
Cryptography with Updates

Prabhanjan Ananth1?, Aloni Cohen2??, and Abhishek Jain3? ? ?

1 UCLA
prabhanjan@cs.ucla.edu

2 MIT
aloni@mit.edu

3 Johns Hopkins University
abhishek@cs.jhu.edu

Abstract. Starting with the work of Bellare, Goldreich and Goldwasser
[CRYPTO’94], a rich line of work has studied the design of updat-
able cryptographic primitives. For example, in an updatable signature
scheme, it is possible to efficiently transform a signature over a mes-
sage into a signature over a related message without recomputing a fresh
signature.

In this work, we continue this line of research, and perform a systematic
study of updatable cryptography. We take a unified approach towards
adding updatability features to recently studied cryptographic objects
such as attribute-based encryption, functional encryption, witness en-
cryption, indistinguishability obfuscation, and many others that support
non-interactive computation over inputs. We, in fact, go further and ex-
tend our approach to classical protocols such as zero-knowledge proofs
and secure multiparty computation.

To accomplish this goal, we introduce a new notion of updatable random-
ized encodings that extends the standard notion of randomized encodings
to incorporate updatability features. We show that updatable random-
ized encodings can be used to generically transform cryptographic prim-
itives to their updatable counterparts.

We provide various definitions and constructions of updatable random-
ized encodings based on varying assumptions, ranging from one-way func-
tions to compact functional encryption.

? Work done in part while visiting the Simons Institute for Theoretical Computer
Science, supported by the Simons Foundation and and by the DIMACS/Simons
Collaboration in Cryptography through NSF grant #CNS-1523467. This work was
partially supported by grant #360584 from the Simons Foundation.

?? Supported in part by NSF MACS CNS-1413920, DARPA IBM W911NF-15-C-0236,
and Simons Investigator Award Agreement Dated 6-5-12

? ? ? Work done in part while visiting the Simons Institute for Theoretical Computer
Science, supported by the Simons Foundation and and by the DIMACS/Simons
Collaboration in Cryptography through NSF grant #CNS-1523467. Supported in
part by a DARPA/ARL Safeware Grant W911NF-15-C-0213 and NSF CNS-1414023.

1 Introduction

The last decade has seen the advent of a vast array of advanced cryptographic
primitives such as attribute-based encryption [55, 45], predicate encryption [20,
57, 47, 43], fully homomorphic encryption [36], fully homomorphic signatures [7,
17, 44], functional encryption [55, 19, 54, 41], constrained pseudorandom func-
tions [21, 22, 48], witness encryption [34, 38], witness PRFs [60], indistinguisha-
bility obfuscation [9, 32], and many more. Most of these primitives can be viewed
as “cryptographic circuit compilers” where a circuit C can be compiled into an
encoding 〈C〉 and an input x can be encoded as 〈x〉 such that they can be evalu-
ated together to compute C(x). For example, in a functional encryption scheme,
circuit compilation corresponds to the key generation process whereas input en-
coding corresponds to encryption. Over the recent years, cryptographic circuit
compilers have revolutionized cryptography by providing non-interactive means
of computing over inputs/data.

A fundamental limitation of these circuit compilers is that they only support
static compilation. That is, once a circuit is compiled, it can no longer be modi-
fied. In reality, however, compiled circuits may need to undergo several updates
over a period of time. For example, consider an organization where each employee
is issued a decryption key SKP of an attribute-based encryption scheme where
the predicate P corresponds to her access level determined by her employment
status. However, if her employment status later changes, then we would want
to update the predicate P associated with her decryption key. Known schemes,
unfortunately, do not support this ability.

Motivated by the necessity of supporting updates in applications, in this
work, we study and build dynamic circuit compilers. In a dynamic circuit com-
piler, it is possible to update a compiled circuit 〈C〉 into another compiled circuit
〈C ′〉 by using an encoded update string whose size only depends on the “differ-
ence” between the plaintext circuits C and C ′. For example, if the difference
between C and C ′ is simply a single gate change, then this should be reflected
in the size of the encoded update. Note that this rules out the trivial solution of
simply releasing a new compiled circuit at the time of update.

Background: Incremental Cryptography. The study of cryptography with
updates was initiated by Bellare, Goldreich and Goldwasser [10] under the um-
brella of incremental cryptography. They studied the problem of incremental
digital signatures, where given a signature of a message m, it should be possible
to efficiently compute a signature of a related message m′, without having to
recompute the signature of m′ from scratch. Following their work, the study of
incremental cryptography was extended to other basic cryptographic primitives
such as encryption and hash functions [10, 11, 52, 31, 12, 24, 53], and more
recently, indistinguishability obfuscation [35, 5].

Our Goal. In this work, we continue this line of research, and perform a
systematic study of updatable cryptographic primitives. We take a unified ap-
proach towards adding updatability features to recently studied primitives such

as attribute-based encryption, functional encryption and more generally, cryp-
tographic circuit compilers. We, in fact, go further and also study updatability
for classical protocols such as zero-knowledge proofs and secure multiparty com-
putation.

To accomplish this goal, we introduce a new notion of updatable randomized
encodings that extends the standard notion of randomized encoding [46] to in-
corporate updatability features. We show that updatable randomized encodings
can be used to generically transform cryptographic primitives (discussed above)
to their updatable counterparts.

Updatable Randomized Encodings. The notion of randomized encoding [46]
allows one to encode a “complex” computation C(x) into a “simple” randomized
function Encode(C, x; r) such that given the output 〈C(x)〉 of the latter, it is
possible to recover the value C(x) (by running a public Decode algorithm) but
it is impossible to learn anything else about C or x. The typical measure of
complexity studied in the literature is parallel-time complexity or circuit depth.
Such randomized encodings are known to exist for general circuits based on only
the existence of one-way functions [6] (also referred to as Yao’s garbled circuits
[59], where Encode(C, x; r) is in NC1).

In this work, we study updatable randomized encodings (URE): given a ran-
domized encoding 〈C(x)〉 of C(x), we want the ability to update it to an encoding
〈C ′(x′)〉 of C ′(x′), where C ′ and x′ are derived from C and x by applying some
“update” u. For now, we may think of this update as some small modification to
the circuit or input (e.g., change the output gate of C to AND and the second bit
of x to 1). We require that the update u can be encoded as 〈u〉 which can then
be used to transform 〈C(x)〉 into 〈C ′(x′)〉, a randomized encoding of C ′(x′). A
bit more precisely, a URE scheme consists of the following algorithms:

– Encode(C, x) takes as input a circuit C and an input x, and outputs an
encoding 〈C(x)〉 and a secret state st.

– GenUpd(st,u) takes as input an update u, and outputs an encoded update
〈u〉 and a possibly updated state st′.

– ApplyUpd (〈C(x)〉, 〈u〉) takes as input a randomized encoding 〈C(x)〉 and an
update encoding 〈u〉, and outputs an (updated) encoding 〈C ′(x′)〉.

– Decode (〈C(x)〉) takes as input a (possibly updated) randomized encoding
〈C(x)〉, and outputs the value y = C(x).

If we make no additional requirements, the above could be easily achieved.
For instance, let Encode output the state st = (C, x), and let GenUpd – which
now has access to C and x from st in addition to the update u – compute the
updated C ′ and x′ directly and output a as the encoded update 〈u〉 the stan-
dard randomized encoding of 〈C ′(x′)〉. ApplyUpd would correspondingly output
〈u〉 = 〈C ′(x′)〉. The drawback of this approach is that a fresh randomized en-
coding is computed during every evaluation of GenUpd, irrespective of whether
u constitutes a minute or significant change to the underlying C and x.

Our key efficiency requirement is that the running time of the GenUpd algo-
rithm must be a fixed polynomial size of the update (and a security parameter),

and independent of the size of the circuit and input being updated. This, in par-
ticular, implies that the size of an update encoding 〈u〉 is also a fixed polynomial
in the size of u (and the security parameter).

The above discussion immediately generalizes to the setting of multiple se-
quential updates.4 Let 〈C0(x0)〉 denote an initial randomized encoding. Let
u1, . . . ,un denote a sequence of updates and let 〈ui〉 denote an encoding of ui.
In a URE scheme for multiple updates, 〈C0(x0)〉 can be updated to 〈C1(x1)〉
using 〈u1〉; the result can then be updated into 〈C2(x2)〉 using 〈u2〉, and so on,
until we obtain 〈Cn(xn)〉. We allow the number of updates n to be an arbitrary
polynomial in the security parameter.

Within this framework, two distinct notions naturally arise.

URE with multiple evaluations: Every intermediate encoding 〈Ci(xi〉 can
be decoded to obtain Ci(xi). For security, we require that given an initial
randomized encoding 〈C0(x0)〉 and a sequence of encoded updates {〈ui〉}ni=1,
an adversary can learn only the outputs {Ci(xi)}ni=0, and nothing else.

URE with single evaluation: Only the final encoding 〈Cn(xn)〉 can be de-
coded. To enable this, we will consider an augmented decoding algorithm
that additionally requires an “unlocking key.”5 This unlocking key is pro-
vided after all the updates are completed, allowing the user to decode the
final encoding, but preventing her from decoding any intermediate values.
For security, we require that given an initial randomized encoding 〈C0(x0)〉
and a sequence of encoded updates {〈ui〉}ni=1), an adversary can only learn
the final output Cn(xn), and nothing else.

Except where otherwise specified, we use URE to mean the multiple-evaluation
variant. For both conceptual reasons and to minimize confusion, we in fact con-
sider an alternative but equivalent formulation of single-evaluation URE which
we call updatable garbled circuits (UGC). A garbled circuit [59] is a “decom-
posable” randomized encoding, where a circuit C and an input x can be encoded
separately. In an updatable garbled circuit scheme, given an encoding 〈C0〉 of
a circuit C0 and a sequence of update encodings 〈u1〉, . . . , 〈un〉, it is possible
to compute updated circuit encodings 〈C1〉, . . . , 〈Cn〉, where Ci is derived from
Ci−1 using ui. Once all the updates are completed, an encoding 〈x〉 for an input
x is released. This input encoding can then be used to decode the final circuit
encoding 〈Cn〉 and learn Cn(xn). Intuitively, the input encoding can be viewed
as the unlocking key in single-evaluation URE.

It is easy to see that UGC is a weaker notion than multi-evaluation URE. In
particular, since UGC only allows for decoding “at the end,” it remains single-
use, while multi-evaluation URE captures reusability.

4 One may also consider an alternative notion of parallel updates, where every update
〈ui〉 is applied to the original encoding 〈C0(x0)〉. It turns out that URE with parallel
updates is closely connected to the notion of reusable garbled circuits[42]. We refer
the reader to the full version [2] for further discussion on this subject.

5 In the setting of bounded updates, this modification is unnecessary. We focus pri-
marily on the unbounded setting.

We find the notions of URE and UGC to be of interest from a purely complexity-
theoretic perspective. Further, as we discuss later, they have powerful applica-
tions to updatable cryptography.

1.1 Our Results

In this work, we initiate the study of updatable randomized encodings. We study
both simulation and indistinguishability-based security definitions and obtain
general positive results. We showcase URE as a central object for the study of
updatable cryptography by demonstrating applications to other updatable cryp-
tographic primitives. The technical ideas we develop for our constructions are
quite general, and may be applicable to future works on updatable cryptography.

Multi-evaluation URE for General Updates. Before stating our positive
results for multi-evaluation URE, we first informally describe which classes of
updates we can support. An update Update ∈ U represents some way to modify
any circuit C and an input x to some modified circuit C ′ and input x′. We
denote by u the procedure (C ′, x′)← u(C, x,Update) which applies the update
to C and x. We consider all U and Update subject to two restrictions: (1) Update
is computed by a (family) of circuits, one for every circuit size |C|, and (2)
Update preserves circuit size (i.e., |C| = |C ′|). We refer to this very broad class
of updates as general circuit updates.

For general circuit updates, we construct URE from compact functional en-
cryption. The summary below focuses on indistinguishability-based security, and
concludes with a remark on achieving simulation-based security.

Theorem 1 (Informal). Assuming the existence of secret-key, compact func-
tional encryption supporting a single key query and B ciphertexts, there exists a
multi-evaluation URE scheme supporting B sequential general circuit updates.

A compact functional encryption is one where the running time of the en-
cryption algorithm for a message m is a fixed polynomial in the size of m and
the security parameter, and independent of the complexity of the function family
supported by the FE scheme.

For the case of unbounded updates, a recent work of Bitansky et al. [14]
shows that secret-key compact functional encryption with unbounded-many ci-
phertexts implies exponentially-efficient indistinguishability obfuscation (XIO)
[49]. Put together with the results of [49] and [3, 15], it shows that sub-exponentially
secure secret-key compact FE that supports a single function key query together
with the learning with errors (LWE) assumption implies indistinguishability ob-
fuscation.

In contrast, in Theorem 1, we require secret-key compact FE with only poly-
nomial security. Such an FE scheme can be based on polynomial-hardness as-
sumptions on multilinear maps using the results of [33] and [15, 4].

For the case of polynomially-bounded updates, we can, in fact, relax our
assumption to only one-way functions. We obtain this result by using a state-
ful single-key compact secret-key FE scheme for an a priori bounded number B

of ciphertexts. A stateful single-key compact secret-key FE scheme can be con-
structed from garbled circuits: a functional key consists of B garbled circuits, ith

ciphertext consists of garbled wire keys corresponding to the ith garbled circuit.
This FE scheme is stateful since the encryption algorithm needs to store how
many messages it has encrypted so far.

Plugging in such an FE scheme in Theorem 1 yields the following corollary.

Corollary 1 (Informal). Assuming one-way functions, for any fixed polyno-
mial B, there exists a multi-evaluation URE scheme supporting B sequential
general circuit updates.

On the necessity of functional encryption. It is natural to ask whether
secret-key compact FE is necessary for building multi-evaluation URE with un-
bounded updates. We show that if a (multi-evaluation) URE scheme is output
compact, then it implies XIO. Put together with the result of [49], we have that
a URE scheme with output compactness together with LWE implies a public-key
compact FE scheme that supports a single key query.

Theorem 2 (Informal). Assuming LWE, a multi-evaluation URE scheme with
unbounded output-compact updates implies a public-key compact FE scheme that
supports a single key query.

In an output-compact URE scheme, the running time of the GenUpd algorithm
is independent of the output length of the updated circuit. We remark that
the URE scheme obtained from Theorem 1 is, in fact, output compact. Our
construction in Theorem 1 is in this sense tight.

On output compactness. We study both indistinguishability and simulation-
based security notions for URE. In the context of FE, it is known from [1, 26]
that simulation-secure FE with output compactness is impossible for general
functions. We observe that the same ideas as in [1, 26] can be used to establish
impossibility of simulation-secure URE with output compact updates.

However, when we consider indistinguishability-based security, URE with out-
put compact updates is indeed possible. The results in Theorem 1 and Corollary 1
are stated for this case. Furthermore, using the trapdoor circuits technique of
[26], one can generically transform output-compact URE with indistinguishabil-
ity security to non-output-compact URE with simulation-based security.

Updatable garbled circuits with gate-wise updates. We now turn to
updatable garbled circuits, an alternate formulation of single-evaluation URE.
We consider the family of gate-wise updates, where an update u can modify a
single gate of a circuit or add or delete a gate. Below, we consider the case of
unbounded updates and bounded updates separately.

UGC with Unbounded Updates from Lattice Assumptions. Our first
result is a construction of UGC for general circuits that supports an unbounded
number of sequential updates from the family of gate-wise updates. We build
such a scheme from worst-case lattice assumptions.

Theorem 3 (Informal). Let C be a family of general circuits. Assuming the
hardness of approximating either GapSVP or SIVP to within sub-exponential
factors, there exists a UGC scheme for C that supports an unbounded polynomial
number of sequential gate-wise updates.

We defer the proof of this theorem to the full version. [2] At the heart of
this result is a new notion of puncturable symmetric proxy re-encryption scheme
that extends the well-studied notion of proxy re-encryption [16]. In a symmetric
proxy re-encryption scheme, for any pair of secret keys SK1, SK2, it is possible
to construct a re-encryption key RK1→2 that can be used to publicly transform
a ciphertext w.r.t. SK1 into a ciphertext w.r.t. SK2. In our new notion of punc-
turable proxy re-encryption, re-encryption keys can be “disabled” on ciphertexts
CT∗ (w.r.t. SK1) s.t. the semantic security of CT∗ holds even if the adversary

is given the punctured key RKCT∗

1→2 and SK2. We give a construction of such
a scheme based on the hardness of approximating either GapSVP or SIVP to
within sub-exponential factors.

Given the wide applications of proxy re-encryption (see, e.g., [8] for a dis-
cussion), we believe that our notion of puncturable proxy re-encryption is of
independent interest and likely to find new applications in the future.

UGC with Bounded Updates from One-Way Functions. For the case of
a polynomially-bounded number of updates, we can relax our assumption to only
one-way functions. We obtain this result by using a puncturable PRF scheme
that can be based on one-way functions [40, 56].

Theorem 4 (Informal). Let C be a family of general circuits, and λ be a secu-
rity parameter. Assuming one-way functions, for any fixed polynomial p, there
exists a UGC scheme for C that supports p(λ) sequential gate-wise updates. The
size of the initial garbled circuit as well as each update encoding is independent
of p. However, the initial circuit garbling time and update generation time grows
with p.

The construction of this scheme is quite simple and does not require a punc-
turable proxy re-encryption scheme. We provide an informal description of this
scheme in the technical overview section 2.1.

Applications. We next discuss applications of our results.

Updatable Primitives with IND security. We start by discussing applica-
tion of multi-evaluation URE to dynamic circuit compilers. Here, we demonstrate
our main idea by a concrete example, namely, by showing how to use URE to
transform any (key-policy) attribute-based encryption (ABE) scheme into up-
datable ABE. The same idea can be used in a generic way to build dynamic
circuit compilers and obtain updatable functional encryption, updatable indis-
tinguishability obfuscation, and so on. We refer the reader to the full version [2]
for the general case.

We briefly describe a generic transformation from any ABE scheme to one
where the policies associated with secret keys can be updated. The setup and

encryption algorithms for the updatable ABE scheme are the same as in the
underlying ABE scheme. The key generation algorithm in the updatable ABE
scheme works as follows: to compute an attribute key for a function f , we com-
pute a URE 〈Cf 〉 of a circuit Cf where C runs the key generation algorithm of
the underlying ABE scheme using function f and outputs a key SKf . To decrypt
a ciphertext, a user can first decode 〈Cf 〉 to compute SKf and then use it to
decrypt the ciphertext.

In order to update an attribute key for a function f to another key for func-
tion f ′, we can simply issue an update encoding 〈u〉 for 〈Cf 〉 where u captures
the modification from f to f ′. To compute the updated attribute key, a user
can first update 〈Cf 〉 using 〈u〉 to obtain 〈Cf ′〉, and then decode it to obtain an
attribute key SKf ′ for f ′.

Let us inspect the efficiency of updates in the above updatable ABE scheme.
As in URE, we would like the size (as well as the generation time) of an up-
date encoding here to be independent of the size of the updated function. Note,
however, that the output of the updated function Cf ′ is very large – an entire
attribute key SKf ′ ! Thus, in order to achieve the aforementioned efficiency, we
require that the URE scheme has updates with output compactness.

Recall that URE with output compact updates is only possible with indistin-
guishability based security. As such, the above idea is only applicable to crypto-
graphic primitives with indistinguishability-based security.

Updatable Primitives with SIM security. Next, we discuss applications
of URE to cryptographic primitives with simulation-based security. In the main
body of the paper, we describe two concrete applications, namely, updatable
non-interactive zero-knowledge proofs (UNIZK) and updatable multiparty com-
putation (UMPC). A notable feature of these constructions is that they only
require a URE scheme with non-output-compact updates and simulation-based
security. Below, we briefly describe our main idea for constructing UNIZKs.

Let (x,w) denote an instance and witness pair for an NP language L. Let u
denote an update that transforms (x,w) to another valid instance and witness
pair (x′, w′). In a UNIZK proof system for L, it should be possible for a prover
to efficiently compute an encoding 〈u〉 of u that allows a verifier to transform a
valid proof π for x into a proof π′ for x′ and verify its correctness.

We now briefly describe our transformation. A proof π for (x,w) in the
UNIZK scheme is computed as follows: we first compute a URE 〈Cx,w〉 for a
circuit Cx,w that checks whether (x,w) satisfies the NP relation associated with
L and outputs 1 or 0 accordingly. Furthermore, we also compute a regular NIZK
proof φ to prove that 〈Cx,w〉 is computed “honestly.” To verify π = (〈Cx,w〉, φ),
a verifier first verifies φ and if the check succeeds, it decodes 〈Cx,w〉 and outputs
its answer.

In order to update a proof π, we can simply issue an update encoding 〈u〉
for the randomized encoding 〈Cx,w〉, along with a regular NIZK proof φ′ that
〈u〉 was computed honestly. Upon receiving the update (〈u〉, φ′), a verifier can
first verify φ′ and then update 〈Cx,w〉 using 〈u〉 to obtain 〈Cx′,w′〉. Finally, it

can decode the updated URE 〈Cx′,w′〉 to learn whether x′ is in the language L
or not.

It should be easy to see that the above idea can, in fact, be also used to make
interactive zero-knowledge proofs updatable. Finally, we note that the above is
a slightly oversimplified description and we refer the reader to the full version [2]
for further details on UNIZK and UMPC, respectively.

1.2 Related Work

Incremental Cryptography. The area of incremental cryptography was pioneered
by Bellare, Goldreich and Goldwasser [10]. While their work dealt with signature
schemes, the concept of incremental updates has been subsequently studied for
other basic cryptographic primitives such as hash functions, semantically-secure
encryption and deterministic encryption [11, 52, 31, 24, 53]. To the best of our
knowledge, all of these works only consider bit-wise updates, in which a single
bit of the message is modified.

While our work shares much in spirit with these works, we highlight one im-
portant difference. In incremental cryptography, update operation is performed
“in house,” e.g., in the case of signatures, the entity who produces the origi-
nal signature also performs the update. In contrast, we consider a client-server
scenario where the client simply produces an update encoding, and the actual
updating process is performed by the server. This difference stipulates different
efficiency and security requirements. On the one hand, incremental cryptogra-
phy necessarily requires efficient updating time for the notion to be non-trivial,
while we consider the weaker property of efficient update encoding generation
time. On the other hand, our security definition is necessarily stronger since we
allow the adversary to view the update encodings – a property not necessary
when the updating is done “in house.”

Incremental/Patchable Obfuscation. Recently, [35] and [5] study the notion of
updatability in the context of indistinguishability obfuscation. The work of [35]
considers incremental (i.e., bit-wise) updates, while [5] allow for arbitrary up-
dates, including those that may increase the size of the program (modeled as a
Turing machine).

We note that one of our results, namely, URE with unbounded updates can be
derived from [5] at the cost of requiring sub-exponentially secure iO. In contrast,
we obtain our result by using polynomially secure secret-key compact FE.

Malleable NIZKs. Our notion of updatable NIZKs should be contrasted with the
notion of malleable NIZKs proposed by Chase et al. [28]. In a malleable NIZK,
it is possible to publicly “maul” a proof string π for a statement x into a a proof
string π′ for a related statement x′. In contrast, our notion of UNIZK only allows
for privately generated updates. To the best of our knowledge, malleable NIZKs
are only known either for a limited class of update relations from standard as-
sumptions [28], or for general class of update relations based on non-falsifiable
assumptions such as succinct non-interactive arguments [29]. In contrast, we

show how to build UNIZK for unbounded number of general updates from com-
pact secret-key FE and regular NIZKs, and for a bounded number of general
updates from regular NIZKs.

Updatable Codes. The concept of updating was also studied in the context of
error correcting codes by [27]. In this context, it is difficult to model the problem
of updating – we should be able to change few bits of the code to correspond to
a codeword of a different message and at the same time we want the distance
between codewords of different messages to be far apart. We refer the reader
to their work for discussion on this seemingly contradictory requirement. In a
subsequent work, [30] studied this problem in the context of non-malleable codes.

2 Our Techniques

We start with the construction of UGC and present the main ideas underlying
the construction. We then build upon the intuition developed in the construction
of UGC, to construct (multi-evaluation) URE.

2.1 Construction of UGC

Below, we restrict our discussion to updates that correspond to a gate change.

A Lock-and-Release Mechanism for Single Update. Let us first start with
the simpler goal of building a UGC scheme that supports updating a single
gate. Let C be a circuit comprised of s-many gates C1,. . . ,Cs. Our starting idea
towards a UGC scheme with single update is as follows: in order to garble C, we
simply compute a garbling of C using a standard gate-by-gate garbling scheme
such as [59].6 We denote by 〈C〉gc the garbled circuit for C, and by 〈C〉igc the

garbled gate corresponding to gate Ci. Encrypt each garbled gate, and output
the resulting ciphertexts CT1, . . . ,CTs.

Now, suppose we wish to update garbling of C to garbling of C ′ where C ′ only
differs from C in the first gate. Then, a natural idea is to release a decryption key
that only decrypts the ciphertexts CT2, . . . ,CTs (but not CT1). The encoding of
the update is consists of these s−1 keys and, along with a garbled-version of the
new gate 〈C ′〉1gc. Using this information, the receiver can decrypt and recover

the garbled gates 〈C〉2gc,. . . ,〈C〉sgc. Together with 〈C〉1gc, this forms a complete
garbled circuit for C ′.

The main remaining question is how to implement the aforementioned con-
ditional decryption mechanism. A naive way to achieve this is to encrypt each
ciphertext with an independent encryption key, and then release the decryption
key for every position i 6= 1. However, note that in this naive solution, the size

6 In gate-by-gate garbling schemes such as [59], each boolean gate can be garbled
knowing only the circuit topology and the gate’s functionality, independently of the
remainder of the circuit.

of the update encoding is proportional to s = |C|. In terms of size, this is no
better than garbling C ′ from scratch.

To address this, we could instead use a (secret key) puncturable encryption
scheme. In such a scheme, for any ciphertext CT, it is possible to compute
“punctured decryption key” that enables one to decrypt all ciphertexts except
CT. In order to be non-trivial, the size of punctured decryption keys must be
independent of the number of ciphertexts generated. Such an encryption scheme
can be built from puncturable pseudorandom functions [56, 22, 21, 48] (c.f.
Waters [58]) which in turn can be based on any one-way function. It is easy to
verify that given such an encryption scheme, we can efficiency we desire in above
construction for UGC supporting a single update.

We find it instructive to abstract the above idea as a lock-and-release
mechanism. Roughly speaking, the encryption of the wire keys corresponding
to C constitutes the locking step, while the dissemination of the punctured de-
cryption key constitutes the (conditional) release step. We find this abstraction
particularly useful going forward, in order to develop our full solution for an
unbounded number of updates.

Multiple Updates: Main Challenges. The above solution does not offer any
security for multiple sequential updates – even for two. If the two updates for
two different gates would allow an adversary to recover a garbling of the origi-
nal circuit Additionally, the above scheme does not “connect” the two updates
in any manner; an adversary could choose to apply none, one, or both of the
updates before evaluating the circuit.

A Layered Lock-and-Release Mechanism for Bounded Updates. We next
consider the case of an a priori bounded number of updates (the setting of The-
orem 4). The key idea, in a nutshell, is to use layered punctured encryption, or
alternatively, a layered lock-and-release mechanism.

Suppose we wish to handle p-many of updates. When garbling the circuit
C, instead of encrypting the garbled gates a single time, we instead use p
“onion” layers of encryption scheme, each using a punctured encryption scheme.
Let u1,. . . ,up be a sequence of gate updates, each consisting of a gate g ∈
[s] to change and a new gate type. To generate an updatable garbled cir-
cuit for C, first garble C̃ using a traditional gate-by-gate scheme. Sample p
keys SK1,. . . ,SKp for a puncturable encryption scheme. Encrypt each gar-

bled gate 〈C〉igc of the garbled circuit in p layers, yielding a ciphertext CTi =

Enc(SK1,Enc(SK2, . . .Enc(SKp, 〈C〉igc))).
The encoding of the first update u1 = (g1, gateType1) simply corresponds to

releasing a decryption key for the outermost encryption layer that is punctured
at CTg1 , along with a layer (p − 1) encryption CT′gi = Enc(SK2,Enc(SK3, . . .
Enc(SKp, 〈C ′〉gigc))), where 〈C ′〉gigc is the new garbled gate corresponding to re-
placing gate gi of C with gateType. Likewise, an encoding of the i-th update ui
corresponds to releasing a punctured decryption key for SKi, (i− 1) encryption
of the new garbled gate.

The above idea of layered (punctured) encryption ensures that the receiver
cannot “skip” any update, and instead must apply all the updates one-by-one to
“peel-off” all the encryption layers from the garbled gates. Furthermore, since
the encryption layers can only be removed in a prescribed order, the receiver
must applies the updates in order. Finally, after all the decryption operations,
the receiver only obtains a single garbled gate every location in the (updated)
circuit.

We now briefly argue that the above construction satisfies the efficiency prop-
erties stated in Theorem 4. We first note that punctured encryption scheme in
the above construction can simply correspond to a one-time pad where the ran-
domness for computing the ith ciphertext, for every i ∈ |C|, is generated by
evaluating a puncturable PRF over the index i. The PRF key (i.e., the secret
key for the punctured encryption scheme) is different for every layer. With this
instantiation, note that the size of the initial garbled circuit as well as every
update is independent of the total number of updates p; however, the garbling
time as well as update generation time depends on p.

A Relock-and-Eventual-Release Mechanism for Unbounded Updates.
The above solution is that it inherently requires the number of updates to be a
priori bounded. To support multiple updates, our main insight is to develop a
relock-and-eventual-release mechanism as opposed to the layered lock-and-
release mechanism discussed above. That is, instead of removing a lock at every
step, our idea is to change the lock at every step. In encryption terminology,
our idea is to replace the layered encryption in the above approach with a sym-
metric re-encryption scheme [16]. In a symmetric re-encryption scheme, given
two encryption keys SK1 and SK2, it is possible to issue a re-encryption key
RK1→2 that transforms any ciphertext w.r.t. SK1 into a ciphertext w.r.t. SK2.
In order to allow for updates, we, require the re-encryption scheme to support
key puncturing. That is, we require that it is possible to compute a punctured
re-encryption key RKCT∗

1→2 that allows one to transform any ciphertext w.r.t. SK1

into a ciphertext w.r.t. SK2, except the ciphertext CT∗ (computed under SK1).
From a security viewpoint, we require that the semantic security of CT∗ should
hold even if the adversary is given RKCT∗

1→2 and the terminal secret key SK2. We
refer to such an encryption scheme as a puncturable symmetric re-encryption
scheme. While the above description only refers to a “single-hop” puncturable
re-encryption scheme, we in fact consider a “multi-hop” scheme.

Armed with the above insight, we modify the previous solution template as
follows: the garbling of a circuit C consists of Ũ as before. The main difference
is that the wire keys wC = {wC1 , . . . , wCn} corresponding to the circuit C are
now encrypted w.r.t. a puncturable re-encryption scheme. Let SK0 denote the
secret key used to encrypt the wire keys. In order to issue an update encoding
for an update ui, we release (a) a re-encryption key RKCT

i−1→i that is punctured
at ciphertext CT, where CT is the encryption of wC`

w.r.t. SKi−1 and ` is the
position associated with update ui, along with (b) an encryption of wC̄`

w.r.t.
SKi. For the final update L, we simply release the Lth secret key SKL.

We argue the security of the construction by using the security of the punc-
turable re-encryption scheme and the garbling scheme (see the technical sections
for details). We note, however, that this construction does not hide the location
of the updates. Indeed, the correctness of the above scheme requires the evalu-
ator to know the locations that are being updated. To address this, we provide
a generic transformation from any UGC scheme (or in fact, any URE scheme)
that does not achieve update hiding into one that achieves update hiding. Our
transformation uses non-interactive oblivious RAM in the same manner as in
[35]. Finally, we note that while the above only discusses single-bit updates, our
construction handles multi-bit updates as well.

The only missing piece in the above solution is a construction of a punc-
turable symmetric re-encryption scheme. We discuss it next.

Puncturable Symmetric Re-encryption from Worst-case Lattice As-
sumptions. The work of [18] constructs re-encryption schemes from key homo-
morphic PRFs, which have the property that for all x, K1, and K2, PRF(K1, x)+
PRF(K2, x) = PRF(K1 + K2, x), where the keys and outputs of the PRF lie in
appropriate groups. A secret key for the encryption scheme is simply a PRF
key, and the encryption of a message m with secret key K1 and randomness r is
CT = (r,m+ PRF(K1, r)).

A re-encryption key between between secret keys K1 and K2 is simply their
difference: RK1→2 = K2−K1. The key-homomorphism suggests a natural way to
re-encrypt ciphertexts, as (r,m+PRF(K1, r)+PRF(RK1→2, r)) = (r,m+(K2, r))
is a ciphertext w.r.t K2. Observe that successful re-encryption of a ciphertext
with randomness r relies on the ability to compute PRF(RK1→2, r).

We construct puncturable proxy re-encryption scheme following the above ap-
proach, but instantiated with constrained key-homomorphic PRFs [23]. A punc-

tured re-encryption key RKCT∗

1→2 for a ciphertext CT∗ with randomness r∗ is the
PRF key K2−K1 punctured at the input r∗. This key, which can be used to eval-
uate PRF(K2 −K1, r) for all r 6= r∗, enables the re-encryption of all ciphertexts
except for the ciphertext CT∗.

For security, we require that the semantic security of CT∗ holds given both
RKCT∗

1→2 and K2. We reduce to the security of the constrained PRF, which guaran-
tees that y∗ := PRF(K2−K1, r

∗) is pseudorandom. The key idea is that (partial
information about) y∗ can be computed given CT∗, K2, and (partial information
about) the message m.

2.2 Construction of URE

We now shift our focus on building multi-evaluation URE.

Relock-and-Release Mechanism. Recall that the main difference between
UGC and URE is that UGC only allows for a single evaluation after a sequence of
updates, while URE allows for evaluation after every update. As such, the relock-
and-eventual-release mechanism that we discussed above does not suffice for

building URE. Our starting insight is to instead develop a relock-and-release
mechanism that performs both relocking and release at every step. Intuitively,
relocking allows us to “carry over” the updates, while the release mechanism
allows us to evaluate the updated randomized encoding at every step.

Starting Idea: Garbled RAM with Persistent Memory. A natural starting
approach to implement such a relock-and-release mechanism is via the use of
garbled RAMs with persistent memory [51, 37]. In a garbled RAM scheme, it is
possible to encode a database D0 and later issue encodings for RAM programs
M1, . . . ,Mn. Each RAM program encoding M̃i updates the database encoding

from D̃i−1 to D̃i, and outputs the result of some computation on Di.
Given this description, it is not difficult to see why such a notion is useful for

our purpose. Starting from a garbled RAM scheme and a standard randomized
encodings scheme without updates [59], we can build a candidate construction
of multi-evaluation URE as follows:

- We set the initial database D0 in garbled RAM to the initial circuit and
input pair (C0, x0) in the URE scheme. The initial updatable randomized
encoding of (C0, x0) is an encoding of D0, computed under garbled RAM
scheme, along with an encoding of (C0, x0) computed under the standard
randomized encoding scheme.

- In order to compute an encoding 〈ui〉 for an update ui, we compute an

encoding M̃i of a machine Mi w.r.t. the garbled RAM scheme where the
machine Mi has ui hardcoded in it. The machine Mi on input Di−1 =
(Ci−1, xi−1) first updates the database to Di = (Ci, xi), where (Ci, xi) ←
Update(Ci−1, xi−1; ui), and outputs a fresh standard randomized encoding
of (Ci, xi).

Let us inspect the above solution closely; specifically, the complexity of the ma-
chine Mi corresponding to an update ui. Since Mi computes a fresh (standard)
randomized encoding “on-the-fly,” in order to achieve the necessary efficiency
guarantee for URE, we will require that the encoding time for Mi is independent
of its running time. Such a garbled RAM scheme is called a succinct garbled
RAM scheme [13, 25]. Furthermore, since the output of Mi consists of a fresh
randomized encoding, we will also require that the time of encode Mi is in-
dependent of its output length. Such a garbled RAM scheme is referred to as
output-compressing [3, 50].

Recent works [3, 50] show that output-compressing succinct garbled RAM
(with sub-exponential security) imply indistinguishability obfuscation (iO). Fur-
thermore, the only known constructions for such a garbled RAM scheme are
based on iO, which, in turn seems to require sub-exponential hardness assump-
tions. Our goal, however, is to obtain a solution for URE using polynomial hard-
ness assumptions. As such, the above is not a viable solution for us.

Garbled RAM meets Delegation of Computation. Towards that end, our
next idea is to instantiate the above approach using a non-succinct garbled RAM

scheme where the size of the encoding of a machine Mi depends on the running
time and the output length of Mi. Such garbled RAM schemes are known to
exist based on only one-way functions. At first, it is not clear how to make this
approach work since the efficiency requirements of URE are immediately violated.

Towards that end, our next idea is to delegate the computation of the encod-
ing of Mi to the receiver. We implement this idea by using secret-key functional
encryption [55, 19, 54]. Roughly speaking, the initial encoding of C0(x0) now cor-
responds to a database encoding of D0 = (C0, x0) w.r.t. a non-succinct garbled
RAM scheme along with FE functional key for a circuit P that takes as input an
update string ui and outputs an encoding M̃i of the machine Mi (as described
before). Encoding of an update ui now corresponds to an FE encryption of ui.

In order to achieve the necessary efficiency guarantee of URE, we require
that the secret-key FE scheme used above is compact, i.e., where the running
time of the encryption algorithm on a message m is a fixed polynomial in the
length of m and the security parameter, and in particular, independent of the
size complexity of any function f in the function family supported by the FE
scheme. Indeed, if this were not the case, then the encoding time for an update
ui in the above solution would depend on the size of the circuit C, which in
turn depends on the running time and output length of Mi. Therefore, if the FE
scheme were not compact, then the efficiency requirements of URE would once
again be violated.

As discussed earlier, a secret-key compact FE scheme with polynomial hard-
ness can be built from polynomial hardness assumptions on multilinear maps
using using the results of [33] and [15, 4].

Challenges in Proving Security. While the above construction seems to
achieve correctness, it is not immediately clear how to argue security. Note that
the circuit P computed by an FE key in the above construction contains the
garbling key of the garbled RAM scheme hardwired inside it. Indeed, this is
necessary for it to compute the encodings corresponding to machines Mi as dis-
cussed above. In order to leverage security of garbled RAM, one approach is to
remove the garbling key from the FE function key. However, in order to maintain
functionality, this would require hardwiring the output of P , either in the FE
key, or in the FE ciphertext. We cannot afford to hardwire the output in the
ciphertext since that would violate the efficiency requirements of URE. Thus,
our only option is to hardwire the output in the FE key. Note, however, that
in the setting of multiple updates, we have to deal with multiple outputs. In
particular, the above approach would require hardwiring all the outputs (one
corresponding to each update) in the FE key. Doing so “at once” would require
putting a bound on the number of updates.

A better option is to hardwire the outputs “one-at-a-time,” analogous to
many proofs in the iO literature (see, e.g., [39, 3, 23]). Implementing this idea,
however, would require puncturing the garbling key. Such a notion of key punc-
turing is not supported by standard garbled RAM schemes.

Using Cascaded Garbled Circuits. Towards that end, we take a step back
and revisit our requirements from the garbled RAM scheme. Our first observation
is that in the above solution template, machine Mi need not be a RAM since we
are already requiring it to read the entire database! Instead, the key property of
garbled RAM with persistent memory that is used in the above template is its
ability to maintain updated state in the form of encoded database.

We now discuss how to implement this property in a more direct manner
by “downgrading” the garbled RAM to a cascaded garbled circuit. Along the
way, we will also address the security issues discussed above. Very briefly, we
modify the above construction as follows: consider a circuit Qi that has an
update string ui hardwired in its description. It takes as input (Ci−1, xi−1) and
outputs two values. The first value is a fresh randomized encoding of Ci(xi)
where (Ci, xi) ← Update(Ci−1, xi−1; ui), and the second value is a set of wire
keys for the string (Ci, xi) corresponding to a garbling of the circuit Qi+1 (that
is defined analogously to Qi). The initial encoding of C0(x0) now corresponds
to the input wire keys for the string (C0, x0) corresponding to a garbling of
circuit Q1 as defined above, as well as an FE key for a function f that takes as
input ui and outputs a garbling a circuit Qi. The encoding of an update ui now
corresponds to an FE encryption of ui as before.

We prove the security of the above construction with respect to indistin-
guishability based security definition. Simulation-based security can be argued
via a generic transformation following [26]. Let C0

0 , C
1
0 , x be the initial cir-

cuits and input submitted by the adversary in the security proof. And let,
(u0

1,u
1
1), . . . , (u0

q,u
1
q) be the tuple of updates. There are two “chains” of up-

dating processes with the 0th chain starting from C0
0 and 1st chain starting from

C1
1 . The ith “bead” on 0th (resp., 1st) chain corresponds to update u0

i (resp.,
u1
i).

In the security proof, we start with the real experiment where challenge
bit 0 is used. That is, the 0th chain is active in the experiment. In the next
step, we introduce the 1st chain, along with the already present 0th chain, into
the experiment. However even in this step, 0th chain is still active – that is,
generating the randomized encoding at every step is performed using the 0th

chain. In the next intermediate hybrids, we slowly switch from 0th chain being
activated to 1st chain being activated. In the ith intermediate step, the first i
beads on 1st chain are active and on the 0th chain, all except the first i beads are
active – this means that the first i updated randomized encodings are computed
using the 1st chain and the rest of them are computed using 0th chain. At the
end of these intermediate hybrids, we have the 1st chain to be active and 0th

chain to be completely inactive. At this stage, we can remove the 0th chain and
this completes the proof.

The two chains described above are implemented in a sequence of garbled
circuits, that we call cascaded garbled circuits. That is, every ith garbled circuit
in this sequence produces wire keys for the next garbled circuit. Every garbled
circuit in this sequence is a result of ApplyUpd procedure and encapsulates, for
some i, the ith beads on both the chains. In order to move from the ith interme-

diate step to (i+ 1)th intermediate step, we use the security of garbled circuits.
But since these garbled circuits are not given directly, but instead produced by
a FE key, we need to make use of security of FE to make this switch work.

3 Preliminaries

We denote the security parameter by λ. The background for randomized encod-
ings and private key (function hiding) functional encryption can be found in the
full version [2].

3.1 Updatable Circuits

A boolean circuit C is an directed acyclic graph of in-degree at most 2 with the
non-leaf nodes representing ∨ (OR), ∧ (AND) and ¬ (NOT) gates and the leaf
nodes representing the input variables and constants 0 and 1. The nodes with no
outgoing edges are designated to be output gates. The size of a circuit |C| is the
number of nodes in the graph. Each node is labeled with a different index between
1 and |C|. The evaluation of C on input x is performed by first substituting the
leaf nodes with the value x and then evaluating gate-by-gate till we reach the
output gates. The joint value of all the output gates determine the output of the
circuit. Circuit C is said to represent a function f : {0, 1}λ → {0, 1}`(λ) if for
every x ∈ {0, 1}λ we have C(x) = f(x). We assume that the class of all boolean
circuits for every fixed size |C| and n inputs has an efficient binary representation
binary(C) ∈ {0, 1}O(|C|). That is, there is an efficient algorithm that computes
C 7→ (n, |C|, binary(C)), and its inverse.

We define the notion of updatable circuits next. A family of updatable circuits
C has associated with it a class of updates U . Given any circuit C ∈ C we can
transform this circuit into another circuit C ′ ∈ C with the help of an update
u ∈ U . The updating process could, for instance, change one of the output gates
from ∨ to ¬, change all the gates to ∧ gates and so on. Formally,

Definition 1 (Updatable Circuits). Consider a circuit family C = {Cλ}λ∈N,
where Cλ contains poly(λ)-sized boolean circuits C : {0, 1}λ → {0, 1}`(λ). Con-
sider a set system of strings U = {Uλ}λ∈N, where Uλ is a set of strings of length
poly(λ). We define C to be (Upd,U)-updatable if C ′ ← Upd(C,u ∈ Uλ) is also
a boolean circuit with input domain {0, 1}λ and output domain {0, 1}`(λ).

The size of update u could potentially be much smaller than the size of the
circuit C. For instance, the length of the instruction to change all the gates in
C to ∧ gate is in fact independent of |C|.

4 Updatable Randomized Encodings

We define the notion of updatable randomized encodings (URE) next. Since this
notion deals with transforming circuits, this notion will be associated to a class of
updatable circuits. But to also capture the joint updatability of both the circuit
and the input together, we introduce the notion of hardwired circuits below.

Hardwired Circuits. A hardwired circuit, associated to a circuit C and input x,
takes no input but upon evaluation yields a fixed output C(x).

We provide the formal definition of hardwired circuits below.

Definition 2 (Hardwired Circuit). Consider a circuit C : {0, 1}λ → {0, 1}`(λ)

and x ∈ {0, 1}λ. We define a hardwired circuit, denoted by C[x], to be a circuit
such that,

– it takes no input.
– upon evaluation (always) outputs C(x).

We interchangeably use C[x] to denote the circuit as well as the output C(x) it
computes.

Two hardwired circuits C0[x0] and C1[x1] are equivalent if and only if C0(x0) =
C1(x1) and |C0| = |C1|. If C0[x0] and C1[x1] are equivalent then they are denoted
by C0[x0] ≡ C1[x1]. We can generalize this notion and define a class of hardwired
circuits as stated below.

Definition 3. Consider a circuit family C = {Cλ}λ∈N. We define a hardwired
circuit family {C[X]λ}λ∈N where C[X]λ comprises of hardwired circuits of fixed
input length and is associated with a bijective function φ : Cλ × {0, 1}λ → C[X]λ
such that if φ (C ∈ Cλ, x) = C then the output of the hardwired circuit C is C(x).

We can now talk about updatability of hardwired circuits. Note that this cap-
tures joint updating of both the circuit as well as the input hardwired into it.

Definition 4 (Updatable Hardwired Circuits). Consider a family of hard-
wired circuits {C[X]λ}λ∈N, where C[X]λ contains poly(λ)-sized boolean circuits
C[X] : ⊥ → {0, 1}`(λ). Consider a set system of strings U = {Uλ}λ∈N, where
Uλ contains a set of strings of length poly(λ). We define C[X] to be (Upd,U)-
updatable if C← Upd (C[x],u), where C[x] ∈ C[X]λ,u ∈ Uλ, then C is also a
hardwired circuit.

We now proceed to give a formal definition of URE.

Syntax. A scheme URE = (Encode,GenUpd,ApplyUpd,Decode) for a (Upd,U)-
updatable class of circuits C = {Cλ}λ∈N is defined below. We denote C[X] to be
the corresponding updatable hardwired circuit family.

– Encode, (〈C[x]〉ure, st)← Encode
(
1λ, C, x

)
: On input security parameter λ,

circuit C ∈ Cλ, input x ∈ {0, 1}λ, it outputs the joint encoding 〈C[x]〉ure and
state st.

– Generating Secure Update, (〈u〉ure, st′)← GenUpd (st,u): On input state
st, update u ∈ Uλ, output the secure update 〈u〉ure along with the new state
st′.

– Apply Secure Update, 〈C ′[x′]〉ure ← ApplyUpd (〈C[x]〉ure, 〈u〉ure): On in-
put randomized encoding 〈C[x]〉ure, secure update 〈u〉ure, output the updated
randomized encoding 〈C ′[x′]〉ure.

– Evaluation, α← Decode (〈C[x]〉ure): On input randomized encoding 〈C[x]〉ure,
output the decoded value α.

We associate the above scheme with efficiency, correctness and security proper-
ties. We first talk about the efficiency requirement. Modeling of correctness and
security properties is tricky and we will deal with them in a separate subsection.

Efficiency. We lay out different efficiency properties associated with the above
scheme.

– Encoding Time: This property requires that the encoding time of (C, x) is
significantly “simpler” than computing C(x). The efficiency aspect can be
quantified in many ways – in this work, we define encoding to be efficient if
the depth of Encode circuit is smaller than C.

– Secure Update Generation Time: This property requires that the runtime of
GenUpd (st,u) is p(λ, |u|), where p is an a priori fixed polynomial. In other
words, the update generation time is independent of the size of the encoded
circuit.

– State Size: This property requires that the size of the state maintained by
the authority is a fixed polynomial in the security parameter. That is, the
size of st output by Encode and GenUpd is always poly(λ) independent of
the size of the machines and the update sizes.

– Secure Update Size: This property states that the size of the secure version of
the update should solely depend on the size of the update. Formally, we have
the size of the secure update to be |〈u〉ure| = p(λ, |u|), where (〈u〉ure, st′) ←
GenUpd (st,u). Note that any URE scheme that satisfies the above secure
update generation time property also satisfies this property.

– Runtime of Update: Informally, this property states that the time to update
the secure encoding incurs a polynomial overhead in the time to update
the plaintext circuit. Formally, the runtime of ApplyUpd(〈C[x]〉ure, 〈u〉ure) is
p(λ, t, |u|), where t is the time taken to execute Upd(C[x],u).

Our constructions achieve a restricted version of the above properties. On the
positive side, our construction in Section 5 achieves the ‘Encoding Time’ prop-
erty and ’Secure Update Generation Time’ properties. We use a term to define
a URE scheme that satisfies the secure update generation time property – we
call it output compact URE.

Definition 5 (Output Compact URE). An URE scheme that is said to be
output compact if it satisfies ‘Secure update generation time’ property.

In the case of indistinguishability security, our construction will be output-
compact, i.e., the updates will be independent of the output length of the circuit.
In the case of simulation-based security, our construction will not achieve out-
put compactness. This is, in fact, inherent and a formal lower bound to this
effect can be established along the same lines as in [1, 26]. On the flip side, our
construction does not satisfy ‘Runtime of Update’ property.

In the full version [2], we provide a transformation from any URE scheme that
satisfies the ‘Secure Update Generation Time’ property to one that additionally
satisfies the ‘State Size’ property. This transformation uses non-succinct garbled
RAMs, and assumes only one-way functions.

4.1 Sequential Updating

We first consider sequential updating process that will be the main focus of this
work. For alternate updating processes, refer to the full version [2]. Sequential
Updating process allows for updating a randomized encoding using multiple
patches in a sequential manner. That is, given secure updates 〈u1〉ure, . . . , 〈u`〉ure,
we can update a randomized encoding 〈C[x]〉ure by first applying 〈u1〉ure on
〈C[x]〉ure to obtain the updated encoding 〈C1[x1]〉ure; next we apply 〈u2〉ure on
〈C1[x1]〉ure to obtain the updated encoding 〈C2[x2]〉ure and so on. After all the
updates, we end up with the updated encoding 〈C`[x`]〉ure.

Correctness of Sequential Updating. Intuitively, the correctness property states
that computing the randomized encoding 〈C[x]〉ure, applying the secure updates
〈u1〉ure, . . . , 〈u`〉ure sequentially and finally decoding yields the same result as the
output of the circuit obtained by updating the hardwired circuit C[x] by applying
the updates u1, . . . ,u` sequentially. We give the formal description below.

Consider a circuit C ∈ Cλ, input x ∈ {0, 1}λ. Consider a vector of updates
U ∈ (Uλ)

q
, where q(λ) is a polynomial in λ. Consider the following two processes:

Secure updating process:

1. (〈C[x]〉ure, st0)← Encode
(
1λ, C, x

)
.

2. For every i ∈ [q]; (〈ui〉ure, sti)← GenUpd (sti−1,ui), where ui is the ith entry
in U.

3. Let 〈C0[x0]〉ure := 〈C[x]〉ure. For every i ∈ [q];

〈Ci[xi]〉ure ← ApplyUpd (〈Ci−1[xi−1]〉ure, 〈ui〉ure) .

Insecure updating process:

1. Let (C0, x0) := (C, x). For every i ∈ [q], we have Ci[xi]← Upd(Ci−1[xi−1],ui).
The output of Cq[xq] is Cq(xq).

We have,

Decode
(
〈Cq[xq]〉ure

)
= Cq(xq)

Security of Sequential Updating. We consider two different security notions of
sequential updatable RE. First, we consider simulation-based notion and then
we consider the weaker indistinguishability-based notion.

Our security notions attempt to capture the intuition that an updateable
randomized encoding 〈C0[x0]〉ure and a sequence of updates 〈u1〉ure, . . . , 〈uq〉ure
should reveal only the outputs C0(x0), C1(x1),. . .Cq(xq) where Ci and Xi are de-
fined as in the preceding correctness definition. In addition to hiding the circuits
and inputs as in traditional randomized encodings, a URE additionally hides the
sequence of updates. Our URE construction satisfies this update-hiding property.

We could instead consider a relaxed notion, in which updates are partially or
wholly revealed (modifying the definitions appropriately). Indeed, this is what
we will do in the context of updatable garbled circuits. In the full version [2], we
provide a generic transformation from an update-revealing URE scheme to an
update-hiding URE scheme, assuming only the existence of one-way functions.

Simulation-Based Security. We adopt the real world/ ideal world paradigm in
formalizing the simulation-based security definition of sequential updatable RE.
In the real world, the adversary receives a randomized encoding and encodings
of updates. All the encodings are generated honestly as per the description of
the scheme. In the ideal world, the adversary is provided simulated randomized
encodings and encodings of updates. These simulated encodings are generated
as a function of the outputs and in particular, the simulation process does not
receive as input the circuit, input or the plaintext updates. A sequential updat-
able RE scheme is secure if an efficient adversary cannot tell apart real world
from the ideal world.

The ideal world is formalized by considering a simulator Sim that runs in
probabilistic polynomial time. Sim gets as input the output of circuit C(x), the
length of C and produces a simulated randomized encoding. We emphasize that
Sim does not receive as input C or x. After this, Sim simulates the update
encodings. On input length of update ui, value Ci(xi), it generates a simulated
encoding of ui. Here, Ci(xi) is obtained by first updating Ci−1[xi−1] using ui
to obtain Ci[xi], whose output is Ci(xi) and also, C0[x0] is initialized with C[x].
For this discussion, we consider the scenario where the circuit, input along with
the updates are fixed at the beginning of the experiment. This is termed as the
selective setting. We describe the formal experiment in Figure 1.

We present the formal security definition below.

Definition 6 (SIM-secure Sequential URE). A sequential URE scheme
URE for (Upd,U)-updatable class of circuits C = {Cλ}λ∈N is said to be SIM-
secure if for every PPT adversary A, for every circuit C ∈ Cλ, updates u1, . . . ,uq ∈
Uλ, there exists a PPT simulator Sim such that the following holds for sufficiently
large λ ∈ N,∣∣∣Pr [0← IdealExptA

(
1λ, C, x, {ui}i∈[q]

)]
− Pr

[
0← RealExptA

(
1λ, C, x, {ui}i∈[q]

)]∣∣∣ ≤ negl(λ),

where negl is a negligible function.

IdealExptA(1λ, C, x, {ui}i∈[q]):

(〈C[x]〉ure, st0)← Sim(1λ, 1|C|, C(x)).

C0[x0] := hardwired circuit of (C, x).

∀i ∈ [q], Ci[xi]← Upd(Ci−1[xi−1],ui).

∀i ∈ [q], (〈ui〉ure, sti)← Sim(sti−1, 1
|ui|, Ci(xi)).

Output A
(
〈C[x]〉ure, 〈u1〉ure, . . . , 〈uq〉ure

)
.

RealExptA(1λ, C, x, {ui}i∈[q]):

(〈C[x]〉ure, st0)← Encode
(
1λ, C, x

)
.

∀i ∈ [q], (〈u〉ure, sti)← GenUpd (sti−1,ui).

Output A
(
〈C[x]〉ure, 〈u1〉ure, . . . , 〈uq〉ure

)
.

Fig. 1. Selective Simulation-Based Definition of Sequential URE.

We also define indistinguishability-based security notion. We show a transforma-
tion from indistinguishability-based security notion to simulation based security
notion. This can be found in the full version.

5 Output-Compact URE from FE

In this section, we present our construction of updatable randomized encodings
satisfying output compactness properties.

5.1 Construction

Our goal is to construct an updatable randomized encoding scheme, URE = (
Encode,GenUpd,ApplyUpd,Decode) for C. The main tools we use in our construc-
tion are the following. We refer the reader to the preliminaries for the definitions
of these primitives.

– Randomized Encoding scheme, RE = (RE.Enc,RE.Dec) for the same class of
circuits C.

– Compact, Function-private, Single-Key, Secret-key functional encryption (FE)
scheme,
FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec).

– Garbling Scheme for circuits, GC = (GrbCkt,GrbInp,EvalGC).

Remark 1. In the full version [2], we show that compact secret-key functional
encryption is necessary for our construction of updatable randomized encodings
if we believe that learning with errors assumption holds true.

We assume, without loss of generality, that all randomized algorithms require
only λ-many random bits. We use the above tools to design the algorithms of
URE as given below.

The updatable randomized encoding of (C, x) will consist of a (standard)
randomized encoding (C, x) and some additional information necessary to carry
out the updating process. This additional information consists of a garbled input
encoding of C and x with respect to GC, and a FE secret key for a function that
takes as input an update and outputs a garbled circuit mapping C and x to a
new randomized encoding and new garbled circuit input encodings of C ′ and
x′, which are the updated values. Henceforth, we denote by s the size of the
representation of the harwired circuit C[x].

Encode
(
1λ, C, x

)
: On input security parameter λ, perform the following opera-

tions.

1. Execute the setup of FE, FE.MSK← FE.Setup(1λ).
2. Compute a functional key FE.SKRRGarbler ← FE.KeyGen(FE.MSK,RRGarbler),

where RRGarbler is as defined in Figure 3.
3. In the next step, generate a randomized encoding of input (C, x). That is,

compute RE.Enc(1λ, C, x) to obtain 〈C[x]〉re.
4. As stated earlier, let s be the size of the representation of C[x]. Generate

a garbled circuit input encoding of (C[x],⊥) by evaluating 〈C[x],⊥〉gc ←
GrbInp(C[x],⊥; rgc), where rgc is the randomness used to garble the input.
Here we view (C[x],⊥) as an input (to the circuit RelockRelease).

5. Output as the randomized encoding the tuple,

〈C[x]〉ure =
(
FE.SKRRGarbler, 〈C[x]〉re, 〈C[x],⊥〉gc

)
and set the state to be st = (FE.MSK, rgc).

GenUpd (sti, ui+1): It takes as input the state sti = (FE.MSK, rgc,i) and update
ui+1.

1. Sample random coins rre,i+1 and rgc,i+1. Let mode = 0.
2. Generate the FE ciphertext,

CTi+1 ← FE.Enc (FE.MSK, (ui+1, ⊥, rgc,i, rgc,i+1, rre,i+1, mode))

3. Set the new state sti+1 = (FE.MSK, rgc,i+1).
4. Output 〈ui+1〉ure = CTi+1.

ApplyUpd (〈Ci[xi]〉ure, 〈ui+1〉ure): On input circuit encoding 〈Ci[xi]〉ure and update

encoding 〈ui+1〉ure = CTi+1, execute the following.

RelockReleasei+1

Input: C0
i [x0

i], C
1
i [x1

i]
Hard-coded values: u0

i+1, u1
i+1, rgc,i+1, rre,i+1, and mode

– Update both the hardwired circuits Cbi [x
b
i] using ubi+1:

Cbi+1[xbi+1]← Upd(Cbi [x
b
i],u

b
i+1)

– Encode the updated hardwired circuit Cmode
i+1 [xmode

i+1 :

〈Cmode
i+1 [xmode

i+1]〉re ← RE.Enc
(
Cmode
i+1 [xmode

i+1]; rre,i+1

)
– Compute the randomized encoding of the input

(
C0
i+1[x0

i+1], C1
i+1[x1

i+1]
)
:

〈C0
i+1[x0

i+1], C1
i+1[x1

i+1]〉gc ← GrbInp
((

C0
i+1[x0

i+1], C1
i+1[x1

i+1]
)

; rgc,i+1

)
– Output

(
〈Cmode

i+1 [xmode
i+1]〉re, 〈C

0
i+1[x0

i+1], C1
i+1[x1

i+1]〉gc
)

Fig. 2.

RRGarbler

Input: (u0
i+1, u1

i+1, rgc,i, rgc,i+1, rre,i+1, mode)

Compute the garbled circuit encoding of RelockReleasei+1, which is defined in Figure 2:

〈RelockReleasei+1〉gc ← GrbCkt
(
RelockReleasei+1; rgc,i

)
Output 〈RelockReleasei+i〉gc.

Fig. 3.

1. Parse the circuit encoding as:

〈Ci[xi]〉ure =
(
FE.SKRRGarbler, 〈Ci[xi]〉re, 〈Ci[xi],⊥〉gc

)
2. Execute the FE decryption, FE.Dec(FE.SKRRGarbler,CTi+1) to obtain:

〈RelockReleasei+1〉gc.

3. Execute the decode algorithm of the garbling scheme,

(〈Ci+1[xi+1]〉re, 〈Ci+1[xi+1],⊥〉gc)← EvalGC(〈RelockReleasei+1〉gc, 〈Ci[xi]〉gc)

That is, the decode algorithm outputs the randomized encoding of updated
hardwired circuit Ci+1[xi+1] and also wire keys of (Ci+1[xi+1],⊥) that will
be input to the next level garbled circuit.

4. Output
(
FE.SKRRGarbler, 〈Ci+1[xi+1]〉re, 〈Ci+1[xi+1],⊥〉gc

)
.

Decode (〈Ci[xi]〉ure): On input encoding

〈Ci[xi]〉ure = (FE.SKRRGarbler, 〈Ci[xi]〉re, 〈Ci[xi],⊥〉gc),

decode the encoding 〈Ci[xi]〉re by executing RE.Dec(〈Ci[xi]〉re) to obtain α. Out-
put the value α.

In the full version [2], we show that the above scheme satisfies all the prop-
erties of an updatable randomized encodings scheme.

References

1. Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee.
Functional encryption: New perspectives and lower bounds. In Advances in Cryp-
tology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 18-22, 2013. Proceedings, Part II, pages 500–518, 2013.

2. Prabhanjan Ananth, Aloni Cohen, and Abhishek Jain. Cryptography with updates.
Cryptology ePrint Archive, Report 2016/934, 2016. http://eprint.iacr.org/

2016/934.
3. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-

pact functional encryption. In Advances in Cryptology–CRYPTO 2015, pages 308–
326. Springer, 2015.

4. Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfusca-
tion from functional encryption for simple functions. Technical report, Cryptology
ePrint Archive, Report 2015/730, 2015.

5. Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Patchable indistinguisha-
bility obfuscation: io for evolving software. IACR Cryptology ePrint Archive,
2015:1084, 2015.

6. Benny APPLEBAUM, Yuval ISHAI, and Eyal KUSHILEVITZ. Cryptogaphy in
nc0. SIAM journal on computing, 36(4):845–888, 2007.

7. Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary Peterson, and Dawn Song. Provable data possession at untrusted stores.
In Proceedings of the 14th ACM conference on Computer and communications
security, pages 598–609. Acm, 2007.

8. Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved
proxy re-encryption schemes with applications to secure distributed storage. In
Proceedings of the Network and Distributed System Security Symposium, NDSS
2005, San Diego, California, USA, 2005.

9. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In
Joe Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 19-23,
2001, Proceedings, volume 2139 of Lecture Notes in Computer Science, pages 1–18.
Springer, 2001.

http://eprint.iacr.org/2016/934
http://eprint.iacr.org/2016/934

10. Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography:
The case of hashing and signing. In Advances in Cryptology—CRYPTO’94, pages
216–233. Springer, 1994.

11. Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental cryptography
and application to virus protection. In Proceedings of the twenty-seventh annual
ACM symposium on Theory of computing, pages 45–56. ACM, 1995.

12. Mihir Bellare and Daniele Micciancio. A new paradigm for collision-free hashing:
Incrementality at reduced cost. In Advances in Cryptology—EUROCRYPT’97,
pages 163–192. Springer, 1997.

13. Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang. Suc-
cinct randomized encodings and their applications. In STOC, 2015.

14. Nir Bitansky, Ryo Nishimaki, Alain Passelègue, and Daniel Wichs. From cryp-
tomania to obfustopia through secret-key functional encryption. volume TCC,
2016.

15. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from
functional encryption. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on, pages 171–190. IEEE, 2015.

16. Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and atomic
proxy cryptography. In Advances in Cryptology - EUROCRYPT ’98, International
Conference on the Theory and Application of Cryptographic Techniques, Espoo,
Finland, May 31 - June 4, 1998, Proceeding, pages 127–144, 1998.

17. Dan Boneh and David Mandell Freeman. Homomorphic signatures for polynomial
functions. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 149–168. Springer, 2011.

18. Dan Boneh, Kevin Lewi, Hart Montgomery, and Ananth Raghunathan. Key ho-
momorphic prfs and their applications. In Advances in Cryptology–CRYPTO 2013,
pages 410–428. Springer, 2013.

19. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions
and challenges. In Theory of Cryptography, pages 253–273. Springer, 2011.

20. Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted
data. In Theory of Cryptography Conference, pages 535–554. Springer, 2007.

21. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their ap-
plications. In Advances in Cryptology-ASIACRYPT 2013, pages 280–300. Springer,
2013.

22. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseu-
dorandom functions. In Public-Key Cryptography–PKC 2014, pages 501–519.
Springer, 2014.

23. Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic prfs
from standard lattice assumptions. In Theory of Cryptography, pages 1–30.
Springer, 2015.

24. Enrico Buonanno, Jonathan Katz, and Moti Yung. Incremental unforgeable en-
cryption. In Fast Software Encryption, pages 109–124. Springer, 2001.

25. Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. In-
distinguishability obfuscation of iterated circuits and RAM programs. In STOC,
2015.

26. Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part II,
pages 519–535, 2013.

27. Nishanth Chandran, Bhavana Kanukurthi, and Rafail Ostrovsky. Locally updat-
able and locally decodable codes. In Theory of Cryptography, pages 489–514.
Springer, 2014.

28. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Mal-
leable proof systems and applications. In Advances in Cryptology–EUROCRYPT
2012, pages 281–300. Springer, 2012.

29. Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn. Suc-
cinct malleable nizks and an application to compact shuffles. In Theory of Cryp-
tography, pages 100–119. Springer, 2013.

30. Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally
decodable and updatable non-malleable codes and their applications. In Theory of
Cryptography, pages 427–450. Springer, 2015.

31. Marc Fischlin. Incremental cryptography and memory checkers. In Advances in
Cryptology—EUROCRYPT’97, pages 393–408. Springer, 1997.

32. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In 54th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE
Computer Society, 2013.

33. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Fully secure func-
tional encryption without obfuscation. IACR Cryptology ePrint Archive, 2014:666,
2014.

34. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 467–476. ACM, 2013.

35. Sanjam Garg and Omkant Pandey. Incremental program obfuscation. IACR Cryp-
tology ePrint Archive, 2015:997, 2015.

36. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda,
MD, USA, May 31 - June 2, 2009, pages 169–178, 2009.

37. Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and
Daniel Wichs. Garbled ram revisited. In Advances in Cryptology–EUROCRYPT
2014, pages 405–422. Springer, 2014.

38. Craig Gentry, Allison Lewko, and Brent Waters. Witness encryption from instance
independent assumptions. In International Cryptology Conference, pages 426–443.
Springer, 2014.

39. Craig Gentry, Allison B. Lewko, Amit Sahai, and Brent Waters. Indistinguisha-
bility obfuscation from the multilinear subgroup elimination assumption. IACR
Cryptology ePrint Archive, 2014:309, 2014.

40. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM (JACM), 33(4):792–807, 1986.

41. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz,
Feng-Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input func-
tional encryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances
in Cryptology - EUROCRYPT 2014 - 33rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Copenhagen, Denmark,
May 11-15, 2014. Proceedings, volume 8441 of Lecture Notes in Computer Science,
pages 578–602. Springer, 2014.

42. Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryp-
tion. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium

on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 555–564. ACM, 2013.

43. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from lwe. In Annual Cryptology Conference, pages 503–523. Springer,
2015.

44. Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully ho-
momorphic signatures from standard lattices. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, pages 469–477. ACM, 2015.

45. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS 2006,
Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages 89–98, 2006.

46. Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representa-
tion with applications to round-efficient secure computation. In Foundations of
Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages 294–304.
IEEE, 2000.

47. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting
disjunctions, polynomial equations, and inner products. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages
146–162. Springer, 2008.

48. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas
Zacharias. Delegatable pseudorandom functions and applications. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security,
pages 669–684. ACM, 2013.

49. Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability ob-
fuscation with non-trivial efficiency. In Public-Key Cryptography - PKC 2016 -
19th IACR International Conference on Practice and Theory in Public-Key Cryp-
tography, Taipei, Taiwan, March 6-9, 2016, Proceedings, Part II, pages 447–462,
2016.

50. Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing
randomized encodings and applications. In Theory of Cryptography, pages 96–124.
Springer, 2016.

51. Steve Lu and Rafail Ostrovsky. How to garble ram programs? In Advances in
Cryptology–EUROCRYPT 2013, pages 719–734. Springer, 2013.

52. Daniele Micciancio. Oblivious data structures: applications to cryptography. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing,
pages 456–464. ACM, 1997.

53. Ilya Mironov, Omkant Pandey, Omer Reingold, and Gil Segev. Incremental deter-
ministic public-key encryption. In EUROCRYPT 2012.

54. Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology
ePrint Archive, 2010:556, 2010.

55. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in
Cryptology - EUROCRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-
26, 2005, Proceedings, pages 457–473, 2005.

56. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: de-
niable encryption, and more. In David B. Shmoys, editor, Symposium on Theory
of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
475–484. ACM, 2014.

57. Elaine Shi, John Bethencourt, TH Hubert Chan, Dawn Song, and Adrian Perrig.
Multi-dimensional range query over encrypted data. In 2007 IEEE Symposium on
Security and Privacy (SP’07), pages 350–364. IEEE, 2007.

58. Brent Waters. A punctured programming approach to adaptively secure functional
encryption. In CRYPTO 2015, 2015.

59. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In FOCS, pages 162–167, 1986.

60. Mark Zhandry. How to avoid obfuscation using witness prfs. In Theory of Cryp-
tography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January
10-13, 2016, Proceedings, Part II, pages 421–448, 2016.

	Cryptography with Updates

