
Functional Encryption: Deterministic to
Randomized Functions from Simple Assumptions

Shashank Agrawal1? and David J. Wu2??

1 Visa Research
2 Stanford University

Abstract. Functional encryption (FE) enables fine-grained control of
sensitive data by allowing users to only compute certain functions for
which they have a key. The vast majority of work in FE has focused
on deterministic functions, but for several applications such as privacy-
aware auditing, differentially-private data release, proxy re-encryption,
and more, the functionality of interest is more naturally captured by
a randomized function. Recently, Goyal et al. (TCC 2015) initiated a
formal study of FE for randomized functionalities with security against
malicious encrypters, and gave a selectively secure construction from in-
distinguishability obfuscation. To date, this is the only construction of
FE for randomized functionalities in the public-key setting. This stands
in stark contrast to FE for deterministic functions which has been real-
ized from a variety of assumptions.

Our key contribution in this work is a generic transformation that
converts any general-purpose, public-key FE scheme for deterministic
functionalities into one that supports randomized functionalities. Our
transformation uses the underlying FE scheme in a black-box way and
can be instantiated using very standard number-theoretic assumptions
(for instance, the DDH and RSA assumptions suffice). When applied to
existing FE constructions, we obtain several adaptively-secure, public-
key functional encryption schemes for randomized functionalities with
security against malicious encrypters from many different assumptions
such as concrete assumptions on multilinear maps, indistinguishability
obfuscation, and in the bounded-collusion setting, the existence of public-
key encryption, together with standard number-theoretic assumptions.

Additionally, we introduce a new, stronger definition for malicious se-
curity as the existing one falls short of capturing an important class of
correlation attacks. In realizing this definition, our compiler combines
ideas from disparate domains like related-key security for pseudorandom
functions and deterministic encryption in a novel way. We believe that
our techniques could be useful in expanding the scope of new variants

? Part of this work was done when the author was a graduate student at the University
of Illinois, Urbana-Champaign, supported by NSF CNS 12-28856 and the Andrew
& Shana Laursen fellowship.

?? This work was supported in part by NSF, DARPA, the Simons foundation, a grant
from ONR, and an NSF Graduate Research Fellowship. Opinions, findings and con-
clusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of DARPA.



of functional encryption (e.g., multi-input, hierarchical, and others) to
support randomized functionalities.

1 Introduction

Traditionally, encryption schemes have provided an all-or-nothing approach to
data access: a user who holds the secret key can completely recover the message
from a ciphertext while a user who does not hold the secret key learns nothing
at all from the ciphertext. In the last fifteen years, numerous paradigms, such as
identity-based encryption [85,31,45], attribute-based encryption [84,66,24], pred-
icate encryption [37,71,75,78], and more have been introduced to enable more
fine-grained access control on encrypted data. More recently, the cryptographic
community has worked to unify these different paradigms under the general
umbrella of functional encryption (FE) [83,35,79].

At a high level, an FE scheme enables delegation of decryption keys that allow
users to learn specific functions of the data, and nothing else. More precisely,
given a ciphertext for a message x and a secret key for a function f , one can
only learn the value f(x). In the last few years, numerous works have explored
different security notions [35,79,7,23,16,3,4] as well as constructions from a wide
range of assumptions [64,8,50,62,55,86,10]. Until very recently, the vast majority
of work in functional encryption has focused on deterministic functionalities, i.e.,
on schemes that issue keys for deterministic functions only. However, there are
many scenarios where the functionality of interest is more naturally captured by
a randomized function. The first two examples below are adapted from those of
Goyal et al. [65].

Privacy-aware auditing. Suppose a government agency is tasked with mon-
itoring various financial institutions to ensure that their day-to-day activity is
compliant with federal regulations. The financial institutions do not want to give
complete access of their confidential data to any external auditor. Partial access
is insufficient if the financial institution is able to (adversarially) choose which
part of its database to expose. An ideal solution should allow the institutions
to encrypt their database before providing access. Next, the government agency
can give the external auditors a key that allows them to sample a small number
of randomly chosen records from each database.

Constructing an encryption scheme that supports this kind of sampling func-
tionality is non-trivial for several reasons. If an auditor obtains two independent
keys from the government agency, applying them to the same encrypted database
should nonetheless generate two independent samples from it. On the flip side,
if the same key is applied to two distinct databases, the auditor should obtain
an independent sample from each.

Another source of difficulty that arises in this setting is that the encryption
is performed locally by the financial institution. Thus, if malicious institutions
are able to construct “bad” ciphertexts such that the auditor obtains correlated
or non-uniform samples from the encrypted databases, then they can completely

2



compromise the integrity of the audit. Hence, any encryption scheme we design
for privacy-aware auditing must also protect against malicious encrypters.

Differential privacy. Suppose a consortium of hospitals, in an effort to pro-
mote medical research, would like to provide restricted access to their patient
records to approved scientists. In particular, they want to release information in
a differentially-private manner to protect the privacy of their patients. The func-
tionality of interest in this case is the evaluation of some differentially-private
mechanism, which is always a randomized function. Thus, the scheme used to
encrypt patient data should also support issuing keys for randomized functions.
These keys would be managed by the consortium.

Proxy re-encryption. In a proxy re-encryption system, a proxy is able to
transform a ciphertext encrypted under Alice’s public key into one encrypted
under Bob’s public key [13]. Such a capability is very useful if, for example,
Alice wants to forward her encrypted emails to her secretary Bob while she is
away on vacation [27]. We refer to [13] for other applications of this primitive.

Proxy re-encryption can be constructed very naturally from a functional en-
cryption scheme that supports randomized functionalities. For instance, in the
above example, Alice would generate a master public/secret key-pair for an FE
scheme that supports randomized functionalities. When users send mail to Al-
ice, they would encrypt under her master public key. Then, when Alice goes on
vacation, she can delegate her email to Bob by simply giving her mail server
a re-encryption key that re-encrypts emails for Alice under Bob’s public key.
Since standard semantically-secure encryption is necessarily randomized, this
re-encryption functionality is a randomized functionality. In fact, in this sce-
nario, Alice can delegate an arbitrary decryption capability to other parties. For
instance, she can issue a key that only re-encrypts emails tagged with “work” to
Bob. Using our solution, the re-encryption function does not require interaction
with Bob or knowledge of any of Bob’s secrets.

Randomized functional encryption. Motivated by these applications, Al-
wen et al. [8] and Goyal et al. [65] were the first to formally study the problem
of FE for randomized functionalities. In such an FE scheme, a secret key for a
randomized function f and an encryption of a message x should reveal a sin-
gle sample from the output distribution of f(x). Moreover, given a collection of
secret keys skf1 , . . . , skfn for functions f1, . . . , fn, and ciphertexts ctx1

, . . . , ctxn

corresponding to messages x1, . . . , xn, where neither the functions nor the mes-
sages need to be distinct, each secret key skfi and ciphertext ctxj

should reveal
an independent draw from the output distribution of fi(xj), and nothing more.

In supporting randomized functionalities, handling malicious encrypters is
a central issue: a malicious encrypter may construct a ciphertext for a mes-
sage x such that when decrypted with a key for f , the resulting distribution
differs significantly from that of f(x). For instance, in the auditing application
discussed earlier, a malicious bank could manipulate the randomness used to
sample records in its database, thereby compromising the integrity of the audit.

3



We refer to [65] for a more thorough discussion on the importance of handling
malicious encrypters.

1.1 Our Contributions

To date, the only known construction of public-key FE for randomized func-
tionalities secure against malicious encrypters is due to Goyal et al. [65] and
relies on indistinguishability obfuscation (iO) [15,55] together with one-way func-
tions. However, iO is not a particularly appealing assumption since the security
of existing iO constructions either rely on an exponential number of assump-
tions [40,14,80,87,11], or on a polynomial set of assumptions but with an ex-
ponential loss in the security reduction [58,59]. This shortcoming may even be
inherent, as suggested by [57]. Moreover, numerous recent attacks on multilin-
ear maps (the underlying primitive on which all candidate constructions iO are
based) [43,38,46,47,69,42,44,77] have reduced the community’s confidence in the
security of existing constructions of iO.

On the other hand, functional encryption for deterministic functions (with
different levels of security and efficiency) can be realized from a variety of as-
sumptions such as the existence of public-key encryption [83,63], learning with
errors [62], indistinguishability obfuscation [55,86], multilinear maps [56], and
more. Thus, there is a very large gap between the assumptions needed to build
FE schemes for deterministic functionalities and those needed for randomized
functionalities. Hence, it is important to ask:

Does extending public-key FE to support the richer class of randomized
functions require strong additional assumptions such as iO?

If there was a general transformation that we could apply to any FE scheme
for deterministic functions, and obtain one that supported randomized func-
tions, then we could leverage the extensive work on FE for the former to build
FE for the latter with various capabilities and security guarantees. In this pa-
per, we achieve exactly this. We bridge the gap between FE schemes for deter-
ministic and randomized functionalities by showing that any general-purpose,
simulation-secure FE scheme for deterministic functionalities can be extended to
support randomized functionalities with security against malicious encrypters.
Our generic transformation applies to any general-purpose, simulation-secure
FE scheme with perfect correctness and only requires fairly mild additional as-
sumptions (e.g., the decisional Diffie-Hellman (DDH) [29] and the RSA [82,30]
assumptions suffice). Moreover, our transformation is tight in the sense that it
preserves the security of the underlying FE scheme. Because our transformation
relies only on simple additional assumptions, future work in constructing general-
purpose FE can primarily focus on handling deterministic functions rather than
devising specialized constructions to support randomized functions. We now give
an informal statement of our main theorem:

Theorem 1.1 (Main theorem, informal). Under standard number-theoretic
assumptions, given any general-purpose, public-key functional encryption scheme

4



for deterministic functions, there exists a general-purpose, public-key functional
encryption scheme for randomized functions secure against malicious encrypters.

In this work, we focus on simulation-based notions of security for FE. As
shown by several works [35,79], game-based formulations of security are inade-
quate if the function family under consideration has some computational hiding
properties. Moreover, as noted by Goyal et al. [65, Remark 2.8], the natural
notion of indistinguishability-based security in the randomized setting can po-
tentially introduce circularities in the definition and render it vacuous. Addi-
tionally, there are generic ways to boost the security of FE for deterministic
functionalities from a game-based notion to a simulation-based notion [50].

We do note though that these generic indistinguishability-to-simulation boost-
ing techniques sometimes incur a loss in expressiveness (due to the lower bounds
associated with simulation-based security for FE [35,79,7,5]). For instance, while
it is possible to construct a general-purpose FE scheme secure against adversaries
that makes an arbitrary (polynomial) number of secret key queries under an
indistinguishability-based notion of security, an analogous construction is impos-
sible under a simulation-based notion of security. We leave as an important open
problem the development of a generic transformation like the one in Theorem 1.1
that applies to (public-key) FE schemes which satisfy indistinguishability-based
notions of security and which does not incur the loss in expressiveness associated
with first boosting to a simulation-based notion of security. Such a transforma-
tion is known in the secret-key setting [73], though it does not provide security
against malicious encrypters.

Concrete instantiations. Instantiating Theorem 1.1 with existing FE schemes
such as [64,56,55] and applying transformations like [26,51,50,10] to boost cor-
rectness and/or security, we obtain several new public-key FE schemes for ran-
domized functionalities with adaptive simulation-based security against mali-
cious encrypters. For example, if we start with

– the GVW scheme [63], we obtain a scheme secure under bounded collusions
assuming the existence of semantically-secure public-key encryption and low-
depth pseudorandom generators.

– the GGHZ scheme [56], we obtain a scheme with best-possible simulation
security relying on the polynomial hardness of concrete assumptions on
composite-order multilinear maps [36,48,49].

– the GGHRSW scheme [55], we obtain a scheme with best-possible simulation
security from indistinguishability obfuscation and one-way functions.

The second and third schemes above should be contrasted with the one given by
Goyal et al. [65], which achieves selective security assuming the existence of iO.
We describe these instantiations in greater detail in Section 5.

Security definition. We also propose a strong simulation-based definition for
security against malicious encrypters, strengthening the one given by Goyal et
al. [65]. We first give a brief overview of their definition in Section 1.2 and then

5



show why it does not capture an important class of correlation attacks. We also
discuss the subtleties involved in extending their definition.

Our techniques. At a very high level, we must balance between two conflicting
goals in order to achieve our strengthened security definition. On the one hand,
the encryption and key-generation algorithms must be randomized to ensure
that the decryption operation induces the correct output distribution, or even
more fundamentally, that the scheme is semantically-secure. On the other hand,
a malicious encrypter could exploit its freedom to choose the randomness when
constructing ciphertexts in order to induce correlations when multiple cipher-
texts or keys are operated upon. We overcome this barrier by employing ideas
from disparate domains like related-key security for pseudorandom functions and
deterministic encryption in a novel way. We discuss our transformation and the
tools involved in more detail in Section 1.3.

We believe that our techniques could be used to extend the capability of
new variants of functional encryption like multi-input FE [61,32], hierarchical or
delegatable FE [9,39], and others so that they can support randomized function-
alities with security against malicious encrypters as well.

Other related work. Recently, Komargodski et al. [73] studied the same ques-
tion of extending standard FE to FE for randomized functionalities, but re-
stricted to the private-key setting. They show that starting from any “function-
private” secret-key FE scheme for deterministic functionalities, a secret-key FE
scheme for randomized functionalities can be constructed (though without ro-
bustness against malicious encrypters). However, as we discuss below, it seems
challenging to extend their techniques to work in the public-key setting:

– The types of function-privacy that are achievable in the public-key setting
are much more limited (primarily because the adversary can encrypt mes-
sages of its own and decrypt them in order to learn something about the
underlying function keys). For instance, in the case of identity-based and
subspace-membership encryption schemes, function privacy is only possible
if we assume the function keys are drawn from certain high-entropy distri-
butions [33,34].

– An adversary has limited control over ciphertexts in the private-key setting.
For instance, since it cannot construct new ciphertexts by itself, it can only
maul honestly-generated ciphertexts. In such a setting, attacks can often be
prevented using zero-knowledge techniques.

Concurrent with [65], Alwen et al. [8] also explored the connections between FE
for deterministic functionalities and FE for randomized functionalities. Their
construction focused only on the simpler case of handling honest encrypters and
moreover, they worked under an indistinguishability-based notion of security
that has certain circularity problems (see the discussion in [65, Remark 2.8])
which might render it vacuous.

6



1.2 Security Against Malicious Encrypters

Simulation security. Informally, simulation security for FE schemes support-
ing randomized functionalities states that the output of any efficient adversary
with a secret key for a randomized function f and an encryption of a message
x can be simulated given only f(x; r), where the randomness r used to evaluate
f is independently and uniformly sampled. Goyal et al. [65] extend this notion
to include security against malicious encrypters by further requiring that the
output of any efficient adversary holding a secret key for a function g and a
(possibly dishonestly-generated) ciphertext ĉt should be simulatable given only
g(x̂; r), where x̂ is a message that is information-theoretically fixed by ĉt, and
the randomness r is uniform and unknown to the adversary. This captures the
notion that a malicious encrypter is unable to influence the randomness used to
evaluate the function during decryption.

More formally, in the simulation-based definitions of security [35,79], an ad-
versary tries to distinguish its interactions in a real world where ciphertexts and
secret keys are generated according to the specifications of the FE scheme from
its interactions in an ideal world where they are constructed by a simulator given
only a minimal amount of information. To model security against malicious en-
crypters, Goyal et al. give the adversary access to a decryption oracle in the
security game (similar to the formulation of IND-CCA2 security [81]) that takes
as input a single ciphertext ct along with a function f . In the real world, the
challenger first extracts a secret key skf for f and then outputs the decryption
of ct with skf . In the ideal world, the challenger invokes the simulator on ct. The
simulator then outputs a value x (or a special symbol ⊥), at which point the
challenger replies to the adversary with an independently uniform value drawn
from the distribution f(x) (or ⊥).

Limitations of the existing definition. While the definition in [65] captures
security against dishonest encrypters when dealing with deterministic function-
alities, it does not fully capture the desired security goals in the randomized
setting. Notably, the security definition only considers one ciphertext. However,
when extending functional encryption to randomized functionalities, we are also
interested in the joint distribution of multiple ciphertexts and secret keys. Thus,
while it is the case that in any scheme satisfying the security definition in [65],
the adversary cannot produce any single ciphertext that decrypts improperly, a
malicious encrypter could still produce a collection of ciphertexts such that when
the same key is used for decryption, the outputs are correlated. In the auditing
application discussed before, it is imperative to prevent this type of attack, for
otherwise, the integrity of the audit can be compromised.

Strengthening the definition. A natural way to strengthen Goyal et al.’s def-
inition is to allow the decryption oracle to take in a set of (polynomially-many)
ciphertexts along with a function f . In the real world, the challenger extracts
a single key skf for f and applies the decryption algorithm with skf to each
ciphertext. In the ideal world, the simulator is given the set of ciphertexts and

7



is allowed to query the evaluation oracle Of once for each ciphertext submitted.
On each query x, the oracle responds with a fresh evaluation of f(x). This direct
extension, however, is too strong, and not achievable by any existing scheme.
Suppose that an adversary could efficiently find two ciphertexts ct1 6= ct2 such
that for all secret keys sk, Decrypt(sk, ct1) = Decrypt(sk, ct2), then it can easily
distinguish the real and ideal distributions. When queried with (f, (ct1, ct2)), the
decryption oracle always replies with two identical values in the real world irre-
spective of what f is. In the ideal world, however, it replies with two independent
values since fresh randomness is used to evaluate f every time.

While we might want to preclude this type of behavior with our security
definition, it is also one that arises naturally. For example, in both Goyal et
al.’s and our construction, ciphertexts have the form (ct′, π) where ct′ is the
ciphertext component that is actually combined with the decryption key and π
is a proof of the well-formedness of ct′. Decryption proceeds only if the proof
verifies. Since the proofs are randomized, an adversary can construct a valid
ciphertext component ct′ and two distinct proofs π1, π2 and submit the pair of
ciphertexts (ct′, π1) and (ct′, π2) to the decryption oracle. Since π1 and π2 do not
participate in the decryption process after verification, these two ciphertexts are
effectively identical from the perspective of the decryption function. However,
as noted above, an adversary that can construct such ciphertexts can trivially
distinguish between the real and ideal worlds.

Intuitively, if the adversary submitted the same ciphertext multiple times in
a decryption query, it does not make sense for the decryption oracle to respond
with independently distributed outputs in the ideal experiment. The expected
behavior is that the decryption oracle responds with the same value on all identi-
cal ciphertexts. In our setting, we allow for this behavior by considering a gener-
alization of “ciphertext equivalence.” In particular, when the adversary submits
a decryption query, the decryption oracle in the ideal experiment responds con-
sistently on all equivalent ciphertexts that appear in the query. Formally, we
capture this by introducing an efficiently-checkable equivalence relation on the
ciphertext space of the FE scheme. For example, if the ciphertexts have the
form (ct′, π), one valid equivalence relation on ciphertexts is equality of the ct′

components. To respond to a decryption query, the challenger first groups the
ciphertexts according to their equivalence class, and responds consistently for
all ciphertexts belonging to the same class. Thus, without loss of generality, it
suffices to just consider adversaries whose decryption queries contain at most
one representative from each equivalence class. We provide a more thorough
discussion of our strengthened definition in Section 3.

As far as we understand, the Goyal et al. construction remains secure un-
der our strengthened notion of security against malicious encrypters, but it was
only shown to be selectively secure assuming the existence of iO (and one-way
functions).3 Our transformation, on the other hand, provides a generic way of

3 While there is a generic transformation from selectively-secure FE to adaptively-
secure FE [10], it is described in the context of FE for deterministic functions.
Though it is quite plausible that the transformation can be applied to FE schemes

8



building adaptively-secure schemes from both iO as well as plausibly weaker
assumptions such as those on composite-order multilinear maps (Section 5). Fi-
nally, we note that not all schemes satisfying the Goyal et al. security notion
satisfy our strengthened definition. In fact, a simplified version of our transfor-
mation yields a scheme secure under their original definition, but not our new
definition (Remark 4.2).

Further strengthening the security definition. An important assumption
that underlies all existing definitions of FE security against malicious encrypters
is that the adversary cannot craft its “malicious” ciphertexts with (partial)
knowledge of the secret key that will be used for decryption. More formally,
in the security model, when the adversary submits a query to the decryption or-
acle, the secret key used for decryption is honestly generated and hidden from the
adversary. An interesting problem is to formulate stronger notions of randomized
FE where the adversary cannot induce correlations within ciphertexts even if it
has some (limited) information about the function keys that will be used during
decryption. At the same time, we stress that our existing notions already suffice
for all of the applications we describe at the beginning of Section 1.

1.3 Overview of Our Generic Transformation

Our primary contribution in this work is giving a generic transformation from
any simulation-secure general-purpose (public-key) FE scheme4 for deterministic
functionalities to a corresponding simulation-secure (public-key) FE scheme for
randomized functionalities. In this section, we provide a brief overview of our
generic transformation. The complete construction is given in Section 4.

Derandomization. Our starting point is the generic transformation of Alwen
et al. [8] who use a pseudorandom function (PRF) to “derandomize” function-
alities. In their construction, an encryption of a message x consists of an FE
encryption of the pair (x, k) where k is a uniformly chosen PRF key. A secret
key for a randomized functionality f is constructed by first choosing a random
point t in the domain of the PRF and then extracting an FE secret key for the
derandomized functionality gt(x, k) = f(x;PRF(k, t)), that is, the evaluation of
f using randomness derived from the PRF. Evidently, this construction is not
robust against malicious encrypters, since by reusing the same PRF key when
constructing the ciphertexts, a malicious encrypter can induce correlations in

for randomized functions, a careful analysis is necessary to verify that it preserves
security against malicious encrypters. In contrast, our generic transformation allows
one to take advantage of the transformation in [10] “out-of-the-box” (i.e., apply it
to existing selectively-secure FE schemes for deterministic functions) and directly
transform adaptive-secure FE for deterministic functions to adaptively-secure FE
for randomized functions.

4 Our transformation requires that the underlying FE scheme be perfectly correct.
Using the transformations in [51,26], approximately correct FE schemes can be con-
verted to FE schemes that satisfy our requirement.

9



the function evaluations. In fact, since the PRF key is fully under the control
of the encrypter (who needs not sample it from the honest distribution), it is
no longer possible to invoke PRF security to argue that PRF(k, t) looks like a
random string.

Secret sharing the PRF key. In our transformation, we start with the same
derandomization approach. Since allowing the encrypter full control over the
PRF key is problematic, we instead secret share the PRF key across the cipher-
text and the decryption key. Suppose the key-space K of the PRF forms a group
under an operation �. As before, an encryption of a message x corresponds to
an FE encryption of the pair (x, k), but now k is just a single share of the PRF
key. To issue a key for f , another random key-share k′ is chosen from K. The key
skf is then an FE key for the derandomized functionality f(x;PRF(k � k′, x)).
In this scheme, a malicious encrypter is able to influence the PRF key, but does
not have full control. However, because the malicious encrypter can induce cor-
related PRF keys in the decryption queries, the usual notion of PRF security no
longer suffices. Instead, we require the stronger property that the outputs of the
PRF appear indistinguishable from random even if the adversary observes PRF
outputs under related keys. Security against related-key attacks (RKA-security)
for PRFs has been well-studied [25,72,22,18,19,74,2,1] in the last few years, and
for our particular application, a variant of the Naor-Reingold PRF is related-key
secure for the class of group-induced transformations [18].

Applying deterministic encryption. By secret-sharing the PRF key and
using a PRF secure against related-key attacks, we obtain robustness against
malicious encrypters that only requests the decryption of unique (x, k) pairs (in
this case, either k or x is unique, so by related-key security, the output of the
PRF appears uniformly random). However, a malicious encrypter can encrypt
the same pair (x, k) multiple times, using freshly generated randomness for the
base FE scheme each time. Since each of these ciphertexts encrypt the same
underlying value, in the real world, the adversary receives the same value from
the decryption oracle. In the ideal world, the adversary receives independent
draws from the distribution f(x). This problem arises because the adversary is
able to choose additional randomness when constructing the ciphertexts that
does not affect the output of the decryption algorithm. As such, it can construct
ciphertexts that induce correlations in the outputs of the decryption process.

To protect against the adversary that encrypts the same (x, k) pair, we note
that in the honest-encrypter setting, the messages that are encrypted have high
entropy (since the key-share is sampled uniformly at random). Thus, instead of
having the adversary choose its randomness for each encryption arbitrarily, we
instead force the adversary to derive the randomness from the message. This is
similar to what has been done when constructing deterministic public-key en-
cryption [17,20,41,54] and other primitives where it is important to restrict the
adversary’s freedom when constructing ciphertexts [21]. Specifically, we sample
a one-way permutation h on the key-space of the PRF, set the key-share in the
ciphertext to h(k) where k is uniform over K, and then derive the randomness

10



used in the encryption using a hard-core function hc of h.5 In addition, we require
the adversary to include a non-interactive zero-knowledge (NIZK) argument that
each ciphertext is properly constructed. In this way, we guarantee that for each
pair (x, k), there is exactly a single ciphertext that is valid. By our admissibil-
ity requirement, the adversary is required to submit distinct ciphertexts (since
matching ciphertexts belong to the same equivalence class). Thus, the under-
lying messages encrypted by each ciphertext in a decryption query necessarily
differ in either the key-share or the message component. Security then follows
by RKA-security.

2 Preliminaries

For n ≥ 1, we write [n] to denote the set of integers {1, . . . , n}. For bit-strings
a, b ∈ {0, 1}∗, we write a‖b to denote the concatenation of a and b. For a finite

set S, we write x
r←− S to denote that x is sampled uniformly from S. We denote

the evaluation of a randomized function f on input x with randomness r by
f(x; r). We write Funs[X ,Y] to denote the set of all functions mapping from a
domain X to a range Y. We use λ to denote the security parameter. We say
a function f(λ) is negligible in λ, denoted by negl(λ), if f(λ) = o(1/λc) for all
c ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial time
in the length of its input. We use poly(λ) (or just poly) to denote a quantity
whose value is bounded by some polynomial in λ.

We now formally define the tools we need to build FE schemes for random-
ized functionalities with security against malicious encrypters. In the full ver-
sion of this paper [6], we also review the standard definitions of non-interactive
zero-knowledge (NIZK) arguments of knowledge [28,53,67,68] and one-way per-
mutations [60].

2.1 RKA-Secure PRFs

We begin by reviewing the notion of related-key security [25,72,22,18,19,74,2,1]
for PRFs.

Definition 2.1 (RKA-Secure PRF [22,18]). Let K = {Kλ}λ∈N, X = {Xλ}λ∈N,
and Yλ = {Yλ}λ∈N be ensembles where Kλ, Xλ, and Yλ are finite sets and repre-
sent the key-space, domain, and range, respectively. Let F : Kλ×Xλ → Yλ be an
efficiently computable family of pseudorandom functions. Let Φ ⊆ Funs[Kλ,Kλ]

5 In the deterministic encryption setting of Fuller et al. [54], the hard-core function
must additionally be robust. This is necessary because hc(x) is not guaranteed to
hide the bits of x, which in the case of deterministic encryption, is the message
itself (and precisely what needs to be hidden in a normal encryption scheme!). Our
randomized FE scheme does not require that the bits of k remain hidden from the
adversary. Rather, we only need that hc(k) does not reveal any information about
h(k) (the share of the PRF key used for derandomization). This property follows
immediately from the definition of an ordinary hard-core function.

11



be a family of key derivation functions. We say that F is Φ-RKA secure if for
all efficient, non-uniform adversaries A,∣∣∣Pr

[
k

r←− Kλ : AO(k,·,·)(1λ) = 1
]
− Pr

[
f

r←− Funs[Φ×Xλ,Yλ] : Af(·,·)(1λ) = 1
]∣∣∣

= negl(λ),

where the oracle O(k, ·, ·) outputs F (φ(k), x) on input (φ, x) ∈ Φ×Xλ.

Definition 2.2 (Group Induced Classes [76,18]). If the key space K forms
a group under an operation �, then the group-induced class Φ� is the class of
functions Φ� = {φb : a ∈ K 7→ a � b | b ∈ K}.

2.2 Functional Encryption

The notion of functional encryption was first formalized by Boneh et al. [35] and
O’Neill [79]. The work of Boneh et al. begins with a natural indistinguishability-
based notion of security. They then describe some example scenarios where these
game-based definitions of security are inadequate (in the sense that a trivially
insecure FE scheme can be proven secure under the standard game-based defi-
nition). To address these limitations, Boneh et al. defined a stronger simulation-
based notion of security, which has subsequently been the subject of intense
study [63,7,50,62,65]. In this work, we focus on this stronger security notion.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles where Xλ and Yλ are
finite sets and represent the input and output domains, respectively. Let F =
{Fλ}λ∈N be an ensemble where each Fλ is a finite collection of (deterministic)
functions from Xλ to Yλ. A functional encryption scheme FE = (Setup,Encrypt,
KeyGen,Decrypt) for a (deterministic) family of functions F = {Fλ}λ∈N with
domain X = {Xλ}λ∈N and range Y = {Yλ}λ∈N is specified by the following four
efficient algorithms:

– Setup: Setup(1λ) takes as input the security parameter λ and outputs a
public key mpk and a master secret key msk.

– Encryption: Encrypt(mpk, x) takes as input the public key mpk and a mes-
sage x ∈ Xλ, and outputs a ciphertext ct.

– Key Generation: KeyGen(msk, f) takes as input the master secret key
msk, a function f ∈ Fλ, and outputs a secret key sk.

– Decryption: Decrypt(mpk, sk, ct) takes as input the public key mpk, a ci-
phertext ct, and a secret key sk, and either outputs a string y ∈ Yλ, or a
special symbol ⊥. We can assume without loss of generality that this algo-
rithm is deterministic.

First, we state the correctness and security definitions for an FE scheme for
deterministic functions.

Definition 2.3 (Perfect Correctness). A functional encryption scheme FE =
(Setup,Encrypt,KeyGen,Decrypt) for a deterministic function family F = {Fλ}λ∈N

12



with message space X = {Xλ}λ∈N is perfectly correct if for all f ∈ Fλ, x ∈ Xλ,

Pr[(mpk,msk)← Setup(1λ);

Decrypt(mpk,KeyGen(msk, f),Encrypt(mpk, x)) = f(x)] = 1.

Our simulation-based security definition is similar to the one in [7], except
that we allow an adversary to submit a vector of messages in its challenge query
(as opposed to a single message). Our definition is stronger than the one orig-
inally proposed by Boneh et al. [35] because we do not allow the simulator to
rewind the adversary. On the other hand, it is weaker than [63,50] since the
simulator is allowed to program the public parameters and the responses to the
pre-challenge secret key queries.

Definition 2.4 (SIM-Security). An FE scheme FE = (Setup,Encrypt,KeyGen,
Decrypt) for a deterministic function family F = {Fλ}λ∈N with message space
X = {Xλ}λ∈N is (q1, qc, q2)-SIM-secure if there exists an efficient simulator S =
(S1,S2,S3,S4) such that for all PPT adversaries A = (A1,A2), where A1 makes
at most q1 oracle queries and A2 makes at most q2 oracle queries, the outputs
of the following two experiments are computationally indistinguishable:

Experiment RealFEA (1λ):
(mpk,msk)← Setup(1λ)

(x, st)← AO1(msk,·)
1 (mpk) for x ∈ X qcλ

ct∗i ← Encrypt(mpk, xi) for i ∈ [qc]

α← AO2(msk,·)
2 (mpk, {ct∗i }i∈[qc] , st)

Output (x, {f} , α)

Experiment IdealFEA (1λ):
(mpk, st′)← S1(1λ)

(x, st)← AO
′
1(st

′,·)
1 (mpk) where x ∈ X qcλ

• Let f1, . . . , fq1 be A1’s oracle queries
• Let yij = fj(xi) for i ∈ [qc], j ∈ [q1]

({ct∗i }i∈[qc] , st
′)← S3(st′, {yij}i∈[qc],j∈[q1])

α← AO
′
2(st

′,·)
2 (mpk, {ct∗i }i∈[qc] , st)

Output (x, {f ′} , α)

where O1(msk, ·) and O′1(st′, ·) are pre-challenge key-generation oracles, and
O2(msk, ·) and O′2(st′, ·) are post-challenge ones. The oracles take a function
f ∈ Fλ as input and behave as follows:

– Real experiment: Oracles O1(msk, ·) and O2(msk, ·) both implement the
key-generation function KeyGen(msk, ·). The set {f} is the (ordered) set of
key queries made to O1(msk, ·) in the pre-challenge phase and to O2(msk, ·)
in the post-challenge phase.

– Ideal experiment: Oracles O′1(st′, ·) and O′2(st′, ·) are the simulator al-
gorithms S2(st′, ·) and S4(st′, ·), respectively. On each invocation, the post-
challenge simulator S4 is also given oracle access to the ideal functionality
KeyIdeal(x, ·). The functionality KeyIdeal accepts key queries f ′ ∈ Fλ and
returns f ′(xi) for every xi ∈ x. Both algorithms S2 and S4 are stateful. In
particular, after each invocation, they update their state st′, which is carried
over to the next invocation. The (ordered) set {f ′} denotes the key queries
made to O′1(st′, ·) in the pre-challenge phase, and the queries S4 makes to
KeyIdeal in the post-challenge phase.

13



3 Functional Encryption for Randomized Functionalities

In a functional encryption scheme that supports randomized functionalities, the
function class Fλ is expanded to include randomized functions from the domain
Xλ to the range Yλ. Thus, we now view the functions f ∈ Fλ as taking as input
a domain element x ∈ Xλ and randomness r ∈ Rλ, where R = {Rλ}λ∈N is
the randomness space. As in the deterministic setting, the functional encryption
scheme still consists of the same four algorithms, but the correctness and security
requirements differ substantially.

For instance, in the randomized setting, whenever the decryption algorithm
is invoked on a fresh encryption of a message x or a fresh key for a function f ,
we would expect that the resulting output is indistinguishable from evaluating
f(x) with fresh randomness. Moreover, this property should hold regardless of
the number of ciphertexts and keys one has. To capture this property, the cor-
rectness requirement for an FE scheme supporting randomized functions must
consider multiple keys and ciphertexts. In contrast, in the deterministic setting,
correctness for a single key-ciphertext pair implies correctness for multiple ci-
phertexts.

Definition 3.1 (Correctness). A functional encryption scheme rFE = (Setup,
Encrypt,KeyGen,Decrypt) for a randomized function family F = {Fλ}λ∈N over
a message space X = {Xλ}λ∈N and a randomness space R = {Rλ}λ∈N is correct
if for every polynomial n = n(λ), every f ∈ Fnλ and every x ∈ Xnλ , the following
two distributions are computationally indistinguishable:

1. Real: {Decrypt (mpk, ski, ctj)}i,j∈[n], where:

– (mpk,msk)← Setup(1λ);
– ski ← KeyGen(msk, fi) for i ∈ [n];
– ctj ← Encrypt(mpk, xj) for j ∈ [n].

2. Ideal: {fi (xj ; ri,j)}i,j∈[n] where ri,j
r←− Rλ.

As discussed in Section 1.2, formalizing and achieving security against ma-
licious encrypters in the randomized setting is considerably harder than in the
deterministic case. A decryption oracle that takes a single ciphertext along with
a function f does not suffice in the randomized setting, since an adversary could
still produce a collection of ciphertexts such that when the same key is used for
decryption, the outputs are correlated. We could strengthen the security defini-
tion by allowing the adversary to query with multiple ciphertexts instead of just
one, but as noted in Section 1.2, this direct extension is too strong. In order to
obtain a realizable definition, we instead restrict the adversary to submit cipher-
texts that do not behave in the same way. This is formally captured by defining
an admissible equivalence relation on the space of ciphertexts.

Definition 3.2 (Admissible Relation on Ciphertext Space). Let rFE =
(Setup,Encrypt,KeyGen,Decrypt) be an FE scheme for randomized functions with
ciphertext space T = {Tλ}λ∈N. Let ∼ be an equivalence relation on T . We say
that ∼ is admissible if ∼ is efficiently checkable and for all λ ∈ N, all (mpk,msk)

14



output by Setup(1λ), all secret keys sk output by KeyGen(msk, ·), and all cipher-
texts ct1, ct2 ∈ Tλ, if ct1 ∼ ct2, then one of the following holds:

– Decrypt(mpk, sk, ct1) = ⊥ or Decrypt(mpk, sk, ct2) = ⊥.
– Decrypt(mpk, sk, ct1) = Decrypt(mpk, sk, ct2).

We remark here that there always exists an admissible equivalence relation on
the ciphertext space, namely, the equality relation. Next, we define our strength-
ened requirement for security against malicious encrypters in the randomized
setting. Like [65], we build on the usual simulation-based definition of security
for functional encryption (Definition 2.4) by providing the adversary access to a
decryption oracle. The definition we present here differs from that by Goyal et al.
in two key respects. First, the adversary can submit multiple ciphertexts to the
decryption oracle, and second, the adversary is allowed to choose its challenge
messages adaptively (that is, after seeing the public parameters and making
secret key queries).

Definition 3.3 (SIM-security for rFE). Let F = {Fλ}λ∈N be a randomized
function family over a domain X = {Xλ}λ∈N and randomness space R =
{Rλ}λ∈N. Let rFE = (Setup,Encrypt,KeyGen,Decrypt) be a randomized func-
tional encryption scheme for F with ciphertext space T . Then, we say that rFE
is (q1, qc, q2)-SIM-secure against malicious encrypters if there exists an admissi-
ble equivalence relation ∼ associated with T and there exists an efficient simu-
lator S = (S1,S2,S3,S4,S5) such that for all efficient adversaries A = (A1,A2)
where A1 makes at most q1 key-generation queries and A2 makes at most q2 key-
generation queries, the outputs of the following experiments are computationally
indistinguishable:6

Experiment RealrFEA (1λ):
(mpk,msk)← Setup(1λ)

(x, st)← AO1(msk,·),O3(msk,·,·)
1 (mpk)

where x ∈ X qcλ
ct∗i ← Encrypt(mpk, xi) for i ∈ [qc]

α← AO2(msk,·),O3(msk,·,·)
2 (mpk, {ct∗i } , st)

Output (x, {f} , {g} , {y} , α)

Experiment IdealrFEA (1λ):
(mpk, st′)← S1(1λ)

(x, st)← AO
′
1(st

′,·),O′
3(st

′,·,·)
1 (mpk)

where x ∈ X qcλ
• Let f1, . . . , fq1 be A1’s oracle

queries to O′1(st′, ·)
• Pick rij

r←− Rλ, let yij = fj(xi; rij)
for all i ∈ [qc], j ∈ [q1]

({ct∗i } , st′)← S3(st′, {yij})
α← AO

′
2(st

′,·),O′
3(st

′,·,·)
2 (mpk, {ct∗i } , st)

Output (x, {f ′} , {g′} , {y′} , α)

where the oracles O1(msk, ·), O′1(st′, ·), O2(msk, ·), and O′2(st′, ·) are the analogs
of the key-generation oracles from Definition 2.4:

– Real experiment: Oracles O1(msk, ·) and O2(msk, ·) implement KeyGen(msk, ·),
and {f} is the (ordered) set of key queries made to oracles O1(msk, ·) and
O2(msk, ·).

6 In the specification of the experiments, the indices i always range over [qc] and the
indices j always range over [q1].

15



– Ideal experiment: Oracles O′1(st′, ·) and O′2(st′, ·) are the simulator algo-
rithms S2(st′, ·) and S4(st′, ·), respectively. The simulator S4 is given oracle
access to KeyIdeal(x, ·), which on input a function f ′ ∈ Fλ, outputs f ′(xi; ri)

for every xi ∈ x and ri
r←− Rλ. The (ordered) set {f ′} consists of the key

queries made to O′1(st′, ·), and the queries S4 makes to KeyIdeal.

Oracles O3(msk, ·, ·) and O′3(st′, ·, ·), are the decryption oracles that take inputs
of the form (g, C) where g ∈ Fλ and C = {cti}i∈[m] is a collection of m = poly(λ)
ciphertexts. For queries made in the post-challenge phase, we additionally require
that ct∗i /∈ C for all i ∈ [qc]. Without loss of generality, we assume that for all
i, j ∈ [m], if i 6= j, then cti 6∼ ctj. In other words, the set C contains at most
one representative from each equivalence class of ciphertexts.

– Real experiment: On input (g, C), O3 computes skg ← KeyGen(msk, g).
For i ∈ [m], it sets yi = Decrypt(skg, cti) and replies with the ordered set
{yi}i∈[m]. The (ordered) set {g} denotes the functions that appear in the

decryption queries of A2 and {y} denotes the set of responses of O3.
– Ideal experiment: On input (g′, C ′), O′3 does the following:

1. For each ct′i ∈ C ′, invoke the simulator algorithm S5(st′, ct′i) to obtain a
value xi ∈ Xλ ∪ {⊥}. Note that S5 is also stateful.

2. For each i ∈ [m], if xi = ⊥, then the oracle sets y′i = ⊥. Otherwise, the

oracle choose ri
r←− Rλ and sets y′i = g′(xi; ri).

3. Output the ordered set of responses {y′i}i∈[m].

The (ordered) set {g′} denotes the functions that appear in the decryption
queries of A2 and {y′} denotes the outputs of O′3.

Remark 3.4. Note that the above definition does not put any constraint on the
equivalence relation used to prove security. Indeed, any equivalence relation—as
long as it is admissible—suffices because if two ciphertexts ct1, ct2 fall into the
same equivalence class, they essentially behave identically (for all parameters
output by Setup and all keys sk output by KeyGen, decrypting ct1, ct2 with sk
must either give the same result, or one of the ciphertexts is invalid). Thus, by
restricting an adversary to providing at most one ciphertext from each equiva-
lence class in each decryption query, we are only preventing it from submitting
ciphertexts which are effectively equivalent to the decryption oracle.

Remark 3.5. One could also consider an ideal model where the adversary is al-
lowed to submit equivalent ciphertexts to the decryption oracle (at the cost of
making the security game more cumbersome). In the extreme case where the ad-
versary submits identical ciphertexts, it does not make sense for the decryption
oracle to respond independently on each of them—rather, it should respond in a
consistent way. In constructions of randomized FE that provide malicious secu-
rity, there naturally arise ciphertexts that are not identical as bit-strings, but are
identical from the perspective of the decryption function. In these cases, the ex-
pected behavior of the ideal functionality should again be to provide consistent,
rather than independent, responses.

16



Consider now an adversary that submits a function f and a set C of cipher-
texts to the decryption oracle, where some ciphertexts in C belong to the same
equivalence class. To respond, the challenger can first group these ciphertexts
by equivalence class. For each equivalence class C ′ of ciphertexts in C, the chal-
lenger invokes the simulator on C ′. On input the collection C ′, the simulator
outputs a single value x and indicates which ciphertexts in C ′, if any, are valid.
If C ′ contains at least one valid ciphertext, the challenger samples a value z
from the output distribution of f(x). It then replies with the same value z on
all ciphertexts marked valid by the simulator, and ⊥ on all ciphertexts marked
invalid. (This is a natural generalization of how we would expect the decryption
oracle to behave had the adversary submitted identical ciphertexts to it.)

4 Our Generic Transformation

Let F = {Fλ}λ∈N be a randomized function class over a domain X = {Xλ}λ∈N,
randomness space R = {Rλ}λ∈N and range Y = {Yλ}λ∈N. We give the formal
description of our functional encryption scheme for F (based on any general-
purpose FE scheme for deterministic functionalities) in Figure 1. All the neces-
sary cryptographic primitives are also shown in Figure 1.

Theorem 4.1. If (1) NIZK is a simulation-sound extractable non-interactive
zero-knowledge argument, (2) PRF is a Φ-RKA secure pseudorandom function
where Φ is group-induced, (3) OWP is a family of one-way permutations with
hard-core function hc, and (4) FE is a perfectly-correct (q1, qc, q2)-SIM secure
functional encryption scheme for the derandomized class GF , then rFE is (q1, qc, q2)-
SIM secure against malicious encrypters for the class F of randomized functions.

Before proceeding with the proof of Theorem 4.1, we remark that our strength-
ened definition of security against malicious encrypters (Definition 3.3) is indeed
stronger than the original definition by Goyal et al. [65].

Remark 4.2. A simpler version of our generic transformation where we only se-
cret share the RKA-secure PRF key used for derandomization and include a
NIZK argument can be shown to satisfy the Goyal et al. [65] definition of se-
curity against malicious encrypters, but not our strengthened definition (Def-
inition 3.3). In particular, if the randomness used in the base FE encryption
is under the control of the adversary, a malicious encrypter can construct two
fresh encryptions (under the base FE scheme) of the same (x, k) pair and submit
them to the decryption oracle. In the real world, the outputs are identical (since
the ciphertexts encrypt identical messages), but in the ideal world, the oracle
replies with two independent outputs. This is an admissible query because if the
underlying FE scheme is secure, one cannot efficiently decide whether two FE ci-
phertexts encrypt the same value without knowing any scheme parameters. But
because each individual output is still properly distributed (by RKA-security of
the PRF), security still holds in the Goyal et al. model.

We now proceed to give a proof of Theorem 4.1 in Sections 4.1 and 4.2. In
the full version [6], we also show that our transformed scheme is correct.

17



Ingredients:

– A non-interactive zero-knowledge argument system NIZK = (NIZK.Setup,
NIZK.Prove,NIZK.Verify) that is simulation-sound extractable.

– A Φ-RKA secure pseudorandom function PRF (Definition 2.1) with key-space
K = {Kλ}λ∈N, domain X , and range Y, where Φ is group-induced (Defini-
tion 2.2). Let � denote the group operation on K.

– A family of one-way permutations OWP = (OWP.Setup,OWP.Eval) over K
with associated hard-core function hc : Kλ → {0, 1}ρ. The number of output
bits ρ = ρ(λ) is specified below.

– For all f ∈ Fλ and k ∈ Kλ, let gfk : Xλ × Kλ → Yλ be the derandomized
function

gfk (x, k′) = f(x;PRF(k � k′, x)). (1)

Let GF,λ be the derandomized function class
{
gfk | f ∈ Fλ, k ∈ Kλ

}
, and let

FE = (FE.Setup,FE.Encrypt,FE.KeyGen,FE.Decrypt) be a functional encryp-
tion scheme for the derandomized class GF = {GF,λ}λ∈N. By construction, the
message space for FE is Xλ ×Kλ. Let ρ = ρ(λ) be a bound on the number of
bits of randomness FE.Encrypt takes.

A functional encryption scheme rFE = (Setup,Encrypt,KeyGen,Decrypt) for ran-
domized functionalities:

– Setup: On input 1λ, Setup samples (mpk′,msk′) ← FE.Setup(1λ), t ←
OWP.Setup(1λ), and σ ← NIZK.Setup(1λ). It sets ht(·) = OWP.Eval(t, ·),
and outputs a master public key mpk = (mpk′, t, σ) and a master secret key
msk = msk′.

– Encryption: On input mpk = (mpk′, t, σ) and x ∈ Xλ, Encrypt samples

k
r←− Kλ and sets ct′ = FE.Encrypt(mpk′, (x, ht(k)); hc(k)). Then, it runs

NIZK.Prove(σ, s, (x, k)) to obtain an argument π on the following statement
s:

∃ x, k : ct′ = FE.Encrypt(mpk′, (x, ht(k)); hc(k)). (2)

Finally, it outputs a ciphertext ct = (ct′, π).

– Key-generation: On input msk = msk′ and f , KeyGen samples k
r←− Kλ and

outputs a secret key skf ← FE.KeyGen(msk′, gfk ), where gfk is the derandom-
ized function corresponding to f (Eq. (1)).

– Decryption: On input mpk = (mpk′, t, σ), a secret key sk, and a ciphertext
ct = (ct′, π), Decrypt first runs NIZK.Verify(σ, s, π) where s is the statement
from Eq. (2). If the argument verifies, then it outputs FE.Decrypt(sk, ct′);
otherwise, it outputs ⊥.

Fig. 1. Generic construction of a functional encryption scheme for any family of ran-
domized functions F = {Fλ}λ∈N over a domain X = {Xλ}λ∈N, randomness space
R = {Rλ}λ∈N and range Y = {Yλ}λ∈N.

18



4.1 Proof of Theorem 4.1: Description of Simulator

To prove Theorem 4.1, and show that rFE is secure in the sense of Definition 3.3,
we first define an equivalence relation ∼ over the ciphertext space T = {Tλ}λ∈N.
Take two ciphertexts ct1, ct2 ∈ Tλ, and write ct1 = (ct′1, π1) and ct2 = (ct′2, π2).
We say that ct1 ∼ ct2 if ct′1 = ct′2.

Certainly, ∼ is an efficiently-checkable equivalence relation over Tλ. For the
second admissibility condition, take any (mpk,msk) output by Setup and any sk
output by KeyGen(msk, ·). Suppose moreover that Decrypt(mpk, sk, ct1) 6= ⊥ 6=
Decrypt(mpk, sk, ct2). Then, by definition of Decrypt(mpk, sk, ·),

Decrypt(mpk, sk, ct1) = FE.Decrypt(mpk′, sk, ct′1)

= FE.Decrypt(mpk′, sk, ct′2) = Decrypt(mpk, sk, ct2),

where mpk′ is the master public key for the underlying FE scheme (included in
mpk). The second equivalence follows since ct′1 = ct′2.

We now describe our ideal-world simulator S = (S1,S2,S3,S4,S5). Let S(fe) =

(S(fe)1 ,S(fe)2 ,S(fe)3 ,S(fe)4 ) be the simulator for the underlying FE scheme for de-

terministic functionalities. Let S(nizk) = (S(nizk)1 ,S(nizk)2 ) and E(nizk) = (E(nizk)1 ,

E(nizk)2 ) be the simulation and extraction algorithms, respectively, for the NIZK
argument system.

Algorithm S1(1λ). S1 simulates the setup procedure. On input a security pa-
rameter 1λ, it operates as follows:

1. Invoke S(fe)1 (1λ) to obtain a master public key mpk′ and some state st(fe).

2. Invoke E(nizk)1 (1λ) to obtain a CRS σ, a simulation trapdoor τ , and an ex-
traction trapdoor ξ.

3. Sample a one-way permutation t ← OWP.Setup(1λ) and define ht(·) =
OWP.Eval(t, ·).

4. Set mpk← (mpk′, t, σ) and st← (st(fe),mpk, τ, ξ). Output (mpk, st).

Algorithm S2(st0, f). S2 simulates the pre-challenge key-generation queries.

On input a state st0 = (st
(fe)
0 ,mpk, τ, ξ) and a function f ∈ Fλ, it operates as

follows:

1. Choose a random key k
r←− Kλ and construct the derandomized function gfk

as defined in Eq. (1).

2. Invoke S(fe)2 (st
(fe)
0 , gfk ) to obtain a key sk and an updated state st

(fe)
1 .

3. Output the key sk and an updated state st1 = (st
(fe)
1 ,mpk, τ, ξ).

Algorithm S3(st0, {yij}i∈[qc],j∈[q1]). S3 constructs the challenge ciphertexts.

Let x = (x1, x2, . . . , xqc) be the challenge messages the adversary outputs. On

input a state st0 = (st
(fe)
0 ,mpk, τ, ξ), where mpk = (mpk′, t, σ), and a collection

of function evaluations {yij}i∈[qc],j∈[q1], S3 operates as follows:

19



1. Invoke S(fe)3 (st
(fe)
0 , {yij}i∈[qc],j∈[q1]) to obtain a set of ciphertexts {ct′i}i∈[qc]

and an updated state st
(fe)
1 .

2. For i ∈ [qc], let si be the statement

∃x, k : ct′i = FE.Encrypt(mpk′, (x, ht(k)); hc(k)). (3)

Using the trapdoor τ in st0, simulate an argument πi ← S(nizk)2 (σ, τ, si), and
set ct∗i = (ct′i, πi).

3. Output the challenge ciphertexts {ct∗i }i∈[qc] and the updated state st1 =

(st
(fe)
1 ,mpk, τ, ξ).

Algorithm S4(st0, f). S4 simulates the post-challenge key-generation queries
with help from the ideal functionality KeyIdeal(x, ·). On input a state st0 =

(st
(fe)
0 ,mpk, τ, ξ) and a function f ∈ Fλ, it operates as follows:

1. Choose a random key k
r←− K, and construct the derandomized function gfk

as defined in Eq. (1).

2. Invoke S(fe)4 (st
(fe)
0 , gfk ). Here, S4 also simulates the FE.KeyIdeal(x, ·) ora-

cle for S(fe)4 . Specifically, when S(fe)4 makes a query of the form gf
′

k′ to
FE.KeyIdeal(x, ·), S4 queries its own oracle KeyIdeal(x, ·) on f ′ to obtain

values zi for each i ∈ [qc].
7 It replies to S(fe)4 with the value zi for all i ∈ [qc].

Let sk and st
(fe)
1 be the output of S(fe)4 .

3. Output the key sk and an updated state st1 = (st
(fe)
1 ,mpk, τ, ξ).

Algorithm S5(st, ct). S5 handles the decryption queries. On input a state st =
(st(fe),mpk, τ, ξ) and a ciphertext ct, it proceeds as follows:8

1. Parse mpk as (mpk′, t, σ) and ct as (ct′, π). Let s be the statement

∃x, k : ct = FE.Encrypt(mpk′, (x, ht(k)); hc(k)).

If NIZK.Verify(σ, s, π) = 0, then stop and output ⊥.

2. Otherwise, invoke the extractor E(nizk)2 (σ, ξ, s, π) using the extraction trap-
door ξ to obtain a witness (x, k) ∈ Xλ ×Kλ. Output x and state st.

4.2 Proof of Theorem 4.1: Hybrid Argument

To prove security, we proceed via a series of hybrid experiments between an
adversary A and a challenger. Each experiment consists of the following phases:

7 The underlying FE scheme is for the derandomized class GF , so the only permissible

functions S(fe)
4 can issue to FE.KeyIdeal are of the form gf

′

k′ for some k′ and f ′.
8 Recall that in the security definition (Definition 3.3), the decryption oracle accepts
multiple ciphertexts, and invokes the simulator on each one individually. Thus, the
simulator algorithm operates on a single ciphertext at a time.

20



1. Setup phase. The challenger begins by generating the public parameters
of the rFE scheme, and sends those to the adversary A.

2. Pre-challenge queries. In this phase of the experiment, A can issue key-
generation queries of the form f ∈ Fλ and decryption queries of the form
(f, C) ∈ Fλ × T mλ to the challenger. For all decryption queries (f, C), we
require that for any cti, ctj ∈ C, cti 6∼ ctj if i 6= j. In other words, each set of
ciphertexts C can contain at most one representative from each equivalence
class.

3. Challenge phase. The adversary A submits a vector of messages x ∈ X qcλ
to the challenger, who replies with ciphertexts {ct∗i }i∈[qc].

4. Post-challenge queries. In this phase, A is again allowed to issue key-
generation and decryption queries, with a further restriction that no decryp-
tion query can contain any of the challenge ciphertexts (i.e., for any query
(f, C), ct∗i /∈ C for all i ∈ [qc]).

5. Output. At the end of the experiment, A outputs a bit b ∈ {0, 1}.

We now describe our sequence of hybrid experiments. Note that in defining a
new hybrid, we only describe the phases that differ from the previous one. If one
or more of the above phases are omitted, the reader should assume that they
are exactly the same as in the previous hybrid.

Hybrid Hyb0. In this experiment, the challenger responds to A according to

the specification of the real experiment RealrFEA .

– Setup phase. The challenger samples (mpk,msk) ← Setup(1λ) and sends
mpk to A.

– Pre-challenge queries. The challenger responds to each query as follows:
• Key-generation queries. On a key-generation query f ∈ Fλ, the chal-

lenger responds with KeyGen(msk, f).
• Decryption queries. On a decryption query (f, C) ∈ Fλ × T mλ , the

challenger samples sk ← KeyGen(msk, f). For each cti ∈ C, the chal-
lenger sets yi = Decrypt(sk, cti), and sends {yi}i∈[m] to the adversary.

– Challenge phase. When the challenger receives a vector x ∈ X qcλ , it sets
ct∗i = Encrypt(mpk, xi) for each i ∈ [qc] and replies to A with {ct∗i }i∈[qc].

– Post-challenge queries. This is identical to the pre-challenge phase.

Hybrid Hyb1. This is the same as Hyb0, except the challenger simulates the CRS
in the setup phase and the arguments in the challenge ciphertexts in the challenge

phase. Let S(nizk) = (S(nizk)1 ,S(nizk)2 ) be the simulator for NIZK. Note that we
omit the description of the pre- and post-challenge phases in the description
below because they are identical to those phases in Hyb0.

– Setup phase. The challenger generates the public parameters as in Hyb0,

except it uses S(nizk)1 to generate the CRS. Specifically, it does the following:
1. Sample (mpk′,msk′)← FE.Setup(1λ).

2. Run S(nizk)1 (1λ) to obtain a CRS σ and a simulation trapdoor τ .

21



3. Sample a one-way permutation t ← OWP.Setup(1λ), and define ht(·) =
OWP.Eval(t, ·).

4. Set mpk = (mpk′, t, σ) and send mpk to A.
– Challenge phase. The challenger constructs the challenge ciphertexts as in

Hyb0, except it uses S(nizk)2 to simulate the NIZK arguments. Let x ∈ X qcλ be

the adversary’s challenge. For i ∈ [qc], the challenger samples k∗i
r←− Kλ and

sets ct′i ← FE.Encrypt(mpk′, (xi, ht(k
∗
i )); hc(k∗i )). It invokes S(nizk)2 (σ, τ, si)

to obtain a simulated argument πi, where si is the statement in Eq. (3).
Finally, it sets ct∗i = (ct′i, πi) and sends {ct∗i }i∈[qc] to A.

Hybrid Hyb2. This is the same as Hyb1, except the challenger uses uniformly
sampled randomness when constructing the challenge ciphertexts.

– Challenge phase. Same as in Hyb1, except that for every i ∈ [qc], the
challenger sets ct′i = FE.Encrypt(mpk′, (xi, ht(k

∗
i )); ri) for a randomly chosen

ri
r←− {0, 1}ρ.

Hybrid Hyb3. This is the same as Hyb2, except the challenger answers the
decryption queries by first extracting the message-key pair (m, k) from the NIZK
argument and then evaluating the derandomized function on it. Let E(nizk) =

(E(nizk)1 , E(nizk)2 ) be the extraction algorithm for NIZK.

– Setup phase. Same as in Hyb2 (or Hyb1), except the challenger runs (σ, τ, ξ)←
E(nizk)1 (1λ) to obtain the CRS σ, the simulation trapdoor τ , and the extrac-
tion trapdoor ξ.

– Pre-challenge queries. The key-generation queries are handled as in Hyb2,
but the decryption queries are handled as follows.
• Decryption queries. On input (f, C), where C = {cti}i∈[m],

1. Choose a random key k
r←− Kλ.

2. For i ∈ [m], parse cti as (ct′i, πi), and let si be the statement in
Ea. (3). If NIZK.Verify(σ, si, πi) = 0, set yi = ⊥. Otherwise, invoke

the extractor E(nizk)2 (σ, ξ, si, πi) to obtain a witness (xi, ki), and set
yi = f(xi;PRF(k � ht(ki), xi)).

3. Send the set {yi}i∈[m] to A.
– Post-challenge queries. This is identical to the pre-challenge phase.

Hybrid Hyb4. This is the same as Hyb3, except the challenger uses the simulator

S(fe) = (S(fe)1 ,S(fe)2 ,S(fe)3 ,S(fe)4 ) for the underlying FE scheme to respond to
queries. Let S = (S1,S2,S3,S4,S5) be the simulator described in Section 4.1.

– Setup phase. Same as in Hyb3, except the challenger invokes the base FE

simulator S(fe)1 to construct mpk. The resulting setup algorithm corresponds
to the simulation algorithm S1. Hence, we can alternately say that the chal-
lenger runs S1(1λ) to obtain mpk = (mpk′, t, σ) and st = (st(fe),mpk, τ, ξ),
and sends mpk to A.

22



– Pre-challenge queries. The decryption queries are handled as described
in Hyb3, but key-generation queries are handled as follows.

• Key-generation queries. On a key-generation query f ∈ Fλ,

1. Sample a key k
r←− Kλ. Let gfk be the derandomized function corre-

sponding to f .

2. Run S(fe)2 (st(fe), gfk ) to obtain a secret key sk and an updated state.
3. Update st accordingly and send sk to A.

Note that this is exactly how S2 behaves when given f and st as inputs.

– Challenge phase. The challenger constructs the challenge ciphertexts using
the simulation algorithm S3. Specifically, it does the following on receiving
x ∈ X qcλ :

1. For each i ∈ [qc], choose a key k∗i
r←− Kλ.

2. Let f1, . . . , fq1 ∈ Fλ be the pre-challenge key-generation queries made
by A and k1, . . . , kq1 ∈ Kλ be the keys chosen when responding to each
query. For all i ∈ [qc] and j ∈ [q1], compute rij = PRF(kj � ht(k∗i ), xi)
and set yij = fj(xi; rij).

3. Invoke the simulator algorithm S3(st, {yij}i∈[qc],j∈[q1]) to obtain a collec-

tion of ciphertexts {ct∗i }i∈[qc] and an updated state st.

4. Send {ct∗i }i∈[qc] to A.

– Post-challenge queries. The decryption queries are handled as in the pre-
challenge phase, but key-generation queries are handled differently as follows.

• Key-generation queries. The first step stays the same: a key k is

picked at random and gfk is defined. The challenger then invokes S(fe)4

with inputs st(fe) and gfk , instead of S(fe)2 . In invoking S(fe)4 , it simulates
the FE.KeyIdeal(x, ·) oracle as follows: on input a function of the form

gf
′

k′ , it computes yi = gf
′

k′ (xi, ht(k
∗
i )) = f ′(xi;PRF(k′ � ht(k∗i ), xi)) and

replies with the set {yi}i∈[qc]. The function key returned by S(fe)4 is given
to A, and st is updated appropriately. This is the behavior of S4.

Hybrid Hyb5. This is the same as Hyb4, except the outputs of PRF are replaced
by truly random strings. This matches the specification of the ideal experiment
IdealrFEA . We highlight below the differences from the previous hybrid.

– Pre-challenge queries. While the key queries are handled as before, the
decryption queries are handled as follows.

• Decryption queries. Same as in Hyb4, except the function f is eval-
uated using uniformly sampled randomness. In other words, on input f
and C = {cti}i∈[m], the challenger does the following:

1. For every cti ∈ C, invoke the simulator algorithm S5(st, cti) to obtain
a value xi ∈ Xλ ∪ {⊥} and an updated state st.

2. If xi = ⊥, set yi to ⊥, else set it to f(xi; ri), where ri
r←− Rλ.

3. Send the set of values {yi}i∈[m] to A.

23



– Challenge phase. The challenge ciphertexts are constructed as in the ideal
experiment. Specifically, instead of using PRF to generate the randomness
for evaluating yij in the first and second steps of the challenge phase, the

challenger simply computes fj(xi; rij) for rij
r←− Rλ. The remaining two

steps (third and fourth) stay the same.
– Post-challenge queries. The decryption queries are handled as in the pre-

challenge phase, but key queries are handled as follows:

• Key-generation queries. Same as Hyb4, except the oracle FE.KeyIdeal(x, ·)
is implemented using uniformly sampled randomness as in the ideal ex-

periment. Specifically, if S(fe)4 makes a query to FE.KeyIdeal(x, ·) with a

derandomized function gf
′

k′ , the challenger chooses an ri
r←− Rλ for every

i ∈ [qc], and replies with {f ′(xi; ri)}i∈[qc].

In the full version [6], we complete the hybrid argument by showing that each
consecutive pair of experiments are computationally indistinguishable. We also
show in the full version that our transformed scheme is correct.

5 Instantiating and Applying the Transformation

In this section, we describe one way to instantiate the primitives (the NIZK argu-
ment system, the RKA-secure PRF, and the one-way permutation) needed to ap-
ply the generic transformation from Section 4, Theorem 4.1. Then, in Section 5.2,
we show how to obtain new general-purpose functional encryption schemes for
randomized functionalities with security against malicious encrypters from a
wide range of assumptions by applying our transformation to existing functional
encryption schemes.

5.1 Instantiating Primitives

All of the primitives required by our generic transformation can be built from
standard number-theoretic assumptions, namely the decisional Diffie-Hellman
(DDH) assumption [29], the hardness of discrete log in the multiplicative group
Z∗p (for prime p), and the RSA assumption [82,30]. The first two assumptions can
be combined by assuming the DDH assumption holds in a prime-order subgroup
of Z∗p, such as the subgroup of quadratic residues of Z∗p, where p is a safe prime
(p = 2q + 1, where q is also prime). We describe one such instantiation of our
primitives from the DDH and RSA assumptions in the full version [6]. This yields
the following corollary to Theorem 4.1:

Corollary 5.1. Assuming standard number-theoretic assumptions (that is, the
DDH assumption in a prime-order subgroup of Z∗p and the RSA assumption), and
that FE is a perfectly-correct (q1, qc, q2)-SIM secure functional encryption scheme
for the derandomized function class GF , then rFE is (q1, qc, q2)-SIM secure against
malicious encrypters for the class F of randomized functions.

24



5.2 Applying the Transformation

In this section, we give three examples of how our generic transformation from
Section 4 could be applied to existing functional encryption schemes to ob-
tain schemes that support randomized functionalities. Our results show that
functional encryption for randomized functionalities secure against malicious
encrypters can be constructed from a wide range of assumptions such as public-
key encryption, concrete assumptions over composite-order multilinear maps, or
indistinguishability obfuscation, in conjunction with standard number-theoretic
assumptions (Corollary 5.1). The examples we present here do not constitute an
exhaustive list of the functional encryption schemes to which we could apply the
transformation. For instance, the construction of single-key-secure, succinct FE
from LWE by Goldwasser et al. [62] and the recent adaptively-secure construc-
tion from iO by Waters [86] are also suitable candidates.

We note that the FE schemes for deterministic functions we consider below
are secure (or can be made secure) under a slightly stronger notion of simula-
tion security compared to Definition 2.4. Under the stronger notion (considered
in [63,50]), the simulator is not allowed to program the public-parameters (they
are generated by the Setup algorithm) or the pre-challenge key queries (they
are generated using the KeyGen algorithm). Hence, when our transformation is
applied to these schemes, there is a small loss in security. We believe that this
loss is inherent because the new schemes are secure under malleability attacks
while the original schemes are not. In particular, the construction of Goyal et
al. [65] also suffers from this limitation.

The GVW scheme. In [63], Gorbunov et al. give a construction of a general-
purpose public-key FE scheme for a bounded number of secret key queries. More
formally, they give both a (q1, 1, poly)- and a (q1, poly, 0)-SIM9 secure FE scheme
for any class of deterministic functions computable by polynomial-size circuits
based on the existence of semantically-secure public-key encryption and pseudo-
random generators (PRG) computable by low-degree circuits. These assumptions
are implied by many concrete intractability assumptions such as factoring.

The GVW scheme can be made perfectly correct if we have the same guar-
antee from the two primitives it is based on: a semantically-secure public-key
encryption scheme and a decomposable randomized encoding scheme [70]. There
are many ways to get perfect correctness for the former, like ElGamal [52] or
RSA [82]. For the latter, we can use Applebaum et al.’s construction [12, Theo-
rem 4.14]. We can now apply our generic transformation (Corollary 5.1) to the
GVW scheme to obtain the following corollary:

Corollary 5.2. Under standard number-theoretic assumptions, for any polyno-
mial q1 = q1(λ), there exists a (q1, 1, poly)-SIM and a (q1, poly, 0)-SIM secure
FE scheme for any class of randomized functions computable by polynomial-size
circuits with security against malicious encrypters.

9 We write poly to denotes that the quantity does not have to be a-priori bounded,
and can be any polynomial in λ.

25



In the full version [6], we describe how to apply our generic transforma-
tion from Section 4 to the GGHZ [56] and GGHRSW [55] functional encryption
schemes to obtains FE schemes supporting randomized functionalities from con-
crete assumptions over multilinear maps and indistinguishability obfuscation,
respectively. We thus obtain the following corollaries:

Corollary 5.3. Under standard number-theoretic assumptions, and the GGHZ
complexity assumptions on composite-order multilinear maps [56, Section 2.3],
for any polynomials q1 = q1(λ) and qc = qc(λ), there exists a (q1, qc, poly)-SIM
secure functional encryption for all polynomial-sized randomized functionalities
with security against malicious encrypters.

Corollary 5.4. Under standard number-theoretic assumptions, and the exis-
tence of an indistinguishability obfuscator, for any polynomials q1 = q1(λ) and
qc = qc(λ), there exists a (q1, qc, poly)-SIM secure functional encryption for all
polynomial-sized randomized functionalities with security against malicious en-
crypters.

Comparison with the GJKS scheme. We note that (q1, qc, poly)-SIM se-
curity matches the known lower bounds for simulation-based security in the
standard model [35,7]. We remark also that the FE schemes from Corollaries 5.3
and 5.4 provide stronger security than the original FE scheme for randomized
functionalities by Goyal et al. [65]. Their construction was shown to be selec-
tively rather than adaptively secure. Specifically, in their security model, the
adversary must commit to its challenge messages before seeing the master pub-
lic key. On the contrary, when we apply our generic transformation to both the
GGHZ scheme from composite-order multilinear maps as well as the GGHSRW
scheme from indistinguishability obfuscation, we obtain an adaptive-secure FE
scheme where the adversary can not only see the master public key, but also
make secret key queries prior to issuing the challenge query.

6 Open Questions

We conclude with a few interesting open questions for further study:

– Can we construct an FE scheme for a more restrictive class of random-
ized functionalities (e.g., sampling from a database) without needing to go
through our generic transformation? In other words, for simpler classes of
randomized functionalities, can we construct a scheme that does not require
a general-purpose FE scheme for deterministic functionalities?

– Is it possible to generically convert a public-key FE scheme for determinis-
tic functionalities into one that supports randomized functionalities without
making any additional assumptions? Komargodski, Segev, and Yogev [73]
show that this is possible in the secret-key setting.

26



Acknowledgments

We thank Venkata Koppula for many helpful conversations and discussions re-
lated to this work. We also thank the anonymous reviewers for useful feedback
on the presentation.

References

1. Abdalla, M., Benhamouda, F., Passelègue, A.: An algebraic framework for pseu-
dorandom functions and applications to related-key security. In: CRYPTO (2015)

2. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security
for pseudorandom functions beyond the linear barrier. In: CRYPTO (2014)

3. Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prab-
hakaran, M., Sahai, A.: On the practical security of inner product functional en-
cryption. In: PKC 2015 (2015)

4. Agrawal, S., Agrawal, S., Prabhakaran, M.: Cryptographic agents: Towards a uni-
fied theory of computing on encrypted data. In: EUROCRYPT (2015)

5. Agrawal, S., Koppula, V., Waters, B.: Impossibility of simulation secure functional
encryption even with random oracles. Cryptology ePrint Archive, Report 2016/959
(2016), http://eprint.iacr.org/2016/959

6. Agrawal, S., Wu, D.J.: Functional encryption: Deterministic to randomized func-
tions from simple assumptions. Cryptology ePrint Archive, Report 2016/482
(2016), http://eprint.iacr.org/2016/482

7. Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption:
New perspectives and lower bounds. In: CRYPTO (2013)

8. Alwen, J., Barbosa, M., Farshim, P., Gennaro, R., Gordon, S.D., Tessaro, S., Wil-
son, D.A.: On the relationship between functional encryption, obfuscation, and
fully homomorphic encryption. In: IMA International Conference on Cryptogra-
phy and Coding (2013)

9. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs ob-
fuscation and applications. Cryptology ePrint Archive, Report 2013/689 (2013),
http://eprint.iacr.org/2013/689

10. Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adap-
tive security in functional encryption. In: CRYPTO (2015)

11. Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded
encoding. In: TCC (2015)

12. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Computational Complexity 15(2) (2006)

13. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (Feb 2006), http://doi.acm.org/10.1145/1127345.1127346

14. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: EUROCRYPT (2014)

15. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: CRYPTO (2001)

16. Barbosa, M., Farshim, P.: On the semantic security of functional encryption
schemes. In: PKC 2013 (2013)

17. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: CRYPTO (2007)

27

http://eprint.iacr.org/2016/959
http://eprint.iacr.org/2016/482
http://eprint.iacr.org/2013/689
http://doi.acm.org/10.1145/1127345.1127346


18. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: CRYPTO (2010)

19. Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks
and tampering. In: ASIACRYPT (2011)

20. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: CRYPTO
(2008)

21. Bellare, M., Hoang, V.T.: Resisting randomness subversion: Fast deterministic and
hedged public-key encryption in the standard model. In: EUROCRYPT (2015)

22. Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: EUROCRYPT (2003)

23. Bellare, M., O’Neill, A.: Semantically-secure functional encryption: Possibility re-
sults, impossibility results and the quest for a general definition. In: CANS (2013)

24. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy (2007)

25. Biham, E.: New types of cryptoanalytic attacks using related keys (extended ab-
stract). In: EUROCRYPT (1994)

26. Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation: From approx-
imate to exact. In: TCC 2016-A (2016)

27. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: EUROCRYPT (1998)

28. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations (extended abstract). In: ACM STOC (1988)

29. Boneh, D.: The decision Diffie-Hellman problem. In: Third Algorithmic Number
Theory Symposium (ANTS). vol. 1423 (1998), invited paper

30. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices of the
American Mathematical Society 46(2), 203–213 (1999)

31. Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In:
CRYPTO (2001)

32. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Se-
mantically secure order-revealing encryption: Multi-input functional encryption
without obfuscation. In: EUROCRYPT (2015)

33. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: Hiding the function in functional encryption. In: CRYPTO (2013)

34. Boneh, D., Raghunathan, A., Segev, G.: Function-private subspace-membership
encryption and its applications. In: ASIACRYPT 2013 (2013)

35. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: TCC (2011)

36. Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. Cryp-
tology ePrint Archive, Report 2002/080 (2002), http://eprint.iacr.org/2002/
080

37. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: TCC (2007)

38. Boneh, D., Wu, D.J., Zimmerman, J.: Immunizing multilinear maps against zeroiz-
ing attacks. Cryptology ePrint Archive, Report 2014/930 (2014), http://eprint.
iacr.org/2014/930

39. Brakerski, Z., Chandran, N., Goyal, V., Jain, A., Sahai, A., Segev, G.: Hierarchical
functional encryption. In: ITCS (2017)

40. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: TCC (2014)

28

http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2002/080
http://eprint.iacr.org/2014/930
http://eprint.iacr.org/2014/930


41. Brakerski, Z., Segev, G.: Better security for deterministic public-key encryption:
The auxiliary-input setting. In: CRYPTO (2011)

42. Cheon, J.H., Fouque, P.A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis of the new
CLT multilinear map over the integers (2016)

43. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: EUROCRYPT (2015)

44. Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and cryptanalysis
of the GGH multilinear map without a low level encoding of zero. Cryptology ePrint
Archive, Report 2016/139 (2016), http://eprint.iacr.org/2016/139

45. Cocks, C.: An identity based encryption scheme based on quadratic residues. In:
Honary, B. (ed.) Cryptography and Coding, 8th IMA International Conference.
vol. 2260. Cirencester, UK (Dec 17–19, 2001)

46. Coron, J.S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M.,
Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: New MMAP attacks
and their limitations. In: CRYPTO (2015)

47. Coron, J.S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multi-
linear maps. In: CRYPTO (2016)

48. Coron, J.S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers.
In: CRYPTO (2013)

49. Coron, J.S., Lepoint, T., Tibouchi, M.: New multilinear maps over the integers.
In: CRYPTO (2015)

50. De Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: CRYPTO
(2013)

51. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: EUROCRYPT (2004)

52. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31 (1985)

53. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs
based on a single random string (extended abstract). In: FOCS (1990)

54. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
New constructions and a connection to computational entropy. In: TCC (2012)

55. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

56. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without ob-
fuscation. In: TCC 2016-A (2016)

57. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: ACM STOC (2013)

58. Gentry, C., Lewko, A.B., Waters, B.: Witness encryption from instance indepen-
dent assumptions. In: CRYPTO (2014)

59. Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation
from the multilinear subgroup elimination assumption. In: FOCS (2015)

60. Goldreich, O.: The Foundations of Cryptography - Volume 1, Basic Techniques.
Cambridge University Press (2001)

61. Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.H., Sahai, A.,
Shi, E., Zhou, H.S.: Multi-input functional encryption. In: EUROCRYPT (2014)

62. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: ACM STOC
(2013)

29

http://eprint.iacr.org/2016/139


63. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: CRYPTO (2012)

64. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: ACM STOC (2013)

65. Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized
functionalities. In: TCC (2015)

66. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS (2006), available as Cryp-
tology ePrint Archive Report 2006/309

67. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: ASIACRYPT (2006)

68. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP.
In: EUROCRYPT (2006)

69. Hu, Y., Jia, H.: Cryptanalysis of GGH map (2016)
70. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with

applications to round-efficient secure computation. In: FOCS (2000)
71. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-

nomial equations, and inner products. In: EUROCRYPT (2008)
72. Knudsen, L.R.: Cryptanalysis of LOKI91. In: AUSCRYPT (1993)
73. Komargodski, I., Segev, G., Yogev, E.: Functional encryption for randomized func-

tionalities in the private-key setting from minimal assumptions. In: TCC (2015)
74. Lewi, K., Montgomery, H.W., Raghunathan, A.: Improved constructions of PRFs

secure against related-key attacks. In: ACNS (2014)
75. Lewko, A.B., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure

functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption. In: EUROCRYPT (2010)

76. Lucks, S.: Ciphers secure against related-key attacks. In: FSE (2004)
77. Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: Crypt-

analysis of indistinguishability obfuscation over GGH13. In: CRYPTO (2016)
78. Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-

lations from the decisional linear assumption. In: CRYPTO (2010)
79. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,

Report 2010/556 (2010), http://eprint.iacr.org/2010/556
80. Pass, R., Seth, K., Telang, S.: Indistinguishability obfuscation from semantically-

secure multilinear encodings. In: CRYPTO (2014)
81. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and

chosen ciphertext attack. In: CRYPTO (1992)
82. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signature

and public-key cryptosystems. Communications of the Association for Computing
Machinery 21(2) (1978)

83. Sahai, A., Seyalioglu, H.: Worry-free encryption: functional encryption with public
keys. In: ACM CCS (2010)

84. Sahai, A., Waters, B.R.: Fuzzy identity-based encryption. In: EUROCRYPT (2005)
85. Shamir, A.: Identity-based cryptosystems and signature schemes. In: CRYPTO

(1984)
86. Waters, B.: A punctured programming approach to adaptively secure functional

encryption. In: CRYPTO (2015)
87. Zimmerman, J.: How to obfuscate programs directly. In: EUROCRYPT (2015)

30

http://eprint.iacr.org/2010/556

	Functional Encryption: Deterministic to Randomized Functions from Simple Assumptions

