
Separating Semantic and Circular Security for
Symmetric-Key Bit Encryption from the

Learning with Errors Assumption

Rishab Goyal, Venkata Koppula, and Brent Waters?

University of Texas at Austin
{rgoyal, kvenkata, bwaters}@cs.utexas.edu

Abstract. In this work we separate private-key semantic security from
1-circular security for bit encryption using the Learning with Error as-
sumption. Prior works used the less standard assumptions of multilinear
maps or indistinguishability obfuscation. To achieve our results we de-
velop new techniques for obliviously evaluating branching programs.

1 Introduction

Over the past several years the cryptographic community has given considerable
attention to the notion of key-dependent message security. In key dependent
security we consider an attacker that gains access to ciphertexts that encrypt
certain functions of the secret key(s) of the user(s). Ideally, a system should
remain semantically secure even in the presence of this additional information.

One of the most prominent problems in key dependent message security is
the case of circular security. A circular secure system considers security in the
presence of key cycles. A key cycle of k users consists of k encryptions where the
i-th ciphertext cti is an encryption of the i+1 user’s secret key under user i’s
public key. That is ct1 = Encrypt(PK1,SK2), ct2 = Encrypt(PK2,SK3) . . . , ctk =
Encrypt(PKk,SK1). If a system is k circular secure, then such a cycle should be
indistinguishable from an encryption of k arbitrary messages. The notion also
applies to secret key encryption systems.

One reason that circular security has received significant attention is that the
problem has arisen in multiple applications [16, 27, 2], the most notable is that
Gentry [22] showed how a circular secure leveled homomorphic encryption can be
bootstrapped to homomorphic encryption that works for circuits of unbounded
depth. Stemming from this motivation there have been several positive results[11,
6, 13, 8, 14, 5, 4, 29] that have achieved circular and more general notations of key
dependent messages security from a variety of cryptographic assumptions.

On the flip side several works have sought to discover if there exist separations
between IND-CPA security and different forms of circular security. That is they

? Supported by NSF CNS-1228599 and CNS-1414082, DARPA SafeWare, Microsoft
Faculty Fellowship, and Packard Foundation Fellowship.

sought to develop a system that was not circular secure, but remained IND-
CPA secure. For the case of 1-circular security achieving such a separation is
trivial. The (secret key) encryption system simply tests if the message to be
encrypted is equal to the secret key SK, if so it gives the message in the clear;
otherwise it encrypts as normal. (This example can be easily extended to public
key encryption.) Clearly, such a system is not circular secure and it is easy to
show it maintains IND-CPA security. More work is required, however, to achieve
separations of length greater than one. Separations were first shown for the case
of k = 2 length cycles using groups with bilinear maps [1, 17] and later [10] under
the Learning with Errors assumption [34]. Subsequently, there existed works that
achieved separations for arbitrary length cycles[25, 28], however, these required
the use obfuscation. All current candidates of general obfuscation schemes rely
on the relatively new primitive of multilinear maps, where many such multilinear
map candidates have suffered from cryptanalysis attacks [18, 19]. Most recently
and Alamati and Peikert [3] and Koppula and Waters [26] showed separations
of arbitrary length cycles from the much more standard Learning with Errors
assumption.

Another challenging direction in achieving separations for circular security
is to consider encryptions systems where the message consist of a single bit.
Separating from IND-CPA is difficult even in the case of cycles of length 1 (i.e.
someone encrypts their own secret key). Consider a bit encryption system with
keys of length ` = `(λ). Suppose an attacker receives an encryption of the secret
key in the form of ` successive bit by bit encryptions. Can this be detected?

We observe that encrypting bit by bit seems to make detection harder. Our
trivial counterexample from above no longer applies since the single bit message
cannot be compared to the much longer key. The first work to consider such
a separation was due to Rothblum [35] who showed that a separation could
be achieved from multilinear maps under certain assumptions. One important
caveat, however, to his result was that the level of multilinearlity must be greater
than log(q) where q is the group order. This restriction appears to be at odds
with current multilinear map/encoding candidates which are based off of “noisy
cryptography” and naturally require a bigger modulus whose log is greater than
the number of multiplications allowed. Later, Koppula, Ramchen and Waters [25]
showed how to achieve a separation from bit encryption using indistinguishability
obfuscation. Again, such a tool is not known from standard assumptions.

In this work we aim to separate semantic security from 1-circular security
for bit encryption systems under the Learning with Errors assumption. Our
motivation to study this problem is two fold. First, achieving such a separation
under a standard assumption will significantly increase our confidence compared
to obfuscation or multilinear map-based results. Second, studying such a problem
presents the opportunity for developing new techniques in the general area of
computing on encrypted data and may lead to other results down the line.

To begin with, we wish to highlight some challenges presented by bit en-
cryption systems that were not addressed in prior work. First, the recent results
of [3, 26] both use a form of telescoping cancellation where the encryption al-

2

gorithm takes in a message and uses this as a ‘lattice trapdoor’[24, 30]; if the
message contained the needed secret key then it cancels out the public key of an
“adjacent” ciphertext. We observe that such techniques require an encryption
algorithm that receives the entire secret key at once, and there is no clear path to
leverage this in the case where an encryption algorithm receives just a single bit
message. Second, while the level restriction in Rothblum’s result [35] appeared
in the context of multilinear maps, the fundamental issue will transcend to our
Learning with Errors solution. Looking ahead we will need to perform a com-
putation where the number of multiplication steps is restricted to be less than
log(q), where here q is the modulus we work in.

1.1 Separations from Learning with Errors

We will now describe our bit encryption scheme that is semantically secure but
not circular secure. Like previous works [10, 3, 26], we will take decryption out of
the picture, and focus on building an IND-CPA secure encryption scheme where
one can distinguish between an encryption of the secret key and encryptions of
zeroes.

The two primary ingredients of our construction are low-depth pseudoran-
dom functions (PRFs) and lattice trapdoors. In particular, we require a PRF
which can be represented using a permutation branching program of polyno-
mial length and polynomial width.1 Banerjee, Peikert and Rosen [7] showed
how to construct LWE based PRFs that can be represented using NC1 circuits,
and using Barrington’s theorem [9], we get PRFs that can be represented using
branching programs of polynomial length and width 5.

Next, let us recall the notion of lattice trapdoors. A lattice trapdoor gener-
ation algorithm outputs a matrix A together with a trapdoor TA. The matrix
looks uniformly random, while the trapdoor can be used to compute, for any
matrix U, a low norm matrix S = A−1(U) such that A · S = U.2 As a re-
sult, the matrix S can be used to ‘transform’ the matrix A to another matrix
U. In this work, we will be interested in oblivious sequence transformation : we
want a sequence of matrices B1, . . . ,Bw such that for any sequence of matrices
U1, . . . ,Uw, we can compute a low norm matrix S such that Bi · S = Ui. Note
that the same matrix S should be able to transform any Bi to Ui; that is, S
is oblivious of i. This obliviousness property will be important for our solution,
and together with the telescoping products/cascading cancellations idea of [26,
3, 23], we get our counterexample.

1 Recall, a permutation branching program of length L and width w has w states at
each level, an accepting and rejecting state at the top level. Each level j ≤ L has two
permutations σj,0 and σj,1 associated, and there is an input-selector function which
determines the input read at each level. The program execution starts at state 1 of
level 0. Suppose, at level j, the state is st ∈ [w]. Let b be the input read at level j.
Then, the state at level j+1 is σj,b(st). Proceeding this way, the program terminates
at level L in either the accepting state or rejection state.

2 For simplicity, we use the notation A−1(·) to represent the pre-image S. In the formal
description of our algorithms, we use the pre-image sampling algorithm SamplePre.

3

Oblivious Sequence Transformation We first observe that one can easily obtain
oblivious sequence transformation, given standard lattice trapdoors. Consider
the following matrix B :

B =

B1

...
Bw

 .
Let T denote the trapdoor of B (we will refer to T as the ‘joint trapdoor’ of
B1, . . ., Bw). Now, given any sequence U1, . . . ,Uw, we similarly define a new
matrix U which has the Ui stacked together, and set S = B−1(U). Clearly, this
satisfies our oblivious sequence transformation requirement.

Our Encryption Scheme As mentioned before, we will only focus on the setup,
encryption and testing algorithms. Let PRF be a pseudorandom function family
with keys and inputs of length λ, and output being a single bit. For any input
i, we require that the function PRF(·, i) can be represented using a branching
program of length L and width 5 (we choose 5 for simplicity here; our formal
description works for any polynomial width w). The setup algorithm chooses a
PRF key s. Let nbp be a parameter which represents the number of points at
which the PRF is evaluated, and let ti = PRF(s, i) for i ≤ nbp. Finally, for each

i ≤ nbp, let BP(i) denote the branching program that evaluates PRF(·, i). Each

branching program BP(i) has L levels and 5 possible states at each level. At the
last level, there are only two valid states — acc(i) and rej(i), i.e. the accepting
and rejecting state. For each branching program BP(i) and level j, there are

two state transition functions σ
(i)
j,0, σ

(i)
j,1 that decide the transition between states

depending upon the input bit read. The setup algorithm also chooses, for each

branching program BP(i), level j ≤ L and state k ≤ 5, a matrix B
(i)
j,k. At all

levels j 6= L, the matrices B
(i)
j,1, . . . ,B

(i)
j,5 have a joint trapdoor. At the top level,

the matrices satisfy the following relation:∑
i : ti=0

B
(i)

L,rej(i)
+

∑
i : ti=1

B
(i)

L,acc(i)
= 0.

The secret key consists of the PRF key s and nbp · L trapdoors T
(i)
j .

The encryption algorithm is designed specifically to distinguish key encryp-
tions from encryptions of zeros. Each ciphertext consists of L sub-ciphertexts,
one for each level, and each sub-ciphertext consists of nbp sub-sub-ciphertexts.
The sub-sub-ciphertext corresponding to BP(i) at level j can be used to trans-

form B
(i)
j,k to B

(i)

j+1,σ
(i)
j,0(k)

or B
(i)

j+1,σ
(i)
j,1(k)

, depending on the bit encrypted. This is

achieved via oblivious sequence transformation. Let b denote the bit encrypted,

and let D be the matrix constructed by stacking {B(i)
j,1, . . . ,B

(i)
j,5} according to

the permutation σ
(i)
j,b. The sub-sub-ciphertext ct

(i)
j for program BP(i) at level j is

simply (a noisy approximation of) B
(i)
j

−1
(D). The ciphertext also includes the

base matrices {B(i)
0 } for each program.

4

The testing algorithm is used to distinguish between an encryption of the
secret key and encryptions of zeros. It uses the first |s| = λ ciphertexts, which
are either encryptions of the PRF key s, or encryptions of zeros. Let us consider
the case where the λ ciphertexts are encryptions of s. At a high level, the testing
algorithm combines the ciphertext components appropriately, such that for each

i ≤ nbp, the result is B
(i)

L,rej(i)
if PRF(s, i) = 0, and B

(i)

L,acc(i)
otherwise. Once the

testing algorithm gets these matrices, it can sum them to check if it is (close to)
the zero matrix. The testing algorithm essentially mimics the program evalua-
tion on s using the encryption of s. Let us fix a program BP(i), and say it reads
bit positions p1, . . . , pL. At step 1, the program goes from state 1 at level 0 to

state st1 = σ
(i)
1,sp1

at level 1. The test algorithm has B
(i)
0,1. It combines this with

the (i, 1) component of the pth1 ciphertext to get B
(i)
1,st1

. Next, the program reads
the bit at position p2 and goes to state st2 at level 2. The test algorithm, accord-

ingly, combines B
(i)
1,st1

with the (i, 2) sub-sub-component of the pth2 ciphertext

to compute B
(i)
2,p2

. Proceeding this way, the actual program evaluation reaches

either acc(i) or rej(i), and the test algorithm accordingly reaches either B
(i)

L,acc(i)

or B
(i)

L,rej(i)
.

The solution described above, however, is not IND-CPA secure. To hide the
encrypted bit without affecting the above computation, we will have to add some

noise to each sub-sub-ciphertext. In particular, instead of outputting B
(i)
j

−1
(D)

for some matrix D, we will now have B
(i)
j

−1
(S ·D + noise),3 where S is a low

norm matrix. To prove IND-CPA security, we first switch the top level matrices
to uniformly random matrices. Once we’ve done that, we can use LWE, together
with the properties of lattice trapdoors, to argue that the top level sub-sub-
ciphertexts look like random matrices from a low-norm distribution. As a result,
we don’t need trapdoors for the matrices at level L− 1, and hence, they can be
switched to uniformly random matrices. Using LWE with trapdoor properties,
we can then switch the sub-sub-ciphertexts at level L − 1 to random matri-
ces. Proceeding this way, all sub-sub-ciphertexts can be made random Gaussian
matrices. This concludes our proof.

Separation from Chosen Ciphertext Security One interesting question is whether
achieving chosen ciphertext security (as opposed to IND-CPA security) makes a
bit encryption system more likely to be resistant to circular security attacks. Here
we show generically that achieving a bit encryption system that is IND-CCA
secure, but not circular secure is no more difficult than our original separation
problem. In particular, we show generically how to combine a IND-CPA secure,
but not circular secure bit encryption with multi-bit CCA secure encryption to

3 Strictly speaking, if D consists of 5 components D1, . . . ,D5 stacked together, then

our sub-sub-ciphertext will be B
(i)
j

−1
(D′ +noise) where D′ consists of 5 components

S ·Dk for k ≤ 5.

5

achieve a single bit encryption system that is IND-CPA secure. We note that
Rothblum addressed CCA security, but used the more specific assumption of
trapdoor permutations to achieve NIZKs.

Our transformation is fairly simple and follows in a similar manner to how
an analogous theorem in Bishop, Hohenberger and Waters [10].

Relation to GGH15 Graph Based Multilinear Maps Our counterexample con-
struction bears some similarities to the graph-induced multilinear maps scheme
of Gentry, Gorbunov and Halevi [23]. In a graph induced multilinear maps
scheme, we have an underlying graph G, and encodings of elements are rela-
tive to pairs of connected nodes in in the graphs. Given encodings of s1 and
s2 relative to connected nodes u v, one can compute an encoding of s1 + s2
relative to u v. Similarly, given an encoding of s1 relative to u v and
an encoding of s2 relative to v w, one can compute an encoding of s1 · s2
relative to u w. Finally, one is allowed to zero-test corresponding to cer-
tain source-destination pairs. Gentry et al. gave a lattice based construction for
graph-induced encoding scheme, where each vertex u has an associated matrix
Au (together with a trapdoor Tu). The encoding of an element s corresponding
to the edge (u, v) is simply A−1u (sAv + noise).

At a high level, our construction looks similar to the GGH15 multilinear
maps construction. In particular, while GGH15 uses the cascading cancellations
property to prove correctness, we use it for proving that the testing algorithm
succeeds with high probability. Our security requirements, on the other hand,
are different from that in multilinear maps. However, we believe that the ideas
used in this work can be used to prove security of GGH15 mmaps for special
graphs/secret distributions (note that GGH15 gave a candidate multilinear maps
construction, and it did not have a proof of security for general graphs).

Summary and Conclusions To summarise, we show how to perform computation
using an outside primitive by means of our oblivious sequence transformation
approach. This allows us to show a separation between private-key semantic secu-
rity and circular security for bit encryption schemes. While such counterexamples
are contrived and do not give much insight into the circular security of existing
schemes, we see this as a primitive of its own. The tools/techniques used for
developing such counterexamples might have other applications. In particular,
these counterexamples share certain features with more advanced cryptographic
primitives such as witness encryption and code obfuscation.

2 Preliminaries

Notations. We will use lowercase bold letters for vectors (e.g. v) and uppercase
bold letters for matrices (e.g. A). For any finite set S, x← S denotes a uniformly
random element x from the set S. Similarly, for any distribution D, x ← D
denotes an element x drawn from distribution D. The distribution Dn is used to
represent a distribution over vectors of n components, where each component is
drawn independently from the distribution D.

6

Min-Entropy and Randomness Extraction. The min-entropy of a random vari-

able X is defined as H∞(X)
def
= − log2(maxx Pr[X = x]). Let SD(X,Y) denote

the statistical distance between two random variables X and Y . Below we state
the Leftover Hash Lemma (LHL) from [21, 20].

Theorem 1. Let H = {h : X → Y }h∈H be a universal hash family, then for
any random variable W taking values in X, the following holds

SD ((h, h(W)) , (h, UY)) ≤ 1

2

√
2−H∞(W) · |Y | .

We will use the following corollary, which follows from the Leftover Hash Lemma.

Corollary 1. Let ` > m · n log2 q + ω(log n) and q a prime. Let R be an k ×m
matrix chosen as per distribution R, where k = k(n) is polynomial in n and
H∞ (R) = `. Let A and B be matrices chosen uniformly in Zn×kq and Zn×mq ,
respectively. Then the statistical distance between the following distributions is
negligible in n.

{(A,A ·R)} ≈s {(A,B)}

Proof. The proof of above corollary follows directly from the Leftover Hash
Lemma. Note that for a prime q the family of hash functions hA : Zk×mq → Zn×mq

for A ∈ Zn×kq defined by hA(X) = A ·X is universal. Therefore, if R has suffi-
cient min-entropy, i.e. ` > m ·n log2 q+ω(log n), then the Leftover Hash Lemma
states that statistical distance between the distributions (A,A ·R) and (A,B)
is at most 2−ω(logn) which is negligible in n as desired.

2.1 Lattice Preliminaries

This section closely follows [26].
Given positive integers n,m, q and a matrix A ∈ Zn×mq , we let Λ⊥q (A) denote

the lattice {x ∈ Zm : A · x = 0 mod q}. For u ∈ Znq , we let Λu
q (A) denote the

coset {x ∈ Zm : A · x = u mod q}.

Discrete Gaussians. Let σ be any positive real number. The Gaussian distri-
bution Dσ with parameter σ is defined by the probability distribution function
ρσ(x) = exp(−π · ||x||2/σ2). For any set L ⊂ Rm, define ρσ(L) =

∑
x∈L ρσ(x).

The discrete Gaussian distribution DL,σ over L with parameter σ is defined by
the probability distribution function ρL,σ(x) = ρσ(x)/ρσ(L) for all x ∈ L.

The following lemma (Lemma 4.4 of [31], [24]) shows that if the parameter
σ of a discrete Gaussian distribution is small, then any vector drawn from this
distribution will be short (with high probability).

Lemma 1. Let m,n, q be positive integers with m > n, q ≥ 2. Let A ∈ Zn×mq

be a matrix of dimensions n×m, σ = Ω̃(n) and L = Λ⊥q (A). Then

Pr[||x|| >
√
m · σ : x← DL,σ] ≤ negl(n).

7

Learning with Errors (LWE). The Learning with Errors (LWE) problem was
introduced by Regev [34]. The LWE problem has four parameters: the dimen-
sion of the lattice n, the number of samples m, the modulus q and the error
distribution χ(n).

Assumption 1 (Learning with Errors) Let n, m and q be positive integers
and χ a noise distribution on Z. The Learning with Errors assumption (n,m, q, χ)-LWE,
parameterized by n,m, q, χ, states that the following distributions are computa-
tionally indistinguishable:{

(A, s> ·A + e) :
A← Zn×mq ,
s← Znq , e← χm

}
≈c
{

(A,u) :
A← Zn×mq ,
u← Zmq

}
Under a quantum reduction, Regev [34] showed that for certain noise distri-

butions, LWE is as hard as worst case lattice problems such as the decisional
approximate shortest vector problem (GapSVP) and approximate shortest in-
dependent vectors problem (SIVP). The following theorem statement is from
Peikert’s survey [33].

Theorem 2 ([34]). For any m ≤ poly(n), any q ≤ 2poly(n), and any discretized
Gaussian error distribution χ of parameter α·q ≥ 2·

√
n, solving (n,m, q, χ)-LWE

is as hard as quantumly solving GapSVPγ and SIVPγ on arbitrary n-dimensional

lattices, for some γ = Õ(n/α).

Later works [32, 15] showed classical reductions from LWE to GapSVPγ .
Given the current state of art in lattice algorithms, GapSVPγ and SIVPγ are

believed to be hard for γ = Õ(2n
ε

), and therefore (n,m, q, χ)-LWE is believed to
be hard for Gaussian error distributions χ with parameter 2−n

ε · q · poly(n).

LWE with Short Secrets. In this work, we will be using a variant of the LWE
problem called LWE with Short Secrets. In this variant, introduced by Apple-
baum et al. [6], the secret vector is also chosen from the noise distribution χ.
They showed that this variant is as hard as LWE for sufficiently large number of
samples m.

Assumption 2 (LWE with Short Secrets) Let n, m and q be positive inte-
gers and χ a noise distribution on Z. The LWE with Short Secrets assumption
(n,m, q, χ)-LWE-ss, parameterized by n,m, q, χ, states that the following distri-
butions are computationally indistinguishable 4:{

(A,S ·A + E) :
A← Zn×mq ,
S← χn×n,E← χn×m

}
≈c
{

(A,U) :
A← Zn×mq ,
U← Zn×mq

}
.

4 Applebaum et al. showed that {(A, s> ·A + e) : A ← Zn×mq , s ← χn, e ← χm} ≈c
{(A,u) : A ← Zn×mq ,u ← Zmq }, assuming LWE is hard. However, by a simple
hybrid argument, we can replace vectors s, e,u with matrices S,E,U of appropriate
dimensions.

8

Lattices with Trapdoors. Lattices with trapdoors are lattices that are statistically
indistinguishable from randomly chosen lattices, but have certain ‘trapdoors’
that allow efficient solutions to hard lattice problems.

Definition 1. A trapdoor lattice sampler consists of algorithms TrapGen and
SamplePre with the following syntax and properties:

– TrapGen(1n, 1m, q) → (A, TA): The lattice generation algorithm is a ran-
domized algorithm that takes as input the matrix dimensions n,m, modulus
q, and outputs a matrix A ∈ Zn×mq together with a trapdoor TA.

– SamplePre(A, TA,u, σ) → s: The presampling algorithm takes as input a
matrix A, trapdoor TA, a vector u ∈ Znq and a parameter σ ∈ R (which
determines the length of the output vectors). It outputs a vector s ∈ Zmq .

These algorithms must satisfy the following properties:

1. Correct Presampling: For all vectors u, parameters σ, (A, TA)← TrapGen(1n, 1m, q),
and s← SamplePre(A, TA,u, σ), A · s = u and ‖s‖∞ ≤

√
m · σ.

2. Well Distributedness of Matrix: The following distributions are statistically
indistinguishable:

{A : (A, TA)← TrapGen(1n, 1m, q)} ≈s {A : A← Zn×mq }.

3. Well Distributedness of Preimage: For all (A, TA) ← TrapGen(1n, 1m, q),
if σ = ω(

√
n · log q · logm), then the following distributions are statistically

indistinguishable:

{s : u← Znq , s← SamplePre(A, TA,u, σ)} ≈s DZm,σ.

These properties are satisfied by the gadget-based trapdoor lattice sampler of
[30].

2.2 Branching Programs

Branching programs are a model of computation used to capture space-bounded
computations [12, 9]. In this work, we will be using a restricted notion called
permutation branching programs.

Definition 2 (Permutation Branching Program). A permutation branch-
ing program of length L, width w and input space {0, 1}n consists of a sequence
of 2L permutations σi,b : [w] → [w] for 1 ≤ i ≤ L, b ∈ {0, 1}, an input selec-
tion function inp : [L] → [n], an accepting state acc ∈ [w] and a rejection state
rej ∈ [w]. The starting state st0 is set to be 1 without loss of generality. The
branching program evaluation on input x ∈ {0, 1}n proceeds as follows:

– For i = 1 to L,
• Let pos = inp(i) and b = xpos. Compute sti = σi,b(sti−1).

– If stL = acc, output 1. If stL = rej, output 0, else output ⊥.

9

In a remarkable result, Barrington [9] showed that any circuit of depth d can
be simulated by a permutation branching program of width 5 and length 4d.

Theorem 3 ([9]). For any boolean circuit C with input space {0, 1}n and depth
d, there exists a permutation branching program BP of width 5 and length 4d such
that for all inputs x ∈ {0, 1}n, C(x) = BP(x).

Looking ahead, the permutation property is crucial for our construction in
Section 4. We will also require that the permutation branching program has
a fixed input-selector function inp. In our construction, we will have multiple
branching programs, and all of them must read the same input bit at any level
i ≤ L.

Definition 3. A permutation branching program with input space {0, 1}n is said
to have a fixed input-selector inp(·) if for all i ≤ L, inp(i) = i mod n.

Any permutation branching program of length L and input space {0, 1}n can
be easily transformed to a fixed input-selector branching program of length nL.
In this work, we only require that all branching programs share the same input
selector function inp(·). The input selector which satisfies inp(i) = i mod n is
just one possibility, and we stick with it for simplicity.

2.3 Symmetric Key Encryption and Pseudorandom Functions

Symmetric Key Encryption. A symmetric key encryption scheme SKBE with
message spaceM consists of algorithms Setup, Enc, Dec with the following syn-
tax.

– Setup(1λ)→ sk. The setup algorithm takes as input the security parameter
and outputs secret key sk.

– Enc(sk,m ∈M)→ ct. The encryption algorithm takes as input a secret key
sk and a message m ∈M. It outputs a ciphertext ct.

– Dec(sk, ct)→ y ∈ M. The decryption algorithm takes as input a secret key
sk, ciphertext ct and outputs a message y ∈M.

A symmetric key encryption scheme must satisfy correctness and IND-CPA
security.

Correctness: For any security parameter λ, message m ∈M, sk← Setup(1λ),

Pr[Dec(sk,Enc(sk,m)) 6= m] < negl(λ)

where the probability is over the random coins used during encryption and de-
cryption.

Security : In this work, we will be using the IND-CPA security notion.

10

Definition 4. Let SKBE = (Setup, Enc, Dec) be a symmetric key encryption
scheme. The scheme is said to be IND-CPA secure if for all security parameters λ,
all PPT adversaries A, Advind-cpaSKBE,A(λ) = |Pr[A wins the IND-CPA game]− 1/2|
is negligible in λ, where the IND-CPA experiment is defined below:

– The challenger chooses sk← Setup(1λ), and bit b← {0, 1}.
– The adversary queries the challenger for encryptions of polynomially many

messages mi ∈ M, and for each query mi, the challenger sends ciphertext
cti ← Enc(sk,mi) to A.

– The adversary sends two challenge messages m∗0,m
∗
1 to the challenger. The

challenger sends ct∗ ← Enc(sk,m∗b) to A.
– Identical to the pre-challenge phase, the adversary makes polynomially many

encryption queries and the challenger responds as before.
– A sends its guess b′ and wins if b = b′.

Pseudorandom Functions. A family of keyed functions PRF = {PRFλ}λ∈N is
a pseudorandom function family with key space K = {Kλ}λ∈N, domain X =
{Xλ}λ∈N and co-domain Y = {Yλ}λ∈N if function PRFλ : Kλ × Xλ → Yλ
is efficiently computable, and satisfies the pseudorandomness property defined
below.

Definition 5. A pseudorandom function family PRF is secure if for every PPT
adversary A, there exists a negligible function negl(·) such that∣∣∣Pr[APRFλ(s,·)(1λ) = 1]− Pr[AO(·)(1λ) = 1]

∣∣∣ < negl(λ),

where O is a random function and the probability is taken over the choice of
seeds s ∈ Kλ and the random coins of the challenger and adversary.

Theorem 4. (PRFs in NC1 [7]) For some σ > 0, suitable universal constant
C > 0, modulus p ≥ 2, any m = poly(n), let χ = DZ,σ and q ≥ p · k(Cσ

√
n)k ·

nω(1), assuming hardness of (n,m, q, χ)-LWE, there exists a function family PRF
consisting of functions from {0, 1}k to Zm×np that satisfies pseudorandomness

property as per Definition 5 and the entire function can be computed in TC0 ⊆
NC1.

From Theorems 3 and 4, the following corollary is immediate.

Corollary 2. Assuming hardness of (n,m, q, χ)-LWE with parameters as in The-
orem 4, there exists a family of branching programs BP = {BPλ}λ∈N with input
space {0, 1}λ×{0, 1}λ of width 5 and length poly(λ) that computes a pseudoran-
dom function family.

3 Circular Security for Symmetric-Key Bit Encryption
and Framework for Generating Separations

In this section, we define the notion of circular security for symmetric-key bit-
encryption schemes. We also extend the BHW framework [10] to separate IND-
CPA and circular security for bit-encryption in the symmetric-key setting. Infor-
mally, the circular security definition requires that it should be infeasible for any

11

adversary to distinguish between encryption of the secret key and encryption
of all-zeros string. In the bit-encryption case, each secret key bit is encrypted
separately and independently.

Definition 6. (1-Circular Security for Bit Encryption) Let SKBE = (Setup,
Enc, Dec) be a symmetric-key bit-encryption scheme. Consider the following
security game:

– The challenger chooses sk← Setup(1λ) and b← {0, 1}.
– The adversary is allowed to make following queries polynomially many times:

1. Encryption Query. It queries the challenger for encryption of message
m ∈ {0, 1}.

2. Secret Key Query. It queries the challenger for encryption of ith bit
of the secret key sk.

– The challenger responds as follows:

1. Encryption Query. For each query m, it computes the ciphertext ct←
Enc(sk,m), and sends ct to the adversary.

2. Secret Key Query. For each query i ≤ |sk|, if b = 0, it sends the
ciphertext ct∗ ← Enc(sk, ski), else it sends ct∗ ← Enc(sk, 0).

– The adversary sends its guess b′ and wins if b = b′.

The scheme SKBE is said to be circular secure if it satisfies semantic secu-
rity (Definition 4), and for all security parameters λ, all PPT adversaries A,
Advbit-circSKBE,A(λ) = |Pr[A wins]− 1/2| is negligible in λ.

Next, we extend the BHW cycle tester framework for bit-encryption schemes.

3.1 Bit-Encryption Cycle Tester Framework

In a recent work, Bishop et al. [10] introduced a generic framework for separat-
ing IND-CPA and circular security. In their cycle tester framework, there are
four algorithms - Setup, KeyGen, Encrypt and Test. The setup, key generation
and encryption algorithms behave same as in any standard encryption scheme.
However, the cycle tester does not contain a decryption algorithm, but provides
a special testing algorithm. Informally, the testing algorithm takes as input a
sequence of ciphertexts, and outputs 1 if the sequence corresponds to an encryp-
tion cycle, else it outputs 0. The security requirement is identical to semantic
security for encryption schemes.

The BHW cycle tester framework is a useful framework for separating IND-
CPA and n-circular security as it allows us to focus on building the core testing
functionality without worrying about providing decryption. The full decryption
capability is derived by generically combining a tester with a normal encryption
scheme. The BHW framework does not directly work for generating circular se-
curity separations for bit-encryption. Below we provide a bit-encryption cycle
tester framework for symmetric-key encryption along the lines of BHW frame-
work.

12

Definition 7. (Bit-Encryption Cycle Tester) A symmetric-key cycle tester Γ =
(Setup,Enc,Test) for message space {0, 1} and secret key space {0, 1}s is a tuple
of algorithms (where s = s(λ)) specified as follows:

– Setup(1λ) → sk. The setup algorithm takes as input the security parameter
λ, and outputs a secret key sk ∈ {0, 1}s.

– Enc(sk,m ∈ {0, 1}) → ct. The encryption algorithm takes as input a secret
key sk and a message m ∈ {0, 1}, and outputs a ciphertext ct.

– Test(ct) → {0, 1}. The testing algorithm takes as input a sequence of s
ciphertexts ct = (ct1, . . . , cts), and outputs a bit in {0, 1}.

The algorithms must satisfy the following properties.

1. (Testing Correctness) There exists a polynomial p(·) such that for all se-
curity parameters λ, the Test algorithm’s advantage in distinguishing se-
quence of encryptions of secret key bits from encryptions of zeros, denoted
by Advbit-circSKBE,Test(λ) (Definition 6), is at least 1/p(λ).

2. (IND-CPA security) Let Π = (Setup,Enc, ·) be an encryption scheme with
empty decryption algorithm. The scheme Π must satisfy the IND-CPA se-
curity definition (Definition 4).

Next, we prove that given a cycle tester, we can transform any semantically se-
cure bit-encryption scheme to another semantically secure bit-encryption scheme
that is circular insecure.

3.2 Circular Security Separation from Cycle Testers

In this section, we prove the following theorem.

Theorem 5. (Separation from Cycle Testers) If there exists an IND-CPA se-
cure symmetric-key bit-encryption scheme Π for message space {0, 1} and secret
key space {0, 1}s1 and symmetric-key bit-encryption cycle tester Γ for message
space {0, 1} and secret key space {0, 1}s2 (where s1 = s1(λ) and s2 = s2(λ)),
then there exists an IND-CPA secure symmetric-key bit-encryption scheme Π ′

for message space {0, 1} and secret key space {0, 1}s1+s2 that is circular insecure.

The proof of the above theorem is provided in the full version of the paper.

4 Private Key Bit-Encryption Cycle Tester

In this section, we present our Bit-Encryption Cycle Tester E = (Setup,Enc,Test)
satisfying Definition 7. Before describing the formal construction, we will give
an outline of our construction and describe intuitively how the cycle testing
algorithm works.

13

Outline of Our Construction: To begin with, let us first discuss the tools required
for our bit-encryption cycle tester. The central primitive in our construction is
a low depth pseudorandom function family. More specifically, we require a pseu-
dorandom function PRF : {0, 1}λ × {0, 1}λ → {0, 1} (the first input is the PRF
key, and the second input is the PRF input) such that for all i < 2λ, PRF(·, i)5
can be computed using a permutation branching program of polynomial length
and polynomial width. Recall, from Corollary 2, there exist PRF constructions
[7] that satisfy this requirement. Let BP(i) denote a branching program of length

L and width w computing PRF(·, i). Each program BP(i) has an accept state

acc(i) ∈ [w] and a reject state rej(i) ∈ [w]. We will also require that at each level

j ≤ L, all branching programs BP(i) read the same input bit.

The setup algorithm first chooses the LWE parameters: the matrix dimen-
sions n,m, LWE modulus q and noise χ. It also chooses a parameter nbp which
is sufficiently larger than n,m and denotes the number of branching programs.
Next, it chooses a PRF key s. Finally, for each state of each branching program,

it chooses a ‘random looking’ matrix. In particular, it chooses matrices B
(i)
j,k for

the state k at level j in BP(i), and all these matrices have certain ‘trapdoors’.
The top level matrices corresponding to the accept/reject state satisfy a spe-

cial constraint: for each branching program BP(i), choose the matrix B
(i)

L,acc(i)
if

PRF(s, i) = 1, else choose B
(i)

L,rej(i)
, and these chosen matrices must sum to 0.

The secret key consists of the PRF key s and the matrices, together with their
trapdoors.

Next, we describe the encryption algorithm. The ciphertexts are designed
such that given an encryption of the secret key, we can combine the components
appropriately in order to compute, for each i ≤ nbp, a noisy approximation of

either B
(i)

L,acc(i)
or B

(i)

L,rej(i)
depending on PRF(s, i). If PRF(s, i) = 1, then the

output of this combination procedure is B
(i)

L,acc(i)
, else it is B

(i)

L,rej(i)
. As a result,

adding these matrices results in the zero matrix. On the other hand, the same
combination procedure with encryptions of zeroes gives us a matrix with large
entries, thereby allowing us to break circular security. Let us now consider a
simple case where we have two branching programs BP(1), BP(2), each of length
L = 4, width w = 3 and reading two bit inputs (see Figure 1).

Let us consider an encryption of a bit b. Each ciphertext consists of 4 sub-
ciphertexts, one for each level. At each level, each sub-ciphertext consists of 2
sub-sub-ciphertexts, one for each branching program. The sub-sub-ciphertext

ct
(i)
j at level j for program BP(i) has the following ‘propagation’ property: for

any state matrix B
(i)
j−1,k corresponding to state k at level j−1 in program BP(i),

B
(i)
j−1,k · ct

(i)
j = B

(i)
j,σb(k)

. In our example (see Figure 1), if

ct =
((

ct
(1)
1 , ct

(2)
1

)
,
(
ct

(1)
2 , ct

(2)
2

)
,
(
ct

(1)
3 , ct

(2)
3

)
,
(
ct

(1)
4 , ct

(2)
4

))
5 Here i is represented as a binary string of length λ

14

Fig. 1: Branching programs BP(1) and BP(2).

is an encryption of 0, then B
(1)
2,3 · ct

(1)
3 = B

(1)
3,1. To achieve this, we use the lattice

trapdoors. Finally, the ciphertext also contains the base level starting matrices

{B(i)
0,1}.
To see how the test algorithm works, let us consider an encryption of the

secret key. Recall, due to the cancellation property of the top level matrices, all

we need is a means to compute B
(i)

L,acc(i)
if BP(i)(x) = 1, else B

(i)

L,rej(i)
if BP(i)(x) =

0. Let us consider BP(2) in our example, and suppose we have encryptions ct[1]
and ct[2] of bits 0 and 1 respectively. Now, from the propagation property, it

follows that B
(2)
0,1 · ct[1]

(2)
1 = B

(2)
1,3. Similarly, B

(2)
1,3 · ct[2]

(2)
2 = B

(2)
2,3. Continuing

this way, we can see that B
(2)
0,1 · ct[1]

(2)
1 · ct[2]

(2)
2 · ct[1]

(2)
3 · ct[2]

(2)
4 = B

(2)
4,3. As a

result, we have our desired B2
4,rej(2) . We can add the matrices computed for each

i ≤ nbp, and see if they sum up to the zero matrix.

For proving security under LWE, we need to make some changes. Instead
of having an exact propagation property, we will have an approximate version,

where for any state matrix B
(i)
j,k, B

(i)
j,k · ct

(i)
j+1 ≈ Sj+1 ·B(i)

j+1,σb(k)
. Here Sj+1 is a

random low norm matrix chosen during encryption, and is common for all sub-
sub-ciphertexts at level j + 1. As a result, given an encryption of the secret key,

at the top level, we either get an approximation of T · B(i)

L,acc(i)
or T · B(i)

L,rej(i)
.

15

Since T is a low norm matrix, adding the top-level outputs will be a low norm
matrix if we have an encryption of the secret key.

4.1 Our Construction

Let PRF = {PRFλ}λ∈N be a family of secure pseudorandom functions, where
PRFλ : {0, 1}λ × {0, 1}λ → {0, 1} and for all i ∈ {0, 1}λ, PRFλ(·, i) can be

computed by a fixed-input selector permutation branching program BP(i) of
length L = `-bp(λ) and width w = w-bp(λ), where `-bp(·) and w-bp(·) are fixed
polynomials and

BP(i) =

({
σ
(i)
j,b : [w]→ [w]

}
j∈[L],b∈{0,1}

, acc(i) ∈ [w], rej(i) ∈ [w]

)
.

Note that BP(i) are fixed-input selector permutation branching programs, there-
fore they share the same input selector function inp(·) defined as inp(i) = i mod n
(see Definition 3). For simplicity of notation, we will drop the dependence on
security parameter λ when it is clear from the context. Fix any ε < 1/2. Below
we describe our construction.

– Setup(1λ)→ sk. The setup algorithm first chooses the following parameters:
matrix dimensions n, m, LWE modulus q, parameter σ for the Gaussian
noise distribution χ and an additional parameter nbp (which denotes the
number of branching programs). Let L = `-bp(λ) and w = w-bp(λ). Let
params = (n,m, q, σ, nbp). The different parameters must satisfy the follow-
ing constraints:
• n ≥ λ (for LWE security)
• m = Ω(n · w · log q) (for TrapGen)
• χ = DZ,σ and σ/q ≥ poly(n)/2n

ε

(for LWE noise/modulus ratio to be
greater than poly(n)/2n

ε

)

• nbp · L · (m · σ)
L
< q/4 (for the correctness of our Test algorithm)

• nbp = Ω (m · n · log q) (for applying Leftover Hash Lemma)

One possible setting of parameters is as follows: set n such that w ·L ≤ nε/2,
m = n · w · log q · log n, σ = nc for some constant c, q = 2n

ε

/nc and
nbp = m · n · log q · log n.

Next, it chooses a random string s ← {0, 1}λ and computes, for i = 1
to nbp, ti = PRF(s, i).6 It then samples nbp · L matrices of dimensions

(w · n) × m along with their trapdoors (independently) as (B
(i)
j , T

(i)
j) ←

TrapGen(1w·n, 1m, q) for i = 1, . . . , nbp and j = 0, . . . , L− 1.

It also chooses nbp uniformly random matrices B
(i)
L of dimensions (w ·n)×m,

such that the following constraint is satisfied∑
i : ti=0

B
(i)

L,rej(i)
+

∑
i : ti=1

B
(i)

L,acc(i)
= 0.

6 Here, i is represented as a λ bit string.

16

Each matrix B
(i)
j ∈ Zw·n×mq can be parsed as follows

B
(i)
j =

B

(i)
j,1
...

B
(i)
j,w

where matrices B

(i)
j,k ∈ Zn×mq for k ≤ w. Intuitively, the matrix B

(i)
j,k corre-

sponds to state k at level j of branching program BP(i).

The algorithm sets secret key as sk =

(
s,
{

B
(i)
j , T

(i)
j

}
i,j
, params

)
.

– Encrypt(sk,m ∈ {0, 1}) → ct. The encryption algorithm takes as input the

secret key sk and message m, where sk =

(
s,
{

B
(i)
j , T

(i)
j

}
i,j
, params

)
. It

runs the sub-encryption algorithm L times (SubEncrypt is defined in Figure
2) to compute L sub-ciphertexts.
For level = 1 to L, it computes the sub-ciphertexts at level level as

ctlevel =
(
ct

(1)
level, . . . , ct

(nbp)
level

)
← SubEncrypt(sk,m, level), ∀ level ∈ {1, . . . , L} .

SubEncrypt

Input: Secret key sk = (s, {B(i)
j , T

(i)
j }i≤nbp,j≤L, params), message m ∈

{0, 1}, level level ∈ [L]
Output: Sub-ciphertext ctlevel.

1. Choose matrices S← χn×n and E(i) ← χw·n×m for i ≤ nbp.
2. Set matrix D(i) as a permutation of the matrix blocks of B

(i)
level

according to the permutation σ
(i)
level,m(·). More formally, for i ≤

nbp, set

D(i) =

B

(i)

level,σ
(i)
level,m

(1)

...

B
(i)

level,σ
(i)
level,m

(w)

 .
3. Set C(i) = (Iw ⊗ S) ·D(i) + E(i) for i ≤ nbp.

4. Compute ct(i) ← SamplePre(B
(i)
level−1, T

(i)
level−1, σ,C

(i)) for i ≤ nbp.

5. Output ctlevel =
(
ct(1), . . . , ct(nbp)

)
.

Fig. 2: Routine SubEncrypt

Finally, it outputs the ciphertext as ct =

({
B

(i)
0,1

}
i
,
{
ct

(i)
j

}
i,j

)
.

17

– Test(ct[1], . . . , ct[λ], . . . , ct[|sk|])→ {0, 1}. The testing algorithm takes as in-
put a sequence of |sk| ciphertexts (ct[1], . . . , ct[λ], . . .). We will assume the
algorithm also knows the LWE modulus q. It parses the first λ ciphertexts as

ct[k] =

({
B

(i)
0,1

}
i
,
{
ct[k]

(i)
j

}
i,j

)
for k ≤ λ. Next, it computes the following

sum =

nbp∑
i=1

B
(i)
0,1 ·

L∏
j=1

ct[inp(j)]
(i)
j .

If each component of sum lies in (−q/4, q/4), then the algorithm outputs 1 to
indicate a cycle. Otherwise it outputs 0. We would like to remind the reader
that the starting state st0 of each branching program BP(i) is 1 (assumed
w.l.o.g. in Section 2.2), therefore the testing algorithm only requires the

matrices B
(i)
0,1 to start oblivious evaluation of each branching program.

4.2 Proof of Correctness

In this section, we will prove correctness of our bit-encryption cycle tester. Con-
cretely, we show that the Test algorithm distinguishes between a sequence of
|sk| ciphertexts where kth ciphertext encrypts kth bit of the secret key, and a
sequence of encryptions of zeros with non-negligible probability. First, we show
that if Test algorithm is given encryptions of secret key bits, then it outputs 1
with all-but-negligible probability. Next, we show that if Test algorithm is run on
encryptions of zeros, then it outputs 0 with all-but-negligible probability. Using
these two facts, correctness of our cycle tester follows.

Testing Encryptions of Key Bits Let ct = (ct[1], . . . , ct[λ], . . .) be the se-
quence of |sk| ciphertexts where kth ciphertext encrypts bit skk, and it can be

parsed as ct[k] =

({
B

(i)
0,1

}
i
,
{
ct[k]

(i)
j

}
i,j

)
. Recall that the first λ bits of secret

key sk correspond to the PRF key s. Therefore, ct[k] is an encryption of the bit sk
for k ≤ λ. Also, ith branching program BP(i) computes the function PRFλ(·, i).
This could be equivalently stated as

∀ i ≤ nbp, σ
(i)
L,bL

(
· · ·
(
σ
(i)
1,b1

(1)
)
· · ·
)

=

{
rej(i) if PRF(s, i) = 0,

acc(i) if PRF(s, i) = 1

where bj = sinp(j) for j ≤ L. Let st
(i)
j denote the state of the ith branching

program after j steps. The initial state st
(i)
0 is 1 for all programs, and jth state

can be computed as st
(i)
j = σ

(i)
j,sinp(j)

(st
(i)
j−1).

Note that every ciphertext ct[k] consists of L sub-ciphertexts ct[k]j for each
level j ≤ L, and each sub-ciphertext consists of nbp short matrices, each for a
separate branching program. For constructing each sub-ciphertext, exactly one

18

short secret matrix Sj is chosen, and it is shared across all nbp branching pro-
grams for generating LWE-type samples. It is crucial for testability that Sj ’s
stay same for all branching programs.

First, we will introduce some notations for this proof.

– S[k]j : matrix chosen at level j for computing ct[k]
(i)
j

– E[k]
(i)
j : error matrix chosen at level j, program i for computing ct[k]

(i)
j

– inpj = inp(j) : the input bit read at level j of the branching program

– Sj = S[inpj]j , E
(i)
j = E[inpj]

(i)
j , CT

(i)
j = ct[inpj]

(i)
j

– Γj∗ =
∏j∗

j=1 Sj

– ∆
(i)
j∗ = B

(i)
0,1 ·

(∏j∗

j=1 CT
(i)
j

)
, ∆̃

(i)

j∗ = Γj∗ ·B(i)

j∗,st
(i)

j∗
, Err

(i)
j∗ = ∆

(i)
j∗ − ∆̃

(i)

j∗

The Test algorithm checks that
∥∥∥∑nbp

i=1 ∆
(i)
L

∥∥∥
∞
< q/4. Also, note that

nbp∑
i=1

∆̃
(i)

L =

nbp∑
i=1

ΓL ·B(i)

L,st
(i)
L

= ΓL ·
nbp∑
i=1

B
(i)

L,st
(i)
L

= 0.

Thus, it would be sufficient to show that, with high probability, Err
(i)
L = ∆

(i)
L − ∆̃

(i)

L

is bounded. We will show that for all i ≤ nbp, j∗ ≤ L, Err
(i)
j∗ is bounded.

Lemma 2. ∀ i ∈ {1, . . . , nbp} , j∗ ∈ {1, . . . , L} ,
∥∥∥Err

(i)
j∗

∥∥∥
∞
≤ j∗ · (m · σ)

j∗

with overwhelming probability.

Proof. The above lemma is proven by induction over j∗, and all arguments hold
irrespective of the value of i. Therefore, for simplicity of notation, we will drop

the dependence on i. We will slightly abuse the notation and use B
(i)

j,σ
(i)
j,m

to

denote the following matrix.

B
(i)

j,σ
(i)
j,m

=

B

(i)

j,σ
(i)
j,m(1)

...

B
(i)

j,σ
(i)
j,m(w)

 .
Before proceeding to our inductive proof, we would like to note the following
fact.

Fact 1 For all j ≤ L, CT
(i)
j ← SamplePre(B

(i)
j−1, T

(i)
j−1, σ,C

(i)
j), where C

(i)
j =

(Iw ⊗ Sj) ·B(i)

j,σ
(i)
j,m

+ E
(i)
j and m = sinpj .

19

Base case (j∗ = 1). We know that ∆1 = B0,1 · (CT1). Therefore, using Fact 1,

we can say that ∆1 = S1 ·B1,st1 + E1,1 = ∆̃1 + E1,1. Note that E1,1 is an n×m
submatrix consisting of first n rows of E1. Thus, we could write the following

‖Err1‖∞ =
∥∥∥∆1 − ∆̃1

∥∥∥
∞

= ‖E1,1‖∞ ≤ m · σ.

This completes the proof of base case. For the induction step, we assume that
the above lemma holds for j∗ − 1, and show that it holds for j∗ as well.

Induction Step. We know that ∆j∗ = ∆j∗−1 · (CTj∗). Also, ∆j∗−1 = ∆̃j∗−1 +
Errj∗−1. So, we could write the following

∆j∗ = ∆̃j∗−1 · CTj∗ + Errj∗−1 · CTj∗
= Γj∗−1 ·

(
Bj∗−1,stj∗−1

· CTj∗
)

+ Errj∗−1 · CTj∗
= Γj∗−1 ·

(
Sj∗ ·Bj∗,stj∗ + Ej∗,stj∗−1

)
+ Errj∗−1 · CTj∗

= ∆̃
(i)

j∗ + Γj∗−1 ·Ej∗,stj∗−1
+ Errj∗−1 · CTj∗

Here, Ej∗,stj∗−1
is an n×m submatrix of Ej∗ . Finally, we can bound Errj∗

as follows

‖Errj∗‖∞ =
∥∥∥∆j∗ − ∆̃j∗

∥∥∥
∞

=
∥∥Γj∗−1 ·Ej∗,stj∗−1

+ Errj∗−1 · CTj∗
∥∥
∞

≤
∥∥Γj∗−1 ·Ej∗,stj∗−1

∥∥
∞ + ‖Errj∗−1 · CTj∗‖∞

≤ (n · σ)
j∗−1 ·m · σ + (j∗ − 1) · (m · σ)j

∗−1 ·m · σ ≤ j∗ · (m · σ)j
∗

This completes the proof.

Using Lemma 2, we can claim that for all i ≤ nbp,

∥∥∥∥∆(i)
L − ∆̃

(i)

L

∥∥∥∥
∞
≤ L ·

(m · σ)
L

. Therefore,

‖sum‖∞ =

∥∥∥∥∥
nbp∑
i=1

∆
(i)
L

∥∥∥∥∥
∞

=

∥∥∥∥∥
nbp∑
i=1

∆
(i)
L −

nbp∑
i=1

∆̃
(i)

L

∥∥∥∥∥
∞

≤ nbp · L · (m · σ)
L
< q/4

Therefore, for our setting of parameters, if ciphertexts encrypt the secret key
bit-by-bit, then Test algorithm outputs 1 with high probability.

Testing Encryptions of Zeros

Lemma 3. If PRF is a family of secure pseudorandom functions and challenge
ciphertexts are encryptions of zeros, then Test outputs 0 with all-but-negligible
probability.

20

Proof. Since the ciphertexts are encryptions of zeros, each branching program
BP(i) computes the the value t′i = PRFλ(0, i). Also, with high probability, t′i
and ti can not be equal for all i ≤ λ as otherwise PRFλ will not be a secure
pseudorandom function. Therefore, with high probability,

s̃um =

nbp∑
i=1

∆̃
(i)

L =

 L∏
j=1

Sj

 · nbp∑
i=1

B
(i)

L,st
(i)
L

6= 0.

Now,
∑nbp
i=1 B

(i)

L,st
(i)
L

will be a uniformly random matrix in Zn×mq as t′ 6= t and

B
(i)

L,st
(i)
L

are randomly chosen for i ≤ nbp. Let S denote the product
∏L
j=1 Sj and

B denote the sum
∑nbp
i=1 B

(i)

L,st
(i)
L

. We can write s̃um as s̃um = S ·B, where B is a

random n×m matrix. Thus, s̃um is a random n×m matrix as S, product of L
full rank matrices, is also full rank. So, with high probability, at least one entry
in matrix sum will have absolute value > q/4 which implies that Test outputs 0.

4.3 IND-CPA Proof

We will now show that the construction described above is IND-CPA secure. The
adversary queries for ciphertexts, and each ciphertext consists of L · nbp sub-
sub-ciphertexts. In our proof, we will gradually switch the sub-sub-ciphertexts to
random low-norm (Gaussian) matrices, starting with the top-level sub-ciphertext
and moving down. Once all sub-ciphertexts are switched to Gaussian matrices,
the adversary has no information about the challenge message.

Our proof proceeds via a sequence of hybrid games. First, we switch the
PRF evaluation to a truly random nbp bit string. Next, we switch the top level
matrices to truly random matrices. This is possible since nbp is much larger
than n,m, and as a result, we can use Leftover Hash Lemma. Once all top level
matrices are truly random, we can make the top-level sub-sub-ciphertexts to
be random low norm (Gaussian) matrices. This follows from the LWE security,
together with the Property 3 of lattice trapdoors. Once the top level sub-sub-
ciphertexts are Gaussian, we do not require the trapdoors at level L − 1. As a
result, we can choose uniformly random matrices at level L−1. This will allow us
to switch the sub-sub-ciphertexts at level L−1 to Gaussian matrices. Proceeding
this way, we can switch all sub-sub-ciphertexts to Gaussian matrices.

We will first define the sequence of hybrid games, and then show that they
are computationally indistinguishable. The first hybrid corresponds to the orig-
inal security game. In the subsequent hybrids, we only show the steps that are
modified.

Sequence of Hybrid Games

Game 0: This corresponds to the original security game.

21

– Setup Phase
1. The challenger first chooses the LWE parameters n, m, q, σ, χ and nbp.

Recall L = `-bp(λ) and w = w-bp(λ).
2. Next, it chooses a uniformly random string s ← {0, 1}λ and sets ti =

PRF(s, i) for i ≤ nbp.

3. For i = 1 to nbp and j = 0 to L−1, it chooses (B
(i)
j , T

(i)
j)← TrapGen(1w·n, 1m, q).

4. It chooses nbp uniformly random matrices B
(i)
L of dimensions w · n×m,

such that the following constraint is satisfied∑
i : ti=0

B
(i)

L,rej(i)
+

∑
i : ti=1

B
(i)

L,acc(i)
= 0.

5. Finally, the challenger sets sk =

(
s,
{

B
(i)
j , T

(i)
j

}
i,j

)
.

– Pre-Challenge Query Phase
1. The adversary requests polynomially many encryption queries. The chal-

lenger responds to each encryption query as follows.
For j = 1 to L, the challenger computes ctj ← SubEncrypt(sk,m, j) and

sends ct =
({

B
(i)
0,1

}
i
, (ct1, . . . , ctL)

)
.

– Challenge Phase The challenger chooses a bit b ← {0, 1}, and computes
the challenge ciphertext identical to any pre-challenge query ciphertext for
bit b.

– Post-Challenge Query Phase This is identical to the pre-challenge query
phase.

– Guess The adversary finally sends the guess b′, and wins if b = b′.

Game 1: This hybrid experiment is similar to the previous one, except that the
string t = (t1, . . . , tnbp) is a uniformly random nbp bit string. Also, in place of
the PRF key in the secret key, we have an empty string ⊥. Note that this does
not affect the encryption algorithm since it works oblivious to the PRF key (the
PRF key is not used during encryption).

– Setup Phase
1. The challenger first chooses the LWE parameters n, m, q, σ, χ and nbp.

Recall L = `-bp(λ) and w = w-bp(λ).
2. Next, it chooses t← {0, 1}nbp.
3. For i = 1 to nbp and j = 0 to L−1, it chooses (B

(i)
j , T

(i)
j)← TrapGen(1w·n, 1m, q).

4. It chooses nbp uniformly random matrices B
(i)
L of dimensions w · n×m,

such that the following constraint is satisfied∑
i : ti=0

B
(i)

L,rej(i)
+

∑
i : ti=1

B
(i)

L,acc(i)
= 0.

5. Finally, the challenger sets sk =

(
⊥,
{

B
(i)
j , T

(i)
j

}
i,j

)
.

22

Game 2: In this hybrid experiment, the challenger chooses the top-level matrices

B
(i)
L uniformly at random.

– Setup Phase
1. The challenger first chooses the LWE parameters n, m, q, σ, χ and nbp.

Recall L = `-bp(λ) and w = w-bp(λ).
2. Next, it chooses t← {0, 1}nbp.
3. For i = 1 to nbp and j = 0 to L−1, it chooses (B

(i)
j , T

(i)
j)← TrapGen(1w·n, 1m, q).

4. For i = 1 to nbp, it chooses uniformly random matrices B
(i)
L ← Zw·n×mq

of dimensions w · n×m.

5. Finally, the challenger sets sk =

(
⊥,
{

B
(i)
j , T

(i)
j

}
i,j

)
.

Next, we have a sequence of 3L hybrid experiments Game 2.level. {1, 2, 3} for
level = L to 1.

Game 2.level.1: In hybrids Game 2.level.1, the sub-ciphertexts corresponding to
levels greater than level are Gaussian matrices. At level level, the sub-ciphertext
computation does not use SubEncrypt routine. Instead, it chooses a uniformly
random matrix and computes the SamplePre of the uniformly random matrix.

Also, for levels greater than level − 1, matrices B
(i)
j are chosen uniformly at

random instead of being sampled using TrapGen.

– Pre-Challenge Query Phase
1. The adversary requests polynomially many encryption queries. The chal-

lenger responds to each encryption query as follows.
2. For j = 1 to level−1, the challenger computes ctj ← SubEncrypt(sk,m, j).

3. For j = level, the challenger chooses uniformly random matrix C
(i)
j ← Zw·n×mq

and sets ct
(i)
j ← SamplePre(B

(i)
j−1, T

(i)
j−1, σ,C

(i)
j). It sets ctj = (ct

(1)
j , . . . , ct

(nbp)
j).

4. For i = 1 to nbp and j = level + 1 to L, the challenger chooses ct
(i)
j ←

χm×m. It sets ctj = (ct
(1)
j , . . . , ct

(nbp)
j).

5. Finally, it sets ct =
({

B
(i)
0,1

}
i
, (ct1, . . . , ctL)

)
and sends ct to the adver-

sary.

Game 2.level.2: In hybrids Game 2.level.2, the sub-ciphertexts corresponding to
levels greater than level− 1 are Gaussian matrices.

– Pre-Challenge Query Phase
1. The adversary requests polynomially many encryption queries. The chal-

lenger responds to each encryption query as follows.
2. For j = 1 to level−1, the challenger computes ctj ← SubEncrypt(sk,m, j).

3. For i = 1 to nbp and j = level to L, the challenger chooses ct
(i)
j ← χm×m.

It sets ctj = (ct
(1)
j , . . . , ct

(nbp)
j).

4. Finally, it sets ct =
({

B
(i)
0,1

}
i
, (ct1, . . . , ctL)

)
and sends ct to the adver-

sary.

23

Game 2.level.3: In hybrids Game 2.level.3, matrices B
(i)
j are chosen uniformly at

random instead of being sampled using TrapGen for levels greater than level− 2.

– Setup Phase
1. The challenger first chooses the LWE parameters n, m, q, σ, χ and nbp.

Recall L = `-bp(λ) and w = w-bp(λ).
2. Next, it chooses t← {0, 1}nbp.
3. For i = 1 to nbp and j = 0 to level − 2, it chooses (B

(i)
j , T

(i)
j) ←

TrapGen(1w·n, 1m, q).
4. For i = 1 to nbp and j = level− 1 to L, it chooses uniformly random

B
(i)
j ← Zw·n×mq of dimensions w · n×m.

5. Finally, the challenger sets sk =

(
⊥,
{

B
(i)
j , T

(i)
j

}
i,j

)
.

Indistinguishability of Hybrid Games We now establish via a sequence of
lemmas that no PPT adversary can distinguish between any two adjacent games
with non-negligible advantage. To conclude, we show that the advantage of any
PPT adversary in the last game is 0.

Let A be a PPT adversary that breaks the security of our construction in
the IND-CPA security game (Definition 4). In Game i, advantage of A is defined
as AdviA = |Pr[A wins] − 1/2|. We show via a sequence of claims that A’s ad-
vantage is distinguishing between any two consecutive games must be negligible,
otherwise there will be a poly-time attack on the security of some underlying
primitive. Finally, in last game, we show that A’s advantage in the last game is
0.

Lemma 4. If PRF is a family of secure pseudorandom functions, then for any
PPT adversary A, |Adv0A−Adv1A| ≤ negl(λ) for some negligible function negl(·).

Proof. We describe a reduction algorithm B which plays the indistinguishability
based game with PRF challenger. B runs the Setup Phase as in Game 0, except
it does not choose a string s ← {0, 1}λ. B makes nbp queries to the PRF chal-
lenger, where in the ith query it sends i to the PRF challenger and sets ti as the
challenger’s response. B performs remaining steps as as in Game 0, and sends 1
to the PRF challenger if A guesses the bit correctly, otherwise it sends 0 to the
PRF challenger as its guess.

Note that when PRF challenger honestly evaluates the PRF on each query,
then B exactly simulates the view of Game 0 for A. Otherwise if PRF challenger
behaves as a random function, then B exactly simulates the view of Game 1.
Therefore, if |Adv0A − Adv1A| is non-negligible, then PRF is not secure pseudo-
random function family.

Lemma 5. For any adversary A, |Adv1A − Adv2A| ≤ negl(λ) for some negligible
function negl(·).

24

Proof. The proof of this lemma follows from Corollary 1 which itself follows from
the Leftover Hash Lemma Theorem 1. Note that the difference between Game 1
and 2 is the way top level matrices B

(i)
L are sampled during Setup Phase. In

Game 1, matrix B
(nbp)

L,st
(i)
L

is chosen as

B
(nbp)

L,st
(nbp)
L

= −

 ∑
i≤nbp−1 : ti=0

B
(i)

L,rej(i)
+

∑
i≤nbp−1 : ti=1

B
(i)

L,acc(i)

 ,

where st
(nbp)
L is acc(nbp) if tnbp = 1, and rej(nbp) otherwise. It can be equivalently

written as follows

B
(nbp)

L,st
(nbp)
L

= −A·R, A =
[
B

(1)

L,rej(1)
||B(1)

L,acc(1)
|| . . . ||B(nbp−1)

L,rej(nbp−1) ||B
(nbp−1)
L,acc(nbp−1)

]
where R = u⊗Im ∈ Z2m(nbp−1)×m

q , u = (u1, . . . , u2nbp−2)> ∈ {0, 1}2nbp−2 and for
all i ≤ nbp−1, u2i = ti and u2i−1 = 1−ti. That is, matrix R consists of 2nbp−2
submatrices where if ti = 1, then its 2ith submatrix is identity and (2i − 1)th

submatrix is zero, otherwise it is the opposite. Let R denote the distribution
of matrix R as described above with t drawn uniformly from {0, 1}nbp. Note
that H∞(R) = nbp − 1 (min-entropy of R), and nbp > m · n log2 q + ω(log n).
Therefore, it follows (from Corollary 1) that{(

A,B
(nbp)

L,st
(nbp)
L

= −A ·R
)

: A← Zn×2m(nbp−1)
q ,R← R

}
≈s{(

A,B
(nbp)

L,st
(nbp)
L

)
: A← Zn×2m(nbp−1)

q ,B
(nbp)

L,st
(nbp)
L

← Zn×mq

}
Thus, |Adv1A − Adv2A| is negligible in the security parameter for all PPT adver-
saries A.

Lemma 6. If (n, nbp · w · m, q, χ)-LWE-ss assumption holds (Assumption 2),
then for any PPT adversary A, |Adv2A − Adv2.L.1A | ≤ negl(λ) for some negligible
function negl(·).

Proof. The difference between Game 2 and 2.L.1 is the way top-level sub-ciphertexts
(ctL) are created for all encryption queries (including challenge query). Re-

call that ctL contains nbp short matrices ct
(i)
L , and each ct

(i)
L is sampled as

ct
(i)
L ← SamplePre(B

(i)
L−1, T

(i)
L−1, σ,C

(i)
L). In Game 2, matrix C

(i)
L is computed as

C
(i)
L = (Iw ⊗ SL) ·D(i)

L + E
(i)
L , where D

(i)
L is a permutation of B

(i)
L and E

(i)
L is

chosen as E
(i)
L ← χw·n×m. On the other hand, in Game 2.L.1, it is chosen as

C
(i)
L ← Zw·n×mq .

For proving indistinguishability of Game 2 and 2.L.1, we need to sketch q
intermediate hybrids, where q is the total number of queries made by A.7 In kth

7 Here q includes the challenge query as well.

25

hybrid, the challenger proceeds as Game 2.L.1 while answering first k queries,
and proceeds as in Game 2 for answering remaining queries. Indistinguishability
between any two consecutive intermediate hybrids follows directly from LWE-ss
assumption. Below we describe a reduction algorithm B which plays the LWE-ss
indistinguishability game.

First, B receives as LWE-ss challenge two n× (nbp · w ·m) matrices (F,G). It

parses F into nbp submatrices of dimensions n×(w·m) as [F(1) || . . . ||F(nbp)] = F.

Further, each matrix F(i) is parsed into w matrices of dimensions n × m as

[F
(i)
1 || . . . ||F

(i)
w] = F(i). Similarly, it parses G as well. Next, it runs the Setup

phase as in Game 2, except instead of choosing matrices B
(i)
L uniformly at ran-

dom, it sets them as B
(i)
L,v = F(i)

v for i ≤ nbp and v ≤ w.

B answers the first i−1 queries as in Game 2.L.1. On receiving kth query mk,
it computes L − 1 sub-ciphertexts ctj (j ≤ L − 1) honestly using sub-encrypt

routine.8 For computing sub-ciphertext ctL, it first sets matrices C
(i)
L for i ≤ nbp

as follows

C
(i)
L =

G

(i)

σ
(i)
L,mk

(1)

...

G
(i)

σ
(i)
L,mk

(w)

 .
Next, it computes ct

(i)
L ← SamplePre(B

(i)
L−1, T

(i)
L−1, σ,C

(i)
L) for i ≤ nbp, and sets

ctL = (ct
(1)
L , . . . , ct

(nbp)
L). B answers kth query as ct = (ct1, . . . , ctL). Now, B

answers remaining queries as in Game 2. Finally, A sends b′ as its guess to B. If
b = b′, then B sends 1 to LWE-ss challenger to indicate that G consists of LWE
samples, otherwise it sends 0.

Since, LWE-ss chooses F uniformly at random, therefore B simulates the dis-

tribution of B
(i)
L for i ≤ nbp exactly. Next, if G = S · F + E for some matrices

S ← χn×n and E ← χn×(nbp·w·m), then B simulates the view of Game 2 for A,
otherwise it simulates the view of Game 2.L.1. Therefore, if |Adv2A −Adv2.L.1A | is
non-negligible, then LWE-ss assumption does not hold.

Lemma 7. If the preimage well-distributedness property of lattice trapdoor sam-
pler (TrapGen,SamplePre) holds (Definition 1), then for every adversary A, for
any level level ∈ [L], |Adv2.level.1A −Adv2.level.2A | ≤ negl(λ) for some negligible func-
tion negl(·).

Proof. To prove indistinguishability of Game 2.level.1 and 2.level.2, we need to
sketch q intermediate hybrids as in Lemma 6. In kth intermediate hybrid, the
challenger proceeds as Game 2.level.2 while answering first k queries, and pro-
ceeds as in Game 2.level.1 for answering remaining queries. Indistinguishability

8 If kth query is the challenge query, then mk = b. In other words, mk will be the
random challenge bit.

26

between any two consecutive intermediate hybrids follows from preimage well-
distributedness property of lattice trapdoor sampler.

Observe that in (k − 1)th intermediate hybrid, ct
(i)
level is chosen as ct

(i)
level ←

SamplePre(B
(i)
level−1, T

(i)
level−1, σ,C

(i)
level) for i ≤ nbp, where C

(i)
level ← Zw·n×mq . On

the other hand, in kth intermediate hybrid, they are chosen as ct
(i)
level ← χm×m

for i ≤ nbp. By a simple hybrid argument, we can restate the preimage well-
distributedness property for matrices instead of vectors such that for all i ≤ nbp,
the following holds{

ct
(i)
level :

(B
(i)
level−1, T

(i)
level−1)← TrapGen(1w·n, 1m, q), C

(i)
level ← Zw·n×mq ,

ct
(i)
level ← SamplePre(B

(i)
level−1, T

(i)
level−1, σ,C

(i)
level)

}
≈s{

ct
(i)
level : ct

(i)
level ← χw·n×m

}
.

Thus, by a hybrid argument over i, we can switch the nbp short matrices in
sub-ciphertext ctlevel from being sampled using SamplePre to Gaussian matri-
ces. Therefore, intermediate hybrid k − 1 and k are statistically indistinguish-
able. Hence, using nbp intermediate hybrids between Game 2.level.1 and 2.level.2,
we can switch level level sub-ciphertexts to low-norm Gaussian matrices for all
queries such that if preimage well-distributedness property of lattice trapdoor
sampler holds, then Game 2.level.1 and 2.level.2 are statistically indistinguishable
for all level ≤ L.

Lemma 8. If the matrix well-distributedness property of lattice trapdoor sam-
pler (TrapGen,SamplePre) holds (Definition 1), then for every adversary A, for
any level level ∈ [L], |Adv2.level.2A −Adv2.level.3A | ≤ negl(λ) for some negligible func-
tion negl(·).

Proof. The proof of this lemma follows directly from the matrix well-distributedness
property of lattice trapdoor sampler. First, note that in both Games 2.level.2 and
2.level.3 sub-ciphertexts at level level (for all queries) consist of nbp random low-
norm Gaussian matrices. Thus, the challenger does not need to know the trap-

door of matrices at level (level− 1), that is matrices B
(i)
level−1 for all i ≤ nbp can

be sampled without trapdoor. The matrix well-distributedness property states
that for all i ≤ nbp

{B(i)
level−1 : (B

(i)
level−1, T

(i)
level−1)← TrapGen(1w·n, 1m, q)}
≈s

{B(i)
level−1 : B

(i)
level−1 ← Zw·n×mq }.

Therefore, by a simple hybrid argument over i, we can move from Game 2.level.2
to 2.level.3 using matrix well-distributedness property of lattice trapdoor sampler
with only negligible drop in the advantage.

27

Lemma 9. If (n, nbp · w · m, q, χ)-LWE-ss assumption holds (Assumption 2),

then for any PPT adversary A, for any level level ∈ [L − 1], |Adv2.(level+1).3
A −

Adv2.level.1A | ≤ negl(λ) for some negligible function negl(·).

Proof. The proof of this lemma is similar to that of Lemma 6.

Lemma 10. For any PPT adversary A, Adv2.1.3A = 0.

Proof. The proof of this lemma follows from the fact that in Game 2.1.3, each
ciphertext contains nbpL random low-norm Gaussian matrices irrespective of the
message bit being encrypted. Therefore, the distribution of ciphertexts when 0 is
encrypted is identical to the distribution of ciphertexts when 1 is encrypted, thus
they do not contain any information about the encrypted message bit. Hence,
the advantage of any adversary is this game is exactly 0.

References

1. Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation
to circular encryption. In: EUROCRYPT ’10. pp. 403–422. Springer (2010)

2. Adão, P., Bana, G., Herzog, J., Scedrov, A.: Soundness and completeness of formal
encryption: The cases of key cycles and partial information leakage. Journal of
Computer Security (2009)

3. Alamati, N., Peikert, C.: Three’s compromised too: Circular insecurity for any
cycle length from (ring-)lwe. In: CRYPTO (2016)

4. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based en-
cryption. In: Public Key Cryptography. pp. 334–352 (2012)

5. Applebaum, B.: Key-dependent message security: Generic amplification and com-
pleteness. In: EUROCRYPT 2011 (2011)

6. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: CRYPTO.
pp. 595–618 (2009)

7. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
EUROCRYPT 2012 (2012)

8. Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message
security. In: Advances in Cryptology - EUROCRYPT. pp. 423–444 (2010)

9. Barrington, D.A.: Bounded-width polynomial-size branching programs recognize
exactly those languages in nc1. In: STOC ’86 (1986)

10. Bishop, A., Hohenberger, S., Waters, B.: New circular security counterexamples
from decision linear and learning with errors. In: ASIACRYPT 2015 (2015)

11. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-Secure Encryption
from Decision Diffie-Hellman. In: CRYPTO ’08 (2008)

12. Borodin, A., Dolev, D., Fich, F.E., Paul, W.J.: Bounds for width two branching
programs. SIAM J. Comput. 15(2), 549–560 (1986)

13. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: CRYPTO’10 (2010)

14. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: TCC 2011 (2011)

15. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness
of learning with errors. In: STOC’13 (2013)

28

16. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: EUROCRYPT ’01 (2001)

17. Cash, D., Green, M., Hohenberger, S.: New definitions and separations for circular
security. In: Public Key Cryptography - PKC. pp. 540–557 (2012)

18. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: EUROCRYPT 2015 (2015)

19. Coron, J., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In: CRYPTO 2015 (2015)

20. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to gen-
erate strong keys from biometrics and other noisy data. SIAM J. Comput. (2008)

21. Dodis, Y., Reyzin, L., Smith, A.D.: Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. In: EUROCRYPT 2004 (2004)

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC (2009)
23. Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps from lattices.

In: TCC (2015)
24. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new

cryptographic constructions. In: STOC. pp. 197–206 (2008)
25. Koppula, V., Ramchen, K., Waters, B.: Separations in circular security for arbitrary

length key cycles. In: Theory of Cryptography Conference (TCC) (2015)
26. Koppula, V., Waters, B.: Circular security separations for arbitrary length cycles

from LWE. In: CRYPTO (2016)
27. Laud, P.: Encryption cycles and two views of cryptography. In: NORDSEC 2002

(2002)
28. Marcedone, A., Orlandi, C.: Obfuscation ⇒ (IND-CPA security !⇒ circular secu-

rity). In: SCN 2014 (2014)
29. Marcedone, A., Pass, R., Shelat, A.: Bounded kdm security from io and owf. In:

SCN 2016 (2016)
30. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.

In: EUROCRYPT 2012 (2012)
31. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian

measures. SIAM J. Comput. 37(1), 267–302 (Apr 2007)
32. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem:

extended abstract. In: STOC 2009 (2009)
33. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci.

(2016)
34. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-

phy. In: STOC, 2005 (2005)
35. Rothblum, R.: On the circular security of bit-encryption. In: TCC (2013)

29

