B]) could only be done using the Geometric
Series Assumption, since the heuristic Gram-Schmidt norms outputted by the
BKZ algorithm have a fairly complicated nature (see [24]), making an exact
derivation quite cumbersome if not intractable. We are only interested in the
part of the Gram-Schmidt norms known to be geometrically decreasing, which
simplifies the computations 4.

We emphasize that we are only using standard heuristics, checked in practice,
and tight at the first order. We compute the necessary block-size β to solve the
problems and assume log β ≈ logn. More precisely, if log β = (1 + o(1)) logn,
then the exponent in the running time is within 1 + o(1) of its actual value.
4 We remark that the last Gram-Schmidt norms have no constraints in the original
algorithm. However, we can always assume they are HKZ-reduced, so that their
logarithms are a parabola.
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logn log q log r Success Method Coordinates
used

Origin

11 165 4 Yes [1] 128 -
11 115 4 Yes Ours 510 -
11 114 4 No Ours 630 -
11 95 3 Yes [1] 256 -
11 81 3 Yes Ours 600 -
11 80 3 No Ours 600 -
11 79 3 No Ours 860 YASHE[6]
11 70 2 Yes Ours 600 -
11 69 2 No Ours 600 -
12 190 4 Yes [1] 256 -
12 157 4 Yes Ours 430 YASHE[6]
12 144 4 Yes Ours 850 -
12 143 4 No Ours 850 -
13 383 4 Yes Ours 512 [18]
13 312 5 Yes Ours 470 YASHE[6]
14 622 5 Yes Ours 470 YASHE[6]
15 1271 5 Yes Ours 512 [15]
15 1243 6 Yes Ours 660 YASHE[6]
16 2485 7 Yes Ours 820 YASHE[6]

logn Prediction log r
11 116 4
11 82 3
11 71 2
12 146 4
12 105 1
13 271 5
13 155 1
14 525 6
14 228 1
15 1045 7
15 335 1
16 2121 8
16 491 1

Fig. 1. Experiments with LLL for solving the NTRU problem in the ring Z[X]/(q,Xn+
1), where the coefficients of the polynomials are uniform in {−1, 0, 1}. The lattice
dimension used is equal to the number of coordinates used added to n/r. The values
of [1] are the smallest moduli for which their algorithm works, up to one, one and five
bits. The prediction is the minimum log q an LLL reduction can solve assuming we use
all the (necessary) coordinates.

logn log q ` Success
11 72 1116 Yes
11 70 1200 Yes
11 69 1200 No
12 118 1024 Yes
12 117 1024 No
12 105 1700 Yes
12 104 1700 No
13 230 1024 Yes
14 450 1024 Yes
15 930 1024 Yes

logn ` Prediction
11 1033 71
12 1472 106
13 2275 156
14 3357 230
15 5127 337
16 7124 477

Fig. 2. Experiments with LLL for solving the NTRU problem in the ring Z[X]/(q,Xp−
X − 1), where the coefficients of the polynomials are uniform in {−1, 0, 1} and p is the
smallest prime larger than n. The lattice dimension used is `. The prediction is the
minimum log q an LLL reduction can solve.
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For more information on the dual BKZ algorithm and dual lattices, see [38].
We denote by dual BKZ algorithm their algorithm 1 followed by a forward (i.e.
primal) round, so that it attempts to minimize the first Gram-Schmidt norm (as
the previous algorithms), rather than maximizing the last Gram-Schmidt norm.

We remark that all uses of NTRU for “standard” cryptography (key-exchange,
signature and IBE) are instantiated with a modulus below n2, so that the lattice
reduction algorithms are not affected by the property.

6.1 Security of Learning With Errors

The following heuristic analysis applies for NTRU, but also for any LWE problem
with dimension n and exactly 2n samples 5, or Ring-LWE with two samples. The
primal algorithm searches for a short vector in a lattice.

As usual, we build the lattice

A =
(
qIn MOL

h
0 Im

)
and apply the dual BKZ algorithm on its dual. We assume it did not find the
key, and suppose the projection of (f ,g) orthogonally to the first 2n− 1 vector
has a norm of σ/

√
n. Then, the last Gram-Schmidt norm must be smaller than

σ/
√
n and we compute the smallest block-size β such that it is not the case.

Hopefully, this means that applying the algorithm with a block-size β will find
the key.

Once the dual BKZ algorithm has converged, the 2n−β first Gram-Schmidt
norms are decreasing with a rate of ≈ β−1/β and the 2n − βth norm is about√
βV 1/β where V is the product of the last β norms. We deduce that the volume

of the dual lattice is

q−n =
( σ√

n

)−2n
β−(2n−β)2/2β−n =

( σ√
n

)−2n
β−2n2/β

so with q = na, σ = nb and β = nc we have

−a ≈ 1− 2b− 2/c

and we deduce c = 2/(a+ 1− 2b).
Another possibility is to apply the dual BKZ algorithm on the basis. If it

reduces the last m + n vectors, then the m + n − βth Gram-Schmidt norm
cannot be smaller than the size of the key, σ. Now, if m = n this norm is√
qβn/β−(2n−β)/β , and we deduce a/2 − 1/c + 1 = b or c = 2/(a + 2 − 2b)

which happens when c ≥ 2/a (iff b ≥ 1). Else, we take m maximum so that
qm/(m+n)β(m+n)/2β = q or m = n(

√
2ca− 1) which gives qβ−(m+n−β)/β = σ or

a− (
√

2ca− 1 + 1− c)/c = b and hence c = 2a/(a+ 1− b)2 when b ≤ 1.
5 Beware that an element sampled in the ring with standard deviation σ has coordi-
nates of size only σ/

√
n.
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The dual algorithm searches for 2o(n) short vectors in the dual lattice, so that
the inner product with a gaussian of standard deviation σ can be distinguished.
Applying the dual BKZ algorithm on the dual lattice gives a vector of norm
βn/βq−m/(n+m) = σ/n. The norm is minimized for m =

√
2ac − 1 or m = n,

which gives c = 2a/(a+ 1− b)2 when b < 1, and 2/(a+ 2− 2b) else.
In all cases, the best complexity is given by c = max(2a/(a+ 1− b)2, 2/(a+

2− 2b)) (and when the number of samples is unlimited, this is 2a/(a+ 1− b)2).

6.2 Security of NTRU

Here, the analysis is specific to NTRU. We apply the dual BKZ algorithm to
the same lattice, and compute the β such that the product of the n last Gram-
Schmidt norms is equal to σn. Note that it is equivalent to having the product
of the n first Gram-Schmidt norms equal to q/σn.

We first compute m such that the dual BKZ algorithm changes only the 2m
middle norms. This is given by :

q = √qβm/β

so that m ≈ aβ/2. For a ≥ 2, we have β ≤ m so that, assuming m ≤ n, the
product of the m first norms is qmβ−m2/2β . Hence, we need βm2/2β = σn. We
deduce

a2c2/8c = b

so that c = 8b/a2.
When m > n, the first vector is of norm only √qβn/β , so that for c ≤ 1, we

must have
qn/2βn

2/2β−n2/β = σn

so that a/2 − 1/2c ≈ b and c = 1/(a − 2b). For this formula to be correct, we
need 8b/a2a/2 ≥ 1, or 4b ≥ a.

We can show that this is better than the algorithms against Ring-LWE when
b = 1/2 (≈ binary errors) when a ≥ (4 + 3

√
262− 6

√
129 + 3

√
262 + 6

√
129)/6 ≈

2.783. When b ≥ 1 which is the proven case, it is better for all a > 4 and
b < a/2− 1.

We again remark that going to a subfield, so that nb is constant, does not
improve the complexity.

7 Conclusion

We conclude that the shortest vector problem over module lattices seems strictly
easier than the bounded distance decoding. Since the practical cost of transform-
ing a NTRU-based cryptosystem into a Ring-LWE-based cryptosystem is usually
small, especially for key-exchange (e.g. [3]), we recommend to dismiss the for-
mer, in particular since it is known to be weaker (see [40, Section 4.4.4]). One
important difference between NTRU and Ring-LWE instances is the fact that in
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NTRU lattices, there exist many short vectors. This has been used by May and
Silverman in [33] and in our case, the determinant of the sublattice generated
by these short vectors is an important parameter to predict the behaviour of our
algorithm.

We remark that the only proven way to use NTRU is to use σ ≈
√
n3q [43].

We showed here that attacks are more efficient against NTRU than on a Ring-
LWE lattice until σ ≈ n−1√q, which suggests their result is essentially optimal.
Furthermore, the property we use is present until σ ≈ √nq, i.e. until the public
key h is (heuristically) indistinguishable from uniform.

Our results show that the root approximation factor is a poor indicator in
the NTRU case : indeed, we reached 1.0059 using a mere LLL. We suggest to
switch the complexity measure to the maximum dimension used in shortest vec-
tor routines (i.e. the block size of the lattice reduction algorithm) of a successful
attack. While there are less problems with LWE-based cryptosystems, the root
approximation factor has also several shortcomings which are corrected by this
modification. Indeed, highly reduced basis do not obey to the Geometric Series
Assumption, so that the root approximation factor also depends on the dimen-
sion of the lattice. Even when the dimension is much larger than the block-size,
converting the factor into a block-size - which is essentially inverting the function
β 7→

( (β/2)!
πβ/2

)1/β2

- is very cumbersome. Finally, the complexity of shortest vector
algorithms is more naturally expressed as a function of the dimension than the
asymptotical root approximation factor they can achieve.
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