
Formal Abstractions for Attested Execution
Secure Processors

Rafael Pass1, Elaine Shi2, Florian Tramèr3

1CornellTech, 2Cornell, 3Stanford

Abstract. Realistic secure processors, including those built for aca-
demic and commercial purposes, commonly realize an “attested execu-
tion” abstraction. Despite being the de facto standard for modern secure
processors, the “attested execution” abstraction has not received ade-
quate formal treatment. We provide formal abstractions for “attested
execution” secure processors and rigorously explore its expressive power.
Our explorations show both the expected and the surprising.
On one hand, we show that just like the common belief, attested exe-
cution is extremely powerful, and allows one to realize powerful crypto-
graphic abstractions such as stateful obfuscation whose existence is oth-
erwise impossible even when assuming virtual blackbox obfuscation and
stateless hardware tokens. On the other hand, we show that surprisingly,
realizing composable two-party computation with attested execution pro-
cessors is not as straightforward as one might anticipate. Specifically, only
when both parties are equipped with a secure processor can we realize
composable two-party computation. If one of the parties does not have
a secure processor, we show that composable two-party computation is
impossible. In practice, however, it would be desirable to allow multiple
legacy clients (without secure processors) to leverage a server’s secure
processor to perform a multi-party computation task. We show how to
introduce minimal additional setup assumptions to enable this. Finally,
we show that fair multi-party computation for general functionalities is
impossible if secure processors do not have trusted clocks. When secure
processors have trusted clocks, we can realize fair two-party computa-
tion if both parties are equipped with a secure processor; but if only one
party has a secure processor (with a trusted clock), then fairness is still
impossible for general functionalities.



1 Introduction

The science of cybersecurity is founded atop one fundamental guiding principle,
that is, to minimize a system’s Trusted Computing Base (TCB) [70]. Since it
is notoriously difficult to have “perfect” software in practice especially in the
presence of legacy systems, the architecture community have advocated a new
paradigm to bootstrap a system’s security from trusted hardware (henceforth
also referred to as secure processors). Roughly speaking, secure processors aim
to reduce a sensitive application’s trusted computing base to only the processor
itself (possibly in conjunction with a minimal software TCB such as a secure
hypervisor). In particular, besides itself, a sensitive application (e.g., a banking
application) should not have to trust any other software stack (including the op-
erating system, drivers, and other applications) to maintain the confidentiality
and/or integrity of mission-critical data (e.g., passwords or credit card numbers).
Security is retained even if the software stack can be compromised (as long as the
sensitive application itself is intact). Besides a software adversary, some secure
processors make it a goal to defend against physical attackers as well. In par-
ticular, even if the adversary (e.g., a rogue employee of a cloud service provider
or a system administrator) has physical access to the computing platform and
may be able to snoop or tamper with memory or system buses, he should not
be able to harvest secret information or corrupt a program’s execution.

Trusted hardware is commonly believed to provide a very powerful abstrac-
tion for building secure systems. Potential applications are numerous, rang-
ing from cloud computing [11, 28, 50, 61, 62], mobile security [60], web secu-
rity, to cryptocurrencies [74]. In the past three decades, numerous secure pro-
cessors have been proposed and demonstrated by both academia and indus-
try [6, 22, 27, 31, 32, 48, 49, 51, 66, 73]; and several have been commercialized,
including the well-known Trusted Platform Modules (TPMs) [1], Arm’s Trust-
Zone [5, 7], and others. Notably, Intel’s recent release of its new x86 security
extensions called SGX [6, 26, 51] has stirred wide-spread interest to build new,
bullet-proof systems that leverage emerging trusted hardware offerings.

1.1 Attested Execution Secure Processors

Although there have been numerous proposals for the design of trusted hard-
ware, and these designs vary vastly in terms of architectural choices, instruction
sets, implementation details, cryptographic suites, as well as adversarial models
they promise to defend against — amazingly, it appears that somehow most
of these processors have converged on providing a common abstraction, hence-
forth referred to as the attested execution abstraction [1,6,27,51,67,69]. Roughly
speaking, an attested execution abstraction enables the following:

– A platform equipped with an attested execution processor can send a pro-
gram and inputs henceforth denoted (prog, inp) to its local secure processor.
The secure processor will execute the program over the inputs, and compute
outp := prog(inp). The secure processor will then sign the tuple (prog, outp)



with a secret signing key to obtain a digital signature σ — in practice, a
hash function is applied prior to the signing. Particularly, this signature σ is
commonly referred to as an “attestation”, and therefore this entire execution
is referred to as an “attested execution”.

– The execution of the aforementioned program is conducted in a sandboxed en-
vironment (henceforth referred to as an enclave), in the sense that a software
adversary and/or a physical adversary cannot tamper with the execution,
or inspect data that lives inside the enclave. This is important for realizing
privacy-preserving applications. For example, a remote client who knows the
secure processor’s public key can establish a secure channel with a secure
processor residing on a remote server S. The client can then send encrypted
and authenticated data (and/or program) to the secure processor — while
the messages are passed through the intermediary S, S cannot eavesdrop on
the contents, nor can it tamper with the communication.

– Finally, various secure processors make different concrete choices in terms
of how they realize such secure sandboxing mechanisms as mentioned above
— and the choices are closely related to the adversarial capabilities that the
secure processor seeks to protect against. For example, roughly speaking, In-
tel’s SGX technology [6, 51] defends against a restricted software adversary
that does not measure timing or other possible side channels, and does not
observe the page-swap behavior of the enclave application (e.g., the enclave
application uses small memory or is by design data-oblivious); it also defends
against a restricted physical attacker capable of tapping memory, but not ca-
pable of tapping the addresses on the memory bus or measuring side-channel
information such as timing and power consumption.
We refer the reader to Shi et al. [64] for a general-purpose introduction of
trusted hardware, and for a comprehensive comparison of the different choices
made by various secure processors.

The fact that the architecture community has converged on the “attested
execution” abstraction is intriguing. How exactly this has become the de facto
abstraction is beyond the scope of this paper, but it is helpful to observe that
the attested execution abstraction is cost-effective in practice in the following
senses:

– General-purpose: The attested execution abstraction supports the computa-
tion of general-purpose, user-defined programs inside the secure enclave, and
therefore can enable a broad range of applications;

– Reusability: It allows a single trusted hardware token to be reused by multi-
ple applications, and by everyone in the world — interestingly, it turns out
such reusability actually gives rise to many of the technicalities that will be
discussed later in the paper;

– Integrity and privacy: It offers both integrity and privacy guarantees. In par-
ticular, although the platform P that is equipped with the trusted hardware
serves an intermediary in every interaction with the trusted hardware, pri-
vacy guarantees can be bootstrapped by having remote users establish a
secure channel with the secure processor.



In the remainder of the paper, whenever we use the term “secure processors”
or “trusted hardware”, unless otherwise noted we specifically mean attested
execution secure processors.

1.2 Why Formal Abstractions for Secure Processors?

Although attested execution has been accepted by the community as a de facto
standard, to the best of our knowledge, no one has explored the following fun-
damental questions:

1. Precisely and formally, what is the attested execution abstraction?
2. What can attested execution express and and what can it not express?

If we can formally and precisely articulate the answers to these questions,
the benefits can be wide-spread. It can help both the producer as well as the
consumer of trusted hardware, in at least the following ways:

– Understand whether variations in abstraction lead to differences in expressive
power. First, various secure processors may provide similar but subtly differ-
ent abstractions — do these differences matter to the expressive power of the
trusted hardware? If we wish to add a specific feature to a secure processor
(say, timing), will this feature increase its expressive power?

– Enable formally correct use of trusted hardware. Numerous works have
demonstrated how to use trusted hardware to build a variety of secure
systems [11, 12, 23, 28, 50, 55, 59, 61–63]. Unfortunately, since it is not even
clear what precise abstraction the trusted hardware offers, the methodology
adopted by most existing works ranges from heuristic security to semi-formal
reasoning.
Moreover, most known secure processors expose cryptography-related in-
structions (e.g., involving hash chains or digital signatures [1, 6, 26, 51]), and
this confounds the programming of trusted hardware — in particular, the
programmer essentially has to design cryptographic protocols to make use
of trusted hardware. It is clear that user-friendly higher-level programming
abstractions that hide away the cryptographic details will be highly desir-
able, and may well be the key to the democratization of trusted hardware
programming (and in fact, to security engineering in general) — and yet
without precisely articulating the formal abstraction trusted hardware offers,
it would clearly be impossible to build formally correct higher-level program-
ming abstractions atop.

– Towards formally secure trusted hardware. Finally, understanding what is a
“good” abstraction for trusted hardware can provide useful feedback to the
designers and manufacturers of trusted hardware. The holy grail would be
to design and implement a formally secure processor. Understanding what
cryptography-level formal abstraction to realize is a necessary first step to-
wards this longer-term goal — but to realize this goal would obviously require
additional, complementary techniques and machinery, e.g., those developed



in the formal methods community [31, 57, 58, 73], that can potentially al-
low us to ensure that the actual secure processor implementation meets the
specification.

1.3 Summary of Our Contributions

To the best of our knowledge, we are the first to investigate cryptographically
sound and composable formal abstractions for realistic, attested execution secure
processors. Our findings demonstrate both the “expected” and the (perhaps)
“surprising”.

The expected and the surprising. On one hand, we show that attested ex-
ecution processors are indeed extremely powerful as one might have expected,
and allow us to realize primitives that otherwise would have been impossible
even when assuming stateless hardware tokens or virtual blackbox secure cryp-
tographic obfuscation.

On the other hand, our investigation unveils subtle technical details that
could have been easily overlooked absent an effort at formal modeling, and we
draw several conclusions that might have come off as surprising initially (but of
course, natural in hindsight). For example,

– We show that universally composable two-party computation is impossible
if a single party does not have such a secure processor (and the other party
does);

This was initially surprising to us, since we commonly think of an attested
execution processor as offering an “omnipotent” trusted third party that can
compute general-purpose, user-defined programs. When such a trusted third
party exists, it would appear that any function can be evaluated securely and
non-interactively, hiding both the program and data. One way to interpret our
findings is that such intuitions are technically imprecise and dangerous to pre-
sume — while attested execution processors indeed come close to offering such
a “trusted third party” ideal abstraction, there are aspects that are “imper-
fect” about this ideal abstraction that should not be overlooked, and a rigorous
approach is necessary towards formally correct usage of trusted hardware.

Additional results for multi-party computation. We additionally show the
following results:

– Universally composable two-party computation is indeed possible when both
parties are equipped with an attested execution processor. We give an ex-
plicit construction and show that there are several interesting technicalities
in its design and proof (which we shall comment on soon). Dealing with
these technicalities also demonstrates how a provably secure protocol candi-
date would differ in important details from the most natural protocol candi-
dates [41, 55, 62] practitioners would have adopted (which are not known to
have provable composable security). This confirms the importance of formal
modeling and provable security.



– Despite the infeasibility of multi-party computation when even a single party
does not have a secure processor, in practice it would nonetheless be desirable
to build multi-party applications where multiple possibly legacy clients out-
source data and computation to a single cloud server equipped with a secure
processor.
We show how to introduce minimal global setup assumptions — more specif-
ically, by adopting a global augmented common reference string [18] (hence-
forth denoted Gacrs) — to circumvent this impossibility. Although the theo-
retical feasibility of general UC-secure MPC is known with Gacrs even without
secure processors [18], existing constructions involve cryptographic compu-
tation that is (at least) linear in the runtime of the program to be securely
evaluated. By contrast, we are specifically interested in practical construc-
tions that involve only O(1) amount of cryptographic computations, and
instead perform all program-dependent computations inside the secure pro-
cessor (and not cryptographically).

Techniques. Several interesting technicalities arise in our constructions. First,
composition-style proofs typically require that a simulator intercepts and mod-
ifies communication to and from the adversary (and the environment), such
that the adversary cannot distinguish whether it is talking to the simulator or
the real-world honest parties and secure processors. Since the simulator does not
know honest parties’ inputs (beyond what is leaked by the computation output),
due to the indistinguishability, one can conclude that the adversary cannot have
knowledge of honest parties inputs either.

– Equivocation. Our simulator’s ability to perform such simulation is hampered
by the fact that the secure processors sign attestations for messages coming
out — since the simulator does not possess the secret signing key, it cannot
modify these messages and must directly forward them to the adversary. To
get around this issue would require new techniques for performing equivo-
cation, a technicality that arises in standard protocol composition proofs.
To achieve equivocation, we propose new techniques that place special back-
doors inside the enclave program. Such backdoors must be carefully crafted
such that they give the simulator more power without giving the real-world
adversary additional power. In this way, we get the best of both worlds: 1)
honest parties’ security will not be harmed in the real-world execution; and
2) the simulator in the proof can “program” the enclave application to sign
any output of its choice, provided that it can demonstrate the correct trap-
doors. This technique is repeatedly used in different forms in almost all of
our protocols.

– Extraction. Extraction is another technical issue that commonly arises in pro-
tocol composition proofs. The most interesting manifestation of this technical
issue is in our protocol that realizes multi-party computation in the presence
of a global common reference string (Gacrs) and a single secure processor (see
Section 2.5). Here again, we leverage the idea of planting special backdoors in
the enclave program to allow for such extraction. Specifically, when provided



with the correct identity key of a party, the enclave program will leak the
party’s inputs to the caller. Honest parties’ security cannot be harmed by this
backdoor, since no one ever learns honest parties’ identity keys in the real
world, not even the honest parties themselves. In the simulation, however,
the simulator learns the corrupt parties’ identity keys, and therefore it can
extract corrupt parties’ inputs.

Trusted clocks and fairness. Finally, we formally demonstrate how differences
in abstraction can lead to differences in expressive power. In particular, many
secure processors provide a trusted clock, and we explore the expressive power of
such a trusted clock in the context of fair 2-party computation. It is well-known
that in the standard setting fairness is impossible in 2-party computation for
general functionalities [25]. However, several recent works have shown that the
impossibility for general functionalities does not imply impossibility for every
functionality — interestingly, there exist a broad class of functionalities that
can be fairly computed in the plain setting [8, 38, 39]. We demonstrate several
interesting findings in the context of attested execution processors:

– First, even a single attested execution processor already allows us to compute
more functionalities fairly than in the plain setting. Specifically, we show that
fair two-party coin flipping, which is impossible in the plain setting, is possible
if only one party is equipped with an attested execution processor.

– Unfortunately, we show that a single attested execution processor is insuffi-
cient for fairly computing general 2-party functionalities;

– On the bright side, we prove that if both parties are equipped with an attested
execution processor, it is indeed possible to securely compute any function
fairly.

Variant models and additional results. Besides the trusted clock, we also ex-
plore variations in abstraction and their implications — for example, we compare
non-anonymous attestation and anonymous attestation since various processors
seem to make different choices regarding this.

We also explore an interesting model called “transparent enclaves” [71], where
secret data inside the enclave can leak to the adversary due to possible side-
channel attacks on known secure processors, and we show how to realize inter-
esting tasks such as UC-secure commitments and zero-knowledge proofs in this
weaker model — here again our protocols must deal with interesting technicali-
ties related to extraction and equivocation.

1.4 Non-Goals and Frequently Asked Questions

Trusted hardware has been investigated by multiple communities from different
angles, ranging from how to architect secure processors [6, 22, 27, 31, 32, 48, 49,
51, 67, 73], how to apply them in applications [11, 12, 23, 28, 50, 55, 59, 61–63],
side-channels and other attacks [36,46,47,68,72,75] and protection against such



attacks [32, 49, 73, 75]. Despite the extensive literature, cryptographically sound
formal abstractions appear to be an important missing piece, and this work aims
to make an initial step forward towards this direction. In light of the extensive
literature, however, several natural but frequently asked questions arise regarding
the precise scope of this paper, and we address such questions below.

First, although we base our modeling upon what realistic secure processors
aim to provide, it is not our intention to claim that any existing secure proces-
sors provably realize our abstraction. We stress that to make any claim of this
nature (that a secure processor correctly realizes any formal specification) is an
area of active research in the formal methods and programming language com-
munities [31, 57, 58, 73], and thus still a challenging open question — let alone
the fact that some commercial secure processor designs are closed-source.

Second, a frequently asked question is what adversarial models our formal
abstraction defends against. The answer to such a question is processor-specific,
and thus outside the scope of our paper — we leave it to the secure proces-
sor itself to articulate the precise adversarial capabilities it protects against.
The formal models and security theorems in this paper hold assuming that the
adversary is indeed confined to the capabilities assumed by the specific secure
processor. As mentioned earlier, some processors defend only against software
adversaries [27]; others additionally defend against physical attackers [32–34,49];
others defend against a restricted class of software and/or physical attackers that
do not exploit certain side channels [1,6,48,51,66]. We refer the reader to a com-
prehensive systematization of knowledge paper by Shi et al. [64] for a taxonomy
and comparison of various secure processors.

Finally, it is also not our goal to propose new techniques that defend against
side-channel attacks, or suggest how to better architect secure processors —
these questions are being explored in an orthogonal but complementary line of
research [27,31–34,49,73,75].

2 Technical Roadmap

2.1 Formal Modeling

Modeling choices. To enable cryptographically sound reasoning, we adopt the
universal composition (UC) paradigm in our modeling [17, 18, 21]. At a high
level, the UC framework allows us to abstract complex cryptographic systems as
simple ideal functionalities, such that protocol composition can be modularized.
The UC framework also provides what is commonly referred to as “concurrent
composition” and “environmental friendliness”: in essence, a protocol π proven
secure in the UC framework can run in any environment such that 1) any other
programs or protocols executing possibly simultaneously will not affect the se-
curity of the protocol π, and 2) protocol π will not inject undesirable side effects
(besides those declared explicitly in the ideal abstraction) that would affect other
programs and protocols in the system.



More intuitively, if a system involving cryptography UC-realizes some ideal
functionality, henceforth, a programmer can simply program the system pretend-
ing that he is making remote procedural calls to a trusted third party without
having to understand the concrete cryptography implementations. We refer the
reader to the full version of this work [56] for a more detailed overview of the
UC framework in our context. Before we proceed, we stress the importance of
cryptographically sound reasoning: by contrast, earlier works in the formal meth-
ods community would make assumptions that cryptographic primitives such as
encryption and signatures realize the “most natural” ideal box without formal
justification — and such approaches have been shown to be flawed when the
ideal box is actually instantiated with cryptography [2–4,9,13,20,43,44,53,54].

Roadmap for formal modeling. We first describe an ideal functionality Gatt
that captures the core abstraction that a broad class of attested execution pro-
cessors intend to provide. We are well aware that various attested execution
processors make different design choices — most of them are implementation-
level details that do not reflect at the abstraction level, but a few choices do
matter at the abstraction level — such as whether the secure processor pro-
vides a trusted clock and whether it implements anonymous or non-anonymous
attestation.

In light of such differences, we first describe a basic, anonymous attestation
abstraction called Gatt that lies at the core of off-the-shelf secure processors such
as Intel SGX [6, 51]. We explore the expressive power of this basic abstraction
in the context of stateful obfuscation and multi-party computation. Later in the
paper, we explore variants of the abstraction such as non-anonymous attesta-
tion and trusted clocks. Therefore, in summary our results aim to be broadly
applicable to a wide class of secure processor designs.

The Gatt abstraction. We first describe a basic Gatt abstraction capturing the
essence of SGX-like secure processors that provide anonymous attestation (see
Figure 1). Here we briefly review the Gatt abstraction and explain the technical-
ities that arise in the formal modeling. More detailed discussions can be found
in the full version [56, Section 3].

1. Registry. First, Gatt is parametrized with a registry reg that is meant to
capture all the platforms that are equipped with an attested execution pro-
cessor. For simplicity, we consider a static registry reg in this paper.

2. Stateful enclave operations. A platform P that is in the registry reg may
invoke enclave operations, including

– install: installing a new enclave with a program prog, henceforth referred
to as the enclave program. Upon installation, Gatt simply generates a fresh
enclave identifier eid and returns the eid . This enclave identifier may now
be used to uniquely identify the enclave instance.

– resume: resuming the execution of an existing enclave with inputs inp.
Upon a resume call, Gatt executes the prog over the inputs inp, and obtains
an output outp. Gatt would then sign the prog together with outp as well as
additional metadata, and return both outp and the resulting attestation.



Gatt[Σ, reg]

// initialization:
On initialize: (mpk,msk) := Σ.KeyGen(1λ), T = ∅

// public query interface:
On receive∗ getpk() from some P: send mpk to P

Enclave operations

// local interface — install an enclave:
On receive∗ install(idx , prog) from some P ∈ reg:
if P is honest, assert idx = sid

generate nonce eid ∈ {0, 1}λ, store T [eid ,P] := (idx , prog,0), send eid to P

// local interface — resume an enclave:
On receive∗ resume(eid , inp) from some P ∈ reg:
let (idx , prog,mem) := T [eid ,P], abort if not found
let (outp,mem) := prog(inp,mem), update T [eid ,P] := (idx , prog,mem)
let σ := Σ.Sigmsk(idx , eid , prog, outp), and send (outp, σ) to P

Fig. 1: A global functionality modeling an SGX-like secure processor.
Blue (and starred∗) activation points denote reentrant activation points. Green
activation points are executed at most once. The enclave program prog may be
probabilistic and this is important for privacy-preserving applications. Enclave
program outputs are included in an anonymous attestation σ. For honest parties,
the functionality verifies that installed enclaves are parametrized by the session
id sid of the current protocol instance.

Each installed enclave can be resumed multiple times, and we stress that
the enclave operations store state across multiple resume invocations. This
stateful property will later turn out to be important for several of our appli-
cations.

3. Anonymous attestation. Secure processors such as SGX rely on group sig-
natures and other anonymous credential techniques [15, 16] to offer “anony-
mous attestation”. Roughly speaking, anonymous attestation allows a user to
verify that the attestation is produced by some attested execution processor,
without identifying which one. To capture such anonymous attestation, our
Gatt functionality has a manufacturer public key and secret key pair denoted
(mpk,msk), and is parametrized by a signature scheme Σ. When an enclave
resume operation is invoked, Gatt signs any output to be attested with msk us-
ing the signature scheme Σ. Roughly speaking, if a group signature scheme
is adopted as in SGX, one can think of Σ as the group signature scheme
parametrized with the “canonical” signing key. Gatt provides the manufac-
turer public key mpk to any party upon query — this models the fact that
there exists a secure key distribution channel to distribute mpk. In this way,
any party can verify an anonymous attestation signed by Gatt.



Globally shared functionality. Our Gatt functionality essentially captures all
attested execution processors in the world. Further, we stress that Gatt is globally
shared by all users, all applications, and all protocols. In particular, rather than
generating a different (mpk,msk) pair for each different protocol instance, the
same (mpk,msk) pair is globally shared.

More technically, we capture such sharing across protocols using the Uni-
versal Composition with Global Setup (GUC) paradigm [18]. As we show later,
such global sharing of cryptographic keys becomes a source of “imperfectness”
— in particular, due to the sharing of (mpk,msk), attestations signed by msk
from one protocol instance (i.e., or application) may now carry meaning in a
completely unrelated protocol instance, thus introducing potentially undesirable
side effects that breaks composition.

Additional discussions and clarifications. More detailed discussions of our
modeling choices, and importantly, clarifications on how the environment Z
interacts with Gatt are deferred to our technical report [56, Section 3].

Throughout this paper, we assume that parties interact with each other over
secure channels. It is possible to realize (UC-secure) secure channels from au-
thenticated channels through key exchange. Whenever applicable, our results are
stated for the case of static corruption.

2.2 Power of Attested Execution: Stateful Obfuscation

We show that the attested execution abstraction is indeed extremely powerful as
one would have expected. In particular, we show that attested execution proces-
sors allow us to realize a new abstraction which we call “stateful obfuscation”.

Theorem 1 (Informal). Assume that secure key exchange protocols exist.
There is a Gatt-hybrid protocol that realizes non-interactive stateful obfuscation,
which is not possible in plain settings, even when assuming stateless hardware
tokens or virtual-blackbox secure cryptographic obfuscation.

Stateful obfuscation allows an (honest) client to obfuscate a program and
send it to a server, such that the server can evaluate the obfuscated program
on multiple inputs, while the obfuscated program keeps (secret) internal state
across multiple invocations. We consider a simulation secure notion of stateful
obfuscation, where the server should learn only as much information as if it
were interacting with a stateful oracle (implementing the obfuscated program)
that answers the server’s queries. For example, stateful obfuscation can be a
useful primitive in the following application scenario: imagine that a client (e.g.,
a hospital) outsources a sensitive database (corresponding to the program we
wish to obfuscate) to a cloud server equipped with trusted hardware. Now, an
analyst may send statistical queries to the server and obtain differentially private
answers. Since each query consumes some privacy budget, we wish to guarantee
that after the budget is depleted, any additional query to the database would
return ⊥. We formally show how to realize stateful obfuscation from attested
execution processors. Further, as mentioned, we prove that stateful obfuscation



is not possible in the plain setting, even when assuming the existence of stateless
hardware tokens or assuming virtual-blackbox secure obfuscation.

2.3 Impossibility of Composable 2-Party Computation with a
Single Secure Processor

One natural question to ask is whether we can realize universally composable
(i.e., UC-secure) multi-party computation, which is known to be impossible in
the plain setting without any setup assumptions — but feasible in the presence of
a common reference string [17,19], i.e., a public random string that is generated
in a trustworthy manner freshly and independently for each protocol instance.
On the surface, Gatt seems to provide a much more powerful functionality than a
common reference string, and thus it is natural to expect that it will enable UC-
secure multi-party computation. However, upon closer examination, we find that
perhaps somewhat surprisingly, such intuition is subtly incorrect, as captured in
the following informal theorem.

Theorem 2 (Informal). If at least one party is not equipped with an attested
execution processor, it is impossible to realize UC-secure multi-party computation
absent additional setup assumptions (even when all others are equipped with an
attested execution processor).

Here the subtle technicalities arise exactly from the fact that Gatt is a global
functionality shared across all users, applications, and protocol instances. This
creates a non-deniability issue that is well-known to the cryptography commu-
nity. Since the manufacturer signature key (mpk,msk) is globally shared, attes-
tations produced in one protocol instance can carry side effects into another.
Thus, most natural protocol candidates that send attestations to other parties
will allow an adversary to implicate an honest party of having participated in a
protocol, by demonstrating the attestation to a third party. Further, such non-
deniability exists even when the secure processor signs anonymous attestations:
since if not all parties have a secure processor, the adversary can at least prove
that some honest party that is in Gatt’s registry has participated in the protocol,
even if he cannot prove which one. Intuitively, the non-deniability goes away if
all parties are equipped with a secure processor — note that this necessarily
means that the adversary himself must have a secure processor too. Since the
attestation is anonymous, the adversary will fail to prove whether the attestation
is produced by an honest party or he simply asked his own local processor to sign
the attestation. This essentially allows the honest party to deny participation in
a protocol.

Impossibility of extraction. We formalize the above intuition, and show that
not only natural protocol candidates that send attestations around suffer from
non-deniability, in fact, it is impossible to realize UC-secure multi-party compu-
tation if not all parties have secure processors. The impossibility is analogous to
the impossibility of UC-secure commitments in the plain setting absent a com-
mon reference string [19]. Consider when the real-world committer C is corrupt



and the receiver is honest. In this case, during the simulation proof, when the
real-world C outputs a commitment, the ideal-world simulator Sim must capture
the corresponding transcripts and extract the value v committed, and send v to
the commitment ideal functionality Fcom. However, if the ideal-world simulator
Sim can perform such extraction, the real-world receiver must be able too (since
Sim does not have extra power than the real-world receiver) — and this violates
the requirement that the commitment must be hiding. As Canetti and Fischlin
show [19], a common reference string allows us to circumvent this impossibility
by giving the simulator more power. Since a common reference string (CRS)
is a local functionality, during the simulation, the simulator can program the
CRS and embed a trapdoor — this trapdoor will allow the simulator to perform
extraction. Since the real-world receiver does not possess such a trapdoor, the
protocol still retains confidentiality against a real-world receiver.

Indeed, if our Gatt functionality were also local, our simulator Sim could
have programmed Gatt in a similar manner and extraction would have been
easy. In practice, however, a local Gatt function would mean that a fresh key
manufacturer pair (mpk,msk) must be generated for each protocol instance (i.e.,
even for multiple applications of the same user). Thus, a local Gatt clearly fails
to capture the reusability of real-world secure processors, and this justifies why
we model attested execution processors as a globally shared functionality.

Unfortunately, when Gatt is global, it turns out that the same impossibility
of extraction from the plain setting would carry over when the committer C is
corrupt and only the receiver has a secure processor. In this case, the simulator
Sim would also have to extract the input committed from transcripts emitted
from C. However, if the simulator Sim can perform such extraction, so can the
real-world receiver — note that in this case the real-world receiver is actually
more powerful than Sim, since the real-world receiver, who is in the registry, is
capable of meaningfully invoking Gatt, while the simulator Sim cannot!

It is easy to observe that this impossibility result no longer holds when the
corrupt committer has a secure processor — in this case, the protocol can require
that the committer C send its input to Gatt. Since the simulator captures all
transcripts going in and coming out of C, it can extract the input trivially. Indeed,
we show that not only commitment, but also general 2-party computation is
possible when both parties have a secure processor.

2.4 Composable 2-Party Computation When Both Have Secure
Processors

Theorem 3 (Informal). Assume that secure key exchange protocols exist.
Then there exists an Gatt-hybrid protocol that UC-realizes F2pc. Further, in this
protocol, all program-dependent evaluation is performed inside the enclave and
not cryptographically.

We give an explicit protocol in Figure 2 (for concreteness, we use Diffie-
Hellman key exchanges in our protocols, although the same approach extends to
any secure key-exchange). The protocol is efficient in the sense that it performs



prog2pc[f,P0,P1, b]

On input (“keyex”): y
$←Zp, return gy

On input (“send”, gx, inpb):
assert that “keyex” has been called
sk := (gx)y, ct := AE.Encsk(inpb), return ct

On input (“compute”, ct, v):
assert that “send” has been called and ct not seen
inp1−b := AE.Decsk(ct), assert that decryption succeeds
if v 6= ⊥, return v; else return outp := f(inp0, inp1)

Prot2pc[sid , f,P0,P1, b]

On input inpb from Z:
eid := Gatt.install(sid , prog2pc[f,P0,P1, b])
henceforth denote Gatt.resume(·) := Gatt.resume(eid , ·)
(gy, σ) := Gatt.resume(“keyex”)
send (eid , gy, σ) to P1−b, await (eid ′, gx, σ′)
assert Σ.Vermpk((sid , eid

′, prog2pc[f,P0,P1, 1− b], gx), σ′)
(ct, ) := Gatt.resume(“send”, gx, inpb), send ct to P1−b, await ct′

(outp, ) := Gatt.resume(“compute”, ct′,⊥), output outp

Fig. 2: Composable 2-party computation: both parties have secure pro-
cessors. AE denotes authenticated encryption. All ITIs’ activation points are
non-reentrant. When an activation point is invoked for more than once, the ITI
simply outputs ⊥. Although not explicitly noted, if Gatt ever outputs ⊥ upon a
query, the protocol aborts outputting ⊥. The group parameters (g, p) are hard-
coded into prog2pc.

only O(1) (program-independent) cryptographic computations; and all program-
dependent computation is performed inside the enclave. We now explain the
protocol briefly.

– First, the two parties’ secure processors perform a key exchange and establish
a secret key sk for an authenticated encryption scheme.

– Then, each party’s enclave encrypts the party’s input with sk. The party then
sends the resulting authenticated ciphertext ct to the other.

– Now each enclave decrypts ct and perform evaluation, and each party can
query its local enclave to obtain the output.

– Most of the protocol is quite natural, but one technique is necessary for
equivocation. Specifically, the enclave program’s “compute” entry point has
a backdoor denoted v. If v = ⊥, Gatt will sign the true evaluation result and
return the attested result. On the other hand, if v 6= ⊥, the enclave will
simply sign and output v itself. In the real-world execution, an honest party
will always supply v = ⊥ as input to the enclave program’s “compute” entry
point. However, as we explain later, the simulator will leverage this backdoor
v to perform equivocation and program the output.



We now explain some interesting technicalities that arise in the proof for the
above protocol.

– Extraction. First, extraction is made possible since each party sends their
input directly to its local enclave. If a party is corrupt, this interaction will
be captured by the simulator who can then extract the corrupt party’s input;

– Equivocate. We now explain how the backdoor v in the enclave program
allows for equivocation in the proof. Recall that initially, the simulator does
not know the honest party’s input. To simulate the honest party’s message for
the adversary (which contains an attestation from the enclave), the simulator
must send a dummy input to Gatt on behalf of the honest party to obtain
the attestation. When the simulator manages to extract the corrupt party’s
input, it will send the input to the ideal functionality F2pc and obtain the
outcome of the computation denoted outp∗. Now when the corrupt party
queries its local enclave for the output, the simulator must get Gatt to sign
the correct outp∗ (commonly referred to as equivocation). To achieve this, the
simulator will make use of the aforementioned backdoor v: instead of sending
(ct,⊥) to Gatt as in the real-world protocol, the simulator sends (ct, outp∗) to
Gatt, such that Gatt will sign outp∗.

– A note on anonymous attestation. It is interesting to note how our protocol
relies on the attestation being anonymous for security. Specifically, in the
proof, the simulator needs to simulate the honest party’s messages for the
adversary A. To do so, the simulator will simulate the honest party’s enclave
on its own (i.e., the adversary’s) secure processor — and such simulation is
possible because the attestations returned by Gatt are anonymous. Had the
attestation not been anonymous (e.g., binding to the party’s identifier), the
simulator would not be able to simulate the honest party’s enclave (see our
full version [56, Section 8.4] for more discussions).

2.5 Circumventing the Impossibility with Minimal Global Setup

In practice, it would obviously be desirable if we could allow composable multi-
party computation in the presence of a single attested execution processor. As
a desirable use case, imagine multiple clients (e.g., hospitals), each with sensi-
tive data (e.g., medical records), that wish to perform some computation (e.g.,
data mining for clinical research) over their joint data. Moreover, they wish to
outsource the data and computation to an untrusted third-party cloud provider.
Specifically, the clients may not have secure processors, but as long as the cloud
server does, we wish to allow outsourced secure multi-party computation.

We now demonstrate how to introduce a minimal global setup assumption to
circumvent this impossibility. Specifically, we will leverage a global Augmented
Common Reference String (ACRS) [18], henceforth denoted Gacrs. Although the
feasibility of UC-secure multi-party computation is known with Gacrs even absent
secure processors [18], existing protocols involve cryptographic computations
that are (at least) linear in the runtime of the program. Our goal is to demon-
strate a practical protocol that performs any program-dependent computation
inside the secure enclave, and performs only O(1) cryptographic computation.



Theorem 4 (Informal). Assume that secure key exchange protocols exist.
Then, there exists a (Gacrs,Gatt)-hybrid protocol that UC-realizes Fmpc and makes
use of only a single secure processor. Further, this protocol performs all program-
dependent computations inside the secure processor’s enclave (and not crypto-
graphically).

Minimal global setup Gacrs. To understand this result, we first explain the
minimal global setup Gacrs. First, Gacrs provides a global common reference
string. Second, Gacrs also allows each (corrupt) party P to query an identity
key for itself. This identity key is computed by signing the party’s identifier P
using a global master secret key. Note that such a global setup is minimal since
honest parties should never have to query for their identity keys. The identity
key is simply a backdoor provided to corrupt parties. Although at first sight, it
might seem counter-intuitive to provide a backdoor to the adversary, note that
this backdoor is also provided to our simulator — and this increases the power
of the simulator allowing us to circumvent the aforementioned impossibility of
extraction, and design protocols where honest parties can deny participation.

MPC with a single secure processor and Gacrs. We consider a setting with
a server that is equipped with a secure processor, and multiple clients that do
not have a secure processor.

Let us first focus on the (more interesting) case when the server and a subset
of the clients are corrupt. The key question is how to get around the impossibility
of extraction with the help of Gacrs — more specifically, how does the simulator
extract the corrupt clients’ inputs? Our idea is the following — for the readers’
convenience, we skip ahead and present the detailed protocol in Figure 3 as we
explain the technicalities. We defer formal notations and proofs to [56, Section
6].

– First, we parametrize the enclave program with the global common reference
string Gacrs.mpk.

– Second, we add a backdoor in the enclave program, such that the enclave
program will return the secret key for Pi’s secure channel with the enclave, if
the caller provides the correct identity key for Pi. In this way, the simulator
can be a man-in-the-middle for all corrupt parties’ secure channels with the
enclave, and extract their inputs. We note that honest parties’ security will
not be harmed by this backdoor, since honest parties will never even query
Gacrs for their identity keys, and thus their identity keys should never leak.
However, in the simulation, the simulator will query Gacrs for all corrupt par-
ties’ identity keys, which will allow the simulator to extract corrupt parties’
inputs by querying this backdoor in the enclave program.

– Third, we introduce yet another backdoor in the enclave program that al-
lows the caller to program any party’s output, provided that the caller can
demonstrate that party’s identity key. Again, in the real world, this backdoor
should not harm honest parties’ security because honest parties’ identity keys
never get leaked. Now in the simulation, the simulator will query Gacrs for all
corrupt parties’ identity keys which will give the simulator the power to query



progmpc[f,Gacrs.mpk,S,P1, . . . ,Pn]

On input (“init”): for i ∈ [n]: (pki, ski)← PKE.Gen(1λ); return {pk1, . . . , pkn}

On input (“input”, {cti}i∈[n]):
for i ∈ [n]: (inpi, ki) := PKE.Decski(cti); return Ω := {cti}i∈[n]

On input (“extract”, {idki}i∈[n]):
for i ∈ [n]: if check(Gacrs.mpk,Pi, idk) = 1, vi := ski, else vi := ⊥; return {vi}i∈[n]

On input (“program”, {idki, ui}i∈[n]):
for i ∈ [n]: if check(Gacrs.mpk,Pi, idk) = 1, outpi := ui

On input (“proceed”, {ct′i}i∈[n]):
for i ∈ [n]: assert AE.Decki(ct

′
i) = “ok”

outp∗ := f(inp1, . . . , inpn), return “done”

On input∗ (“output”,Pi):
assert outp∗ has been stored
if outpi has been stored, ct := Encki(outpi), else ct := Encki(outp

∗)
return ct

Protmpc[sid , f,Gacrs.mpk,S,P1, . . . ,Pn]

Server S:

let eid := Gatt.install(sid , progmpc[f,Gacrs.mpk,S,P1, . . . ,Pn])
henceforth let Gatt.resume(·) := Gatt.resume(eid , ·)
let ({pki}i∈[n], σ) := Gatt.resume(“init”), send (eid , ψ(Pi, {pki}i∈[n], σ)) to each Pi
for each Pi: await (“input”, cti) from Pi
(Ω, σ) := Gatt.resume(“input”, {cti}i∈[n]), send ψ(Pi, Ω, σ) to each Pi
for each Pi: await (“proceed”, ct′i) from Pi
Gatt.resume(“proceed”, {ct′i}i∈[n])
for each Pi: (cti, σi) := Gatt.resume(“output”,Pi), send cti to Pi

Remote Party Pi: On input inp from Z:

await (eid , ψ) from S
// Henceforth for ψ̃ := (msg, C, π),

// let Ver(ψ̃) := Ver(crs, (sid , eid , C,mpk,Gacrs.mpk,Pi,msg), π)
assert Ver(ψ), parse ψ := ({pki}i∈[n], , )

k ← {0, 1}λ, ct = PKE.Encpk(inp, k) where pk := pki
send (“input”, ct) to S, await ψ from S, assert Ver(ψ), parse ψ := (Ω, , )
assert Ω[i] = ct, send eid to all parties, wait for all parties to ack the same eid
let ct′ := AE.Enck(“ok”), send (“proceed”, ct′) to S, await ct, assert ct not seen
outp := Deck(ct), assert ct decryption successful, return outp

Fig. 3: Composable multi-party computation with a single secure
processor. ψ(P,msg, σ) outputs a tuple (msg, C, π), where π is a witness-
indistinguishable proof that the ciphertext C either encrypts a valid attestation
σ on msg, or encrypts P’s identity key. PKE and AE denote public-key encryption
and authenticated encryption respectively. The notation send denotes messages
sent over a secure channel.



the corrupt parties’ outputs. Such “programmability” is necessary, because
when the simulator obtains the outcome outp from Fmpc, it must somehow
obtain the enclave’s attestation on outp — however, since the simulator does
not know honest parties’ inputs, he cannot have provided honest parties’ in-
puts to the enclave. Therefore, there must be a special execution path such
that the simulator can obtain a signature on outp from the enclave.

Now, let us turn our attention to the case when the server is honest, but
a subset of the clients are corrupt. In this case, our concern is how to achieve
deniability for the server — specifically, an honest server should be able to deny
participation in a protocol. If the honest server sends an attestation in the clear
to the (possibly corrupt) clients, we cannot hope to obtain such deniability,
because a corrupt client can then prove to others that some honest party in
Gatt’s registry must have participated, although it might not be able to prove
which one since the attestation is anonymous. To achieve deniability, our idea is
the following:

– Instead of directly sending an attestation on a message msg, the server will
produce a witness indistinguishable proof that either he knows an attesta-
tion on msg, or he knows the recipient’s identity key. Note that in the real
world protocol, the server always provide the attestation as the witness when
producing the witness indistinguishable proof.

– However, in the simulation when the server is honest but a subset of the
clients are corrupt, the simulator is unable to query any enclave since none
of the corrupt clients have a secure processor. However, the simulator can
query Gacrs and obtain all corrupt parties’ identity keys. In this way, the
simulator can use these identity keys as an alternative witness to construct
the witness indistinguishable proofs — and the witness indistinguishability
property ensures that the adversary (and the environment) cannot distinguish
which witness was provided in constructing the proof.

Implementing Gacrs. In practice, the Gacrs functionality can be implemented by
having a trusted third party (which may be the trusted hardware manufacturer)
that generates the reference string and hands out the appropriate secret keys [18].

It is instructive to consider why Gacrs cannot be implemented from Gatt itself
(indeed, this would contradict our result that it is impossible to obtain com-
posable MPC in the presence of a single attested execution processor, with no
further setup assumptions). Informally, the reason this does not work is that
unless all parties have access to Gatt (which is the case we consider), then if only
the party that does not have access to Gatt is corrupted, the view of the ad-
versary cannot be simulated—in particular, the attested generation of the CRS
cannot be simulated (since the adversary does not have access to Gatt) and as
such serves as evidence that some honest party participated in an execution (i.e.,
we have a “deniability attack”).



2.6 Fairness

It is well-known that fairness is in general impossible in secure two-party com-
putation in the plain model (even under weaker security definitions that do
not necessarily aim for concurrent composition). Intuitively, the party that ob-
tains the output first can simply abort from the protocol thus preventing the
other party from learning the outcome. Cleve [25] formalized this intuition and
demonstrated an impossibility result for fair 2-party coin tossing, which in turns
suggests the impossibility of fairness in general 2-party computation. Interest-
ingly, a sequence of recent works show that although fairness is impossible in
general, there are a class of non-trivial functions that can indeed be computed
fairly [8, 38,39].

Since real-world secure processors such as Intel’s SGX offer a “trusted clock”
abstraction, we explore whether and how such trusted clocks can help in at-
taining fairness. It is not hard to see that Cleve’s lower bound still applies, and
fairness is still impossible when our attested execution processors do not have
trusted clocks. We show how having trusted clocks in secure processors can help
with fairness.

First, we show that fairness is indeed possible in general 2-party computation,
when both parties have secure processors with trusted clocks. Specifically, we
consider a clock-adjusted notion of fairness which we refer to as ∆-fairness.
Intuitively, ∆-fairness stipulates that if the corrupt party receives output by
some round r, then the honest party must receive output by round ∆(r), where
∆ is a polynomial function.

Theorem 5 (Informal). Assume that secure key exchange protocols exist, and
that both parties have an attested execution processor with trusted clocks, then
there exists a protocol that UC-realizes F2pc with ∆-fairness where ∆(r) = 2r.

In other words, if the corrupt party learns the outcome by round r, the honest
party is guaranteed to learn the outcome by round 2r. Our protocol is a tit-for-
tat style protocol that involves the two parties’ enclaves negotiating with each
other as to when to release the output to its owner. At a high level, the protocol
works as follows:

– First, each party sends their respective input to its local secure processor.
– The two secure processors then perform a key exchange to establish a secret

key k for an authenticated encryption scheme. Now the two enclave exchange
the parties’ inputs over a secure channel, at which point both enclaves can
compute the output.

– However, at this point, the two enclaves still withhold the outcome from their
respective owners, and the initial timeout value δ := 2λ is set to exponentially
large in λ. In other words, each enclave promises to release the outcome to
its owner in round δ.

– At this moment, the tit-for-tat protocol starts. In each turn, each secure
enclave sends an acknowledgment to the other over a secure channel. Upon
receiving the other enclave’s acknowledgment, the receiving enclave would



now halve the δ value, i.e., set δ := δ
2 . In other words, the enclave promises

to release the outcome to its owner by half of the original timeout.
– If both parties are honest, then after λ turns, their respective enclaves disclose

the outputs to each party.
– If one party is corrupt, then if he learns the outcome by round r, clearly the

other party will learn the outcome by round 2r.

To have provably security in the UC model, technicalities similar to our
earlier 2-party computation protocol (the case when both parties have a secure
processor) exist. More specifically, both parties have to send inputs to their local
enclave to allow extraction in the simulation. Moreover, the enclave program
needs to leave a second input (that is not used in the real-world protocol) such
that the simulator can program the output for the corrupt party after learning
the output from F2pc.

It is also worth noting that our protocol borrows ideas from gradual release-
style protocols [14, 30, 35]. However, in comparison, known gradual release-style
protocols rely on non-standard assumptions which are not necessary in our pro-
tocol when a clock-aware Gatt is available.

We next consider whether a single secure processor enabled with trusted clock
can help with fairness. We show two results: first, fairness is in impossible for
generic functionalities when only one party has a clock-aware secure processor;
and second, a single clock-aware secure processor allows us to fairly compute a
broader class of functions than the plain setting.

Theorem 6 (Informal). Assume that one-way functions exist, then, fair 2-
party computation is impossible for general functionalities when only one party
has a clock-aware secure processor (even when assuming the existence of Gacrs).

First, to prove the general fairness impossibility in the presence of a single
secure processor, we consider a specific contract signing functionality Fcontract

in which two parties, each with a secret signing key, exchange signatures over a
canonical message, say 0 (see our full version [56, Section 7] for a formal defini-
tion). In the plain model, there exists a (folklore) fairness impossibility proof for
this functionality — and it helps to understand this proof first before presenting
ours. Imprecisely speaking, if one party, say P0, aborts prior to sending the last
protocol message, and P0 is able to output a correct signature over the message,
then P1 must be able to output the correct signature as well by fairness. As a re-
sult, we can remove protocol messages one by one, and show that if the previous
protocol Πi fairly realizes Fcontract, then Πi−1 (that is, the protocol Πi with the
last message removed) must fairly realize Fcontract as well. Eventually, we will
arrive at the empty protocol, and conclude that the empty protocol fairly real-
izes Fcontract as well which clearly is impossible if the signature scheme is secure.
Although the intuition is simple, it turns out that the formal proof is somewhat
subtle — for example, clearly the proof should not work had this been some
other functionality that is not contract signing, since we know that there exist
certain functions that can be computed fairly in the plain model [8, 38, 39]. We



formalize this folklore proof and also give an alternative proof in the full version
of this work [56, Section 7.4].

We now discuss how we can prove impossibility when only one party has a
clock-aware secure processor. The overall structure of the proof is very similar
to the aforementioned folklore proof where protocol messages are removed one
by one, however, as we do so, we need to carefully bound the time by which
the corrupt (i.e., aborting) party learns output. Without loss of generality, let
us assume that party P0 has a secure processor and party P1 does not. As we
remove protocol messages one by one, in each alternate round, party P1 is the
aborting party. Suppose party P1 aborts in round r ≤ g(λ) where g(λ) is the
runtime of the protocol if both parties are honest. Since P1 does not have a
secure processor, if he can learn the result in polynomially many rounds by the
honest protocol, then he must be able to learn the outcome in round r too — in
particular, even if the honest protocol specifies that he waits for more rounds, he
can just simulate the fast forwarding of his clock in a single round and complete
the remainder of his execution. This means that as we remove protocol messages
one by one, in every alternate turn, the aborting party is guaranteed to obtain
output by round g(λ) — and thus even if he aborts, the other party must receive
output by round ∆(g(λ)). Similar as before, we eventually arrive at an empty
protocol which we conclude to also fairly compute Fcontract (where the parties
do not exchange protocol messages) which clearly is impossible if the signature
scheme is secure.

We stress that the ability to reset the aborting party’s runtime back to g(λ)
in every alternative round is important for the proof to work. In particular, if
both parties have a clock-aware secure processor, the lower bound clearly should
fail in light of our upper bound — and the reason that it fails is because the
runtime of the aborting party would increase by a polynomial factor every time
we remove a protocol message, and after polynomially many such removals the
party’s runtime would become exponential.

We also note that the above is simply the intuition, and formalizing the proof
is somewhat subtle which we leave to the full version of this work [56, Section
7.4].

Although fairness is impossible in general with only one clock-aware secure
processor, we show that even one clock-aware secure processor can help with
fairness too. Specifically, it broadens the set of functions that can be computed
fairly in comparison with the plain setting.

Theorem 7 (Informal). Assume that secure key exchange protocols exist, then
when only a single party has a clock-aware secure processor, there exist functions
that can be computed with ∆-fairness in the (Gatt,Gacrs)-hybrid model, but cannot
be computed fairly in the Gacrs-hybrid model.

Specifically, we show that 2-party fair coin toss, which is known to be impos-
sible in the plain model, becomes possible when only one party has a clock-aware
secure processor. Intuitively, the issue in the standard setting is that the party
that obtains the output first can examine the outcome coin, and can abort if



he does not like the result, say abort on 0. Although the other party can now
toss another coin on his own — the first party aborting already suffices to bias
the remaining party’s output towards 1. We now propose a (Gatt,Gacrs)-hybrid
protocol that realizes 2-party fair toss, assuming that Gatt is clock aware and
that only one party has a secure processor. The idea is the following. Let the
server S and the client C be the two parties involved, and suppose that the
server has a secure processor but the client does not. The server’s enclave first
performs key exchange and establishes a secure channel with the client. Now the
server’s enclave flips a random coin and sends it to the client over the secure
channel in a specific round, say, round 3 (e.g., assuming that key exchange takes
two rounds). At this moment, the server does not see the outcome of the coin
yet. If the client does not receive this coin by the end of round 3, it will flip an
independent coin on its own; otherwise it outputs the coin received. Finally, in
round 4, the server will receive the outcome of the coin from its local enclave.
Observe that server can decide to abort prior to sending the client the coin (over
the secure channel), however, the server cannot base the decision upon the value
of the coin, since he does not get to see the coin until round 4. To formalize this
intuition and specifically to prove the resulting protocol secure in the UC model,
again we need to rely on the help of Gacrs.

2.7 Additional Results

We provide some additional interesting variations in modeling and results.

The transparent enclave model. Many known secure processors are known to
be vulnerable to certain side-channel attacks such as cache-timing or differential
power analysis. Complete defense against such side channels remains an area of
active research [31–34,49,73].

Recently, Tramèr et al. [71] ask the question, what kind of interesting ap-
plications can we realize assuming that such side-channels are unavoidable in
secure processors? Tramèr et al. [71] then propose a new model which they call
the transparent enclave model. The transparent enclave model is almost the
same as our Gatt, except that the enclave program leaks all internal states to
the adversary A. Nonetheless, Gatt still keeps its master signing key msk secret.
In practice, this model requires us to only spend effort to protect the secure
processor’s attestation algorithm from side channels, and we consider the entire
user-defined enclave program to be transparent to the adversary.

Tramèr et al. then show how to realize interesting security tasks such as
cryptographic commitments and zero-knowledge proofs with only transparent
enclaves. We note that Tramèr et al. adopt modeling techniques that inherit
from an earlier manuscript version of the present paper. However, Tramèr et al.
model Gatt as a local functionality rather than a globally shared functionality
— and this lets them circumvent several technical challenges that stem from
the functionality being globally shared, and allow them to achieve universally
composable protocols more trivially. As mentioned earlier, if Gatt were local, in
practice this would mean that a fresh (mpk,msk) pair is generated for every



protocol instance — even for different applications of the same user. This clearly
fails to capture the reusability of real-world secure processors.

We show how to realize UC-secure commitments assuming only transparent
enclaves, denoted Ĝatt, when both parties have a secure processor (since other-
wise the task would have been impossible as noted earlier). Although intuition
is quite simple — the committer could commit the value to its local enclave, and
later ask the enclave to sign the opening — it turns out that this natural protocol
candidate is not known to have provable security. Our actual protocol involves
non-trivial techniques to achieve equivocation when the receiver is corrupt, a
technical issue that arises commonly in UC proofs.

Theorem 8 (Informal). Assume that secure key exchange protocols exist.

There is a Ĝatt-hybrid protocol that UC-realizes Fcom where Ĝatt is the trans-
parent enclave functionality.

Challenge in achieving equivocation. We note that because the committer must
commit its value b to its local enclave, extraction is trivial when the committer is
corrupt. The challenge is how to equivocate when the receiver is corrupt. In this
case, the simulator must first simulate for the corrupt receiver a commitment-
phase message which contains a valid attestation. To do so, the simulator needs to
ask its enclave to sign a dummy value — note that at this moment, the simulator
does not know the committed value yet. Later, during the opening phase, the
simulator learns the opening from the commitment ideal functionality Fcom. At
this moment, the simulator must simulate a valid opening-phase message. The
simulator cannot achieve this through the normal execution path of the enclave
program, and therefore we must provide a special backdoor for the simulator
to program the enclave’s attestation on the opened value. Furthermore, it is
important that a real-world committer who is potentially corrupt cannot make
use of this backdoor to equivocate on the opening.

Our idea is therefore the following: the committer’s enclave program must
accept a special value c for which the receiver knows a trapdoor x such that
owf(x) = c, where owf denotes a one-way function. Further, the committer’s
enclave must produce an attestation on the value c such that the receiver can
be sure that the correct c has been accepted by the committer’s enclave. Now,
if the committer produces the correct trapdoor x, then the committer’s enclave
will allow it to equivocate on the opening. Note that in the real-world execution,
the honest receiver should never disclose x, and therefore this backdoor does not
harm the security for an honest receiver. However, in the simulation when the
receiver is corrupt, the simulator can capture the receiver’s communication with
Ĝatt and extract the trapdoor x. Thus the simulator is now able to program the
enclave’s opening after it learns the opening from the Fcom ideal functionality.

More specifically, the full protocol works as follows:

– First, the receiver selects a random trapdoor x, and sends it to its local
enclave. The local enclave computes c := owf(x) where owf denotes a one-
way function, and returns (c, σ) where σ is an attestation for c.



– Next, the committer receives (c, σ) from the receiver. If the attestation ver-
ifies, it then sends to its enclave the bit b to be committed, along with the
value c that is the outcome of the one-way function over the receiver’s trap-
door x. The committer’s secure processor now signs the c value received in
acknowledgment, and the receiver must check this attestation to make sure
that the committer did send the correct c to its own enclave.

– Next, during the opening phase, the committer can ask its local enclave to
sign the opening of the committed value, and demonstrate the attestation to
the receiver to convince him of the opening. Due to a technicality commonly
referred to as “equivocation” that arises in UC proofs, the enclave’s “open”
entry point provides the following backdoor: if the caller provides a pair of
values (x, b′) such that owf(x) = c where c was stored earlier by the enclave,
then the enclave will sign b′ instead of the previously committed value b.

Non-anonymous attestation. Although most of the paper is concerned about
modeling anonymous attested execution as inspired by Intel’s most recent
SGX [6,51] and later versions of TPM [1], some secure processors instead imple-
ment non-anonymous attestation. In non-anonymous attestation, the signature
binds to the platform’s identity. Typically in a real-world implementation, the
manufacturer embeds a long-term signing key henceforth denoted ak in each
secure processor. The manufacturer then signs a certificate for the ak using
its manufacturer key msk. In formal modeling, such a certificate chain can be
thought of as a signature under msk, but where the message is prefixed with the
platform’s identity (e.g., ak).

It is not hard to see that our (Gatt,Gacrs)-hybrid protocol that realizes multi-
party computation with a single secure processor can easily be adapted to work
for the case of non-anonymous attestation as well. However, we point out that
our 2-party protocol when both have secure processors would not be secure if
we directly replaced the signatures with non-anonymous ones. Intuitively, since
in the case of non-anonymous attestation, attestations bind to the platform’s
identity, if such signatures are transferred in the clear to remote parties, then
a corrupt party can convince others of an honest party’s participation in the
protocol simply by demonstrating a signature from that party. In comparison, if
attestations were anonymous and secure processors are omnipresent, then this
would not have been an issue since the adversary could have produced such a
signature on its own by asking its local secure processor.

2.8 Related Work

Trusted hardware built by architects. The architecture community have
been designing and building general-purpose secure processors for several
decades [6, 22,27,31–34,48,49,51,66,73]. The motivation for having secure pro-
cessors is to minimize the trust placed in software (including the operating sys-
tem and user applications) — and this seems especially valuable since software
vulnerabilities have persisted and will likely continue to persist. Several efforts



have been made to commercialize trusted hardware such as TPMs [1], Arm’s
Trustzone [5, 7], and Intel’s SGX [6, 51]. As mentioned earlier, many of these
secure processors adopt a similar attested execution abstraction despite notable
differences in architectural choices, instruction sets, threat models they defend
against, etc. For example, some secure processors defend against software-only
adversaries [27]; others additionally defend against physical snooping of mem-
ory buses [33, 34, 49]; the latest Intel SGX defends against restricted classes of
software and physical attackers, particularly, those that do not exploit certain
side channels such as timing, and do not observe page swaps or memory access
patterns (or observe but discard such information). A comprehensive survey and
comparison of various secure processors is beyond the scope of this paper, and
we refer the reader to the recent work by Shi et al. [64] for a systematization of
knowledge and comparative taxonomy.

Besides general-purpose secure processors, other forms of trusted hardware
also have been built and commercialized, e.g., hardware cryptography accelera-
tors.

Cryptographers’ explorations of trusted hardware. The fact that general-
purpose secure processors being built in practice have more or less converged
to such an abstraction is interesting. By contrast, the cryptography community
have had a somewhat different focus, typically on the minimal abstraction needed
to circumvent theoretical impossibilities rather than practical performance and
cost effectiveness [24, 29, 37, 40, 45]. For example, previous works showed what
minimal trusted hardware abstractions are needed to realize tasks such as simu-
lation secure program obfuscation, functional encryption, and universally com-
posable multiparty computation — tasks known to be impossible in the plain
setting. These works do not necessarily focus on practical cost effectiveness, e.g.,
some constructions rely on primitives such as fully homomorphic encryption [24],
others require sending one or more physical hardware tokens during the proto-
col [37, 40, 42, 52], thus limiting the protocol’s practicality and the hardware
token’s global reusability. Finally, a couple recent works [42, 52] also adopt the
GUC framework to model hardware tokens — however, the use of GUC in these
works [42, 52] is to achieve composition when an adversary can possibly pass a
hardware token from one protocol instance to another; in particular, like ear-
lier cryptographic treatments of hardware tokens [24,37,45], these works [42,52]
consider the same model where the hardware tokens are passed around between
parties during protocol execution, and not realistic secure processors like SGX.

Use of trusted hardware in applications. Numerous works have demon-
strated how to apply trusted hardware to design secure cloud systems [11, 28,
50, 61, 62], cryptocurrency systems [74], collaborative data analytics applica-
tions [55], and others [12, 23, 59, 63]. Due to the lack of formal abstractions
for secure processors, most of these works take an approach that ranges from
heuristic security to semi-formal reasoning. We hope that our work can lay the
foundations for formally correctly employing secure processors in applications.



Formal security meets realistic trusted hardware. A couple earlier works
have aimed to provide formal abstractions for realistic trusted hardware [10,65],
however, they either do not support cryptographically sound reasoning [65], or do
not support cryptographically sound composition in general protocol design [10].

We note that our goal of having cryptographically sound formal abstractions
for trusted hardware is complementary and orthogonal to the goal of providing
formally correct implementations of trusted hardware [31,73]. In general, build-
ing formally verified implementations of trusted hardware — particularly, one
that realizes the abstractions proposed in this paper — still remains a grand
challenge of our community.

3 Formal Definitions, Constructions, and Proofs

In the interest of space, we present our formal definitions, constructions, and
proofs in a full version of this work [56] — we refer the reader to the technical
roadmap section for an intuitive explanation of the key technical insights, the
technicalities that arise in proofs, and how we handle them.

Acknowledgments

We thank Elette Boyle, Kai-Min Chung, Victor Costan, Srini Devadas, Ari
Juels, Andrew Miller, Dawn Song, and Fan Zhang for helpful and support-
ive discussions. This work is supported in part by NSF grants CNS-1217821,
CNS-1314857, CNS-1514261, CNS-1544613, CNS-1561209, CNS-1601879, CNS-
1617676, AFOSR Award FA9550-15-1-0262, an Office of Naval Research Young
Investigator Program Award, a Microsoft Faculty Fellowship, a Packard Fel-
lowship, a Sloan Fellowship, Google Faculty Research Awards, and a VMWare
Research Award. This work was done in part while a subset of the authors were
visiting the Simons Institute for the Theory of Computing, supported by the
Simons Foundation and by the DIMACS/Simons Collaboration in Cryptogra-
phy through NSF grant CNS-1523467. The second author would like to thank
Adrian Perrig and Leendert van Doorn for many helpful discussions on trusted
hardware earlier in her research.

References

1. Trusted computing group. http://www.trustedcomputinggroup.org/.
2. Mart́ın Abadi and Jan Jürjens. Formal eavesdropping and its computational in-

terpretation. In Theoretical Aspects of Computer Software, pages 82–94, 2001.
3. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the

computational soundness of formal encryption). J. Cryptology, 20(3):395, 2007.
4. Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of

formal encryption in the presence of key-cycles. In ESORICS, pages 374–396,
2005.

http://www.trustedcomputinggroup.org/


5. Tiago Alves and Don Felton. Trustzone: Integrated hardware and software security.
Information Quarterly, 3(4):18–24, 2004.

6. Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. Innovative
technology for cpu based attestation and sealing. In HASP, 2013.

7. ARM Limited. ARM Security Technology Building a Secure System using
TrustZone R© Technology, Apr 2009. Reference no. PRD29-GENC-009492C.

8. Gilad Asharov, Amos Beimel, Nikolaos Makriyannis, and Eran Omri. Complete
characterization of fairness in secure two-party computation of boolean functions.
In Theory of Cryptography Conference (TCC), pages 199–228, 2015.

9. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A universally composable
cryptographic library. IACR Cryptology ePrint Archive, 2003:15, 2003.

10. Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi.
Foundations of hardware-based attested computation and application to SGX. In
IEEE European Symposium on Security and Privacy, pages 245–260, 2016.

11. Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from
an untrusted cloud with haven. In OSDI, 2014.

12. Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer,
and Leendert van Doorn. vTPM: virtualizing the trusted platform module. In
USENIX Security, 2006.

13. Florian Bohl and Dominique Unruh. Symbolic universal composability. In IEEE
Computer Security Foundations Symposium, pages 257–271, 2013.

14. Dan Boneh and Moni Naor. Timed commitments. In CRYPTO, 2000.
15. Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attestation. In

CCS, 2004.
16. Ernie Brickell and Jiangtao Li. Enhanced privacy id from bilinear pairing. IACR

Cryptology ePrint Archive, 2009:95, 2009.
17. Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In FOCS, 2001.
18. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-

posable security with global setup. In TCC. 2007.
19. Ran Canetti and Marc Fischlin. Universally composable commitments. In Advances

in Cryptology (CRYPTO), pages 19–40, 2001.
20. Ran Canetti and Jonathan Herzog. Universally composable symbolic security anal-

ysis. J. Cryptology, 24(1):83–147, 2011.
21. Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO,

2003.
22. David Champagne and Ruby B Lee. Scalable architectural support for trusted

software. In HPCA, 2010.
23. Chen Chen, Himanshu Raj, Stefan Saroiu, and Alec Wolman. cTPM: A cloud

TPM for cross-device trusted applications. In NSDI, 2014.
24. Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption

from (small) hardware tokens. In Asiacrypt, 2013.
25. Richard Cleve. Limits on the security of coin flips when half the processors are

faulty. In STOC’86, pages 364–369, 1986.
26. Victor Costan and Srini Devadas. Intel SGX explained. Manuscript, 2015.
27. Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware

extensions for strong software isolation. In USENIX Security, 2016.
28. Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and Chun-

wang Zhang. M2R: Enabling stronger privacy in MapReduce computation. In
USENIX Security, 2015.



29. Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Basing obfus-
cation on simple tamper-proof hardware assumptions. IACR Cryptology ePrint
Archive, 2011:675, 2011.

30. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for
signing contracts. Commun. ACM, 28(6), June 1985.

31. Andrew Ferraiuolo, Yao Wang, Rui Xu, Danfeng Zhang, Andrew Myers, and G. Ed-
ward Suh. Full-processor timing channel protection with applications to secure
hardware compartments. 2015.

32. Christopher W Fletcher, Marten van Dijk, and Srinivas Devadas. A secure pro-
cessor architecture for encrypted computation on untrusted programs. In STC,
2012.

33. Christopher W. Fletcher, Ling Ren, Albert Kwon, Marten van Dijk, Emil Ste-
fanov, and Srinivas Devadas. RAW Path ORAM: A low-latency, low-area hardware
ORAM controller with integrity verification. IACR Cryptology ePrint Archive,
2014:431, 2014.

34. Christopher W. Fletcher, Ling Ren, Xiangyao Yu, Marten van Dijk, Omer Khan,
and Srinivas Devadas. Suppressing the oblivious RAM timing channel while making
information leakage and program efficiency trade-offs. In HPCA, pages 213–224,
2014.

35. Juan Garay, Philip MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource fair-
ness and composability of cryptographic protocols. In TCC, 2006.

36. Daniel Genkin, Lev Pachmanov, Itamar Pipman, Adi Shamir, and Eran Tromer.
Physical key extraction attacks on pcs. Commun. ACM, 59(6):70–79, May 2016.

37. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs.
In CRYPTO, 2008.

38. Dov Gordon and Jonathan Katz. Complete fairness in multi-party computation
without an honest majority. In TCC, 2009.

39. S. Dov Gordon, Carmit Hazay, Jonathan Katz, and Yehuda Lindell. Complete
fairness in secure two-party computation. J. ACM, 58(6):24:1–24:37, December
2011.

40. Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. Founding cryptography on tamper-proof hardware tokens. In TCC, 2010.

41. Debayan Gupta, Benjamin Mood, Joan Feigenbaum, Kevin R. B. Butler, and
Patrick Traynor. Using intel software guard extensions for efficient two-party secure
function evaluation. In FC, 2016.

42. Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubra-
maniam. Composable security in the tamper-proof hardware model under mini-
mal complexity. In Theory of Cryptography - 14th International Conference, TCC
2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part I, pages
367–399, 2016.

43. Omer Horvitz and Virgil D. Gligor. Weak key authenticity and the computational
completeness of formal encryption. In CRYPTO, pages 530–547, 2003.

44. Romain Janvier, Yassine Lakhnech, and Laurent Mazaré. Completing the picture:
Soundness of formal encryption in the presence of active adversaries. In ESOP,
pages 172–185, 2005.

45. Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In EUROCRYPT, 2007.

46. Bernhard Kauer. Tpm reset attack. http://www.cs.dartmouth.edu/~pkilab/

sparks/.
47. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In

Advances in Cryptology—CRYPTO’99, pages 388–397. Springer, 1999.

http://www.cs.dartmouth.edu/~pkilab/sparks/
http://www.cs.dartmouth.edu/~pkilab/sparks/


48. David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,
John Mitchell, and Mark Horowitz. Architectural support for copy and tamper
resistant software. ACM SIGPLAN Notices, 35(11):168–177, 2000.

49. Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Kriste Asanovic,
John Kubiatowicz, and Dawn Song. Phantom: Practical oblivious computation in
a secure processor. In CCS, 2013.

50. Lorenzo Martignoni, Pongsin Poosankam, Matei Zaharia, Jun Han, Stephen Mc-
Camant, Dawn Song, Vern Paxson, Adrian Perrig, Scott Shenker, and Ion Stoica.
Cloud terminal: Secure access to sensitive applications from untrusted systems. In
USENIX ATC, 2012.

51. Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. HASP, 13:10, 2013.

52. Jeremias Mechler, Jrn Mller-Quade, and Tobias Nilges. Universally composable
(non-interactive) two-party computation from untrusted reusable hardware tokens.
Cryptology ePrint Archive, Report 2016/615, 2016. http://eprint.iacr.org/

2016/615.
53. Daniele Micciancio and Bogdan Warinschi. Completeness theorems for the Abadi-

Rogaway language of encrypted expressions. J. Comput. Secur., 12(1):99–129,
January 2004.

54. Daniele Micciancio and Bogdan Warinschi. Soundness of formal encryption in the
presence of active adversaries. In Theory of Cryptography Conference (TCC), 2004.

55. Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious multi-party machine learn-
ing on trusted processors. In USENIX Security, August 2016.

56. Rafael Pass, Elaine Shi, and Florian Tramèr. Formal abstractions for attested
execution secure processors. IACR Cryptology ePrint Archive, 2016:1027, 2016.

57. Adam Petcher and Greg Morrisett. The foundational cryptography framework. In
POST, pages 53–72, 2015.

58. Adam Petcher and Greg Morrisett. A mechanized proof of security for searchable
symmetric encryption. In CSF, 2015.

59. Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and
implementation of a TCG-based integrity measurement architecture. In USENIX
Security, 2004.

60. Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wolman. Using arm trust-
zone to build a trusted language runtime for mobile applications. SIGARCH Com-
put. Archit. News, 42(1):67–80, February 2014.

61. Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi, and Stefan Saroiu. Policy-
sealed data: A new abstraction for building trusted cloud services. In USENIX
Security, pages 175–188, 2012.

62. Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy data an-
alytics in the cloud. In IEEE S&P, 2015.

63. Elaine Shi, Adrian Perrig, and Leendert Van Doorn. BIND: A fine-grained attes-
tation service for secure distributed systems. In IEEE S&P, 2005.

64. Elaine Shi, Fan Zhang, Rafael Pass, Srini Devadas, Dawn Song, and Chang Liu.
Systematization of knowledge: Trusted hardware: Life, the composable universe,
and everything. Manuscript, 2015.

65. Sean W. Smith and Vernon Austel. Trusting trusted hardware: Towards a formal
model for programmable secure coprocessors. In Proceedings of the 3rd Conference
on USENIX Workshop on Electronic Commerce - Volume 3, WOEC’98, 1998.

http://eprint.iacr.org/2016/615
http://eprint.iacr.org/2016/615


66. G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas
Devadas. Aegis: architecture for tamper-evident and tamper-resistant processing.
In Proceedings of the 17th annual international conference on Supercomputing,
pages 160–171. ACM, 2003.

67. G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten van Dijk, and Srinivas
Devadas. Aegis: architecture for tamper-evident and tamper-resistant processing.
In ICS, ICS ’03, pages 160–171, 2003.

68. Mike Szczys. TPM crytography cracked. http://hackaday.com/2010/02/09/

tpm-crytography-cracked/.
69. David Lie Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh,

John Mitchell, and Mark Horowitz. Architectural support for copy and tamper
resistant software. SIGOPS Oper. Syst. Rev., 34(5):168–177, November 2000.

70. Ken Thompson. Reflections on trusting trust. Commun. ACM, 27(8):761–763,
August 1984.

71. Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine
Shi. Sealed-glass proofs: Using transparent enclaves to prove and sell knowledge.
In IEEE European Symposium on Security and Privacy, 2017.

72. Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In IEEE S&P, 2015.

73. Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. A hardware
design language for timing-sensitive information-flow security. In ASPLOS, 2015.

74. Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier:
An authenticated data feed for smart contracts. In ACM CCS, 2016.

75. Xiaotong Zhuang, Tao Zhang, and Santosh Pande. Hide: an infrastructure for
efficiently protecting information leakage on the address bus. SIGARCH Comput.
Archit. News, 32(5):72–84, October 2004.

http://hackaday.com/2010/02/09/tpm-crytography-cracked/
http://hackaday.com/2010/02/09/tpm-crytography-cracked/

	Formal Abstractions for Attested Execution Secure Processors

