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Abstract. Wee (TCC’14) and Attrapadung (Eurocrypt’14) introduced
predicate and pair encodings, respectively, as a simple way to construct
and analyze attribute-based encryption schemes, or more generally pred-
icate encryption. However, many schemes do not satisfy the simple in-
formation theoretic property proposed in those works, and thus require
much more complicated analysis. In this paper, we propose a new sim-
ple property for pair encodings called symbolic security. Proofs that pair
encodings satisfy this property are concise and easy to verify. We show
that this property is inherently tied to the security of predicate encryp-
tion schemes by arguing that any scheme which is not trivially broken
must satisfy it. Then we use this property to discuss several ways to con-
vert between pair encodings to obtain encryption schemes with different
properties like small ciphertexts or keys. Finally, we show that any pair
encoding satisfying our new property can be used to construct a fully
secure predicate encryption scheme. The resulting schemes are secure
under a new q-type assumption which we show follows from several of
the assumptions used to construct such schemes in previous work.

1 Introduction

Traditional public key encryption allows an encryptor to use a public key to en-
crypt a message so that the owner of the corresponding secret key can decrypt.
In 2005, Sahai and Waters [35] introduced the concept of attribute-based encryp-
tion, in which who can decrypt is determined by some more complex attributes
of the decryptor and the message. Of course this is only meaningful if there is
some party that can determine the attributes of the decryption, thus the basic
model assumes a trusted party who publishes parameters used in encryption,
and who issues decryption keys to users based on their attributes; given such a
key, a user should be able to decrypt any ciphertext which is compatible with his
attributes. The initial result considered a simple threshold functionality: every
ciphertext was encrypted with a set of attributes, and a user could decrypt if
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they possessed sufficiently many of those attributes. This was then generalized to
key-policy ABE [22], in which the user’s key specifies a policy determining what
attributes must be present in the ciphertext in order for that user to be able to
decrypt, and ciphertext-policy ABE [10], which is the natural opposite in that
the user’s key corresponds to a list of attributes and ciphertexts are encrypted
with a policy which determines which attributes the user must have to decrypt.

Since then the field of ABE has grown dramatically. There has been work
which extends the type of policies that can be considered, for example to non-
monotone formulas [32], or even regular languages [38]. There has also been work
which improves the efficiency of ABE in various dimensions, for example con-
sidering schemes with very short (e.g. constant size) ciphertexts or keys [7,41],
or schemes with very short parameters (again constant-size) which still support
attributes from an unbounded space [29,31,33]. There has been work on dis-
tributing the job of the authority across multiple entities [14,28], on updating
ciphertexts [34], or hiding the key and/or ciphertext attributes [12,25,36,11], and
many other interesting directions.3

One weakness in much of the early work is that the schemes presented were
only shown to satisfy a weak notion of security called selective security. Selective
security essentially only guarantees security for an adversary who chooses which
type of ciphertext to attack (i.e. the attributes/policy for the ciphertext) without
seeing the system parameters, any ciphertexts, or any decryption keys. Thus it
was a major breakthrough when Waters introduced the dual-system encryption
technique [37], paving the way for schemes which satisfied the natural definition,
in which the adversary may choose what type of ciphertext to attack adaptively
based on any of the other information it sees while interacting with the system.
Since then there has been a lot of work focused on obtaining the results above
under this more natural security definition, which is usually referred to as full
security.

One of the main downsides of this process, however, is that while most of the
original constructions were simple and intuitive, many of these new constructions
are significantly more complex. Also many of the first fully secure schemes relied
on composite-order pairing groups, which while conceptually simpler are not
really usable in practice [23]. The effort to move these results to be based on
standard prime-order pairing groups has added even more complexity [18,27,24].
As a result, the intuition for the resulting constructions is often difficult to follow,
and the security analysis for these schemes is much more involved, so much so
that even verifying the security proof is often very time consuming.

Two recent works by Wee and Attrapadung [40,2] set out to simplify the
process of designing and analyzing fully secure ABE schemes. They proposed a

3 There has also been a very interesting line of work which uses indistinguishability
obfuscation or multi-linear maps to construct ABE for circuits [19,20], and a lot
of progress on building ABE schemes from lattices [13,21], although achieving the
natural full security notion there still requires complexity leveraging. Here, we focus
on pairing based constructions as to date they provide the best efficiency and security
guarantees.
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simple building block, called a predicate/pair encoding, which essentially con-
siders what happens in the exponent of a single key and a single ciphertext.
They proposed an information theoretic security property, which considers the
distributions of these values, again only considering a single key and ciphertext,
and showed that from any pair encoding scheme which satisfies this property
one can construct a fully secure ABE scheme. The initial works proposed only
composite-order group schemes; later works [15,1,4] have updated these results
to prime-order groups.

These results led to very simple, intuitive, and easy to analyze constructions
for several basic types of ABE schemes, that worked in efficient prime order
groups, and were based on simple assumptions like DLIN or SXDH. However,
there are many types of ABE schemes for which we do not know how to construct
this type of pair encoding. And in fact there are many types of ABE which we
do not know how to construct under simple assumptions using any approach,
like ABE with short ciphertexts, or with large universe, or where an attribute
can be used any number of times in a policy, etc.

To address this problem, Attrapadung [2] also proposed a different security
notion for pair encodings, and showed that under this notion one could con-
struct pair encodings for many more types of ABEs, and that this notion was
sufficient to produce secure constructions under more complex q-type assump-
tions. However, proving that a pair encoding scheme satisfies the new security
notion is again a challenging task. This property involves elements in bilinear
groups rather than just the exponent, and it is no longer information-theoretic,
so that it must be proved via reduction to a different q-type assumption for every
encoding. These reductions are very complex, and again verifying the security
becomes a matter of studying several pages of proof (9 pages for predicate en-
cryption for regular languages, for instance), providing relatively little intuition
for why the scheme is secure.

1.1 Our Contributions

Our goal in this work is to simplify the process of designing and analyzing
ABE schemes for those types of ABEs which we only know how to construct
from q-type assumptions. Towards this, we introduce a very different kind of
security property for pair encodings that completely does away with any kind of
distributions, and show that it is a very powerful and natural property through
a series of results. We believe it provides a new perspective for looking at the
security of predicate encryption schemes.

A pair encoding scheme, as defined by Attrapadung [2], gives a way to encode
the two inputs x and y to a predicate into polynomials of a simple structure.
These polynomials have three types of variables: common variables shared by
the encodings of x and y, and variables specific to the encoding of x and to that
of y.

A new property for pair encodings. We present a new security property
for pair encodings that essentially requires one to describe a mapping from the
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variables in the encoding to matrices and vectors. Once a mapping is specified,
verifying that the property holds is just a matter of checking if the polynomials
in the encoding evaluate to 0 when the variables are substituted.4 Thus veri-
fication is much easier compared to any property known before, since they all
require checking whether certain distributions are (pefectly, statistically or com-
putationally) indistinguishable. We call our new property the symbolic property
(Sym-Prop) since verification only involves symbolic manipulation.

We show how to convert any pair encoding that satisfies Sym-Prop into a
fully secure encryption scheme whose security is based on a fixed q-type assump-
tion that we call q-ratio. We use the generic transformation from Agrawal and
Chase [1], henceforth called Gen-Trans, for this purpose. Gen-Trans takes an en-
coding scheme satisfying a certain information-theoretic property and produces
an encryption scheme in dual system groups [16], which can then be instantiated
in composite-order groups under subgroup decision assumptions or prime-order
groups under the k-linear assumption.

We show that the security of Gen-Trans can also be argued when the pair
encoding satisfies a very different security property, the symbolic property. The
main novelty in our proof, and the crucial difference from AC16, is in how the
form of master secret key is changed: while AC16 uses an information-theoretic
property, we use Sym-Prop in conjunction with a new assumption called q-ratiodsg
on dual system groups. 5 At a very high level, the terms that cannot be generated
from q-ratiodsg are exactly the ones that go to zero due to Sym-Prop. Thus we are
able to embed q-ratiodsg successfully into the reduction. Interestingly, however,
as we will discuss below, Sym-Prop is not just an artifact of our proof strategy
but seems to be inherently linked to the fundamental security of the resulting
predicate encryption schemes.

An added advantage of borrowing AC16’s transformation is that when a pair
encoding is used in a way that can be shown to be information-theoretically
secure, then the encryption scheme obtained through Gen-Trans is fully secure
under a standard assumption. We show a useful application of this feature below.

We also show that the q-ratio assumption is in fact implied by several other
q-type assumptions used to construct ABE schemes, in particular those used in
the Lewko-Waters ABE [30] and Attrapadung’s fully secure predicate encryption
for regular languages [2]. This assumption is also simpler to describe than either
[30] or [2] and we believe that this approach better captures the intuition for
why these schemes are secure.

Analysis of pair encodings. We show that Sym-Prop holds for several pair
encoding schemes, both new and old: multi-use CP-ABE, short ciphertext CP-
ABE, large universe KP-ABE, short ciphertext KP-ABE, and predicate encryp-
tion for regular languages.

4 The trivial case is ruled out because we also require that the vectors corresponding
to two special variables, in the encoding of x and y respectively, are not orthogonal.

5 q-ratiodsg is very similar to q-ratio. We show that Chen and Wee’s instantiations of
dual system groups satisfy q-ratiodsg if the underlying bilinear maps satisfy q-ratio.
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First, we present a new pair encoding Πre-use for CP-ABE that allows an
attribute to be used any number of times in a policy. An interesting feature of
Πre-use is that if no attribute is used more than once, then it collapses to the
one-use scheme of [2], which is information-theoretically secure. So if we get
an encryption scheme ES when Gen-Trans is applied on Πre-use, then ES is fully
secure under a standard assumption as long as it is used to encrypt policies where
attributes are not repeated. If a policy with multiple use of attributes needs to be
encrypted, then ES still fully hides the payload but under a q-type assumption.
As far as we know, no multi-use scheme with this feature was known before. For
instance, the Lewko-Waters’ scheme [30] uses an assumption whose size scales
with that of the access policy in the challenge ciphertext. So even if no attribute
is used more than once, security still relies on a q-type assumption. 6

For short ciphertext CP-ABE, we show that the pair encoding of Agrawal
and Chase [1] satisfies Sym-Prop. This means that the encryption scheme that
comes out after applying Gen-Trans is fully secure, not just selectively secure as
they proved it (since we use the same transformation as them), under a q-type
assumption. Note that it was not known earlier whether there exists a fully-secure
CP-ABE scheme with constant-size ciphertexts under any kind of assumption
on bi-linear maps. In fact, we can generically build an encryption scheme with
constant-size ciphertexts for any predicate P from any pair encoding for P that
satisfies Sym-Prop as discussed in more detail below.

The last three encodings we analyze are borrowed from the work of Attra-
padung [2] with slight simplification. Previously, we only knew how to analyze
them using the much more complex computational security property in [2]. Our
analysis of these schemes is considerably simpler: for comparison, the proof of
computational security for the regular languages pair encoding required 9 full
pages, while our proof of symbolic security only takes 2.5 llncs pages. Our proofs
can be seen as extracting, abstracting and somewhat simplifying the key ideas
behind Attrapadung’s security analysis, so that they can be very easily verified,
and more easily applied to future schemes.

Symbolic property inherent in a secure scheme. While there are several
security properties for encoding schemes that allow one to check if they can
be used to build some type of encryption scheme, is there a property that an
encoding scheme should not satisfy? A natural one that comes to mind is that
correctness holds for an x and y that make a predicate false. In other words,
there exists a way to combine the polynomials in the encoding to recover the
blinding factor for the message even when the predicate is false. We call a pair
encoding scheme that satisfies this property trivially broken.

Building an encryption scheme from a pair encoding scheme seems to require
at least that the pair encoding not be trivially broken, but there is no general

6 There are other ABE schemes that get much more than attribute re-use, like large
universe or short keys, based on q-type assumptions [2], but proving them secure
under a standard assumption when re-use does not happen would be even more
difficult.
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result that shows some type of security for a scheme that only provides such a
minimal guarantee. In Section 4, we give the first result of this kind: Any pair
encoding scheme that is not trivially broken satisfies our symbolic property.

This result has several interesting broad implications. Suppose we have an
encoding Π that we do not know to be secure. We apply Gen-Trans on it to get
an encryption scheme ES. For this scheme to not be completely broken, there
should not be a way to trivially combine some ciphertext and key to recover the
message when the predicate is false. Now an interesting fact about our generic
transformation Gen-Trans is that it preserves the structure of pair encodings, so
that if there is way to combine the polynomials to recover the blinding factor,
then the ciphertext and key coming out of Gen-Trans can be combined to recover
the message. Therefore, if ES is not completely broken, Π is not broken either.
This further implies that Π satisfies Sym-Prop and ES is fully secure under
q-ratio. Thus we arrive at a very interesting conclusion: Either ES is broken in
an obvious way or it is fully secure under q-ratio. Hence, Sym-Prop seems to be
inherently linked to the fundamental security of encryption schemes, and is not
just an artifact of our proof strategy.

We can take this line of argument even further. Suppose there is a generic
transformation that preserves the structure of pair encodings in the sense de-
scribed above. And suppose that when an encoding scheme satisfying a certain
property X is given as input, it generates an encryption scheme that is not obvi-
ously broken, for example a selectively secure scheme. Then every encoding that
satisfies X will also satisfy our symbolic property, and hence will lead to a fully
secure encryption scheme through Gen-Trans! In this paper, we do not formalize
the exact requirements a generic transformation should satisfy for such a general
result to hold, leaving it as an interesting exercise for future work.

We conclude with an alternate way of proving symbolic security in case find-
ing a mapping from an encoding’s variables to matrices/vectors seems difficult:
show that for all x and y for which the predicate is false, the blinding factor
cannot be recovered from the encoding’s polynomials.

New generic conversions. Thanks to the simplicity of our new symbolic
property, we are able to show several useful transformations of pair encodings
that preserve security. Specifically,

1. Dual conversion. Any secure pair encoding for a predicate can be transformed
into a secure encoding scheme for the dual predicate (where the role of key
and ciphertext are switched).

2. Compact ciphertexts. Any secure pair encoding can be converted into one
that has a constant number of variables and polynomials in the ciphertext
encoding. Thus, after applying Gen-Trans to the latter encoding, one gets
encryption schemes with constant-size ciphertexts.

6



3. Compact keys. Analogous to above, any secure pair encoding can be con-
verted into one that has a constant number of variables and polynomials in
the key encoding, leading to encryption schemes with constant-size keys. 7

This demonstrates the power and versatility of the new symbolic property. In
contrast, only the first type of transformation is known for the security properties
of Attrapadung [2,8], and none is known for Wee [40] or Chen et al. [15].

More new schemes. Apart from the new scheme for unbounded attribute-
reuse and showing that the constant-size ciphertext CP-ABE of [1] is fully secure,
our generic conversions for pair encodings help us arrive at schemes that were
not known before:

– As mentioned before, we show that the regular language pair encoding from
[2] satisfies our symbolic property. Here keys are associated with regular
languages, expressed as deterministic finite automata (DFA), and ciphertexts
are associated with strings of any length from an alphabet set. One can first
apply the dual conversion transformation to get an encoding scheme where
ciphertexts and keys are associated with DFAs and strings, respectively.
Then applying our compact ciphertext transformation to this encoding, and
using the resulting pair encoding in Gen-Trans, one gets an encryption scheme
for regular languages with constant sized ciphertexts (but with an upper
bound on the size of DFAs).

– Similarly, applying our compact ciphertext/key transformation to Attra-
padung’s pair encodings for doubly spatial encryption (DSE) yields new
encoding schemes, that then lead to encryption schemes with constant size
ciphertext and keys, respectively. The only previous work on short cipher-
text DSE [5] relied on a more complex series of transformations in which
one type of predicate family (e.g. CP-ABE) is embedded inside another (e.g.
DSE), and resulted in more expensive encodings.

1.2 Overview of Symbolic Security

This section provides a high-level informal treatment of pair encodings and the
symbolic property with the goal of building some intuition about these concepts.
Please refer to Section 3 for a formal presentation.

Pair encodings. The pair encoding framework focuses on the exponent space
of an encryption scheme. Suppose there is a predicate P that takes two inputs
x and y. We want to encode x into a ciphertext and y into a key. An encryption
scheme for P generally has terms like gb1 , gb2 , . . . and a special one of the form
e(g, g)α in the public parameters (b1, b2, . . . and α are chosen randomly). α plays
the role of the master secret key. To encrypt a message m along with attribute
x, some random numbers s0, s1, s2, . . . are chosen and new terms are created by

7 This transformation and the one above requires some bound on the number of vari-
ables and polynomials in the respective encoding.
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raising g, or some common term like gbj , to some si, and then taking a linear
combination of these terms, where the terms and combination used depend on
x. So, if we look at the exponent of any group element output by the encryption
algorithm, it is usually a polynomial of the form s1 + λ1s2b3 + . . . where λ1
is a constant that depends on x. Finally, m is hidden inside the ciphertext by
blinding it with a re-randomization of e(g, g)α, say e(g, g)αs0 .

Similarly, the exponents of group elements in any key are of the form r1 +
µr2b1+. . ., where r1, r2, . . . is fresh randomness chosen for this key. We could also
have expressions that contain α because key generation involves the master secret
key. Thus there are three different types of variables involved in a pair encoding:
the common variables b1, b2, . . ., the ciphertext encoding variables s0, s1, s2, . . .,
and the key encoding variables α, r1, r2, . . ..

Overall, it can be seen that if we focus on the exponent space of an encryption
scheme, we need to deal with polynomials of a special form only. If P (x, y) = 1,
then it should be possible to combine the ciphertext and key polynomials so that
αs0 can be recovered, and then used to unblind the message. The pair encod-
ing framework just abstracts out such similarities between predicate encryption
schemes in a formal way.

Security properties and transformation. Many security properties have
been proposed in the literature for pair encodings, and a more restricted struc-
ture called predicate encodings [40,2,15,1]. The main contribution of these papers
is to give a generic transformation from any pair encoding that satisfies their
respective property into a fully secure predicate encryption scheme in composite
or prime order groups (or a higher level abstraction called dual-system groups
[16]). Proving that a pair encoding scheme satisfies a certain property is signif-
icantly easier, especially if the property is information-theoretic, than directly
proving security of an encryption scheme. This is not surprising because there are
no bi-linear maps, hardness assumptions, or sophisticated dual-encryption tech-
niques involved in this process. Furthermore, verifying security of any number
of encryption schemes designed through the pair encoding framework reduces to
checking that the respective pair encodings are secure—a much easier task—and
that the generic transformation is correct—a one-time effort. Needless to say,
this saves a huge amount of work.

A concrete example: Unbounded attribute re-use. Suppose we want to
design an ABE scheme that puts no restriction on the number of times an
attribute can be used in an access policy. We know that a linear secret sharing
scheme is the standard way to present a policy. It consists of a matrix A of size
m × k and a mapping π from its rows to the universe of attributes. A value
γ can be secret-shared through A by creating m shares, one for each row. If a
user has a set of attributes S, then she gets shares for all the rows that map
to some attribute in S through π. If S satisfies (A, π), then those shares can
be combined to recover γ; otherwise, γ is information-theoretically hidden. In
nearly all fully secure ABE schemes, the mapping π is assumed to be injective
or one-to-one (this is called the one-use restriction), but we want to build an
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ABE scheme that supports any π whatsoever. In particular, the size of public
parameters should not affect how many times an attribute can be used in a
policy. (Any such scheme will likely rely on a q-type assumption [30].8)

For a row i of A, suppose ρ(i) denotes which occurrence of π(i) this is.
(If an attribute y is attached to the second and fifth rows, then ρ(2) = 1 and
ρ(5) = 2.) We now present a new pair encoding Πre-use for unbounded re-use by
adapting the one-use scheme of [2]. (Some minor elements of the encoding have
been suppressed for simplicity; see the full version for a full description.)

EncCt((A, π))→ s0, s1, . . . , sd, {ai(s0b′, ŝ2, . . . , ŝk)
T

+ sρ(i)bπ(i)}i=1,...,m

EncKey(S)→ r, α+ rb′, {rby}y∈S

Here ai is the ith row of A and d is the maximum number of times any attribute
appears in it. A nice feature of Πre-use is that if no attribute is used more than
once (i.e. d = 1), then the scheme collapses to that of [2], and one can show that
α is information-theoretically hidden, or that Πre-use is perfectly secure.

If attributes are used multiple times, so that the ciphertext encoding has
several variables s1, . . . , sd, then α might be revealed to an unbounded adversary.
Thus we need to find out if Πre-use satisfies a different type of property for
which a generic transformation is known. One possibility is the computational
double selective master-key hiding property due to Attrapadung, but then the
advantages of an abstraction like pair encoding are more or less lost: we will
have to work at the level of bi-linear maps instead of simple polynomials, and
find a suitable q-type assumption(s) under which the property can be shown to
hold.

The symbolic property. Our new symbolic property (Sym-Prop) can be very
useful in such cases. It provides a new, clean way of reasoning about security
of pair encodings: instead of arguing that one distribution is indistinguishable
from another, whether information-theoretically or computationally, one needs
to discover a mapping from the variables involved in an encoding to matrices and
vectors, such that when the latter is substituted for the former in any cipher-
text/key encoding polynomial, the zero vector is obtained. Indeed, one needs
to invest some effort in order to find the right matrices and vectors that will
make the polynomials go to zero, but once such a discovery is made, verifying
the property is just a matter of doing some simple linear algebra.

Recall that a pair encoding scheme for a predicate P that takes two in-
puts x and y, consists of three different types of variables: common variables
b1, b2, . . ., ciphertext encoding variables s0, s1, s2, . . ., and key encoding variables

8 In a recent work, Kowalczyk and Lewko [26] proposed a new technique to boost
the entropy of a small set of (unpublished) semi-functional parameters. Using this
idea, they propose a new KP-ABE scheme where the number of group elements in
the public parameters grows only logarithmically in the bound on the number of
attribute-uses in a policy, but note that the number of times an attribute can be
reused is still affected. Furthermore, the size of ciphertexts scales with the maximum
number of times an attribute can be re-used.
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α, r1, r2, . . .. Sym-Prop is defined w.r.t. three (deterministic) algorithms, EncB,
EncS and EncR. Among them, EncB generates matrices for the common vari-
ables; EncS and EncR generate vectors for ciphertext encoding and key encoding
variables, respectively. The inputs to these three algorithms depend on what
type of symbolic property we want to prove. For the selective version, the three
algorithms get x as input, while EncR also gets y; and for the co-selective version,
they all get y as input, while EncS also gets x. This is in line with the selec-
tive and co-selective security notions for encryption schemes. In the former, all
key queries come after the challenge ciphertext, while in the latter, they come
beforehand. A pair encoding scheme satisfies Sym-Prop if it satisfies both the
selective and co-selective variants.

The trivial case where all the matrices and vectors output by the three al-
gorithms are simply zero is ruled out because we also require that the vectors
corresponding to two special variables, s0 in the encoding of x and α in the
encoding of y, are not orthogonal.

Proving the symbolic property for Πre-use. To prove Sym-Prop for the multi-
use encoding scheme Πre-use defined above, we need to define the outputs of the
three algorithms EncB, EncS and EncR (in other words, a mapping from the
variables in Πre-use to vectors and matrices) in both the selective and co-selective
settings. Towards this, we make use of a simple combinatorial fact that is often
used in arguing security of ABE schemes. If a set of attributes S does not satisfy
an access policy (A, π), then there exists a vector w = (w1, . . . , wk) s.t. w1 = 1
and ai is orthogonal to w for all i such that π(i) ∈ S. Note that w can be
computed only by an algorithm that knows both (A, π) and S.

We also need some simple notation to describe the mapping. Let Ei,j be an
k × d matrix with 1 at the (i, j)-th position and 0 everywhere else. Also, let ei
be the ith d-length unit vector and ej be the jth k-length unit vector. Here is
the mapping for the selective version:

by : −
d∑
`=1

k∑
j=1

aσ(y,`),jEj,`, b′ : E1,1,

s0 : e1, s` : e`, ŝj : ej , α : e1, r : −
k∑
j=1

wjej ,

where σ(y, `) is the index of the row in A which has the `-th occurrence of
y. Further, if Ei,j , ei and ej carry the meaning as above, except that their
dimensions are 1×T , T and 1 respectively, then the mapping for the co-selective
version is:

by : 0 for y ∈ S and −E1,y otherwise, b′ : E1,1,

s0 : w1e1, s` :
∑

i:ρ(i)=`

aiw
Teπ(i), ŝj : wje1, α : e1, r : −e1.

We encourage the reader to verify that the polynomials in Πre-use (except the
simples ones s0, s1, . . . , sd, r) go to zero when the two mappings described above
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are applied. (Vectors output by EncS (resp. EncR) are multiplied to the right
(resp. left) of matrices output by EncB.) All it takes are simple observations like
Ei,j · eT

j′ gives a non-zero vector if and only if j = j′, and that w is orthogonal
to every row in A that maps to an attribute in S. (See the full version for a
formal proof.) One can consider the two mappings to be a short certificate of the
security of Πre-use.

How to find a mapping? Indeed, as pointed out earlier, finding an appropriate
mapping is not a trivial task. Nevertheless, Sym-Prop is still the right property
for arguing security of pair encodings for the following reasons:

– If finding the right mapping is difficult for Sym-Prop, then finding a proof for
the computational property of Attrapadung [2] is several times more difficult.
A typical proof of the symbolic property is 1-2 pages while computational
property proofs could go up to 10 pages (see the encoding for regular lan-
guages, for instance). A central issue with computational properties is finding
an appropriate q-type assumption under which it holds, which may be very
difficult for a complex predicate. Our approach can be seen as extracting out
the real challenging part of designing Attrapadung’s computational proofs.

– Verification of Sym-Prop involves doing simple linear algebra, arguably a
much simpler task than checking indistinguishability of distributions, and
certainly a much simpler task than verifying a long computational reduction.

– The certificate for the symbolic security of Πre-use bears many similarities
with those of other encodings that we will describe later in the paper. Thus
proving Sym-Prop for a new encoding scheme is not as difficult as it might
seem at first. Furthermore, modifying a short proof of the symbolic property
is much easier than a long proof of a computational property.

– Recall our result that if an encoding scheme is not trivially broken then it
satisfies Sym-Prop. This gives an alternate way of showing that Sym-Prop
holds, by proving that the scheme is not broken.

1.3 Outline of The Paper

In Section 2 we define relevant notation and review the standard definition of
predicate encryption. In Section 3 we define pair encoding schemes and our new
symbolic property formally. Section 5 first reviews the notion of dual system
groups, then shows how to build encryption schemes from any pair encoding by
using them. This conversion is a two-step process: first we augment an encoding
so that it satisfies a few extra properties (Section 5.1); next we apply the trans-
formation from Agrawal and Chase [1] (Section 5.4). A proof of security of the
resulting encryption scheme is provided in Section 7.

Section 6 gives generic transformations that can be used to reduce the number
of variables and/or polynomials in an encoding, which can then be used to
get encryption schemes with constant-size ciphertexts/keys. We also provide a
transformation from any encoding for a predicate to an encoding for the dual
predicate. However, due to space constraints, most of the details are available in
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the full version only. The full version also provides several examples to illustrate
how symbolic property can substantially simplifying the analysis of encoding
schemes.

2 Preliminaries

We use λ to denote the security parameter. A negligible function is denoted
by negl. We use bold letters to denote matrices and vectors, with the former
in uppercase and the latter in lowercase. The operator · applied to two vectors
computes their entry-wise product and 〈, 〉 gives the inner-product. For a vector
u, we use ui to denote its ith element, and for a matrix M, Mi,j denotes the
element in the ith row and jth column. When we write gu for a vector u =
(u1, . . . , un), we mean the vector (gu1 , . . . , gun). gM for a matrix M should be
interpreted in a similar way. The default interpretation of a vector should be as
a row vector.

For two matrices U and V of dimension n×m1 and n×m2 respectively, let
U ◦V denote the column-wise join of U and V of dimension n × (m1 + m2),
i.e., U◦V has the matrix U as the first m1 columns and V as the remaining m2

columns. We also refer to this operation as appending V to U. (The notation
easily extends to vectors because we represent them as row matrices.) If we
want to join matrices row-wise instead, we could take their transpose, apply a
column-wise join, and then take the transpose of the resultant matrix.

We use x ←R S, for a set S, to denote that x has been drawn uniformly at
random from it. The set of integers a, a + 1, . . . , b is compactly represented as
[a, b]. If a = 1, then we just use [b], and if a = 0, then [b]+.

Let ZN denote the set of integers {0, 1, 2, . . . , N}. Let GN (m) denote the set
of all vectors of length m with every element in ZN . Similarly, let GN (m1,m2)
denote the set of all matrices of size m1 ×m2 that have all the elements in ZN .

Bilinear Pairings: We use the standard definition of pairing friendly groups
from literature. A mapping e from a pair of groups (G,H) to a target group GT
is bilinear if there is linearity in both the first and second inputs, i.e. e(ga, hb) =
e(g, h)ab for every g ∈ G, h ∈ H and a, b ∈ Z. We require e to be non-degenerate
and efficiently computable. The identity element of a group G is denoted by 1G.

Let GroupGen be an algorithm that on input the security parameter λ outputs
(N,G,H,GT , g, h, e) where N = Θ(λ); G, H and GT are (multiplicative) cyclic
groups of order N ; g, h are generators of G, H, respectively; and e : G×H → GT
is a bilinear map. In this paper our focus will be on prime-order groups because
they perform much better in practice.

Predicate family. We borrow the notation of predicate family from Attra-
padung [2]. It is given by P = {Pκ}κ∈Nc for some constant c, where Pκ maps an
x ∈ Xκ and a y ∈ Yκ to either 0 or 1. The first entry of κ is a number N ∈ N that
is supposed to specify the size of a domain; rest of the entries are collectively
referred to as par, i.e. κ = (N, par).

12



2.1 Predicate Encryption

An encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message space
M = {Mλ}λ∈N consists of a tuple of four PPT algorithms (Setup,Encrypt,KeyGen,
Decrypt) that satisfy a correctness condition. These algorithms behave as follows.

– Setup(1λ, par). On input 1λ and par, Setup outputs a master public key mpk
and a master secret key msk. The output of Setup is assumed to also define
a natural number N , and κ is set to (N, par).

– Encrypt(mpk, x,m). On input mpk, x ∈ Xκ and m ∈ Mλ, Encrypt outputs
a ciphertext ct.

– KeyGen(msk, y). On input msk and y ∈ Yκ, KeyGen outputs a secret key sk.
– Decrypt(mpk, sk,ct). On input mpk, a secret key sk and a ciphertext ct,

Decrypt outputs a message m′ ∈Mλ or ⊥.

Correctness: For all par, m ∈Mλ, x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 1,

Pr[(mpk,msk)← Setup(1λ);

Decrypt(mpk,KeyGen(msk, y),Encrypt(mpk, x)) 6= Pκ(x, y)] ≤ negl(λ),

where the probability is over the random coin tosses of Setup, Encrypt and KeyGen
(Decrypt can be assumed to be deterministic without loss of generality).

Security: Consider the following game IND-CPAbA (λ, par) between a challenger
Chal and an adversary A for b ∈ {0, 1} when both are given inputs 1λ and par:

1. Setup Phase: Chal runs Setup(1λ, par) to obtain mpk and msk. It gives mpk
to A.

2. Query Phase: A requests a key by sending y ∈ Yκ to Chal, and obtains
sk← KeyGen(msk, y) in response. This step can be repeated any number of
times.

3. Challenge Phase: A sends two messages m0,m1 ∈ Mλ and an x? ∈ Xκ to
Chal, and gets ct← Encrypt(mpk, x,mb) as the challenge ciphertext.

4. Query Phase: This is identical to step 2.
5. Output. A outputs a bit.

The output of the experiment is the bit that A outputs at the end. It is
required that for all y queried in steps 2 and 4, Pκ(x?, y) = 0.

Definition 2.1. An encryption scheme is adaptively or fully secure if for all par
and PPT adversary A,

|Pr[IND-CPA0
A(λ, par) = 1]− Pr[IND-CPA1

A(λ, par) = 1]| ≤ negl(λ), (1)

where the probabilities are taken over the coin tosses of A and Chal. It is semi-
adaptively secure if (1) is satisfied with respect to a modified version of IND-CPA
where the second step is omitted [17,39]. Further, it is co-selectively secure if (1)
holds when the fourth step is removed from the IND-CPA game [6].
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3 Pair encoding schemes

The notion of pair encoding schemes (PES) was introduced by Attrapadung [2],
and later refined independently by Agrawal and Chase [1] and Attrapadung [4]
himself in an identical way. As observed in the latter works, all pair encodings
proposed originally in [2] satisfy the additional constraints in the refined versions.

We present here a more structured definition of pair encoding schemes so that
the reader can easily see the different components involved. In the full version
we describe the original formulation as well, and argue why our definition does
not lose any generality.

3.1 Definition

A PES for a predicate family Pκ : Xκ × Yκ → {0, 1} indexed by κ = (N, par),
where par specifies some parameters, is given by four deterministic polynomial-
time algorithms as described below.

– Param(par)→ n. When given par as input, Param outputs n ∈ N that speci-
fies the number of common variables, which we denote by b := (b1, . . . , bn).

– EncCt(x,N)→ (w1, w2, c(s, ŝ,b)). On input N ∈ N and x ∈ X(N,par), EncCt
outputs a vector of polynomials c = (c1, . . . , cw3

) in non-lone variables
s = (s0, s1, . . . , sw1) and lone variables ŝ = (ŝ1, . . . , ŝw2). (The variables
ŝ1, . . . , ŝw2 never appear in the form ŝzbj , and are hence called lone.) For
` ∈ [w3], where η`,z, η`,i,j ∈ ZN , the `th polynomial is given by∑

z∈[w2]

η`,z ŝz +
∑

i∈[w1]
+,

j∈[n]

η`,i,jsibj .

– EncKey(y,N) → (m1,m2,k(r, r̂,b)). On input N ∈ N and y ∈ Y(N,par),
EncKey outputs a vector of polynomials k = (k1, . . . , km3

) in non-lone vari-
ables r = (r1, . . . , rm1

) and lone variables r̂ = (α, r̂1, . . . , r̂m2
). For t ∈ [m3],

where φt, φt,z′ , φt,i′,j ∈ ZN the tth polynomial is given by

φtα +
∑

z′∈[m2]

φt,z′ r̂z′ +
∑

i′∈[m1],
j∈[n]

φt,i′,jri′bj .

– Pair(x, y,N) → (E,E). On input N , and both x and y, Pair outputs two
matrices E and E of size (w1 + 1)×m3 and w3 ×m1, respectively.

Observe that the output of EncKey is analogous to that of EncCt, except in
how the special variables α and s0 are treated in the respective case. While α is
lone variable, i.e. it never appears in conjunction with a common variable, s0 is
not. See the full version for several concrete examples of pair encodings and the
different types of variables involved.
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Correctness. A PES is correct if for every κ = (N, par), x ∈ Xκ and y ∈ Yκ
such that Pκ(x, y) = 1, the following holds symbolically

sEkT + cErT =
∑

i∈[w1]
+,

t∈[m3]

siEi,tkt +
∑

`∈[w3],
i′∈[m1]

c`E`,i′ri′ = αs0.

The matrix E takes a linear combination of the products of non-lone variables
output by EncCt and polynomials output by EncKey. (Its rows are numbered
from 0 to w1.) Analogously, E takes a linear combination of the products of
polynomials output by EncCt and non-lone variables output by EncKey. Below
we use ct-enc and key-enc as a shorthand for polynomials and variables output
by EncCt (ciphertext-encoding) and EncKey (key-encoding), respectively.

3.2 Symbolic Property

We introduce a new symbolic property for pair encoding schemes that signif-
icantly simplifies their analysis for even complex predicates. We get the best
of two worlds: not only is our symbolic property very clean to describe (like
information-theoretic properties), it can also capture all the predicates that have
been previously captured by any computational property. Further, the property
does not involve dealing with any kind of distribution.

We now formally define the property. We use a : b below to denote that a
variable a is substituted by a matrix/vector b.

Definition 3.1 (Symbolic property). A pair encoding scheme Γ = (Param,
EncCt,EncKey,Pair) for a predicate family Pκ : Xκ × Yκ → {0, 1} satisfies
(d1, d2)-selective symbolic property9 for positive integers d1 and d2 if there exist
three deterministic polynomial-time algorithms EncB, EncS, EncR such that for
all κ = (N, par), x ∈ Xκ, y ∈ Yκ with Pκ(x, y) = 0,

– EncB(x)→ B1, . . . ,Bn ∈ GN (d1, d2);
– EncS(x)→ s0, . . . , sw1 ∈ GN (d2), ŝ1, . . . , ŝw2 ∈ GN (d1);
– EncR(x, y)→ r1, . . . , rm1

∈ GN (d1), a, r̂1, . . . , r̂m2
∈ GN (d2);

such that 〈s0,a〉 6= 0, and if we substitute

ŝz : ŝTz sibj : Bjs
T
i α : a r̂z′ : r̂z′ ri′bj : ri′Bj

for z ∈ [w2], i ∈ [w1]+, j ∈ [n], z′ ∈ [m2] and i′ ∈ [m1] in all the polynomials
output by EncCt and EncKey on input x and y, respectively, they evaluate to 0.

Similarly we say a pair encoding scheme satisfies (d1, d2)-co-selective sym-
bolic security property if there exist EncB,EncR,EncS that satisfy the above prop-
erties but where EncB and EncR depend only on y, and EncS depends on both x
and y. Finally, a scheme satisfies (d1, d2)-symbolic property if it satisfies both
(d′1, d

′
2)-selective and (d′′1 , d

′′
2)-co-selective properties for some d′1, d

′′
1 ≤ d1 and

d′2, d
′′
2 ≤ d2.

9 d1, d2 could depend on κ but we leave this implicit for simplicity of presentation.
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We use Sym-Prop as a shorthand for symbolic property. It is easy to see that
if a scheme satisfies (d1, d2)-selective Sym-Prop then it also satisfies (d′1, d

′
2) for

any d′1 ≥ d1 and d′2 ≥ d2. Just append d′1 − d1 rows of zeroes and d′2 − d2
columns of zeroes to the Bj matrices, d′2 − d2 zeroes to the si vectors, d′1 − d1
zeroes to the ŝz vectors, d′1 − d1 zeroes to the ri′ vectors, and d′2 − d2 zeroes to
the r̂z′ vectors. A similar claim can also be made about co-selective Sym-Prop.
Thus if a PES satisfies (d1, d2)-Sym-Prop then it also satisfies selective and co-
selective properties with the same parameters, as well as (d′1, d

′
2)-Sym-Prop for

any d′1 ≥ d1 and d′2 ≥ d2.
Lastly, if a PES Γ satisfies Sym-Prop for a predicate family Pκ, we say that

Γ is symbolically secure for Pκ, or simply that Γ is symbolically secure if the
predicate family is clear from context.

4 Obtaining Symbolic Security Generically

In this section, we prove an interesting and useful result. If a pair encoding
scheme in not trivially broken in the sense that for any x, y that do not satisfy the
predicate, there does not exist a way to directly recover αs0 from the encoding
polynomials (note that for correctness we require exactly this, but when the
predicate is true), then the scheme satisfies the symbolic property.

Definition 4.1 (Trivially broken scheme). A pair encoding scheme Γ =
(Param,EncCt,EncKey,Pair) for a predicate family Pκ : Xκ × Yκ → {0, 1} is
trivially broken if for a κ = (N, par), x ∈ Xκ, y ∈ Yκ that satisfy Pκ(x, y) = 0,

there exists a matrix E such that (s, c)E(r,k)
T

= αs0, where c is the vector of
polynomials output by EncCt(x,N) in variables s = (s0, . . .), ŝ, b, and k is the
vector of polynomials output by EncKey(y,N) in variables r, r̂ = (α, . . .), b.

Theorem 4.2. If a pair encoding scheme is not trivially broken then it satisfies
the symbolic property.

Proof. If a scheme Γ is not trivially broken, then for all x and y for which
the predicate evaluates to false, the ct-enc non-lone variables s = (s0, . . . , sw1

)
and polynomials c = (c1, . . . , cw3

) cannot be paired with the key-enc non-lone
variables r = (r1, . . . , rm1) and polynomials k = (k1, . . . , km3) to recover αs0.
We know that the former have monomials of the form s0, . . . , sw1 , ŝ1, . . . , ŝw2 ,
s0b1, . . . , s0bn, . . ., sw1

b1, . . . , sw1
bn, so a total of w2 + (n+ 1)(w1 + 1). Similarly,

the total number of distinct monomials in the latter is m2 + 1 + (n + 1)m1

(because α is a lone variable as opposed to s0). Let us denote the two quantities
above by varc and vark respectively.

Define a matrix ∆ over ZN with (w1 +w3 + 1)(m1 +m3) rows and varcvark
columns. A row is associated with the product of a ct-enc non-lone variable
or polynomial with a key-enc non-lone variable or polynomial. Each column
represents a unique monomial that can be obtained by multiplying a ct-enc
monomial with a key-enc monomial, with the first column representing αs0. The
(i, j)th entry in this matrix is the coefficient of the monomial associated with
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the jth column in the product polynomial attached with the ith row. Since Γ is
not broken, we know that the rows in ∆ cannot be linearly combined to get the
vector (1, 0, . . . , 0).

Note that it is enough to work with any subset of rows because they cannot be
combined to get (1, 0, . . . , 0) either. Thus, for the rest of the proof, we consider
only those rows of ∆ that multiply a ct-enc non-lone variable with a key-enc
polynomial and vice versa (and only those columns which have monomials that
can be obtained from multiplying such polynomials). Let n1 denote the number
of rows now.

Since rows in ∆ cannot be linearly combined to get (1, 0, . . . , 0), the first
column of ∆, say col, can be written as a linear combination of the other columns.
Because if not, one can show that there exists a vector v = (v1, . . . , vn1) that is
orthogonal to all the columns except the first one10. We can then combine the
rows of ∆ using v1/ 〈col,v〉 , . . . , vn1

/ 〈col,v〉 to get (1, 0, . . . , 0)—a contradiction.

Let Q denote the set of monomials associated with the columns of ∆. These
columns can be linearly combined to get the zero vector, without zeroing out
col, which corresponds to αs0. Let λq be the factor that multiplies the column
associated with the monomial q ∈ Q in one such linear combination. Note that
λαs0 6= 0.

Our first goal is to show that Γ satisfies the selective symbolic property.
So we need to define matrices and vectors for various variables in the encoding
such that all the polynomials evaluate to the zero vector. Towards this, pick any
non-lone key-enc variable ri′ for i′ ∈ [m1] and consider the sub-matrix ∆′ of ∆
that consists of rows which are attached with the product of ri′ with a ct-enc
polynomial and columns which are associated with the product of ri′ and a
ct-enc monomial. (Note that it does not matter which non-lone key-enc variable
we consider; the sub-matrix obtained in each case will be exactly the same.)
Recall that a ct-enc polynomial c` is given by∑

z∈[w2]

η`,z ŝz +
∑

i∈[w1]
+,j∈[n]

η`,i,jsibj

for ` ∈ [w3]. So more formally, rows in ∆′ are associated with (c`, ri′), and
columns are associated with monomials ŝzri′ , sibjri′ , where the range of i, j, z
is as described above. For simplicity in the following, assume that the columns
are ordered as ŝ1, . . . , ŝw2 , s0b1, . . . , s0, bn, . . ., sw1b1, . . . , sw1bn and the rows are
ordered as (c1, ri′), . . . , (cw3 , ri′), so that the lth row of ∆′ is (η`,1, . . . , η`,w2 ,
η`,0,1, . . . , η`,0,n, . . ., η`,w1,1, . . . , η`,w1,n).

Let T be the kernel of ∆′, i.e. the set of all vectors v such that ∆′v = 0. Let
v1,v2, . . . ,vd1 be a basis of T and write vp as (vp,1, . . . , vp,w2 , vp,0,1, . . . , vp,0,n,

10 The claim is similar to one made in the case of linear secret sharing schemes where
we say that if a set of attributes does not satisfy a policy, i.e. the associated set
of rows cannot be linearly combined to get a certain vector v, then one can find a
vector orthogonal to all those rows but not to v. See, for instance, [9, Claim 2] for
a formal proof.
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. . ., vp,w1,1, . . . , vp,w1,n) for p ∈ [d1]. (We discuss the special case of ∆′’s kernel
being empty later on.) Therefore, we have that for any ` ∈ [w3] and p ∈ [d1],∑

z

η`,zvp,z +
∑
i,j

η`,i,jvp,i,j (2)

is equal to 0. Let uz = (v1,z, . . . , vd1,z) and ui,j = (v1,i,j , . . . , vd1,i,j) for z ∈ [w2],
i ∈ [w1]+, j ∈ [n].

We now define matrices B1, . . . ,Bn and vectors s0, . . . , sw1
, ŝ1, . . . , ŝw2

as fol-
lows. Bj has d1 rows and d2 = w1 + 1 columns with the (i+ 1)th column being
uT
i,j for i = [w1]+. Vector si is set to ei+1 for i = [w1]+, where ei denotes the ith

unit vector of size d2, and ŝz is set to uz for z ∈ [w2]. These matrices and vectors
depend only on v1,v2, . . . ,vd1 , which in turn depends on ∆′ only. The entries in
∆′ are the coefficients of the monomials obtained by multiplying ri′ with various
ct-enc polynomials. Hence, they only depend on x and, in particular, not on y.
Further, it is easy to observe that all the operations involved in computing Bj ,
si, ŝz are efficient. Thus, one can define two deterministic polynomial time algo-
rithms EncB and EncS that on input x only, output B1, . . . ,Bn and s0, . . . , sw1 ,
ŝ1, . . . , ŝw2 respectively.

We need to verify that if we substitute ŝz with ŝTz and sibj with Bjs
T
i in

any ct-enc polynomial c`, then we get an all zeroes vector. On performing such
a substitution, we have∑
z

η`,zu
T
z +

∑
i,j

η`,i,j(u
T
0,j , . . . ,u

T
w1,j)e

T
i+1 =

∑
z

η`,zu
T
z +

∑
i,j

η`,i,ju
T
i,j

The pth element in the column vector above is given by (2), which is equal to 0
for any p.

In the special case where ∆′’s kernel is empty, B1, . . . ,Bn are all set to
d1 × d2 matrices with zero entries; ŝ1, . . . , ŝw2

are set to the zero vector of size
d1; s1, . . . , sw1

are set to the zero vector of size d2; and s0 is set to (1, 0, . . . , 0). It
is easy to see that all ct-enc polynomials still evaluate to zero upon substitution.

We also need to make sure that with the appropriate choice of vectors for the
key-enc variables, all the key-enc polynomials also evaluate to the zero vector.
Recall that such polynomials are given by

kt = φtα +
∑

z′∈[m2]

φt,z′ r̂z′ +
∑

i′∈[m1],
j∈[n]

φt,i′,jri′bj

for t ∈ [m3]. When they are multiplied with a non-lone ct-enc variable si, we get
the monomials αsi, sir̂z′ , siri′bj for i ∈ [w1]+ and i′, j, z′ as above.

Recall that the columns of ∆ can be linearly combined using {λq}q∈Q to get
the zero vector. Going back to the product of ri′ with c`, we can say that∑

z

η`,zλŝzri′ +
∑
i,j

η`,i,jλsibjri′ = 0
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irrespective of what ` and i′ are because only the entries in the columns associ-
ated with monomials ŝzri′ , sibjri′ are non-zero. Hence, the vector wi′ given by
(λŝ1ri′ , . . . , λŝw2

ri′ , λs0b1ri′ , . . . , λs0bnri′ , . . ., λsw1
b1ri′ , . . ., λsw1

bnri′ ) lies in the
kernel of ∆′. (Recall that no matter what key-enc non-lone variable is chosen,
one always gets the same ∆′.) In other words, there exists a vector ri′ of size d1
such that [vT

1 , . . . ,v
T
d1

]rTi′ = wi′ . Now the transpose of ri′Bj is given by u0,j

...
uw1,j

 rTi′ =

 v1,0,j . . . vd1,0,j
...

...
...

v1,w1,j . . . vd1,w1,j

 rTi′ =

 λs0bjri′...
λsw1

bjri′


for every j ∈ [n]. In the special case where ∆′’s kernel is empty, set ri′ to be the
zero vector of size d1. The relation ri′Bj = (λs0bjri′ , . . . , λsw1bjri′

) for all j still
holds because wi′ must be zero.

Define the remaining vectors as follows: a is set to be [λαs0 , . . . , λαsw1
] and

r̂z′ to be [λs0r̂z′ , . . . , λsw1
r̂z′ ] for z′ ∈ [m2]. (Note that the first element of a is

not zero.) When we substitute α with a, r̂z′ with r̂z′ and ri′bj with ri′Bj in kt
for t ∈ [m3], we get

φt[λαs0 , . . . , λαsw1
] +

∑
z′

φt,z′ [λs0r̂z′ , . . . , λsw1
r̂z′ ]

+
∑
i′,j

φt,i′,j [λs0bjri′ , . . . , λsw1
bjri′ ].

The ith element of this sum is given by

φtλαsi +
∑
z′

φt,z′λsir̂z′ +
∑
i′,j

φt,i′,jλsiri′bj

for i ∈ [w1]+. It is easy to see that the above quantity is zero when we consider
the row in ∆ attached with the product sikt.

One can define a deterministic polynomial time algorithm EncR that on input
x and y, computes how the columns of ∆ can be combined to get the zero vector,
and then uses this information to define a, r̂z′ , ri′ as shown above.

The proof for the co-selective symbolic property is analogous to the proof
above, so we skip the details. ut

5 Predicate encryption from Pair Encodings

In this section, we describe how any pair encoding scheme for a predicate can
be transformed into an encryption scheme for the same predicate in dual system
groups (DSG), introduced by Chen and Wee [16], and later used and improved
by several works [15,1,4]. This transformation is a two-step process: first we
augment an encoding so that it satisfies a few extra properties (Section 5.1)11;
next we apply the transformation from Agrawal and Chase [1] (Section 5.4).

11 This step need not be applied if the properties are already satisfied.
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5.1 Augmenting pair encodings

We need the matrices and vectors involved in the symbolic property to have
some extra features, so that we can prove the security of the derived predicate
encryption scheme from our q-ratio assumption. Towards this, we show how any
pair encoding scheme that satisfies Sym-Prop can be transformed into another
scheme that satisfies a more constrained version of this property, with only a
few additional variables and polynomials.

We note that, although they are presented monolithically, many of the pair
encodings introduced by Attrapadung [2] can be viewed as the result of applying
a very similar augmentation to simpler underlying encodings. Thus, our results
also help explain the structure of those previous encodings.

Recall that the algorithms of symbolic security output a for α, B1, . . . ,Bn

for common variables, s0, . . . , sw1 for non-lone ct-enc variables, and r1, . . . , rm1

for key-enc non-lone variables. Let bj denote the first column of Bj and si,1 the
first element of si.

Definition 5.1 (Enhanced symbolic property). A pair encoding scheme
satisfies (d1, d2)-Sym-Prop? for a predicate Pκ if it satisfies selective and co-
selective (d1, d2)-Sym-Prop for Pκ but under the following constraints for both

1. a is set to (1, 0, . . . , 0).
2. In every ct-enc polynomial, if sibj is replaced by

– sTi bj then we get a matrix with non-zero elements in the first row only;
– si,1Bj then we get a matrix with non-zero elements in the first column

only.
(The lone variables are replaced by the zero vector.)

3. In every key-enc polynomial, if we replace ri′bj with bT
j ri′ , then we get a

diagonal matrix. (The lone variables, once again, are replaced by the zero
vector.)

4. The set of vectors {s0, . . . , sw1} is linearly independent, and so is the set
{r1, . . . , rm1}.

We convert any pair encoding that satisfies Sym-Prop into one that satisfies
Sym-Prop? in three steps. First we show that with only one additional key-enc
non-lone variable, an additional common variable, and an extra ct-enc polyno-
mial, we can get an encoding scheme for which the vector a corresponding to α
can be set to (1, 0, . . . , 0) (in proving that Sym-Prop holds). Next, with two extra
common variables, and an additional variable and a polynomial each in the ci-
phertext and key encoding, one can satisfy the second and third properties from
above. Finally, a simple observation can be used to satisfy the fourth property
as well. More formally, we prove the following theorem in the full version.

Theorem 5.2 (Augmentation). Suppose a PES for a predicate family Pκ :
Xκ×Yκ → {0, 1} outputs n on input par, (w1, w2, c) on input x ∈ Xκ, (m1,m2,k)
on input y ∈ Yκ and satisfies (d1, d2)-Sym-Prop, then there exists another PES
for Pκ that outputs n + 3 on input par, (w1 + 1, w2, c) on input x and (m1 +
2,m2,k) on input y, where |c| = |c|+2 and |k| = |k|+1, and satisfies (max(d1, d2−
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1)+M1+1, d2+W1+2)-Sym-Prop?, where M1 and W1 are bounds on the number
of key-enc and ct-enc non-lone variables, respectively.12

The extra constraints of Sym-Prop? give rise to some nice combinatorial facts.
Please refer to the full version for details.

5.2 Dual System Groups

Dual system groups (DSG) were introduced by Chen and Wee [16] and gen-
eralized by Agrawal and Chase [1]. The latter work also shows that the two
instantiations of DSG – in composite-order groups under the subgroup decision
assumption and in prime-order groups under the decisional linear assumption –
given by Chen and Wee satisfy the generalized definition as well. Here we give a
brief informal description of dual system groups. See the full version or existing
work [1] for a formal definition.

Dual system groups are parameterized by a security parameter λ and a num-
ber n. They have a SampP algorithm that on input 1λ and 1n, outputs public
parameters pp and secret parameters sp. The parameter pp contains a triple
of groups (G,H,GT ) and a non-degenerate bilinear map e : G × H → GT , a
homomorphism µ from H to GT , along with some additional parameters used
by SampG, SampH. Given pp, we know the exponent of group H and how to
sample uniformly from it; let N = exp(H). It is required that N is a product
of distinct primes of Θ(λ) bits. The secret parameters sp contain h̃ ∈ H (where
h̃ 6= 1H) along with additional parameters used by SampG and SampH.

A dual system group has several sampling algorithms: SampGT algorithm
takes an element in the image of µ and outputs another element from GT . SampG
and SampH take pp as input and output a vector of n+ 1 elements from G and
H respectively. SampG and SampH take both pp and sp as inputs and output a
vector of n + 1 elements from G and H respectively. These two algorithms are
used in security proofs only. SampG0 and SampH0 denote the first element of
SampG and SampH respectively.

A dual system group is correct if it satisfies the following two properties for
all pp.

– Projective: For all h ∈ H and coin tosses σ, SampGT(µ(h);σ) = e(SampG0

(pp;σ), h), where SampG0 is an algorithm that outputs only the first element
of SampG.

– Associative: If (g0, g1, . . . , gn) and (h0, h1, . . . , hn) are samples from SampG(pp)
and SampH(pp) respectively, then for all i ∈ [1, n], e(g0, hi) = e(gi, h0).

Dual system groups have a number of interesting security properties as well
that makes them very useful for building encryption schemes, see the full version

12 As we will see later, when a pair encoding scheme is transformed into a predicate
encryption scheme, the parameters of Sym-Prop? have no effect on the construction.
They only affect the size of assumption on which the security of encryption scheme
is based.
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for details. We additionally require that there exists a way to sample the set-
up parameters so that one not only gets pp and sp, but also some trapdoor
information td that can be used to generate samples from SampG and SampH
given only the first element. We formalize this property and show that both
instantiations of Chen and Wee [16] satisfy them in the full version. The new
sampling algorithm will be denoted by SampP∗ below.

5.3 New computational assumption

We introduce a new assumption, called q-ratiodsg, on dual system groups param-
eterized by positive integers d1 and d2.

Definition 5.3 ((d1, d2)-q-ratiodsg assumption). Consider the following dis-
tribution on a dual system group’s elements:

dsg-par := (pp, sp, td)← SampP∗(1λ, 1n);

ĝ ← SampG0(pp, sp); ĥ← SampH0(pp, sp)

u0, u1, . . . , ud2 , v1, . . . , vd1 ←R Z∗N ;

DG := {ĝui}i∈[d2]+ ∪
{
ĝ

ui
ujvk

}
i,j∈[d2],i6=j,k∈[d1]

;

DH := {ĥvi}i∈[d1] ∪
{
ĥ

vi
vjuk

}
i,j∈[d1],i6=j,k∈[d2]

;

T0 := ĥ1/u0 ; T1 ←R H.

We say that the (d1, d2)-q-ratiodsg assumption holds if for any PPT algorithm
A,

Adv
qrdsg
A (λ) :=

∣∣Pr[A(1λ, dsg-par, DG, DH, T0) = 1]

− Pr[A(1λ, dsg-par, DG, DH, T1) = 1]
∣∣

is negligible in λ.

Note that u0 is present in exactly one of the terms in DG and not at all in DH.

We also define a similar assumption on bilinear maps.

Definition 5.4 ((d1, d2)-q-ratio assumption). Consider the following distri-
bution:

par := (N,G,H,GT , g, h, e)← GroupGen(1λ)

ĝ ←R G; ĥ←R H; u0, u1, . . . , ud2 , v1, . . . , vd1 ←R Z∗N ;

DG := {ĝui}i∈[d2]+ ∪
{
ĝ

ui
ujvk

}
i,j∈[d2],i6=j,k∈[d1]

;

DH := {ĥvi}i∈[d1] ∪
{
ĥ

vi
vjuk

}
i,j∈[d1],i6=j,k∈[d2]

;
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T0 := ĥ1/u0 ; T1 ←R H.

We say that the (d1, d2)-q-ratio assumption holds if for any PPT algorithm A,

AdvqrA(λ) :=
∣∣Pr[A(1λ, par, DG , DH, T0) = 1]

− Pr[A(1λ, par, DG , DH, T1) = 1]
∣∣

is negligible in λ.

In this paper our focus is on constructions in prime-order groups because
they are much more practical, so we will consider the q-ratio assumption on
prime-order bilinear maps only. We show that this assumption is implied by the
assumptions proposed by Lewko, Waters [30] and Attrapadung [2] in the full
version. We also show that Chen and Wee’s prime order DSG construction [16]
(along with the new sampling algorithms we introduce) satisfies the q-ratiodsg
assumption if the underlying group satisfies the q-ratio assumption. Thus we
have,

Lemma 5.5. A dual system group with a bilinear map e : G × H → GT that
satisfies the (d1, d2)-q-ratiodsg assumption can be instantiated in a prime-order
bilinear map e′ : G × H → GT that satisfies the (d1, d2)-q-ratio and k-linear
assumptions. Further, an element of G and H is represented using k+1 elements
of G and H, respectively. (An element of GT is represented by just one from GT ).

5.4 Encryption Scheme

In this section, we show how to obtain an encryption scheme from a pair encoding
using the sampling algorithms of dual system groups. Our transformation is
based on the one given by Agrawal and Chase [1], and is referred to as Gen-Trans.
If a PES ΓP is defined by the tuple of algorithms (Param,EncCt,EncKey,Pair) for
a predicate family P = {Pκ}κ∈Nc , then the algorithms for ΠP := Gen-Trans(ΓP )
are given as follows.

– Setup(1λ, par): First the pair encoding algorithm Param(par) is run to obtain
n, and then the dual system group algorithm SampP(1λ, 1n) is run to get
pp, sp. A randomly chosen element from H is designated to be the master
secret key msk. Master public key mpk is set to be (pp, µ(msk)). Further,
N and κ are set to exp(H) and (N, par), respectively (where the exponent
of H is a part of pp).

– Encrypt(mpk, x,msg): On input x ∈ Xκ and msg ∈ GT , EncCt(x,N) is run
to obtain w1, w2 and polynomials (c1, . . . , cw3). For i′ ∈ [w1 + w2]+, draw a
sample (gi′,0, . . . , gi′,n) from SampG using pp. Recall that the `th polynomial
is given by ∑

z∈[w2]

η`,z ŝz +
∑

i∈[w1]
+,j∈[n]

η`,i,jsibj .
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Set cti to be gi,0 for i ∈ [w1]+ and c̃t` to be∏
z∈[w2]

g
η`,z
w1+z,0

·
∏

i∈[w1]
+,j∈[n]

g
η`,i,j
i,j

for ` ∈ [w3]. Also, let ct? = msg · SampGT(µ(msk);σ) where σ denotes the
coin tosses used in drawing the first sample from SampG. Output ct :=
(ct0, . . . ,ctw1 , c̃t1, . . . , c̃tw3 ,ct

?).

– KeyGen(mpk,msk, y): On input y ∈ Yκ, EncKey(y,N) is run to obtain m1,
m2 and polynomials (k1, k2, . . . , km3). For i ∈ [m1 + m2], draw a sample
(hi,0, . . . , hi,n) from SampH using pp. Recall the tth polynomial is given by

φtα +
∑

z′∈[m2]

φt,z′ r̂z′ +
∑

i′∈[m1],j∈[n]

φt,i′,jri′bj .

Set ski′ to be hi′,0 for i′ ∈ [m1] and s̃kt to be

mskφt ·
∏

z′∈[m2]

h
φt,z′

m1+z′,0
·

∏
i′∈[m1],j∈[n]

h
φt,i′,j
i′,j

for t ∈ [m3]. Output sk := (sk1, . . . , skm1
, s̃k1, . . . , s̃km3

).

– Decrypt(mpk, sky,ctx): On input sky and ctx, Pair(x, y,N) is run to obtain
matrices E and E. Output

ct? ·

 ∏
i∈[w1]

+,t∈[m3]

e(cti, s̃kt)
Ei,t ·

∏
`∈[w3],i

′∈[m1]

e(c̃t`, ski′)
E`,i′

−1 .
One can use the projective and associative property of DSG to show that

the predicate encryption scheme defined above is correct (see [1] for details). We
defer a proof of security for ΠP to Section 7, and conclude with the following
remark.

Remark 5.6 (Size of ciphertexts and keys). Ciphertexts have w1+w3+1 elements
from G and an element from GT ; keys have m1+m3 elements from H. So the size
of these objects depends only on the number of non-lone variables and polyno-
mials. Moreover, there is a one-to-one mapping between variables/polynomials
and ciphertext/key elements. Thus if we can reduce the size of an encoding, we
will immediately get an equivalent reduction in the size of ciphertexts or keys.

6 Transformations on Pair Encodings

In this section we present several useful transformations on pair encodings that
preserve symbolic property. The first class of transformations help in reducing
the size of ciphertexts and keys, and the second one provides a way to develop
schemes for dual predicates (where the role of the two inputs to a predicate is
reversed).
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Compact encoding schemes. We show how pair encoding schemes can be made
compact by reducing the number of ct-enc and/or key-enc polynomials and/or
variables to a constant in a generic way. Importantly, we show that if the en-
coding scheme we start with satisfies the symbolic property, then so does the
transformed scheme. As a result, building encryption schemes with constant-size
ciphertexts or keys, for instance, becomes a very simple process.

Our first transformation converts any encoding scheme Γ ′ to another scheme
Γ where the number of ct-enc variables is just one. Naturally, we need to assume
a bound on the total number of ct-enc variables for this transformation to work.
If W1+1 and W2 are bounds on the number of non-lone and lone ct-enc variables,
respectively, and the number of common variables in Γ ′ is n, then Γ has (W1 +
1)n+W2 common variables, 1 ct-enc non-lone variable and 0 lone variables. The
number of lone key-enc variables and polynomials increases by a multiplicative
factor of W1 + 1.

Our second transformation brings down the number of ct-enc polynomials to
just one. Once again the transformation is fully generic, as long as there is a
bound W3 on the number of polynomials. In this case, the number of common
variables increases by a multiplicative factor of W3 + 1, the number of non-lone
key-enc variables by a multiplicative factor of W3, and the number of key-enc
polynomials by an additive factor of m1W

2
3 n.

When the two transformations above are applied one after the other, we ob-
tain an encoding scheme with just one non-lone variable and one polynomial in
the ciphertext encoding. After augmenting the scheme as per Theorem 5.2 which
adds a non-lone variable and two polynomials, we can convert the resulting en-
coding scheme into a predicate encryption scheme by using the generic mecha-
nism of Section 5.4. This encryption scheme will have exactly 5 dual system’s
source group elements in any ciphertext, a number which would only double if
the instantiation from Lemma 5.5 is used under the SXDH (1-linear) assumption.

One can also reduce the number of key-enc variables and polynomials in a
manner analogous to how the corresponding quantities are reduced in the ci-
phertext encoding, at the cost of increasing the number of common variables
and ct-enc variables and polynomials. If there is a bound on both the number of
variables and polynomials in the key encoding, then one can obtain an encod-
ing scheme with just one of each. This will result in encryption schemes with
constant-size key.

Finally, we remark that one can also mix-and-match. For instance, first the
number of ct-enc variables can be reduced to one, and then we can do the same
for key-enc variables, resulting in a scheme with just one variable each in the
ciphertext and key encodings at the cost of more polynomials in both. (This
might be interesting, for example, because it produces a pair encoding of the form
used in [15].) Note that when the ciphertext variable reduction transformation is
applied, no lone variables are left in the ciphertext encoding (the only remaining
variable is a non-lone variable). Hence, the key variable reduction transformation
does not affect the number of ct-enc variables.
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See the full version for a formal treatment of the two transformations de-
scribed above.

Dual predicates. The dual predicate for a family P ′κ : Yκ ×Xκ → {0, 1} is given
by Pκ : Xκ × Yκ → {0, 1} where Pκ(x, y) = P ′κ(y, x) for all κ, x ∈ Xκ, y ∈ Yκ.
For example, CP-ABE and KP-ABE are duals of each other. In the full version
we show that Attrapadung’s dual scheme conversion [3, Section 8.1] mechanism
preserves symbolic property too.

7 Security of Predicate Encryption Scheme

In this section we show that the transformation Gen-Trans leads to a secure
encryption scheme if the underlying encoding satisfies the (enhanced) symbolic
property. More formally, we have:

Theorem 7.1. If a pair encoding scheme ΓP satisfies (d1, d2)-Sym-Prop? for a
predicate family Pκ, then the scheme Gen-Trans(ΓP ) defined in Section 5.4 is a
fully secure predicate encryption scheme for Pκ in dual system groups under the
(d1, d2 − 1)-q-ratiodsg assumption.

When the above theorem is combined with Theorem 5.2 and Lemma 5.5, we
get the following corollary:

Corollary 7.2. If a pair encoding scheme satisfies (d1, d2)-Sym-Prop for a pred-
icate family then there exists a fully secure predicate encryption scheme for that
family in prime-order bilinear maps under the (max(d1, d2 − 1) + M1 + 1, d2 +
W1 + 1)-q-ratio and k-linear assumptions, where M1 and W1 are bounds on the
number of key-enc and ct-enc non-lone variables, respectively, in the encoding.

The rest of this section is devoted to the proof of Theorem 7.1. We follow the
same general outline as in other papers that use dual system groups [16,1,15].
The design of hybrids in our proof is closer to [16] and [15] rather than [1]. In
particular, our hybrid structure is simpler because, unlike [1], we don’t add noise
to individual samples in every key. However, since we have adopted the generic
transformation from [1], the indistinguishability between several hybrids follows
from that of corresponding hybrids in [1]. (We briefly review these hybrids and
the properties they follow from below—for full proofs see [1].) The main novelty
in our proof, and the crucial difference from [1], is how the form of master secret
key is changed: in [1] relaxed perfect security is used for this purpose, but we
use the symbolic property in conjunction with the q-ratiodsg assumption.

We first define auxiliary algorithms for encryption and key generation. Below
we use gi,0 (resp. hi,0) to denote the first element of gi (resp. hi). Also w and m
denote w1 + w2 and m1 +m2, respectively.

– Encrypt(pp, x,msg; (g′0,g
′
1, . . . ,g

′
w),msk): This algorithm is same as Encrypt

except that it uses g′i ∈ Gn+1 instead of the samples gi from SampG, and
sets ct? to msg · e(g′0,0,msk).
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– KeyGen(pp,msk, y; (h′1, . . . ,h
′
m)): This algorithm is same as KeyGen except

that it uses h′i ∈ Hn+1 instead of the samples hi from SampH.

Using the algorithms described above, we define alternate forms for the ci-
phertext, master secret key, and secret keys.

– Semi-functional master secret key is defined to be msk := msk · h̃µ where
µ←R ZN .

– Semi-functional ciphertext is given by Encrypt(pp, x,m; G · Ĝ,msk), where
G · Ĝ is defined as follows: sample g1, . . . ,gw from SampG and ĝ1, . . . , ĝw
from SampG (which also requires sp); set G and G′ to be the vector of vectors
(g1, . . . ,gw) and (ĝ1, . . . , ĝw), respectively; and denote (g1 · ĝ1, . . . ,gw · ĝw)
by G · Ĝ.

– Ext-semi-functional ciphertext is given by Encrypt(pp, x,m; G · Ĝ · Ĝ′,msk),
where G, Ĝ are as above, and Ĝ′ is defined to be (ĝ′1, . . . , ĝ

′
w), where ĝ′i =

(1, ĝγ1i,0, . . . , ĝ
γn
i,0) for i ∈ [w] and γ1, . . . , γn ←R ZN . (Here these γ1, . . . , γn

will be chosen once and used in both ciphertext and key components.)

– Table 1 lists the different types of keys we need and the inputs that should
to be passed to KeyGen (besides pp and y) in order to generate them. In
the table, h1, . . . ,hm are samples from SampH; ĥ1, . . . , ĥm are samples from
SampH (which also requires sp); and ĥ′i = (1, ĥγ1i,0, . . . , ĥ

γn
i,0) for i ∈ [m],

where γ1, . . . , γn are the values described above for the ext-semi-functional
ciphertext.

Type of key Inputs to KeyGen (besides pp and y)

Normal msk; (h1, . . . ,hm)

Pseudo-normal msk; (h1 · ĥ1, . . . ,hm · ĥm)

Ext-pseudo-normal msk; (h1 · ĥ1 · ĥ′1, . . . ,hm · ĥm · ĥ′m)

Ext-pseudo-semi-functional msk; (h1 · ĥ1 · ĥ′1, . . . ,hm · ĥm · ĥ′m)

Pseudo-semi-functional msk; (h1 · ĥ1, . . . ,hm · ĥm)

Semi-functional msk; (h1, . . . ,hm)
Table 1. Six types of keys.

Let ξ denote the number of key queries made by the adversary. In Table
2, we give an outline of the proof-structure with the first column stating the
various hybrids we have (ϕ ∈ [ξ]), second column describes the way in which a
hybrid differs from the one in the previous row, and the third column lists the
properties we need to show indistinguishability from the previous one. To prevent
the table from overflowing, we use some shorthands like ct for ciphertext, func for
functional, norm for normal, msg for message, and ind for indistinguishability.
Also, Hyb0 is the game IND-CPAbA(λ, par) which is formally defined in Section
2.1. See the full version for a more formal description of the hybrids.
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Hybrid Difference from previous Properties required

Hyb0 - -

Hyb1 ct semi-func left subgroup ind
...

...
...

Hyb2,ϕ−1,5 ϕ− 1 keys semi-func -

Hyb2,ϕ,1 ϕth key pseudo-norm right subgroup ind

Hyb2,ϕ,2 ct ext-semi-func, ϕth key ext-pseudo-norm parameter hiding

Hyb2,ϕ,3 ϕth key ext-pseudo-semi-func non-degeneracy, Sym-Prop?,
q-ratiodsg assumption

Hyb2,ϕ,4 ct semi-func, ϕth key pseudo-semi-func parameter-hiding

Hyb2,ϕ,5 ϕth key semi-func right subgroup ind
...

...
...

Hyb2,ξ,5 All keys semi-func -

Hyb3 ct semi-func encryption of random msg projective, orthogonality,
non-degeneracy

Table 2. An outline of the proof structure.

Our main concern here is the indistinguishability of hybrids Hyb2,ϕ,2 and
Hyb2,ϕ,3 when the ϕth key changes from ext-pseudo-normal to ext-pseudo semi-
functional, while the ciphertext stays ext-semi-functional. (Indistinguishability
of the rest of the hybrids follows from [1] as noted earlier.) We prove the following
lemma in the full version.

Lemma 7.3. For any PPT adversary A, there exists a PPT adversary B such
that the advantage of A in distinguishing Hyb2,ϕ,2 and Hyb2,ϕ,3 is at most the
advantage of B in the q-ratiodsg assumption plus some negligible quantity in the
security parameter.
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