
Scrypt is Maximally Memory-Hard

Joël Alwen1, Binyi Chen2, Krzysztof Pietrzak1, Leonid Reyzin3, and
Stefano Tessaro2

1 IST Austria
{jalwen,pietrzak}@ist.ac.at

2 UC Santa Barbara
{binyichen,tessaro}@cs.ucsb.edu

3 Boston University
reyzin@cs.bu.edu

Abstract. Memory-hard functions (MHFs) are hash algorithms whose
evaluation cost is dominated by memory cost. As memory, unlike compu-
tation, costs about the same across different platforms, MHFs cannot be
evaluated at significantly lower cost on dedicated hardware like ASICs.
MHFs have found widespread applications including password hashing,
key derivation, and proofs-of-work.

This paper focuses on scrypt, a simple candidate MHF designed by Per-
cival, and described in RFC 7914. It has been used within a number of
cryptocurrencies (e.g., Litecoin and Dogecoin) and has been an inspira-
tion for Argon2d, one of the winners of the recent password-hashing com-
petition. Despite its popularity, no rigorous lower bounds on its memory
complexity are known.

We prove that scrypt is optimally memory-hard, i.e., its cumulative
memory complexity (cmc) in the parallel random oracle model isΩ(n2w),
where w and n are the output length and number of invocations of the
underlying hash function, respectively. High cmc is a strong security tar-
get for MHFs introduced by Alwen and Serbinenko (STOC ’15) which
implies high memory cost even for adversaries who can amortize the cost
over many evaluations and evaluate the underlying hash functions many
times in parallel. Our proof is the first showing optimal memory-hardness
for any MHF.

Our result improves both quantitatively and qualitatively upon the re-
cent work by Alwen et al. (EUROCRYPT ’16) who proved a weaker
lower bound of Ω(n2w/ log2 n) for a restricted class of adversaries.

Keywords: Scrypt, memory-hard functions, password hashing.

1 Introduction

Several applications rely on so-called “moderately-hard tasks” that are not in-
feasible to solve, but whose cost is non-trivial. The cost can for example be the
hardware or electricity cost of computation as in proofs of work [13,18,14] or
time-lock puzzles [23], the cost for disk storage space as in proofs of space [15],

the cost of “human attention” in captchas [24] or the cost of memory in memory-
bound [12,2] or memory-hard functions [20,8], the latter being the topic of this
work. Applications of such tasks include the prevention of spam [13], protection
against denial-of-service attacks [19], metering client access to web sites [16],
consensus protocols underlying decentralized cryptocurrencies [10] (knows as
blockchains) or password hashing [22], which we’ll discuss in more detail next.

In the setting of password hashing, a user’s password (plus a salt and perhaps
other system-dependent parameters) is the input to a moderately-hard function
f , and the resulting output is the password hash to be kept in a password file. The
hope is that even if the password file is compromised, a brute-force dictionary
attack remains costly as it would require an attacker to evaluate f on every
password guess.Traditional approaches for password hashing have focused on
iterating a hash function a certain number (typically a few thousands) of times,
as for instance in PBKDF2. An advantage for the honest user results from the
fact that he or she needs to compute f only once on the known password, while
an attacker is forced to compute f on a large number of passwords. However, this
advantage can be eroded, because in constrast to honest users, who typically use
general-purpose hardware, attackers may invest into special-purpose hardware
like ASICs (Application Specific Integrated Circuits) and recoup the investment
over multiple evaluations. Moreover, such special-purpose hardware may exploit
parallelism, pipelining, and amortization in ways that the honest user’s single
evaluation of f cannot. Consequently, the adversary’s cost per evaluation can be
several orders of magnitude lower than that for the honest user.

Memory-Hard Functions. To reduce the disparity between per-evaluation
costs of the honest user and a potential attacker, Percival [20] suggested mea-
suring cost by the amount of space used by the algorithm multiplied by the
amount of time. A memory-hard function (MHF), in Percival’s definition, is one
where this evaluation cost measure is high not only for the honest user’s sequen-
tial algorithm, but also no parallel algorithm can do much better. In particular,
if a parallel algorithm can cut the time to evaluate f by some factor, it must
come at the cost of increase in space by roughly the same factor. Since mem-
ory is inherently general-purpose, measuring cost in terms of space provides a
reasonably accurate comparison of resources used by different implementations.
We stress that memory hardness is a very different notion than that of memory-
bound functions proposed by Abadi, Burrows, Manasse, and Wobber [2,1], which
maximize the number of memory accesses at unpredictable locations so that the
inherent memory-access latency (resulting from frequent cache misses) imposes
a lower bound on the time needed to evaluate the function which is independent
from the actual CPU power. Memory hardness also does not guarantee that a
lot of memory will be required, because it allows trading memory for time.

Alwen and Serbinenko [8] observed that Percival’s notion of cost is not robust
to amortization: it may be that an algorithm uses a large amount of memory at
its peak, but a much smaller amount on average; pipelining multiple evaluations
(by multiple CPUs using shared memory) in such a way that peaks occur at
different times can thus reduce the per-evaluation cost of f . They propose the

notion of cumulative memory complexity (abbreviated ccmem), which is robust
to amortization. It is defined as the sum of memory actually used at each point
in time (rather than the product of peak memory and time). We will use this
notion in our work. The ccmem of a function is defined as the lowest ccmem of all
algorithms that evaluate the function.

Best-possible hardness. Given the state of computational complexity theory,
where we cannot even prove superlinear lower bounds for problems in NP, all
ccmem lower-bound results so far necessarily make use of idealized models of
computation, like the random oracle model.

Many candidate memory-hard functions (including scrypt) can be viewed
as a mode of operation for an underlying building block like a cryptographic
hash-function h. Such MHFs come with an evaluation algorithm — which we’ll
call “the näıve algorithm” — which makes only sequential access to h. Note that
after t steps (each involving at most one query to h), even a näıve algorithm
which stores all t outputs it received from h : {0, 1}∗ → {0, 1}w will not use
more that O(t ·w) memory; therefore, if the näıve algorithm for an MHF fh runs
for n steps total, the ccmem of fh will be in O(n2 · w). Thus a lower bound on
the ccmem of Ω(n2 · w) is the best we can hope for in any model which captures
at least the näıve algorithm.

If the näıve algorithm has the feature that its memory access pattern (ad-
dresses read and written) is independent of the input, the MHF is called data-
independent. A data-independent fh can be represented as a directed acyclic
graph, with a unique source corresponding to the input, a unique sink corre-
sponding to the final output, and the other nodes indicating intermediary values
where the value of a node is computed as a function of the nodes of its parents
(using one invocation of h). To derive meaningful bounds, we require that this
graph has constant in-degree, so computing an intermediate value takes constant
time. The evaluation of fh can now be cast as a graph pebbling problem [8]. Any
constant in-degree graph can be pebbled (in the so called parallel black pebbling
game) using “cumulative pebbling complexity” ccpeb = O(n2/ log n).4 As any
such pebbling implies an evaluation algorithm with ccmem ≈ ccpeb ·w, we get an
O(w · n2/ log n) upper bound on ccmem for any data-indepedent MHF [3]. This
upper bound is matched by [4], who construct a data-independent function with
ccmem = Ω(w · n2/ log(n)) in the parallel random oracle model. This calls for
the question of whether the lower bound of Ω(w · n2) is achievable at all; the
above discussion shows that to achieve this lower bound, it will not be sufficient
to only consider data-independent MHFs.

The Scrypt MHF. Percival [20] proposed a candidate (data-dependent) memory-
hard function called scrypt.5 On input X, the scrypth function– where h is a
cryptographic hash function modeled as a random oracle for the lower bound

4 Technically, the bound is marginally worse, O(n2/ log1−ε(n)) for any ε > 0.
5 In fact, what we discuss in the following is Percival’s ROMix construction, which

constitutes the core of the actual scrypt function. We use the two names inter-
changeably.

proof – computes values X0, X1, . . . , Xn−1, S0, . . . , Sn as defined below, and fi-
nally outputs Sn

– X0 = X and for i = 1, . . . , n− 1 : Xi = h(Xi−1)

– S0 = h(Xn−1) and for i = 1, . . . , n : Si = h(Si−1 ⊕XSi−1 mod n)

Scrypt has found widespread popularity: it is used in proofs-of-work schemes
for cryptocurrencies (most notably Litecoin [10], but also Tenebrix or Dogecoin),
is described by an RFC [21], and has inspired the design of one of the Password-
hashing Competition’s [22] winners, Argon2d [9].

An intuitive explanation for why scrypt was conjectured to be memory-hard
is as follows. View the first portion of scrypt as an n-node line graph, with nodes
labeled by X0, . . . , Xn−1. To compute Si+1, an algorithm needs XSi mod n, whose
index (Si mod n) is random and unknown until Si is computed. If the algorithm
stores a subset of the X values of size p before Si is known, then the label of
a random node in the line graph will be on average n/(2p) steps from a stored
label, and will therefore take n/(2p) sequential evaluations of h to compute, for
a total memory·time cost of p · n/(2p) = n/2. Since there are n Si values to
compute, this strategy has ccmem of w · n · n/2 = 1

2wn
2.

This simple argument, however, does not translate easily into a proof. The
two main challenges are as follows. First, in general an algorithm computing
scrypt is not restricted to just store labels of nodes, but can compute and
store arbitrary information. Surprisingly, f for which storing information other
than just labels provably decreases ccmem have been constructed in [5, Appendix
A]. Second, an algorithm is not compelled to keep all p labels in memory after
the index Si mod n is known. In fact, [8] show that if one is given the indices
Si mod n in advance, an evaluation algorithm exists which evaluates scrypth

with ccmem only O(w · n1.5), because knowing the future indices enables the
algorithm to keep or recompute the labels that will be needed in the near future,
and delete those that won’t.

Previous work on scrypt. Percival’s original paper [20] proposed an analysis
of scrypt, but his analysis is incorrect, as we point out in Appendix A, in
addition to not targeting ccmem. Recent progress toward proving that scrypt

is memory-hard was made by Alwen et al. [6]. They lower bound the ccmem

of scrypt by Ω(w · n2/ log2 n), albeit only for a somewhat restricted class of
adversaries (informally, adversaries who can store secret shares of labels, but
not more general functions). We’ll compare their work with ours in more detail
below.

Our Results. We give the first non-trivial unconditional lower bound on ccmem

for scrypth in the parallel random oracle model, and our bound already achieves
optimal ccmem of Ω(w · n2).

We’ll give the exact theorem statement and an overview of the proof in
Section 3. However, to appreciate the novelty of our results, we note that the
only existing proofs to lower bound ccmem of MHFs go through some kind of
lower bounds for pebbling.

For data independent MHFs [8] there is an elegant argument (known as “ex
post facto”) stating that a lower bound on the cumulative complexity for the
parallel black pebbling game translates directly into a lower bound for ccmem.
Thus, the problem is reduced to a purely combinatorial problem of proving a
pebbling lower bound on the graph underlying the MHF.

For data dependent MHFs no such result, showing that pebbling lower bounds
imply ccmem lower bounds for general adversaries, is known.6 The lower bound
on ccmem for scrypt from [6] was also derived by first proving a lower bound
on the pebbling complexity, but for a more powerful pebbling adversary that
can use “entangled” pebbles. This lower bound then translated into a lower
bound for ccmem for a limited class of adversaries who, apart from labels, can
also store “secret shares” of labels. It was conjectured [6] that lower bounds for
this entangled pebbling game already imply lower bounds on ccmem for arbitrary
adversaries, and a combinatorial conjecture was stated which, if true, would
imply this. Unfortunately the strongest (and simplest) version of this conjecture
has already been refuted. A weaker version of the conjecture has been “weakly”
refuted, in the sense that, even if it was true, one would lose a factor of at least
log(n) by going from pebbling to memory lower bounds. (The current state of
the conjecture is available on the eprint version of the paper [5].)

In this work, in Section 5, we also prove an optimal Ω(n2) lower bound on
the parallel cumulative pebbling complexity for a game which abstracts the eval-
uation of scrypt: we consider a path of length n, and an adversary must pebble
n randomly chosen nodes on this graph, where the ith challenge node is only
revealed once the node of challenge i − 1 is pebbled. This already gives an op-
timal Ω(n2 · w) lower bound on ccmem for scrypt for adversaries who are only
allowed to store entire labels, but not any functions thereof. This improves on the
Ω(n2/ log2(n)) lower bound from [6], who use a rather coarse potential argument
which roughly states that, for any challenge, either we pay a lot for pebbling the
next challenge node, or the “quality” of our pebbling configuration decreases. As
this quality cannot decrease too many times, at least every log(n)’th challenge
will cost n/ log(n) in cumulative complexity, giving the overall Ω(n2/ log2(n))
lower bound after n challenges. In this work we introduce a new technique for
analyzing the cumulative pebbling cost where — for every challenge — we take
into account the cumulative cost of the pebbling configurations before this chal-
lenge is revealed. Both the potential argument from [6], as well as our new proof,
rely on the generalization of the fact that given a configuration with p pebbles,
and a random challenge, with good probability (say at least 1

2), an adversary
also needs also at least (roughly) n/p steps to pebble the challenge.

As discussed above, pebbling lower bounds are not known to directly imply
ccmem lower bounds for data dependent MHFs, so to prove our main result in
Section 6, we in some sense emulate our proof for the pebbling game directly
in the parallel random oracle model. However, there are two problems we will

6 A lower bound on the parallel cumulative pebbling complexity is only known to imply
a lower bound on ccmem for a very restricted class of adversaries who are allowed to
store only labels, but not any function thereof.

need to overcome. The first is that the adversary’s state is not made of labels
(corresponding to pebbles), but could be any function thereof. Still, we will
want to show that in order to compute a challenge, an adversary storing any
p · w bits of information about the random oracle, will need to take with good
probability (say at least 1

2) at least (roughly) n/p steps. We will show this using
a careful compression argument in Section 4. The second problem is the fact
that in scrypt the challenges are not randomly and externally generated, but
come from the random oracle.

2 Preliminaries

We review basic notation and concepts from the literature on memory-hard
functions. We will also define the scrypt function as needed further below.

The parallel-random oracle model. We first define the parallel random-
oracle model (pROM), essentially following the treatment from [8], with some
highlighted differences.

Concretely, we consider an oracle-aided deterministic7 algorithm A which
runs in rounds, starting with round 1. Let h denote an oracle with w-bit outputs.
It does not matter for our model whether oracle inputs are restricted in length,
but it will be simpler to assume a general upper bound (even very large) on the
length of its inputs to make the set of oracles finite.

In general, a state is a pair (τ, s) where data τ is a string and s is a tuple of
strings. In an execution, at the end of round i, algorithm A produces as output an
output state σ̄i = (τi,qi) where qi = [q1i , . . . , q

zi
i] is a tuple of queries to h. At the

begining of next round i+ 1, algorithm A gets as input the corresponding input
state σi = (τi, h(qi)) where h(qi) = [h(q1i), . . . , h(qzii)] is the tuple of responses
from h to the queries qi. In particular, since A is deterministic, for a given h the
input state σi+1 is a function of the input state σi.

The initial input state σ0 is normally empty with length 0 (though in the
proof we will also need to consider a non-empty initial input state); an input
X is given together with σ0 in the first round. We require that A eventually
terminates and denote its output by Ah(X).

Complexity measure. For a given execution the complexity measure we are
going to be concerned with is the sum of the bit-lengths of the input states.
To that make this precise we introduce the following notation. For a string x
we denote its bit-length by |x|. For state σ = (τ, s) where s = [s1, . . . , sz] we
denote the bit-length (or size) of σ by |σ| = |τ |+

∑z
j=1 |sj |. We can now define

the cumulative (memory) complexity of an execution of algorithm A on input X
using oracle h resulting in input states σ0, σ1, . . . as

ccmem(Ah(X)) =
∑
i≥0

|σi| .

7 Considering deterministic algorithms is without loss of generality as we can always
fix the randomness of A to some optimal value.

We will assume without loss of generality that at each round, the query tuple
q contains at least one query, for otherwise A can proceed directly to the next
round where it issues a query, without increasing its cumulative complexity. In
particular, this implies |σi| ≥ w for i > 0.

Note that ccmem does not charge anything for computation or memory used
within each round itself. We are also allowing inputs to h to be arbitrary long
without extra memory cost — only the output length w is charged to the cumu-
lative complexity. This only makes our lower bound stronger. Note however that
this also means that ccmem gives a good upper bound only when computation is
dominated by the memory cost (as is the case for the näıve evaluation algorithm
of scrypth, which, aside from querying h sequentially, performs only a few trivial
computations, such as exlusive-ors and modular reductions).

The scrypt MHF. We will consider the scrypth function throughout this
paper (more specifically, we study its core, ROMix, as defined in [20]). Recall
that for a hash function h : {0, 1}∗ → {0, 1}w, scrypth on input X ∈ {0, 1}w
and parameter n ∈ N computes values X0, X1, . . . , Xn−1, S0, . . . , Sn and outputs
Sn, where

– X0 = X and for i = 1, . . . , n− 1 : Xi = h(Xi−1)
– S0 = h(Xn−1) and for i = 1, . . . , n : Si = h(Si−1 ⊕XSi−1 mod n)

We will also define intermediate variables T0, . . . , Tn with T0 = Xn−1 and Ti =
Si−1 ⊕XSi−1 mod n for 1 ≤ i ≤ n, so that Si = h(Ti).

Note that one may not want to restrict X to w bits. In this case, one can
replace X with h(X) in the above construction. For notational simplicity, we
will only analyze the w-bit input case in this paper, but the general analysis is
very similar.

Graph and pebbling preliminaries. For some of our partial results below,
we will adopt the graph-pebbling view on computing candidate MHFs, follow-
ing [8]. A parallel black pebbling considers a direct acyclic graph G = (V,E).
At each time step t starting with t = 0, the adversary maintains a subset Pt of
nodes (“pebbles”). A node v is allowed (but not required) to get a pebble at time
t if there is a pebble on all of its predecessors (i.e., all v′ such that (v′, v) ∈ E),
or if there was a pebble on v itself at time t−1. Formally, define pre(v) to be the
set of all predecessors of v, and for U ⊆ V , define U+ = {v ∈ V : pre(v) ⊆ U}.
Then, at time t > 0, the set Pt must be a subset of Pt−1 ∪ P+

t−1.
We define pi = |Pi| ≥ 1. The (parallel) cumulative pebbling complexity of a

sequence of pebbling configuration P0, P1, . . . , Pt is
∑t
i=0 pi. We remark that we

modify the pebbling rules slightly from [8] by not permitting the adversary to
put a pebble on the source for free: v0 is contained in P0 and cannot be added to
Pt if it is absent in Pt−1 (this change will simplify calculations, and only increase
the size of each set by 1).

Pebbling with challenges. Normally, the goal of pebbling games is to place
a pebble on the sink of the graph. Here, we are going to consider pebbling
games with Q challenges on a graph G = (V,E), where the adversary proceeds
in rounds, and in each round i, it receives a random challenge ci ∈ V (usually

uniform from a subset V ′ ⊆ V), and the goal is to place a pebble on ci, which en-
ables the adversary to move to the next round (unless this was the last challenge
cQ, in which case the game terminates.) For instance, the core of the evaluation
of scrypt is captured by the line graph with vertices v0, . . . , vn−1 and edges
(vi, vi+1) for i = 0, . . . , n − 2, and we will study this pebbling game in detail
below.

3 Main Result and Overview

In this section, we state our main result, and give a brief high-level overview of
the next sections.

Theorem 1 (Memory-hardness of Scrypt, main theorem). For any X ∈
{0, 1}w and n ≥ 2, if Ah(X,n) outputs Sn = scrypth(X,n) with probability χ,
where the probability is taken over the choice of the random oracle h, then with
probability (over the choice of h) at least χ− .08n6 · 2−w − 2−n/20,

ccmem(Ah(X)) >
1

25
· n2 · (w − 4 log n) .

We note that if w is large enough in terms of n (say, 4 log n ≤ w/2, which clearly
holds for typical values w = 256, n = 220), then ccmem(Ah(X)) is in Ω(n2w).
As discussed in the introduction, this is the best possible bound up to constant
factors, as already the (sequential) näıve algorithm for evaluating scrypth has
ccmem ∈ O(n2w). We discuss the constants following Theorem 5.

Proof outline. The proof consists of three parts outlined below. The first
two parts, in fact, will give rise to statements of independent interest, which will
then be combined into the proof of our main theorem.

– Section 4: Single-shot time complexity. To start with, we consider a pROM

game where the adversary Ah(X) starts its execution with input X and an
M -bit state σ0 that can depend arbitrarily on h and X. Then, Ah(X) is given
a random challenge j ∈ {0, . . . , n− 1} and must return Xj = hj(X).
Clearly, σ0 may contain Xj , and thus in the best case, A may answer very
quickly, but this should not be true for all challenges if M � nw. We will
prove a lower bound on the expected time complexity (in the pROM) of
answering such a challenge. We will show that with good probability (e.g.,
1
2) over the choice of j, Ah(X) needs at least (roughly) nw/M steps.
This validates in particular the intuition that the adversary in this game
cannot do much better than an adversary in the corresponding pebbling
game on the line graph with vertices v0, v1, . . . , vn−1, where the adversary
gets to choose an initial configuration with p = M/w pebbles, and is then
asked to put a pebble on vj for a random j ∈ {0, 1, . . . , n−1}. Here, one can
show that at least n/p steps are needed with good probability. In fact, this
pebbling game is equivalent to a variant of the above pROM game where
the adversary only stores random-oracle output labels, and thus our result
shows that an adversary cannot do much better than storing whole labels.

– Section 5: Multi-challenge cumulative pebbling complexity. In the above sce-
nario, we have only considered the time needed to answer a challenge. There
is no guarantee, a priori, that the cumulative complexity is also high: An
optimal adversary, for instance, stores p labels corresponding to equidistant
pebbles, and then computes the challenge from the closest label, dropping
the remainder of the memory contents.
Here, for the randomized pebbling game with Q challenges on the line graph,
we will show a lower bound of Ω(nQ) on the cumulative pebbling complexity.
Our argument will use in particular a (generalization) of the above single-
shot trade-off theorem, i.e., the fact that whenever p pebbles are placed
on the line, at least n/p steps are needed with good probability to pebble
a randomly chosen node. We will use this to lower bound the cumulative
complexity before each particular challenge is answered. Our proof gives a
substantial quantitative improvement over the looser lower bound of [6].

– Section 6: ccmem of scrypt. Finally, we lower bound the cumulative memory

complexity of scrypth as stated in Theorem 1. Unfortunately, this does
not follow by a reduction from the pebbling lower bound directly. Indeed,
as discussed in the introduction (and as explained in [6]), unlike for data-
independent MHFs, for data-dependent MHFs like scrypt it is an open
problem whether one can translate lower bounds on the cumulative pebbling
complexity to lower bounds for cumulative memory complexity. Fortunately,
however, through a careful analysis, we will be able to employ the same
arguments as in the proof of Section 5 in the pROM directly.
In particular, we will use our result from Section 4 within an argument
following the lines to that of Section 5 in the pROM. One particularly delicate
technical issue we have to address is the fact that in scrypth the challenges
are not sampled randomly, but will depend on the random oracle h, which
the adversary can query. We will provide more intuition below in Section 6.

Remark 1. Note that in Theorem 1 above, the random oracle h is sampled uni-
formly after the input X is chosen arbitrarily. This is equivalent to saying that
X and h are independent. In practice this assumption is usually (nearly) satis-
fied. For example, when used in a blockchain, X will be the output of h on some
previous inputs, typically a hash of the last block and a public-key. This doesn’t
make X independent of h, but its distribution will be dense in the uniform dis-
tribution even conditioned on h, which is means it is very close to independent.
When used for password hashing, X = h(pwd, S) for a password pwd and a
random salt S. For a sufficiently long salt, this will make X as good as uniform
[11]. We defer more rigorous treatment of this issue to the full version of this
paper.

4 Time Complexity of Answering a Single Challenge
in the Parallel Random Oracle Model

We prove the following theorem, and below discuss briefly how this result can
be extended beyond the setting of scrypt.

Fix positive integers n, u and w, a string X ∈ {0, 1}u, a finite domain D that
contains at least {X}∪{0, 1}w, and letR = {0, 1}w. Given a function h : D → R,
define Xi = hi(X). Let A be any oracle machine (in the parallel random oracle
model as defined in Section 2) that on any input and oracle makes at most q− 1
total queries to its oracle. Suppose Ah(X, j) starts on input state σ0 with the
goal of eventually querying Xj to h. Let tj be the number of the earliest round in
which Ah(X, j) queries Xj to h (with tj =∞ if never). We show that A cannot
do much better than if it were doing the following in the corresponding random
challenge pebbling game on the line graph: initially placing p ≈M/w equidistant
pebbles, and then pebbling the challenge from the closest pebble preceding it.

Theorem 2 (Single-Challenge Time Lower Bound). There exists a set of
random oracles goodh such that Prh∈RD [h /∈ goodh] ≤ qn32−w, and for every
h ∈ goodh, the following holds: for every memory size M , and every input state
σ0 of length at most M bits,

Pr
j←{0,...,n−1}

[
tj >

n

2p

]
≥ 1

2
,

where the probability is taken over only the challenge j and p = d(M + 1)/(w −
2 log n− log q) + 1e.

We will actually prove a slightly more general result: for any 0 ≤ prhard ≤ 1,

Pr
j←{0,...,n−1}

[
tj >

n(1− prhard)

p

]
≥ prhard .

Proof. Recall that for each j, A performs tj rounds of the following process.
At round k read an input state containing oracle responses h(qk−1) (except for
k = 1, when A reads σ0). Then (after arbitrary computation) produce an output
state containing oracle queries qk. We count rounds starting from 1. Consider
the sequence of such tuples of queries and responses to and from h. If the first
appearance of Xi in this sequence is a query to h in round k (k > 0 is minimal
such that Xi ∈ qk), then we assign Xi position πij = k. If instead the first
appearance of Xi is a response from h to query Xi−1 made at round k (k > 0
is minimal such that Xi−1 ∈ qk), then we assign Xi position πij = k + 1/2. In
all other cases (i.e., if Xi does not appear, or appears only because of a hash
collision in response to some query that is not Xi−1), let πij =∞.

Let “best position” correspond to the earliest time, over all j, that Xi appears
during the computation of Xj : βi := minj πij ; let “best challenge” bestchali be
argminj πij (if argmin returns a set, pick one element arbitrarily). Let i be “blue”
if βi is an integer (i.e., it was produced “out of the blue” by A as a query to h).

Let B = {i s.t. i > 0 and i is blue} (that is, all the blue indices except X0).
In the rest of the proof, we will show that the size of B cannot exceed p− 1 (for
most h), where p, as defined in the theorem statement, is proportional to the
memory size M ; and that the amount of time to answer the challenge is at least
its distance from the preceding blue index. Thus, blue indices effectively act like
pebbles, and the bounds on the time to reach a random node in the line graph
by moving pebbles apply.

Claim 1 Given adversary A and input X, there exists a predictor algorithm P
(independent of h, but with oracle access to it) with the following property: for
every h, every M , and every length M input state σ0 of A, there exists a hint of
length |B|(2 log n + log q) such that given σ0 and the hint, P outputs every Xi

for i ∈ B without querying Xi−1 to h.
Moreover, if we want fewer elements, we can simply give a shorter hint: there

exists a predictor algorithm that similarly outputs p elements of B whenever
p ≤ |B|, given σ0 and an additional p(2 log n+ log q)-bit hint.

Note that the inputs to P can vary in size; we assume that the encoding of
inputs is such that the size is unambiguous.

Proof. We will focus on the first sentence of the claim and address the second
sentence at the end.
P depends on input label X = X0 and algorithm A (which are independent of

h). P will get the state σ0 of A (which may depend on h) as input, and, for every
i ∈ B, a hint containing the challenge bestchali for which Xi appears earliest,
and the sequential order (among all the q − 1 queries A makes in answering
bestchali) of the first query to Xi (using the value q to indicate that this query
never occurs). This hint (which depends on h) will thus consist of a list of |B|
entries, each containing i ∈ B, bestchali, and log q bits identifying the query
number, for a total of |B|(2 log n+ log q) bits.
P will build a table containing Xi for i ≥ 0 (initializing X0 = X). To do

so, P will run A on every challenge in parallel, one round at a time. After each
round k, P will obtain, from the output states of A, all the queries A makes
for all the challenges in round k. Then P will fill in some spots in its table and
provide answers to these queries as input states for round k + 1 by performing
the following three steps:

Step k. put any blue queries into its table (blue queries and their positions in
the table can easily be recognized from the hint);

Step k+1/4. answer any query that can be answered using the table (i.e., any
query that matches Xi−1 in the table for some filled positions i− 1 and i);

Step k+1/2. send remaining queries to h, return the answers to A, and fill in
any new spots in the table that can be filled in (i.e., for every query that
matches Xi−1 in the table for some filled-in position i − 1, fill in position i
with the answer to that query).

Once every Xi for i ∈ B is in the table, P queries h to fill in the missing
positions in the table, and outputs the prediction that h(Xi−1) = Xi for i ∈ B.

To prove that P simulates h correctly to A, it suffices to show that the table
contains correct labels. This can be easily argued by induction on i. Assume all
the labels in the table are correct up to now. A new label Xi enters the table
either because it is marked as blue (and thus correct by the hint) or is obtained
as an answer from h to the query that P identified as Xi−1 using the table (which
is correct by inductive hypothesis).

The above also shows that P will not output an incorrect prediction. It
remains to show that P did not query to h the value Xi−1 for any i ∈ B. To
prove this, we first show that Xi is placed into the table no later than step βi of
P, by induction on βi. The base case is X0, which is in the table at step 0. If βi
is an integer, then i ∈ B and this is true because of step βi of P. If βi is not an
integer, then βi−1 < βi (because Xi−1 appears as a query at round bβic), so at
the beginning of step βi of P, by the inductive hypothesis, position i− 1 in the
table will already contain Xi−1, and thus position i will get filed in when Xi−1
gets queried to h.

Note also that Xi cannot be placed into the table earlier than step βi, so it
is placed in the table exactly at step βi (as long as βi 6= ∞, in which case it is
placed into the table at the end, when P fills in the missing positions).

Now suppose, for purposes of contradiction, that P queries h for some value
Xi−1 for some i ∈ B. That can happen only if at the end of some round k, Xi−1
is queried by A as part of the output state, but either Xi−1 or Xi are not in the
table at that time.

– If Xi−1 is not in the table at the beginning of step k + 1/2 of P, then
βi−1 ≥ k + 1/2; but since Xi−1 is being queried at the end of round k,
βi−1 ≤ k, which is a contradiction.

– If Xi is not in the table at the beginning of step k+1/2 of P, then βi ≥ k+1
(because βi is an integer); but since Xi−1 appears as query in the output
state of round k, βi ≤ k + 1/2, which is also a contradiction.

Thus, P always achieves its goal.
For the second sentence of the claim, observe that we can simply give P the

hint for the p blue labels with the smallest β values. ut

In the next claim, we show that for every input to P, the algorithm P cannot
be correct for too many oracles h.

Claim 2 Fix an algorithm P and fix its input, a positive integer p, some domain
D, and range R. For h : D → R, call Ph successful if P with oracle access to h
outputs p distinct values x1, . . . , xp ∈ D and h(x1), . . . , h(xp) without querying h
on any of x1, . . . , xp. Then Prh∈RD [Ph is successful] ≤ |R|−p.

Proof. Instead of choosing h all at once, consider the equivalent view of choosing
answers to fresh queries of P uniformly at random, and then choosing the re-
mainder of the h uniformly at random after P produces its output. Since P does
not query x1, . . . , xp, the choices of h on those points will agree with y1, . . . , yp
with the probability at most |R|−p. ut

Using the previous two claims, we now bound the number of random oracles
for which the size of the blue set is too large. Recall B is the blue set minus X0.

Claim 3 Given adversary A, there exists a set of random oracles goodh such
that Pr[h /∈ goodh] ≤ qn32−w, and for every h ∈ goodh, every M , and every
initial state σ0 of A of size at most M bits, |B| ≤ p − 1, where p = d(M +
1)/(w − 2 log n− log q) + 1e.

Proof. The intuition is as follows: if for some h and some initial input state of
length M , |B| > p − 1, then either P successfully predicts the output of h on
p distinct inputs (by Claim 1), or some of the values among X0, . . . , Xn−1 are
not distinct. We will define badh as the set of random oracles for which this can
happen, and then bound its size.

Let S be the size of the space of all possible random oracles h. There are at
most 1

2Sn
22−w random oracles for which some of the values among X0, . . . , Xn−1

are not distinct; (suppose the first collision pair is i, j < n, thus Xi−1 6= Xj−1,
and the probability that Xi = Xj is 2−w; then the bound is given by taking
union bound over at most n2/2 pairs of (i, j).) Call this set of random oracles
colliding.

In the next paragraph, we will formally define the set predictable as the set
of random oracles for which P correctly predicts the output on p distinct inputs
given the M -bit input state of A and an additional p(2 log n+log q)-bit hint. We
will bound the size of predictable by bounding it for every possible memory state
of A and every possible hint, and then taking the union bound over all memory
states and hints.

Consider a particular input state of length M for A; recall that p = d(M +
1)/(w− 2 log n− log q) + 1e. Assume 1 ≤ p ≤ n− 1 (otherwise, the statement of
Claim 3 is trivially true). Fix a particular value of the hint for P for predicting
p elements of B. (Recall that the hint was previously defined dependent on the
random oracle; we are now switching the order of events by fixing the hint first
and then seeing for how many random oracles this hint can work.) Since the
input to P is now fixed, there are most S2−pw random oracles for which it can
correctly output p distinct values without querying them, by Claim 2. The set
predictable consists of all such random oracles, for every value of M such that
p ≤ n, every M -bit input state σ0, and every hint.

To count how many random oracles are in predictable, first fix p. Let Mp be
the largest input state length that gives this particular p. Take all input state
lengths that give this p, all possible input states of those lengths (there are
at most 2Mp + 2Mp−1 + · · · + 1 < 2Mp+1 of them), and all possible hints for
extracting p values (there are at most 2p(2 logn+log q) of them). This gives us at
most S2(Mp+1)+p(2 logn+log q−w) random oracles in predictable. Since (Mp + 1) ≤
(p − 1)(w − 2 log n − log q) by definition of p, this number does not exceed
S2(2 logn+log q−w) = Sn2q2−w. Now add up over all possible values of p (from 2
to n), to get |predictable| ≤ S(n− 1)n2q2−w.

Set badh = colliding ∪ predictable and let goodh be the complement of badh.
ut

Claim 4 For every i, 0 ≤ i < n, the value ti is at least 1 + i − j, where
j = max{a ≤ i | a is blue}.

Proof. If i is blue, we are done, since ti ≥ 1 simply because we start counting
rounds from 1.

We will first show that dβi−βje ≥ i−j. Fix a blue j and proceed by induction
on i such that i > j and there are no blue indices greater than j and less than i.

For the base case, suppose i = j+ 1. Recall that βi is not an integer because i is
not blue. Then βi−1 ≤ βi − 1/2, because Xi−1 is present as the query to h that
produces response Xi in the sequence of queries that A makes when responding
to the challenge bestchali, and we are done. For the inductive case, it suffices to
show that βi−1 ≤ βi − 1, which is true by the same argument as for the base
case, except that we add that βi−1 is also not an integer (since i− 1 is also not
blue).

Therefore, dβie ≥ i− j + 1, because βj ≥ 1. We thus have πii = ti ≥ dβie ≥
i− j + 1. ut

The number of blue indices (namely, |B| + 1, because X0 is blue but not in
B) is at most p if h ∈ goodh. Since at most d indices are within distance d − 1
of any given blue index, and there are at most p blue indices, we can plug in
d = n(1− prhard)/p to get

Pr
i

[
ti ≤

n(1− prhard)

p

]
≤ 1− prhard.

This concludes the proof of Theorem 2. ut

Generalizing to other graphs. In general, every single-source directed
acyclic graph G defines a (data-independent) function whose evaluation on input
X corresponds to labeling G as follows: The source is labeled with X, and the
label of every node is obtained by hashing the concatenation of the labels of
its predecessors. Rather than evaluating this function, one can instead consider
a game with challenges, where in each round, the adversary needs to compute
the label of a random challenge node from G. Theorem 2 above can be seen as
dealing with the special case where G is a line graph.

Theorem 2 can be generalized, roughly as follows. We replace log q with
log q+ log d (where d is the degree of the graph), because identifying blue nodes
now requires both the query number and the position within the query. We
modify the proof of Claim 1 to account for the fact that the random oracle
query resulting in response Xi is not necessarily Xi−1, but a concatenation of
labels. The only conceptually significant change due to this generalization is in
Claim 4, whose generalized statement is as follows. For every node i, define the
“limiting depth of i” to be the length of a longest possible path that starts at
a blue node, goes through no other blue nodes, and ends at i. The generalized
version of Claim 4 states that the amount of time required to query Xi is at
least one plus the limiting depth of node i.

With this more general claim in place, it follows that

Pr
i

[ti > m] ≥ 1

2
,

where m defined as follows. Let S denote set of blue nodes, and let mS denote
the median limiting depth of the nodes in G. We define m to be the minimum
mS over all S such that the origin is in S and |S| = p.

Of course, other statistical properties of the distribution of ti can also be
deduced from this claim if we use another measure instead of the median. Es-
sentially, the generalized theorem would show that the best the adversary can
do is place p pebbles on the graph and use parallel pebbling.

5 Cumulative Complexity of Answering Repeated
Challenges in the Parallel Pebbling Model

In the previous part, we showed that, in the parallel random oracle model, an
adversary with memory (input state) of size M cannot do much better when
answering a random challenge than placing p ≈M/w pebbles on the graph and
pebbling. In this section, we prove a lower bound on the cumulative complexity
of repeated random challenges in the pebbling model. While the result in this
section does not directly apply to the random oracle model for reasons explained
in Section 5.1, all of the techniques are used in the proof of our main theorem
in Section 6.

The Single Challenge Pebbling Game. Consider now the pebbling game
for the line graph G consisting of nodes v0, . . . , vn−1 and edges (vi, vi+1) for
every 0 ≤ i < n. Recall that in this game, at each time step t starting with
t = 0, the adversary maintains a subset Pt of nodes (“pebbles”). If there is a
pebble on a node at time t − 1, its successor is allowed (but not required) to
get a pebble at time t. Formally, at time t > 0, the set Pt must be a subset of
Pt−1 ∪ {vi+1 : vi ∈ Pt−1}. Also recall that we modify the game of [8] slightly
by not permitting the adversary to put a pebble on the source for free: v0 is
contained in P0 and cannot be added to Pt if it is absent in Pt−1 (this change
simplifies calculations). Let pi = |Pi| ≥ 1.

We will say that the adversary answers a challenge chal (for 0 ≤ chal < n)
in t steps if t > 0 is the earliest time when vchal ∈ Pt−1 (note that a pebble
needs to be on vchal at time t− 1—think of time t as the step when the output
to the challenge is presented; this convention again simplifies calculations, and
intuitively corresponds to the scrypt evaluation, in which the “output” step
corresponds to querying Xchal ⊕ Si in order to advance to the next challenge).

It is easy to see that t is at least one plus the distance between chal and
the nearest predecessor of chal in P0. Therefore, for the same reason as in the
proof of Theorem 2 (because at most n/(2p0) challenges are within n/(2p0)− 1
distance to a particular node in P0 and there are p0 nodes in P0).

Pr
chal

[
t >

n

2p0

]
≥ 1

2
.

More generally, the following is true for any 0 ≤ prhard ≤ 1:

Fact 3

Pr
chal

[
t >

c

p0

]
≥ prhard with c = n(1− prhard) .

Repeated Challenges Pebbling Game. We now consider repeated chal-
lenges. At time s1 = 0, the adversary receives a challenge c1, 0 ≤ c1 < n. The
adversary answers this challenge at the earliest moment s2 > s1 when Ps2−1
contains Xc1 ; after Ps2 is determined, the adversary receives the next challenge
c2, and so on, for Q challenges, until challenge cQ is answered at time sQ+1. We
are interested in the cumulative pebbling complexity ccpeb =

∑sQ+1

t=0 pt.
Note that the adversary can adaptively vary the number of pebbles used

throughout the game, while Fact 3 above addresses only the number of pebbles
used before a challenge is known. Nevertheless, we are able to show the following.

Theorem 4 (Cumulative pebbling complexity of repeated challenges
game). The cumulative pebbling complexity of the repeated challenges pebbling
game is with high probability Ω(nQ).

More precisely, suppose the adversary never has fewer than p0 pebbles. Then
for any ε > 0, with probability at least 1 − e−2ε

2Q over the choice of the Q
challenges,

ccpeb ≥ p0 +
n

2
·Q ·

(
1

2
− ε
)
· ln 2 .

More generally, we replace the condition that the adversary never has fewer than
p0 pebbles with the condition pt ≥ pmin for some pmin and every t ≥ 1, we need
to replace ln 2 with

ln

(
1 +

(
pmin

p0

) 1

Q(1
2
−ε)
)
.

This result improves [6, Theorem 1] by eliminating the log2 n factor from the
cumulative memory complexity of the pebbling game. In the full version [7], we
discuss the general case of pt ≥ pmin and show an attack showing that a bound
as the above is necessary (up to constant factors in the exponent).

Our approach is general enough to apply to space-time tradeoffs other than
inverse proportionality, to other graphs, and even to some other models of com-
putation that do not deal with pebbling. However, we will explain in Section 5.1
why it cannot be used without modification in the parallel random oracle model
and other models where space is measured in bits of memory.

Proof. Recall time starts at 0, pt denotes the number of pebbles at time t, and
si denotes the moment in time when challenge number i (with 1 ≤ i ≤ Q) is
issued. Let ti denote the amount of time needed to answer challenge number
i (thus, s1 = 0 and si+1 = si + ti; let sQ+1 = sQ + tQ). Let cc(t1, t2) denote∑t2
t=t1

pt.

The main idea of the proof The difficulty in the proof is that we cannot
use ti to infer anything about the number of pebbles used during each step of
answering challenge i. All we know is that the number of pebbles has to be
inversely proportional to ti immediately before the challenge was issued—but
the adversary can then reduce the number of pebbles used once the challenge is
known (for, example by keeping pebbles only on v0 and on the predecessor of
the challenge).

The trick to overcome this difficulty is to consider how many pebbles the
adversary has to have in order to answer the next challenge not only immediately
before the challenge, but one step, two steps, three steps, etc., earlier.

Warm-up: starting with a stronger assumption For a warm-up, consider
the case when the pebbles/time tradeoff is guaranteed (rather than probabilistic,
as in Fact 3): assume, for now, that in order to answer the next random challenge
in time t, it is necessary to have a state of size c/t right before the challenge is
issued. Now apply this stronger assumption not only to the moment s in time
when the challenge is issued, but also to a moment in time some j steps earlier.
The assumption implies that the number of pebbles needed at time s − j is at
least c/(j + t) (because the challenge was answered in j + t steps starting from
time s − j, which would be impossible with a lower number of pebbles even if
the challenge had been already known at time s− j).

We will use this bound for every challenge number i ≥ 2, and for every j = 0
to ti−1, i.e., during the entire time the previous challenge is being answered.
Thus, cumulative pebbling complexity during the time period of answering chal-
lenge i− 1 is at least

cc(si−1 + 1, si) ≥
ti−1−1∑
j=0

psi−j ≥ c
(

1

ti
+

1

ti + 1
+ · · ·+ 1

ti + ti−1 − 1

)

≥ c
∫ ti−1+ti

ti

dx

x
= c(ln(ti−1 + ti)− ln ti) .

Then adding these up for each i between 2 and Q, we get the cumulative pebbling
complexity of

cc(1, sQ+1) ≥ c
Q∑
i=2

(ln(ti−1 + ti)− ln ti) .

If all ti are equal (which is close to the minimum, as we will show below),
this becomes c(Q− 1) · ln 2.

Back to the actual assumption The proof is made messier by the fact that
the bound in the assumption is not absolute. Moreover, the bound does not
give the number of pebbles in terms of running time, but rather running time
in terms of the number of pebbles (it makes no sense to talk probabilistically
of the number of pebbles, because the number of pebbles is determined by the
adversary before the challenge is chosen). To overcome this problem, we look at
the number of pebbles at all times before si and see which one gives us the best
lower bound on ti.

Consider a point t ≤ si in time. We can apply Fact 3 to the size pt of the
set of pebbles Pt at time t, because the ith challenge is selected at random after
the adversary determines Pt. The ith challenge will be answered ti + (si − t)
steps after time t; thus, with probability at least prhard over the choice of the
ith challenge, ti + (si − t) > c/pt, i.e., ti > c/pt − (si − t). Let ri be a moment

in time that gives the best bound on ti:

ri = argmax
0≤t≤si

(
c

pt
− (si − t)

)
.

Call the ith challenge “hard” if ti + (si− ri) > c/pri . We claim that if challenge
i is hard, then the same fact about the number of pebbles j steps before the
challenge as we used in the warm-up proof holds.

Claim 5 If challenge i is hard, then for any j, 0 ≤ j ≤ si, psi−j > c/(ti + j).

Proof. Indeed, let t = si−j. Then c/psi−j−j = c/pt−(si− t) ≤ c/pri−(si−ri)
by the choice of ri. This value is less than ti by definition of a hard challenge.
Therefore, c/psi−j − j < ti and the result is obtained by rearranging the terms.

ut

We now claim that with high probability, the number of hard challenges is
sufficiently high.

Claim 6 For any ε > 0, with probability at least 1− e−2ε2Q, the number of hard
challenges is at least H ≥ Q(prhard − ε).

Proof. The intuitive idea is to apply Hoeffding’s inequality [17], because chal-
lenges are independent. However, the hardness of challenges is not independent,
because it may be (for example) that one particular challenge causes the adver-
sary to slow down for every subsequent challenge. Fortunately, it can only be
“worse than independent” for the adversary. Specifically, for any fixing of the
first i − 1 challenges c1, . . . , ci−1, we can run the adversary up to time si; at
this point, time ri is well defined, and we can apply Fact 3 to ri to obtain that
Pr[ci is hard | c1, . . . , ci−1] ≥ prhard. This fact allows us to apply the slightly
generalized version of Hoeffiding’s inequality stated in Claim 7 (setting Vi = 1
if ci is hard and Vi = 0 otherwise) to get the desired result. ut

Claim 7 (Generalized Hoeffding’s inequality) If V1, V2, . . . , VQ are binary
random variables such that for any i (0 ≤ i < Q) and any values of v1, v2, . . . , vi,
Pr[Vi+1 = 1 |V1 = v1, . . . , Vi = vi] ≥ ρ, then for any ε > 0, with probability at

least 1− e−2ε2Q,
∑Q
i=1 Vi ≥ Q(ρ− ε).

Proof. For 0 ≤ i < Q, define the binary random variable Fi+1 as follows: for
any fixing of v1, . . . , vi such that Pr[V1 = v1, . . . , Vi = vi] > 0, let Fi+1 = 1 with
probability ρ/Pr[Vi+1 = 1 |V1 = v1, . . . , Vi = vi] and 0 otherwise, independently
of Vi+1, . . . , VQ. Let Wi+1 = Vi+1 · Fi+1. Note that Pr[Wi+1 = 1] = ρ regardless
of the values of V1, . . . , Vi, and thus Wi+1 is independent of V1, . . . , Vi. Since
F1, . . . , Fi are correlated only with V1, . . . , Vi, we have that Wi+1 is indepen-
dent of (V1, . . . , Vi, F1, . . . , Fi), and thus independent of W1, . . . ,Wi. Therefore,
W1, . . . ,WQ are mutually independent (this standard fact can be shown by in-

duction on the number of variables), and thus
∑Q
i=1 Vi ≥

∑Q
i=1Wi ≥ Q(ρ − ε)

with probability at least 1− e−2ε2Q by Hoeffding’s inequality. ut

Now assume H challenges are hard. What remains to show is a purely alge-
braic statement about the sum of pi values when H ≥ Q(prhard−ε) of challenges
satisfy Claim 5.

Claim 8 Let c be a real value. Let t1, . . . , tQ be integers, s1 = 0, and si =
si−1 + ti−1 for i = 2, . . . , Q+ 1. Let p0, . . . , pQ be a sequence of real values with
pt > pmin for every t ≥ 1. Suppose further that there exist at least H distinct
indices i, with 1 ≤ i ≤ Q (called “hard indices”) such that for any 0 ≤ j ≤ si,
psi−j ≥ c/(ti + j). Then

sQ+1∑
i=1

pi ≥ c ·H · ln

(
1 +

(
pmin

p0

) 1
H

)
.

Proof. Let i1 < i2 < · · · < iH be the hard indices. Recall the notation cc(i, j) =∑j
t=i pt. Then for k ≥ 2,

cc(sik−1
+ 1, sik) ≥ cc(sik − tik−1

+ 1, sik) =

tik−1
−1∑

j=0

psik−j

≥
tik−1

−1∑
j=0

c

tik + j
≥ c · (ln(tik−1

+ tik)− ln tik) ,

(the last inequality follows by the same reasoning as in the warm-up). To bound
cc(1, Q+1), we will add up the pebbling complexity during these nonoverlapping
time periods for each k and find the minimum over all sets of values of tik .
Unfortunately, the result will decrease as ti1 decreases and as tiH increases, and
we have no bounds on these values. To get a better result, we will need to
consider special cases of k = 2 (to replace ti1 with c/p0) and k = H + 1 (to add
another term with tiH+1 = c/pmin).

For k = 2, we will bound cc(1, si2) by noticing that si2 ≥ ti1 + si1 ≥ c/p0
(where the second step follows by Claim 5 with j = si1), and therefore

cc(1, si2) ≥
si2−1∑
j=0

psi2−j ≥ c
si2−1∑
j=0

1

ti2 + j
≥ c

∫ si2+ti2

ti2

dx

x

= c(ln(si2 + ti2)− ln ti2) ≥ c · (ln(c/p0 + ti2)− ln ti2) .

For k = H + 1,

cc(siH + 1, sH+1) ≥ pmin · tiH ≥ c ·
(

1

c/pmin
tiH

)
≥ c ·

(
1

c/pmin
+ · · ·+ 1

c/pmin + tiH − 1

)
≥ c · (ln(tih + c/pmin)− ln c/pmin) .

Adding these up, we get

cc(0, si+1) = p0 + cc(1, si2) + cc(si2 + 1, si3) + . . .

+ cc(siH−1
+ 1, siH) + cc(siH + 1, siH+1

)

≥ p0 + c ·
H∑
i=1

(ln(xi + xi+1)− lnxi+1) ,

where x1 = c/p0, x2 = ti2 , x3 = ti3 , . . . , xH = tiH , and xH+1 = c/pmin.
To find the minimum of this function, observe that the first derivative with

respect to xi is 1
xi+xi−1

+ 1
xi+xi+1

− 1
xi

, which, assuming all the xis are positive, is

zero at xi =
√
xi−1xi+1, is negative for xi <

√
xi−1xi+1, and is positive for xi >√

xi−1xi+1. Therefore, the minimum of this function occurs when each xi, for 2 ≤
i ≤ H, is equal to

√
xi−1xi+1, or equivalently, when xi = c/(pi−1minp

H−i+1
0)1/H .

This setting of xi gives us ln(xi + xi+1)− lnxi+1 = ln(1 + (pmin/p0)1/H), which
gives the desired result. ut
Plugging inQ·(prhard−ε) forH and prhard = 1

2 concludes the proof of Theorem 4.
ut

5.1 Why this proof needs to be modified for the parallel random
oracle model

The main idea of the proof above is to apply the space-time tradeoff of Fact 3
to every point in time before the challenge is known, arguing that delaying the
receipt of the challenge can only hurt the adversary. While this is true in the
pebbling game (via an easy formal reduction—because getting bits does not help
get pebbles), it’s not clear why this should be true in the parallel random oracle
game, where space is measured in bits rather than pebbles. A reduction from
the adversary A who does not know the challenge to an adversary B who does
would require B to store the challenge in memory, run A until the right moment
in time, and then give A the challenge. This reduction consumes memory of
B—for storing the challenge and keeping track of time. In other words, A can
save on memory by not knowing, and therefore not storing, the challenge. While
the amount of memory is small, it has to be accounted for, which makes the
formulas even messier. Things get even messier if A is not required to be 100%
correct, because, depending on the exact definition of the round game, B may
not know when to issue the challenge to A.

Nevertheless, this difficulty can be overcome when challenges come from the
random oracle, as they do in scrypt. We do so in the next section.

6 Main Result: Memory Hardness of scrypt in the
Parallel Random Oracle Model

We are ready to restate our main theorem, which we now prove extending the
techniques from the two previous sections. We state it with a bit more detail
than Theorem 1.

Fix positive integers n ≥ 2 and w, a string X ∈ {0, 1}w, a finite domain D
that contains at least {0, 1}w, and let R = {0, 1}w.

Theorem 5. Let A be any oracle machine (in the parallel random oracle model
as defined in Section 2) with input X. Assume Ah(X) outputs Sh

n = scrypth(X)
correctly with probability χ, where the probability is taken over the choice of
h : D → R. Then for any ε > 0 and q ≥ 2, with probability (over the choice h)

at least χ− 2qn4 · 2−w− e−2ε2n one of the following two statements holds: either
Ah(X) makes more than q queries (and thus ccmem(Ahn) > qw by definition) or

ccmem(Ah(X)) ≥ ln 2

6
·
(

1

2
− ε
)
· n2 · (w − 2 log n− log q − 1) .

To get the statement of Theorem 1, we set ε = 1/7 and observe that then

e−2ε
2n = 2−

2n
49 ln 2 < 2−n/20 and ln 2

6 (1
2 −

1
7) > 1

25 . We also plug in q = min(2, n
2

25)
(and therefore log q ≤ 2 log n − 1), thus removing the “either/or” clause (this
setting of q requires us to manually check that the probability statement is

correct when q > n2

25 , i.e., 2 ≤ n ≤ 7—a tedious process that we omit here).
The multiplicative constant of ln(2)(1/2− ε)/6, which becomes 1/25 in The-

orem 1 (and can be as small as ≈ 1/18 if we use a smaller ε), is about 9–12
times worse than the constant in the näıve scrypt algorithm described on p. 4,
which has ccmem of n2w/2. We describe approaches that may improve this gap
to a factor of only about 1/ ln 2 ≈ 1.44 in the full version [7]. We note that there
is also gap between w in the näıve algorithm and (w− 2 log n− log q− 1) in the
lowerbound, which matters for small w (as values of 20–30 for log n and log q
are reasonable).

The rest of this section is devoted to the proof of this theorem.

6.1 Outline of the Approach

Before proceeding with the proof, we justify our proof strategy by highlighting
the challenges of extending Theorem 2 and Theorem 4 to this setting. Theorem
2 applies to a fixed random oracle h and a random challenge. In fact, the proof
relies crucially on the ability to try every challenge for a given oracle. However,
in the present proof, once the random oracle is fixed, so is every challenge.
Moreover, Theorem 4 crucially relies on the uniformity and independence of
each challenge, which is issued only when the previous challenge is answered. In
contrast, here, again, once the oracle is fixed, the challenges are fixed, as well.
Even if we think of the oracle as being lazily created in response to queries, the
challenges implicitly contained in the answers to these queries are not necessarily
independent once we condition (as we need to in Theorem 2) on the oracle not
being in badh. We resolve these issues by working with multiple carefully chosen
random oracles.

Recall our notation: X0 = X, X1 = h(X0), . . . , Xn−1 = h(Xn−2); T0 = Xn−1,
S0 = h(T0), and for i = 1, . . . , n, Ti = Si−1 ⊕ XSi−1 mod n and Si = h(Ti).
Because we will need to speak of different random oracles, we will use notation

Xh
i , T h

i , and Sh
i when the label values are being computed with respect to the

random oracle h (to avoid clutter, we will omit the superscript when the specific
instance of the random oracle is clear from the context). We will denote by Ah

the adversary running with oracle h. (To simplify notation, we will omit the fixed
argument X to the adversary A for the remainder of this section.)

Let changeModn(S, i) be the function that keeps the quotient bS/nc but
changes the remainder of S modulo n to i. Consider the following process of
choosing a random oracle (this process is described more precisely in the fol-
lowing section). Choose uniformly at random an oracle h0. Choose uniformly at
random challenges c1, . . . , cn, each between 0 and n−1. Let h1 be equal to h0 at
every point, except h1(T h0

0) = changeModn(Sh0
0 , c1). Similarly, let h2 be equal to

h1 at every point, except h2(T h1
1) = changeModn(Sh1

1 , c2), and so on, until hn,
which is our final random oracle.

This method of choosing hn is close to uniform, and yet explicitly embeds
a uniform random challenge. Unless some (rare) bad choices have been made,
each challenge has about a 1

2 probability of taking a long time to answer, by
the same reasoning as in Theorem 2. And since the challenges are independent
(explicitly through the choices of ci values), we can use the same reasoning as
in Theorem 4 to bound the cumulative complexity.

The main technical difficulty that remains is to define exactly what those bad
choices are and bound their probability without affecting the independence of
the challenges. In particular, there are nn possible challenge combinations, and
the probability that all of them yield random oracles that are acceptable (cause
no collisions and cannot be predicted) is not high enough. We have to proceed
more carefully.

The first insight is that if hk−1 is not predictable (i.e., a predictor P with a
short input cannot correctly extract many oracle values), and no oracle queries
up to Tk−1 collide, then Prck [time between queries T hk

k−1 and T hk
k is high] ≥ 1

2 ,
by the same reasoning as in Theorem 2 (except predictor needs an extra log q
bits of hint to know when query Tk−1 occurs, so as to substitute the answer
to Tk−1 with changeModn(Sk−1, ck) for every possible ck). This allows us to
worry about only n random oracles avoiding collisions and the set predictable
(instead of worrying about nn random oracles) to ensure that the time between
consecutive challenges is likely to be high.

However, the reasoning in the previous paragraph bounds the time required
to answer the challenge ck only with respect to oracle hk. In order to reason about
A interacting with oracle hn, we observe that if for every k, Ah

k asks the queries
X0, . . . , Xn−1 = T0, T1, . . . , Tn in the correct order, then the computation of Ahn

is the same as the computation of Ahk until the kth challenge is answered—i.e.,
until Tk is queried. Thus, results about each of the oracles hk apply to hn.

The rest of the work involves a careful probability analysis to argue that the
challenges c1, . . . , cn are almost independent even when conditioned on all the
bad events not happenning, and to bound the probability of these events.

6.2 The Detailed Proof

Recall that we assume that the adversary A is deterministic without loss of
generality (this fact will be used heavily throughout the proof). In particular,
the randomness of the experiment consists solely of the random oracle A is given
access to.

Following up on the above high-level overview, we now make precise the def-
inition of hk. Let h0 be a uniformly chosen random oracle. Let changeModn(S, i)
be a function that keeps the quotient bS/nc but changes the remainder of S
modulo n to i if possible: it views S as an integer in [0, 2w − 1], computes
S′ = bS/nc · n+ i, and outputs S′ (viewed as a w-bit string) if S′ < 2w, and S
otherwise (which can happen only if n is not a power of 2, and even then is very
unlikely for a random S).

Definition 1. Let roundingProblemk be the set of all random oracles h for which
the value of at least one of Sh

0 , . . . , S
h
k is greater than b2w/nc · n− 1 (i.e., those

for which changeModn does not work on some S value up to Sk).

Definition 2. Let colliding∗k be the set of all h which there is at least one colli-
sion among the values {X0, X

h
1 , X

h
2 , . . . , X

h
n−2, T

h
0 , T

h
1 , . . . , T

h
k}. Let collidingk =

roundingProblemmin(k,n−1) ∪ colliding∗k.

Definition 3. For every k (0 ≤ k < n), let hk+1 = hk if hk ∈ collidingk;
else, choose ck+1 uniformly at random between 0 and n − 1, let hk+1(T hk

k) =

changeModn(Shk
k , ck+1), and let hk+1(x) = hk(x) for every x 6= T hk

k . (Recall that
h0 is chosen uniformly.)

Note that this particular way of choosing hk+1 is designed to ensure that it is
uniform, as we argue in the full version.

The Single Challenge Argument. In the argument in Theorem 2, the pre-
dictor issues different challenges to A. Here, the predictor will run A with dif-
ferent oracles. Specifically, given 1 ≤ k ≤ n and a particular oracle hk−1 6∈
collidingk−1, consider the n oracles hk,j for each 0 ≤ j < n, defined to be the

same as hk−1, except hk,j(T
hk−1

k−1) = changeModn(S
hk−1

k−1 , j) (instead of S
hk−1

k−1).

Since hk−1 6∈ collidingk−1, T
hk−1

k−1 is not equal to X
hk−1

i for any 0 ≤ i < n− 1

and T
hk−1

i for any 0 ≤ i < k−1. Therefore (since hk−1 and hk,j differ only at the

point T
hk−1

k−1), we have X
hk−1

i = X
hk,j
i for every 0 ≤ i ≤ n− 1 and T

hk−1

i = T
hk,j
i

for any 0 ≤ i ≤ k − 1. In particular, the execution of A with oracle hk,j will
proceed identically for any j (and identically to the execution of Ahk−1) up to
the point when the query Tk−1 is first made (if ever). We will therefore omit the
superscript on Tk−1 for the remainder of this argument.

The observation is that the moment Tk−1 is queried is the moment when the
predictor argument of Theorem 2 can work, by having the predictor substitute
different answers to this query and run A on these different answers in parallel.
However, since Section 5 requires a time/memory tradeoff for every point in time

before the challenge is given, we will prove a more general result for any point
in time before Tk−1 is queried.

We number all the oracle queries that A makes across all rounds, sequentially.
We will only care about the first q oracle queries that A makes, for some q to be
set later (because if q is too large, then ccmem of A is automatically high). Note
that q here is analogous to q − 1 in Theorem 2.

Let sk > 0 be the round in which Tk−1 is first queried, i.e., contained in
qsk . For an integer r ≤ sk, consider the output state σ̄r of Ahk−1 from round r.
Given σ̄r, consider n different continuations of that execution, one for each oracle
hk,j , 0 ≤ j < n. For each of these continuations, we let tj > 0 be the smallest

value such that such r+tj > sk and the query T
hk,j
k is contained in qr+tj (if ever

before query number q + 1; else, set tj = ∞). We can thus define πij , βi, and
bestchali, blue nodes, and the set B the same way as in Theorem 2, by counting
the number of rounds after round r (instead of from 0) and substituting, as

appropriate “challenge j” with hk,j and “query Xj” with “query Xj or T
hk,j
k ”

(note that because hk−1 /∈ roundingProblemk−1, S
hk,j
k−1 mod n = j, and so T

hk,j
k =

Xj⊕S
hk,j
k−1). (We stop the execution of A after q total queries in these definitions.)

We now show that, similarly to Claim 1, we can design a predictor algorithm

P that predicts every X
hk−1

i in B by interacting with hk−1 but not querying
it at the predecessors of points in B. The difference is that instead of running
Ahk−1 on σ0 and giving A different challenges j, P will run A with initial input
state σr, simulating different oracles hk,j (which differ from hk−1 on only one
point—namely, the output on input Tk−1). P gets, as input, σr and the same
hint as in Claim 1. P also needs an additional hint: an integer between 1 and q
indicating the sequential number (across all queries made in round r or later) of

the first time query Tk−1 occurs, in order to know when to reply with S
hk,j
k−1 =

changeModn(S
hk−1

k−1 , j) instead of S
hk−1

k−1 itself. Note that this substitution will
require P to modify the input state σsk . If sk > r, then P will not only be

able to answer with S
hk,j
k−1, but will also see the query Tk−1 itself as part of the

output state σ̄sk , and will therefore be able to answer subsequent queries to
Tk−1 consistently. However, if sk = r, then we need to give Tk−1 to P to ensure
subsequent queries to Tk−1 are answered consistently. In order to do so without

lengthening the input of P, we note that in such a case we do not need S
hk−1

k−1

in σr (since P can obtain it by querying hk−1), and so we can take out S
hk−1

k−1
and replace it with Tk−1 (P will recognize that this happened by looking at the
additional hint that contains the query number for Tk−1 and noticing that it is
smaller than the number of queries zr in round r).

There is one more small modification: if Xj ∈ B and bestchalj = j, then in
order to correctly predictXj itself (assumingXj ∈ B), P will need one additional
bit of hint, indicating whether Xj is first queried by itself or as part of the “next

round,” i.e., as part of the query T
hk,j
k = S

hk,j
k−1 ⊕Xj (in which case P will need

to xor the query with S
hk,j
k−1, which P knows, having produced it when answering

the query Tk−1). Finally, note that log q bits suffice for the query number of Xi

on challenge bestchali, because it is not the same query number as Tk−1, because
hk−1 /∈ collidingk−1, so there are q−1 possibilities plus the possibility of “never”.

We thus need to give (in addition to σr) log q + |B|(1 + 2 log n + log q) bits
of hint to P, and P is guaranteed to be correct as long as hk−1 /∈ collidingk−1.

Suppose σr has mr bits. Claim 2 does not change. We modify Claim 3 as
follows. We replace p with a function pr of the memory size mr, defined as

pr = d(mr + 1 + log q)/(w − 2 log n− log q − 1) + 1e (1)

(note that it is almost the same as the definition of p, but accounts for the longer
hint). We now redefine predictable according to our new definition of P, pr, and
hint length.

Definition 4. The set predictable consists of all random oracles h for which
there exists an input state σr of size mr (such that 1 ≤ pr ≤ n − 1) and a hint
of length log q + pr(1 + 2 log n + log q), given which P can correctly output pr
distinct values from among Xh

1 , . . . , X
h
n−1 without querying them.

Finally, we replace badh with collidingk−1 ∪ predictable. As long as hk−1 /∈
collidingk−1 ∪ predictable, we are guaranteed that Prj [tj > n/(2pr)] ≥ 1/2, like
in Theorem 2.

The discussion above gives us the following lemma (analogous to Theorem 2).

Lemma 1. Fix any k (1 ≤ k ≤ n). Assume hk−1 /∈ collidingk−1 ∪ predictable.

Let sk > 0 be the smallest value such that T
hk−1

k−1 is among the queries qsk during

the computation of Ahk−1 . Let r ≤ sk and mr be the bit-length of the input state

σr of Ahk−1 in round r + 1. Let tk,j,r > 0 be such that the first time T
hk,j
k is

queried by Ahk,j after round sk is in round r + tk,j,r (let tk,j,r = ∞ if such a
query does not occur after round σk or does not occur among the first q queries,

or if T
hk−1

k−1 is never queried). Call j “hard” for time r if tk,j,r > n/(2pr), where
pr = d(mr + 1 + log q)/(w − 2 log n− log q − 1) + 1e. We are guaranteed that

Pr
j

[j is hard for time r] ≥ 1

2
.

Hardness of Challenge ck. We continue with the assumptions of Lemma 1.
In order to get an analogue of Claim 5, we need to define what it means for
a challenge to be hard. Consider running Ahk . Let tk > 0 be such that T hk

k is
queried for the first time in round sk + tk (again, letting tk = ∞ if this query
does not occur among the first q queries). Find the round rk ≤ sk such that
bit-length mr of the input state σr in round rk +1 gives us the best bound on tk
using the equation of Lemma 1 (i.e., set rk = argmax0≤r≤sk(n/(2pr)− (sk− r)),
where mr denotes the size of the state σr at the end of round r, and pr is the
function of mr defined by Equation 1), and define ck to be “hard” if it is hard
for time rk.

Definition 5. A challenge ck is hard if for rk = argmax0≤r≤sk(n/(2pr)− (sk−
r)) we have tk,ck,rk > n/(2pr), where sk, tk,j,r and pr are as defined in Lemma 1.

The Multiple Challenges Argument. So far, we considered hardness of
ck during the run of A with the oracle hk. We now need to address the actual
situation, in which A runs with hn. We need the following claim, which shows
that the actual situation is, most of the time, identical. Define wrongOrderk as the
set of all random oracles h for which the values {T h

0 , T
h
1 , . . . , T

h
k} are not queried

by Ah in the same order as they appear in the correct evaluation of scrypt

(when we look at first-time queries only, and only up to the first q queries).

Definition 6. wrongOrderk consists of all h for which there exist i1 and i2 such
that 0 ≤ i1 < i2 ≤ k and, in the run of Ah, query T h

i2
occurs, while query T h

i1

does not occur before query T h
i2

occurs.

Claim 9 If for every j (0 ≤ j ≤ n), hj /∈ collidingj∪wrongOrderj, then for every

k and i ≤ k, T hn
i = T hk

i , and the execution of Ahn is identical to the execution of
Ahk until the query Tk is first made, which (for 1 ≤ k ≤ n) happens later than
the moment when query T hn

k−1 = T hk
k−1 is first made.

Proof. To prove this claim, we will show, by induction, that for every j ≥ k and

i ≤ k, T hk
i = T

hj
i , and the execution of Ahj is identical to the execution of Ahk

until the query Tk is first made.
The base of induction (j = k) is simply a tautology.
The inductive step is as follows. Suppose the statement is true for some j ≥ k.

We will show it for j + 1. We already established that if hj 6∈ collidingj , then

T
hj
i = T

hj+1

i for every i ≤ j, and is therefore equal to T hk
i by the inductive

hypothesis. Since hj and hj+1 differ only in their answer to the query T
hj
j =

T
hj+1

j , the execution of Ahj+1 proceeds identically to the execution of Ahj until
this query is first made. Since hj 6∈ wrongOrderj , this moment is no earlier than
when the query Tk is made; therefore, until the point the query Tk is first made,
the execution of Ahj+1 proceeds identically to the execution of Ahj and thus (by
the inductive hypothesis) identically to the execution of Ahk .

The last part of the claim follows because hn 6∈ wrongOrdern. ut

We therefore get the following analogue of Claim 5.

Claim 10 Given adversary A, assume for every k (0 ≤ k ≤ n), hk /∈ collidingk∪
wrongOrderk. Let c = n/2. If challenge i is hard (i.e., ti + (si − ri) > c/pri),
then, during the run of Ahn , for any 0 ≤ j ≤ si, psi−j ≥ c/(ti + j).

Definition 7. Let E1 be the event that there are at least H ≥ n(1
2 − ε) hard

challenges (as defined in Definition 5). Let E2 be the event that hk /∈ collidingk ∪
wrongOrderk (see Definitions 2 and 6) for every k, and Ahn queries T hn

n . Let Eq
be the event that Ahn makes no more than q total queries.

Claim 11 If E1 ∩ E2 ∩ Eq, then

sn+1∑
r=1

pr ≥ ln 2 ·
(

1

2
− ε
)
· 1

2
· n2 .

Proof. Since E2 holds, every query T0, . . . , Tn gets made, in the correct order.
Since Eq holds, all these queries happen no later than query q, thus ensuring that
Claim 10 applies and each tk is finite. Moreover, by definition of pr in Equation 1,
pr ≥ 1 and p0 = 1. Therefore, we can apply Claim 8 to the execution of Ahn to
get the desired result. ut
Converting from

∑
pr to ccmem Now we need to convert from

∑
pr to

∑
mr.

Claim 12 For every r > 0,

mr ≥ pr · (w − 2 log n− log q − 1)/3 .

Proof. By definition of pr, we have that

pr =

⌈
mr + 1 + log q

w − 2 log n− log q − 1
+ 1

⌉
≤ mr + 1 + log q

w − 2 log n− log q − 1
+ 2,

because the ceiling adds at most 1. Therefore,

(pr − 2) · (w − 2 log n− log q − 1) ≤ mr + 1 + log q,

(because we can assume (w− 2 log n− log q− 1) > 0 — otherwise, Theorem 5 is
trivially true) and thus

mr ≥ (pr − 2) · (w − 2 log n− log q − 1)− log q − 1 (2)

= pr · (w − 2 log n− log q − 1)− 2 · (w − 2 log n− log q − 1)− log q − 1

= pr · (w − 2 log n− log q − 1)− 2 · (w − 2 log n− 0.5 log q − 0.5). (3)

Since mr ≥ w (see our complexity measure definition in Section 2), mr ≥ w −
2 log n− 0.5 log q− 0.5 and therefore we can increase the left-hand side by 2 ·mr

and the right-hand side by 2 · (w − 2 log n − 0.5 log q − 0.5) and the inequality
still holds; and therefore 3mr ≥ pr · (w − 2 log n− log q − 1) . ut
Lemma 2. Assuming E1 ∩E2 (see Definition 7), for any integer q, either Ahn

makes more than q queries (and thus ccmem(Ahn) > qw by definition) or

ccmem(Ahn(X)) ≥ ln 2

6
·
(

1

2
− ε
)
· n2 · (w − 2 log n− log q − 1) .

Proof. We observe that if Ahn makes no more than q queries, then E1 ∩E2 ∩Eq
hold, and we can combine Claims 11 and 12 to get

ccmem(Ahn(X)) =

sn+1∑
r=1

mr ≥
1

3
·
sn+1∑
r=1

pr · (w − 2 log n− log q − 1)

≥ ln 2

3
·
(

1

2
− ε
)
· 1

2
· n2 · (w − 2 log n− log q − 1) .

This concludes the proof of Lemma 2. ut
All that remains is to show a lower bound for the probability of (E1 ∩ E2 ∩

Eq) ∪ Ēq, and to argue that hn is uniform, because the statement we are trying
to prove is concerned with Ah for uniform h rather than with Ahn . The details
are deferred to the full version [7].

Acknowledgments

We thank Chethan Kamath and Jeremiah Blocki for helpful discussions. We are
also grateful to anonymous referees and Jeremiah Blocki for their careful reading
of our proof and detailed suggestions.

Leonid Reyzin gratefully acknowledges the hospitality and support of IST
Austria, where most of this work was performed, and the hospitality of École
normale supérieure, Paris.

The work was partially supported by the following U.S. NSF grants: Binyi
Chen by CNS-1423566, CNS-1528178, and CNS-1514526; Stefano Tessaro by
CNS-1423566, CNS-1528178, CNS-1553758 (CAREER), and IIS-1528041; Leonid
Reyzin by 1012910, 1012798, and 1422965. Moreover, Joël Alwen and Krzysztof
Pietrzak were supported by the European Research Council consolidator grant
682815-TOCNeT.

References

1. Mart́ın Abadi, Michael Burrows, Mark S. Manasse, and Ted Wobber. Moderately
hard, memory-bound functions. ACM Trans. Internet Techn., 5(2):299–327, 2005.

2. Mart́ın Abadi, Michael Burrows, and Ted Wobber. Moderately hard and memory-
bound functions. In NDSS 2003. The Internet Society, February 2003.

3. Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent memory-
hard functions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part II, volume 9815 of LNCS, pages 241–271. Springer, Heidelberg, August 2016.

4. Joel Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs and
their cumulative memory complexity. In EUROCRYPT, 2017.

5. Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof
Pietrzak, and Stefano Tessaro. On the complexity of Scrypt and proofs of space in
the parallel random oracle model. Cryptology ePrint Archive, Report 2016/100,
2016. http://eprint.iacr.org/2016/100.

6. Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof
Pietrzak, and Stefano Tessaro. On the complexity of scrypt and proofs of space in
the parallel random oracle model. In Marc Fischlin and Jean-Sébastien Coron, edi-
tors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 358–387. Springer,
Heidelberg, May 2016.

7. Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro.
Scrypt is maximally memory-hard. Cryptology ePrint Archive, Report 2016/989,
2016. http://eprint.iacr.org/2016/989.

8. Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-
hard functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM
STOC, pages 595–603. ACM Press, June 2015.

9. Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Argon2 password hash.
Version 1.3, 2016. https://www.cryptolux.org/images/0/0d/Argon2.pdf.

10. Charles Lee. Litecoin, 2011.
11. Yevgeniy Dodis, Siyao Guo, and Jonathan Katz. Fixing cracks in the concrete:

Random oracles with auxiliary input, revisited. In EUROCRYPT, 2017.
12. Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-bound functions

for fighting spam. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS,
pages 426–444. Springer, Heidelberg, August 2003.

http://eprint.iacr.org/2016/100
http://eprint.iacr.org/2016/989
https://www.cryptolux.org/images/0/0d/Argon2.pdf

13. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 139–147.
Springer, Heidelberg, August 1993.

14. Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 37–54. Springer,
Heidelberg, August 2005.

15. Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof
Pietrzak. Proofs of space. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 585–605. Springer,
Heidelberg, August 2015.

16. Matthew K. Franklin and Dahlia Malkhi. Auditable metering with lightweight
security. In Rafael Hirschfeld, editor, FC’97, volume 1318 of LNCS, pages 151–
160. Springer, Heidelberg, February 1997.

17. Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American statistical association, 58(301):13–30, 1963.

18. Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols.
In Proceedings of the IFIP TC6/TC11 Joint Working Conference on Secure In-
formation Networks: Communications and Multimedia Security, CMS ’99, pages
258–272, Deventer, The Netherlands, The Netherlands, 1999. Kluwer, B.V.

19. Ari Juels and John G. Brainard. Client puzzles: A cryptographic countermeasure
against connection depletion attacks. In NDSS’99. The Internet Society, February
1999.

20. C. Percival. Stronger key derivation via sequential memory-hard functions. In
BSDCan 2009, 2009.

21. C. Percival and S. Josefsson. The scrypt Password-Based Key Derivation Function.
RFC 7914 (Informational), August 2016.

22. Password hashing competition. https://password-hashing.net/.
23. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release

crypto. Technical report, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1996.

24. Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford. CAPTCHA:
Using hard AI problems for security. In Eli Biham, editor, EUROCRYPT 2003,
volume 2656 of LNCS, pages 294–311. Springer, Heidelberg, May 2003.

A On Percival’s Proof

We note that Percival [20] claims a weaker result than the one in our main
theorem, similar in spirit to our single-shot trade-off theorem (Theorem 2 above),
in that it considers only a single random challenge, as well as an overall upper
bound on the size of the initial state. Also, the proof technique of [20] may, at
first, somewhat resemble the one used in Theorem 2, where multiple copies of the
adversary are run on all possible challenges. In contrast to both this work and
that of [6], however, Percival considers adversaries with only a limited amount
a parallelism.

Upon closer inspection, however, we have found serious problems with the
proof in [20]. In more detail, the proof considers an adversary running in two
stages. In the preprocessing stage the adversary gets input B and access to h
and must eventually output an arbitrary state (bit-string) σ. In the second phase

https://password-hashing.net/

n copies of the adversary are run in parallel. For x ∈ [0, n − 1] the xth copy is
given challenge x, state σ and access to h. Its goal is to produce output hx(B).
The main issue with the proof stems from the fact that information about h
contained within σ is never explicitly handled. Let us be a bit more concrete.

The proof looks in particular at the set Ri of all i ∈ [n] of all values U
for which some copy of the adversary queries h(U) within the first i steps. Here,
some key aspects remain undefined. For instance, it is unclear whether the initial
time step in the second phase is 0 or 1, and consequently, there is also no clear
definition of the contents of the set R0. We briefly discuss now why, no matter
how we interpret R0, the technique does not imply the desired statement.

Suppose we assume that R0 is the set of queries to h made by the adversary
in this first step of the second stage. In particular, for all i, the set Ri contains
only queries to h made during the second phase of the execution. However this
creates a serious problem. At a (crucial) later step in the proof it is claimed that
if hx−1(B) /∈ Ri−1, then the probability that hx(B) is queried at the i-th step is
the same as simply guessing hx(B) out of the blue (a highly unlikely event). But
this statement is now incorrect as it ignores potential information contained in
the state σ. For example σ may even contain hx(B) explicitly making it trivial
to query h at that point at any time i regardless of the contents of Ri−1.

Suppose instead that we assume the time of the second phase begins at 1 leav-
ing R0 open to interpretation. Setting R0 = ∅ leads to the exact same problem
as before. So instead, in an attempt to avoid this pitfall, we could let R0 be the
set of queries made during the pre-computation stage. Indeed, if hx−1(B) 6∈ Ri
then that means hx−1(B) was not queried while σ was being prepared and so
(whp) σ contains no information about hx(B) avoiding the previous problem.
Yet here too we run into issues. Consider the following adversary A: In the pre-
processing stage A makes all queries hx(B) for x ∈ [0, n− 1] and then generates
some state σ (what this state really is, and how the adversary proceeds in the
second stage is somewhat irrelevant). In particular for this adversary, for all i
the set Ri already contains all relevant queries {hx(B) : x ∈ [0, n− 1]}. Most of
the remainder of the proof is concerned with upper bounding the expected size
of Ri. But in the case of A for each i we now have

∣∣Ri∣∣ ≥ n which contradicts the
bounds shown in the proof. Worse, when plugging in this new upper bound into
the remaining calculations in the proof we would get that the expected runtime
of each instance of A in the second phase is at least 0; an uninteresting result.
Thus this too can not be the right interpretation. Unfortunately, we were unable
to come up with any reasonable interpretation which results in an interesting
statement being proven.

In conclusion, we note that the proof can be adapted to the randomized
pebbling setting, as considered in [6]. However, we note that for this setting, [6]
already contains a much simpler proof of such a single-shot trade-off theorem.
We also note that Theorem 2 confirms that Percival’s statement is in fact true,
although using a very different proof technique.

	Scrypt is Maximally Memory-Hard

